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1 Introduction
Rotating beams, which have importance in many practical

plications such as turbine blades, helicopter rotor blades, airp
propellers, and robot manipulators have been investigated f
long time. An interesting review of the subject can be found in
papers by Leissa@1#, Ramamurti and Balasubramanian@2#, Rosen
@3# and Lin @4#. Much attention has been focused on the inve
gation of the unpretwisted beam. Most of research of the vibra
problem of rotating pretwisted beam have been studied by u
numerical method because of its complexity. No analytical so
tion for the vibration of a rotating pretwisted beam has be
presented.

Considering the Bernoulli-Euler unpretwisted beam theory,
influence of tip mass, rotating speed, hub radius, setting an
taper ratio, and elastic root restraints on the natural frequencie
transverse vibrations of a rotating beam were investigated
many investigators. Lee and Kuo@5# obtained the exact solution
for the free vibrations of rotating unpretwisted beam with bend
rigidity and mass density varying in arbitrary polynomial form
by taking the Frobenius method. Lee and Lin@6# studied the free
vibration of unpretwisted Timoshenko beams. The two coup
characteristic differential equations governing the bending
sponse uncouple into one complete fourth-order ordinary differ
tial equation with variable coefficients in the angle of rotatio
The four fundamental solutions of the uncoupled fourth-order
dinary differential equation were obtained using the Froben
method. The frequency equation was expressed in terms o
four fundamental solutions. Similarly, one can decouple the
coupled governing characteristic differential equations of a ro
ing pretwisted beam into one complete eighth-order ordinary
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ferential equation by taking many procedures of differentati
The variation of the coefficients of the uncoupled governing ch
acteristic equation will be very large. Taking the Frobeni
method, the corresponding eight fundamental solutions of
eighth-order ordinary differential equation can be expressed
power series. However, the fundamental solutions will be div
gent because the region of convergence of a power series is
ally limited.

Considering the Timoshenko unpretwisted beam theory, the
fluence of shear deformation and rotatory inertia on the bend
vibrations of a rotating beam were investigated by numerous
thors. Lee and Lin@6# studied numerically the coupling effect o
the rotating speed and the mass moment of inertia on the na
frequencies and the phenomenon of divergence instability. Lin@4#
obtained the generalized Green function of annth-order ordinary
differential equation. This Green function was used to obtain
closed-form solution for the forced vibration of a rotatin
Timoshenko beam. The prediction to the frequencies and
mechanism of divergence instability of a rotating beam have
been investigated.

For a nonrotating pretwisted beam, approximation methods
very useful tools to investigate the free vibrations of pretwis
beams where it is difficult to obtain exact solutions even for
simplest cases. These methods are the finite element method~@7#!,
the Rayleigh-Ritz method~@8#!, the Reissner method~@9#! the
Galerkin method~@10#!, and the transfer matrix method~@11,12#!.
Lin @12# derived the exact field transfer matrix of a nonunifor
nonrotating pretwisted beam with arbitrary pretwist and stud
the performance of a beam with elastic boundary conditio
However, the exact field transfer matrix of a rotating pretwist
beam can not be derived in a similar way.

For a rotating pretwisted beam, Rao and Carnegie@13# used the
Holzer-Myklestad approach to determine the natural frequen
and mode shapes of a cantilever pretwisted blade. Subrahman
and Kaza @14# studied the vibrations of a cantilever tapere
pretwisted beam by using the Ritz method and the finite differe
method. Subrahmanyam, Kulkarni, and Rao@15# used the Reiss-
ner method to study the vibration of a rotating pretwisted cant
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ver Timoshenko beam. Sisto and Chang@16# proposed a finite
element method for a vibration analysis of rotating pretwis
beam. Young and Lin@17# studied the stability of a cantileve
tapered pretwisted beam with varying speed by using the Gale
method. Kar and Neogy@18# used the Ritz method to study th
stability of a rotating pretwisted cantilever beam. Hernried@19#
used the finite difference method to determine the natural frequ
cies of a rotating pretwisted nonuniform cantilever beam. Mo
over, the author used the mode-superposition method to deter
the forced vibration of the beam. Surace, Anghel, and Mares@20#
derived the approximate method based on the use of struc
influence function to determine the natural frequencies of a ro
ing cantilever pretwisted Bernoulli-Euler beam. As a result,
analytical solution has been given to the coupled bending-ben
vibrations of a rotating nonuniform beam with arbitrary pretw
and an elastically restrained root.

In this paper, the governing differential equations for t
coupled bending-bending-extensional vibration of a rotating n
uniform beam with arbitrary pretwist, an elastically restrain
root, setting angle, hub radius, and rotating at a constant ang
velocity, are derived by using Hamilton’s principle. For an ine
tensional beam, without taking account of the coriolis force’s
fect, the three coupled governing differential equations are
duced to two coupled equations and the centrifugal force
obtained. The reduced coupled governing differential equat
are transformed to a vector characteristic differential equat
The frequency equation of the system is derived and express
terms of the transition matrix of the vector governing equation
simple and efficient algorithm for determining the semi-analyti
transition matrix of the general system with nonuniform pretw
is derived. The frequency relation and the mechanism of insta
ity of unpretwisted and pretwisted rotating beams are investiga
The influence of the rotatory inertia, the coupling effect of t
rotating speed and the mass moment of inertia, the set
angle, the rotating speed and the spring constants on the na
frequencies, and the phenomenon of divergence instability
investigated.

2 Pretwisted Beam

2.1 Governing Equations and Boundary Conditions.
Consider the coupled bending-bending-extensional vibration
pretwisted and doubly symmetric nonuniform beam elastically
strained, mounted with setting angleu on a hub with radiusR,
rotating with constant angular velocityV, as shown in Fig. 1. The
displacement fields of the beam are

u5u0~x,t !2z
]w

]x
2y

]v
]x

, v5v~x,t !, w5w~x,t !, (1)

wherex, y, and z are the fixed frame coordinates.t is the time
variable. The velocity vector of a point~x, y, z! in the beam is
given by

V5F]u

]t
1V sinu~z1w!1V cosu~y1v !G i

1F]v
]t

2V cosu~x1R1u!G j1F]w

]t
2V sinu~x1R1u!Gk.

(2)

The potential energyŪ and the kinetic energyT̄ of the beam are

Ū5
1

2 E0

LE
A
sxx«xxdAdx1

1

2
KzuF]w~0,t !

]x G2

1
1

2
KzTw

2~0,t !

1
1

2
KyuF]v~0,t !

]x G2

1
1

2
KyTv2~0,t !, (3)
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T̄5
1

2 E0

LE
A
F S ]u

]t D
2

1S ]v
]t D

2

1S ]w

]t D 2GrdAdx, (4)

whereA is the cross-sectional area of the beam.KyT , Kyu , KzT ,
andKzu are the translational and rotational spring constants at
left end of the beam in they andz-directions, respectively.L is the
length of the beam.r is the mass density per unit volume.sxx ,«xx
are the normal stress and strain in thex-direction, respectively.
Application of Hamilton’s principle yields the following govern
ing differential equations:

2
]2

]x2 S EIyy

]2w

]x2 1EIyz

]2v
]x2 D1

]

]x S N
]w

]x D
1

]

]x S Jy

]3w

]t2]x
1Jx

]3v
]t2]xD2V2

]

]x S Jy

]w

]x
1Jx

]v
]x D

2rAS ]2w

]t2 2V sinu
]u0

]t D1rAV sinuS ]u0

]t
1V sinuw

1V cosuv D50, (5)

2
]2

]x2 S EIyz

]2w

]x2 1EIzz

]2v
]x2 D1

]

]x S N
]v
]xD

1
]

]x S Jx

]3w

]t2]x
1Jz

]3v
]t2]xD2V2

]

]x S Jx

]w

]x
1Jz

]v
]x D

2rAS ]2v
]t2 2V cosu

]u0

]t D1rAV cosuS ]u0

]t
1V sinuw

1V cosuv D50, (6)

]N

]x
2rA

]2u0

]t2 22rAVS sinu
]w

]t
1cosu

]v
]t D1rAV2~x1u0!50,

(7)

and the associated boundary conditions:
at x50:

u050, (8)

EIyy

]2w

]x2 1EIyz

]2v
]x2 2Kzu

]w

]x
50, (9)

Fig. 1 Geometry and coordinate system of a rotating
pretwisted beam
NOVEMBER 2001, Vol. 68 Õ 845
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]x S EIyy

]2w

]x2 1EIyz

]2v
]x2 D2N

]w

]x
2Jy

]3w

]x]t22Jx

]3v
]x]t2

1V2S Jy

]w

]x
1Jx

]v
]x D1KzTw50, (10)

EIyz

]2w

]x2 1EIzz

]2v
]x2 2Kyu

]v
]x

50, (11)

]

]x S EIyz

]2w

]x2 1EIzz

]2v
]x2 D2N

]v
]x

2Jx

]3w

]x]t22Jz

]3v
]x]t2

1V2S Jx

]w

]x
1Jz

]v
]x D1KyTw50, (12)

at x5L:

N~L !50, (13)

EIyy

]2w

]x2 1EIyz

]2v
]x2 50, (14)

]

]x S EIyy

]2w

]x2 1EIyz

]2v
]x2 D2N

]w

]x
2Jy

]3w

]x]t22Jx

]3v
]x]t2

1V2S Jy

]w

]x
1Jx

]v
]x D50, (15)

EIyz

]2w

]x2 1EIzz

]2v
]x2 50, (16)

]

]x S EIyz

]2w

]x2 1EIzz

]2v
]x2 D2N

]v
]x

2Jx

]3w

]x]t22Jz

]3v
]x]t2

1V2S Jx

]w

]x
1Jz

]v
]x D50, (17)

whereE is Young’s modulus.I is the area moment inertia of th
beam.Jx , Jy , andJz are mass moment of inertia per unit leng
about thex, y andz-axes, respectively.N is the centrifugal force. It
is observed that in Eq.~7! the centrifugal forceN is related tou0 ,
v, andw. The centrifugal forceN is the parameter of Eqs.~5! and
~6! in terms ofu0 , v, andw. Thus the system is nonlinear. It i
hard to obtain the solution of the system. But if an inextensio
beam without the Coriolis force effect is considered, the sys
becomes linear and the corresponding solution can be easily
tained. Moreover, the lateral vibration of a blade subjected to
rotational speed is dominant and the effect of the Coriolis fo
may be neglected@14#.

For an inextensional beam, without taking account of the C
olis force effect, the centrifugal force in Eqs.~7! and ~13! can be
expressed as

N~x!5V2E
x

L

rA~R1x!dx. (18)

In terms of the following dimensionless quantities,
846 Õ Vol. 68, NOVEMBER 2001
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Bi j 5E~x!I i j ~x!/@E~0!I yy~0!#, i , j 5x,y,z gi5Ji~x!/Jy~0!,

m5r~x!A~x!/@r~0!A~0!#, n~j!5a2E
j

1

m~x!~r 1x!dx,

r 5R/L, V5v/L,

W5w/L, a25r~0!A~0!V2L4/@E~0!I yy~0!#,

b15KzuL/@E~0!I yy~0!#, b25KzTL/@E~0!I yy~0!#,

b35KyuL/@E~0!I yy~0!#, b45KyTL/@E~0!I yy~0!#,

h5Jy~0!/@r~0!A~0!L2#, L25r~0!A~0!v2L4/@E~0!I yy~0!#,

j5x/L, t5t/L2AE~0!I yy~0!/r~0!A~0!,

g i15
b i

11b i
, g i25

1

11b i
, (19)

the dimensionless governing characteristic differential equati
of motion for harmonic vibration with circular frequencyv are
written as

2
d2

dj2 S Byy

d2W

dj2 1Byz

d2V

dj2 D1
d

dj S n
dW

dj D
2h~a21L2!

d

dj S gy

dW

dj
1gx

dV

dj D1m~a2 sin2 u1L2!W

1ma2 sinu cosuV50, (20)

2
d2

dj2 S Byz

d2W

dj2 1Bzz

d2V

dj2 D1
d

dj S n
dV

dj D
2h~a21L2!

d

dj S gx

dW

dj
1gz

dV

dj D1m~a2 cos2 u1L2!V

1ma2 sinu cosuW50, jP~0,1! (21)

and the associated dimensionless elastic boundary condition
given as follows:
at j50:

g12S Byy

d2W

dj2 1Byz

d2V

dj2 D2g11

dW

dj
50, (22)

g22H d

dj S Byy

d2W

dj2 1Byz

d2V

dj2 D2n
dW

dj
1h~a21L2!

3S gy

dW

dj
1gx

dV

dj D J 1g21W50, (23)

g32S Byz

d2W

dj2 1Bzz

d2V

dj2 D2g31

dV

dj
50, (24)

g42H d

dj S Byz

d2W

dj2 1Bzz

d2V

dj2 D2n
dV

dj
1h~a21L2!

3S gx

dW

dj
1gz

dV

dj D J 1g41V50 (25)

at j51:

Byy

d2W

dj2 1Byz

d2V

dj2 50, (26)

d

dj S Byy

d2W

dj2 1Byz

d2V

dj2 D1h~a21L2!S gy

dW

dj
1gx

dV

dj D50,

(27)

Byz

d2W

dj2 1Bzz

d2V

dj2 50, (28)
Transactions of the ASME
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dj S Byz

d2W

dj2 1Bzz

d2V

dj2 D1h~a21L2!S gx

dW

dj
1gz

dV

dj D50.

(29)

It should be noted that considering the velocity field~2! results
in the coupling effect of the rotating speed and the mass mom
of inertia, h(a21L2)d(gydW/dj1gxdV/dj)/dj and h(a2

1L2)d(gxdW/dj1gzdV/dj)/dj. However, if the displacement
of any point in the cross section of the beam is the same as th
the center of the cross section, i.e.,u5u0(x,t), v5v(x,t), and
w5w(x,t), these effects cannot be considered~@17#!. Further-
more, when the setting angle is zero, the governing equat
become the same as those given by Rosen@3#.

It can be observed that the second terms in Eqs.~20! and ~21!
present the effect of the centrifugal forcen to increase the stiffnes
of the beam. Because the second and third terms in Eqs.~20! and
~21! are positive and negative, respectively, the coupling effec
the rotating speed and the mass moment of inertia, i.e., the
terms in Eqs.~20! and~21!, presents an axial compressive force
decrease the stiffness of the beam. Moreover, because the
pling effect includes the product of the rotating speeda and the
rotatory inertiah, the coupling effect on the frequencies is gre
for the system with large parametersa andh.

2.2 Solution Method.

2.2.1 Transformed Vector Governing Equation.Defining the
state variables as

x15W, x25
dW

dj
, x35

d2W

dj2 , x45
d3W

dj3 ,

x55V, x65
dV

dj
, x75

d2V

dj2 , x85
d3V

dj3 , (30)

Eqs.~20! and ~21! can be written as, respectively,

a1

dx4

dj
1a2

dx3

dj
1a3

dx2

dj
1a4

dx1

dj
1a5x11a6

dx8

dj
1a7

dx7

dj

1a8

dx6

dj
1a9

dx5

dj
1a10x550, (31)

a11

dx4

dj
1a12

dx3

dj
1a13

dx2

dj
1a14

dx1

dj
1a15x11a16

dx8

dj
1a17

dx7

dj

1a18

dx6

dj
1a19

dx5

dj
1a20x550, (32)

where

a15Byy , a252
dByy

dj
,

a35
d2Byy

dj2 2n1h~a21L2!gy , a452
dn

dj
1h~a21L2!

dgy

dj
,

a552m~a2 sin2 u1L2!, a65a115Byz ,

a75a1252
dByz

dj
, a85a135

d2Byz

dj2 1h~a21L2!gx ,

a95a145h~a21L2!
dgx

dj
, a105a1552ma2 sinu cosu,

a165Bzz, a1752
dBzz

dj
, a185

d2Bzz

dj2 2n1h~a21L2!gz ,

a1952
dn

dj
1h~a21L2!

dgz

dj
, a2052m~a2 cos2 u1L2!.

(33)
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Multiplying Eq. ~31! by a16 and Eq.~32! by a6 and subtracting the
latter from the former, one obtains

dx4

dj
5(

j 51

8

cjxj , (34)

where

c152~a5a162a15a6!/s, c252~a4a162a14a6!/s,

c352~a3a162a13a6!/s, c452~a2a162a12a6!/s,

c552~a10a162a20a6!/s, c652~a9a162a19a6!/s,

c752~a8a162a18a6!/s, c852~a7a162a17a6!/s, (35)

in which s5a1a162a11a6 . Similarly, multiplying Eq.~31! by a11
and Eq.~32! by a1 and subtracting the latter from the former, on
obtains

dx8

dj
5(

j 51

8

c̄ jxj , (36)

where

c̄152~a5a112a15a1!/ s̄, c̄252~a4a112a14a1!/ s̄,

c̄352~a3a112a13a1!/ s̄, c̄452~a2a112a12a1!/ s̄,

c̄552~a10a112a20a1!/ s̄, c̄652~a9a112a19a1!/ s̄,

c̄752~a8a112a18a1!/ s̄, c̄852~a7a112a17a1!/ s̄, (37)

in which s̄5a6a112a16a1 . Based on the relations~30!, ~34!, and
~36!, the transformed vector characteristic governing equation
be obtained as follows:

dX

dj
5A~j!X~j!, (38)

where

X~j!5@x1 x2 x3 x4 x5 x6 x7 x8#T,

A~j!53
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

c̄1 c̄2 c̄3 c̄4 c̄5 c̄6 c̄7 c̄8

4 , (39)

in which the superscript ‘‘T’’ is the symbol of transpose of a
matrix.

2.2.2 Frequency Equation.The solution of Eq.~38! can be
expressed as

X~j!5T~j,0!X~0!, (40)

where T(j,0) is the transition matrix from 0 toj, to be deter-
mined. Moreover, the state variables atj51 can be written as

xi~1!5(
j 51

8

Ti j ~1,0!xj~0!, i 51,2, . . . ,8 (41)

where Ti j is the elements of the transition matrix from 0 to
Expressing the boundary conditions~22!–~25! in terms of the
state variables$x1(0),x2(0), . . . ,x8(0)% and substituting Eq.~41!
into the boundary conditions~26!–~29!, the frequency equation o
the system is obtained,

ux i j u83850, (42)
NOVEMBER 2001, Vol. 68 Õ 847
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x115x145x155x165x1850, x1252g11,

x135g12Byy~0!, x175g12Byz~0!;

x215g21, x225g22@h~a21L2!gy~0!2n~0!#,

x235g22Byy8 ~0!, x245g22Byy~0!,

x2550, x265g22h~a21L2!gx~0!,

x275g22Byz8 ~0!, x285g22Byz~0!;

x315x325x345x355x3850, x335g32Byz~0!,

x3652g31, x375g32Bzz~0!;

x4150, x425g42h~a21L2!gx~0!,

x435g42Byz8 ~0!, x445g42Byz~0!,

x455g41, x465g42@h~a21L2!gz~0!2n~0!#,

x475g42Bzz8 ~0!, x485g42Bzz~0!;

x5 j5Byy~1!T3 j~1,0!1Byz~1!T7 j~1,0!, j 51,2, . . . ,8;

x6 j5h~a21L2!gy~1!T2 j~1,0!1Byy8 ~1!T3 j~1,0!

1Byy~1!T4 j~1,0!1h~a21L2!gx~1!T6 j~1,0!

1Byz8 ~1!T7 j~1,0!1Byz~1!T8 j~1,0!, j 51,2, . . . ,8;

x7 j5Byz~1!T3 j~1,0!1Bzz~1!T7 j~1,0!, j 51,2, . . . ,8;

x8 j5h~a21L2!gx~1!T2 j~1,0!1Byz8 ~1!T3 j~1,0!

1Byz~1!T4 j~1,0!1h~a21L2!gz~1!T6 j~1,0!

1Bzz8 ~1!T7 j~1,0!1Bzz~1!T8 j~1,0!, j 51,2, . . . ,8. (43)

Letting g115g215g315g4151 and g125g225g325g4250, the
frequency equation for a cantilever beam can be obtained.

2.2.3 Semi-analytical Transition Matrix.It is well known
~@21#! that the following Peano-Baker series is the closed-fo
transition matrix of Eq.~38!

T~j,j i 21!5I1E
j i 21

j

A~x1!dx11E
j i 21

j

A~x1!E
j i 21

x1

A~x2!dx2dx1

1E
j i 21

j

A~x1!E
j i 21

x1

A~x2!E
j i 21

x2

A~x3!dx3dx2dx1

1¯ . (44)

However, it is impossible to determine the multiple integrals
the series analytically or numerically. Hence, an approximate t
sition matrix is required. In this paper, a simple and efficient
gorithm is developed to find the approximate transition matrix

By approximating the coefficient matrixA(j) by n piecewise
constant coefficient matricesA(si), i 51,2, . . . ,n, one obtains a
characteristic governing equation with constant coefficient mat
Here si can be any value between@j i 21 ,j i # and j i denotes the
coordinate position at the end of thei th subsection. Consequentl
the transition matrix of thei th subsection fromj i 21 to j can be
obtained:

T~j,j i 21!5eA~si !~j2j i 21!, si , jP~j i 21 ,j i !. (45)

After applying the composition property of the transition matr
i.e., T(j i 11 ,j i 21)5T(j i 11 ,j i)T(j i ,j i 21), the overall transition
matrix is obtained:

T~j,0!5)
i 5 j

1

T~si !, jP~j j 21 ,j j !, siP~j i 21 ,j i !. (46)
848 Õ Vol. 68, NOVEMBER 2001
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It can be observed that if the coefficient matrixA in the Peano-
Baker series is constant, the transition matrix~44! is the same as
Eq. ~45!. Hence, when the number of subsections approaches
finity, the approximate transition matrix becomes the exact one
can be obtained at any desired level of accuracy by taking a s
able number of subsections. It should be noted here that w
numerically determining the natural frequencies, the rate and
dency of the convergence of the solutions will be different acco
ing to the coordinate positionsi in the piecewise constant matri
selected as different values between@j i 21 ,j i #. In this paper, for a
better rate of convergence,si is taken to be (j i 211j i)/2.

3 Frequency Relations

3.1 Frequency Relations of Pretwisted Beams.The rela-
tions among the setting angleu, the rotatory inertiah, and the
frequencyL of rotating beams are studied. Meanwhile, one e
pects to predict the parameters of some system according to
parameters of another system. Two systems denoted as ‘‘a’’ and
‘‘ b’’ have the same parameters exceptu, h, andL. It is observed
from the governing Eqs.~20! and ~21! that if there exist the fol-
lowing relations, the two systems are similar:

ha~a21La,i
2 !5hb~a21Lb,i

2 !, (47)

a2 sin2 ua1La,i
2 5a2 sin2 ub1Lb,i

2 , (48)

a2 cos2 ua1La,i
2 5a2 cos2 ub1Lb,i

2 , (49)

sin 2ua5sin 2ub , (50)

wherei denotes thei th frequency. Assume that all the paramete
of the systema are given and the parameters$hb ,ub ,Lb,i% are
unknown. It is obvious that Eqs.~48! and~49! do not be satisfied
simultaneously unlessua5ub and La,i5Lb,i . SubstitutingLa,i
5Lb,i into Eq.~47!, ha5hb . It is trivial that the two systems are
the same as each other. In other words, one can’t predict exa
the parameters of the systemb from the parameters of the syste
a via the relations~47!–~50!.

However, if the relation~49! is approximated and its effect i
very small, the parameters of the systemb can be accurately pre
dicted from the parameters of the system a via the relations~47!,
~48!, and ~50!. It is observed from Eq.~21! that the integrated
parameter of the relation~49! is the coefficient for the deflection
v. When the pretwisted angle is small, the deflectionw is domi-
nant and the effect of the relation~49! is very small. Moreover, the
stiffer the system is, the larger the frequencies are. For a st
system its frequencyL is greatly larger than the rotating speeda
and the relation~49! can be approximated.

3.2.1 Frequency Relations and Mechanism of Instabi
of Unpretwisted Beams.Letting V5F50 in Eqs. ~20!–~27!,
the governing equations and the boundary conditions of an
pretwisted Rayleigh beam can be obtained, respectively,
follows:

d2

dj2 S Byy

d2W

dj2 D2
d

dj H @n2h~a21L2!gy#
dW

dj J
2m~a2 sin2 u1L2!W50, (51)

at j50:

g12Byy

d2W

dj2 2g11

dW

dj
50, (52)

g22H d

dx S Byy

d2W

dj2 D2@n2h~a21L2!gy#
dW

dj J 1g21W50,

(53)

at j51:

d2W

dj2 50, (54)
Transactions of the ASME
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dx S Byy

d2W

dj2 D2@n2h~a21L2!gy#
dW

dj
50. (55)

One can obtain from Eqs.~51!–~55! the relations~47! and~48!
which can be satisfied simultaneously. Given all the parameter
the systema and the setting angleub for the systemb, the corre-
sponding frequenciesLb,i and the rotatory inertiahb of the sys-
tem b can be predicted exactly by using the relations~48! and
~47!, respectively.

It should be noted that the critical state of instability isL1
2

50. If L1
2,0, the natural frequency is imaginery and the div

gent instability~@6#! occurs. SubstitutingLa,1 and the associated
parameters into the relations~47! and ~48!, one can predict
whether the divergent instability will happen to the systemb. Let-
ting Lb,1

2 50, the critical rotatory inertia and the critical settin
angle are obtained from Eqs.~47! and ~48!, respectively,

~hb!critical5ha~11La,1
2 /a2!, (56)

~ub!critical5sin21Asin2 ua1La,1
2 /a2 (57)

under the following necessary condition of the diverge
instability

sin2 ua1La,1
2 /a2,1. (58)

Because the effects of the rotatory inertiah and the
setting angleu are to decrease the frequencies of the s
tem, under the condition~58! the domain of instability is
$(u,h)u sin21A(sin2 ua1La,1

2 /a2)<u<p/2,h>ha(11La,1
2 /a2)%.

For Bernoulli-Euler beams without taking account of the effe
of the rotatory inertiah, only the relation~48! exists. The follow-
ing frequency relation can be obtained by substracting the rela
in the (i 1 j )th mode by that in thej th mode,

La,i 1 j
2 2La,i

2 5Lb,i 1 j
2 2Lb,i

2 . (59)

It should be noted that for Bernoulli-Euler beams the condition
instability ~58! is sufficient.

4 Instability of Rotating Beams

4.1 Beam With Infinite Translational Root Spring
Constant.

4.1.1 Pretwisted Beam.Consider the free vibration o
pretwisted Bernoulli-Euler beams with infinite translational ro
spring constant and without the rotational root spring, i.e.,g12
5g215g325g4151 and g115g225g315g4250. It is assumed
that there exists the free vibration of rigid-body motion and
mode shape is

W5w0j and V5v0j, (60)

wherew0 andv0 are constants. Equation~60! satisfies the bound
ary conditions~22!–~29!. Substituting Eq.~60! into the governing
Eqs.~20! and ~21!, one can obtain

2w0a2m~r 1j!1m~a2 sin2 u1L2!jw01ma2 sinu cosuv0j

50,

2v0a2m~r 1j!1ma2 sinu cosuw0j1m~L21a2 cos2 u!v0j

50, (61a)

where the first terms of Eq.~61a! are derived from the secon
terms of Eqs.~20! and~21!, respectively. Lettingr 50, the follow-
ing conditions are obtained:

~L22a2 cos2 u!w01a2 sinu cosuv050,

a2 sinu cosuw01~L22a2 sin2 u!v050. (61b)

The first two eigenvalues areL1
250 andL2

25a2. Because the
square of fundamental frequency is zero, the instability will ha
Journal of Applied Mechanics
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pen to a pretwisted Bernoulli-Euler beam. Because the effec
rotatory inertia is to decrease the frequencies, the instability
also happen to a pretwisted Rayleigh beam. However, fo
pretwisted Bernoulli-Euler beam withr .0, g11.0, andg31.0
its fundamental frequency will be greater than the value of ze
The reason is that when the hub radiusr and the rotational root
spring constantsg11 andg31 are increased from zero, the funda
mental frequency of a pretwisted Bernoulli-Euler beam is
creased from zero. This means that the instability will not happ
to a pretwisted Bernoulli-Euler beam withr .0, g215g4151,
g11.0, andg31.0.

4.1.2 Unpretwisted Beam.Letting u5v05r 50 in Eq.
~61b!, the corresponding fundamental frequency and the m
shape of an unpretwisted Bernoulli-Euler beamb2→` are ob-
tained, respectively,

L1
25a2, W5w0j. (62)

One can predict via Eq.~48! that whenub5p/2, the associated
fundamental frequencyLb,150. When the hub radiusr or the
rotational root spring constantb1 is increased, the fundamenta
frequency of the beam withub5p/2 is increased to be larger tha
zero and the instability will not happen. It is well known th
when the setting angle is decreased, the frequencies are incre
Thus the instability will not happen also for the beam withb2
→`, r .0, b1.0 andu,p/2. It is concluded that in spite of the
setting angleu and the rotating speeda the instability does not
happen to a Bernoulli-Euler beam withb2→`, b1.0, and r
.0. On the other hand, it can be observed that whenr .0 or
b1.0, the fundamental frequencyL1 of the beam withb2→`
and u50 is increased to be larger thana and the condition of
instability ~58! is not satisfied. This predicts also the abo
conclusion.

Because the frequencies of Rayleigh and Timoshenko be
taking account of the rotatory inertiah are smaller than those o
Bernoulli-Euler beams under the same conditions, the fundam
tal frequencies of the unpretwisted Rayleigh and Timoshe
beams withh.0, u5r 5b150, andb2→` will be less thana
and the necessary condition of instability~58! is satisfied. The
fundamental frequency is smaller thana and the necessary cond
tion instability ~58! is satisfied untilr andb1 are increased to be
large enough. In other words, the instability will happen to t
unpretwisted Rayleigh and Timoshenko beams withb2→`, b1
.0, r .0, andh.hcritical .

4.2 Beam With Infinite Rotational Root Spring Constants.

4.2.1 Pretwisted Beam.Consider the free vibration of a
beam with infinite rotational root spring constant and witho
translational root spring, i.e.,g115g225g315g4251 and g12
5g215g325g4150. It is assumed that there exists a rigid-bo
free-vibration motion and its mode shape is

W5w0 and V5v0 , (63)

where w0 and v0 are constants. Eq.~63! satisfies the boundary
conditions ~22!–~29!. Substituting Eq.~63! into the governing
Eqs.~20! and ~21!, the following conditions are obtained:

~a2 sin2 u1L2!w01a2 sinu cosuv050,

a2 sinu cosuw01~a2 cos2 u1L2!v050. (64)

Equation~64! results in that the eigenvalue and the mode sh
are L252a2 and v05cotuw0. This means that the rigid-body
free-vibration motion is unstable. Moreover, when the trans
tional root spring constant is increased to a critical value fr
zero, the eigenvalueL2 is increased to zero from the value o
2a2. It is concluded that when the translational root spring co
stant is smaller than the critical value, the instability will occur

4.2.2 Unpretwisted Beam.Consider the free vibration o
rigid-body motion of a unpretwisted beam with infinite rotation
NOVEMBER 2001, Vol. 68 Õ 849



Table 1 Convergence pattern of dimensionless frequencies of a rotating pretwisted cantilever doubly tapered beam †B yy
Ä„1 – 0.1j…4cos 2 jpÕ6¿4„1 – 0.1j…4sin 2 jpÕ6, B zzÄ4„1 – 0.1j…4cos 2 jpÕ6¿„1 – 0.1j…4sin 2 jpÕ6, B yzÄ1.5„1 – 0.1j…4sin jpÕ3, aÄ3.0,
hÄ0‡

Number of
Subsections L1 L2 L3 L4 L5

5 5.100 7.791 23.747 44.036 63.632
10 5.119 7.775 23.802 43.897 63.790
20 5.124 7.771 23.817 43.861 63.836
30 5.124 7.770 23.820 43.854 63.844
40 5.125 7.770 23.821 43.851 63.848
50 5.125 7.769 23.821 43.850 63.849
60 5.125 7.769 23.822 43.850 63.850
70 5.125 7.769 23.822 43.850 63.850
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root spring constant and without the translational root spring. S
stituting the mode shapeW5w0 which satisfies the boundar
conditions ~52!–~55! into Eq. ~51!, the following condition is
obtained:

a2 sin2 u1L250, (65)

which satisfies the condition of instability~58!. Letting u50, one
obtains from Eq.~64! that the fundamental frequencyL is zero.
When the translational spring constant is increased, the fundam
tal frequency is increased from zero. The condition of instabi
~58! is satisfied until the translational root spring constant is lar
than a critical value. This means that when the translational
spring constant is smaller than a critical value, the condition~58!
will be satisfied and the instability will occur. Because for Ra
leigh and Timoshenko beams which the effect of rotatory inerti
considered their fundamendal frequencies are smaller than th
a Bernoulli-Euler beam under the same parameters, the cond
~58! for Rayleigh and Timoshenko beams is satisfied as soo
the condition for a Bernoulli-Euler beam is satisfied.
850 Õ Vol. 68, NOVEMBER 2001
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It is concluded that for both pretwisted and unpretwisted bea
with infinite rotational root spring constants the instability w
occur when the translational root spring constant is smaller tha
critical value.

5 Numerical Results and Discussion
To demonstrate the efficiency and convergence of the propo

method, the first five frequencies are determined for a rota
pretwisted cantilever doubly tapered beam. In Table 1, the con
gence pattern of dimensionless frequencies of the beam is sh
It shows that the natural frequencies determined by the propo
method converge very rapidly. Even when the number of subs
tions is only five, the differences between these solutions and
converged solutions are less than 0.5 percent.

For comparison, a uniformly pretwisted cantilever beam w
constant cross section is considered. The natural frequencies
tained by the proposed method as well as those given by Sub
manyam and Kaza@14# and Lin @12# are tabulated in Table 2
Table 2 Effect of inertia constant h on the dimensionless frequencies of a rotating pretwisted cantilever beam †B yyÄcos 2 jF
¿4 sin 2 jF, B zzÄ4 cos 2 jF¿sin 2 jF, B yzÄ1.5 sin 2 jF, a*ÄaÕ3.51602‡

F a*
Mode

Number

h50 h50.0001 h50.001

# ## present present present

30 deg 0 1 3.5245 3.5245 3.5245 3.5235 3.5149
2 6.9585 6.9585 6.9586 6.9526 6.8994
3 22.339 22.338 22.339 22.298 21.945
4 42.896 42.896 42.898 42.649 40.576
5 63.423 63.419 63.423 63.138 60.758

1 1 5.1824 - 5.1824 5.1804 5.1632
2 7.1461 - 7.1462 7.1386 7.0705
3 24.055 - 24.055 24.010 23.618
4 43.735 - 43.737 43.479 41.335
5 65.103 - 65.104 64.811 62.367

3 1 8.2156 - 8.2156 8.1990 8.0502
2 11.749 - 11.748 11.743 11.694
3 34.834 - 34.834 34.763 34.136
4 49.804 - 49.805 49.488 46.845
5 77.191 - 77.193 76.843 73.907

90 deg 0 1 3.5900 3.5899 3.5900 3.5882 3.5716
2 6.4847 6.4849 6.4850 6.4815 6.4500
3 24.531 24.530 24.530 24.457 23.833
4 37.457 37.459 37.460 37.317 36.096
5 72.973 72.962 72.965 72.470 68.460

1 1 5.1120 - 5.1121 5.1086 5.0780
2 6.8250 - 6.8253 6.8202 6.7753
3 26.041 - 26.039 25.960 25.281
4 38.533 - 38.536 38.385 37.102
5 74.400 - 74.392 73.887 69.798

3 1 7.9774 - 7.9776 7.9688 7.8908
2 11.804 - 11.804 11.792 11.688
3 35.872 - 35.871 35.755 34.741
4 46.044 - 46.047 45.841 44.101
5 84.936 - 84.929 84.353 79.672

#: given by Subrahmanyam and Kaza@14#; ##: given by Lin@12#
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Table 3 The frequency relations between rotating unpretwisted Bernoulli-Euler beams †hÄ0, rÄ0, B yyÄ„1 – 0.2j…3, m
Ä„1 – 0.2j…‡

a u L1
2 L2

2 L3
2 L2

22L1
2 L3

22L2
2

bTL→`
buL→`

2
0 deg 17.8707 450.0783 3223.7197 432.2076 2773.6414
45 deg 15.8707 448.0783 3221.7197 432.2076 2773.6414
90 deg 13.8707 446.0783 3219.7197 432.2076 2773.6414

6
0 deg 55.5119 648.9802 3750.9751 593.4683 3101.9949
45 deg 37.5119 630.9802 3732.9751 593.4683 3101.9949
90 deg 19.5119 612.9802 3714.9751 593.4683 3101.9949

bTL→`
buL550

2
0 deg 16.8900 421.6602 3023.3622 404.7702 2601.7020
45 deg 14.8900 419.6602 3021.3622 404.7702 2601.7020
90 deg 12.8900 417.6602 3019.3622 404.7702 2601.7020

6
0 deg 53.6052 616.3647 3540.1596 562.7595 2923.7949
45 deg 35.6052 598.3647 3522.1596 562.7595 2923.7949
90 deg 17.6052 580.3647 3504.1596 562.7595 2923.7949
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Subrahmanyam and Kaza@14# studied the vibration of a rotating
pretwisted cantilever beam by using the finite difference met
and the Ritz method. Lin@12# studied the vibration of a nonrotat
ing nonuniform pretwisted beam by using the modified trans
matrix method. Subrahmanyam and Kaza@14# did not consider
the effect of the rotatory inertia and the coupling effect of t
rotating speed and the mass moment of inertia. Without consi
ing these effects, i.e.,h50, excellent agreement is obtained b
tween the previous numerical results and those by the prop
method. Moreover, the effect of the inertia constanth will de-
crease greatly the natural frequencies. The effect of the ine
constanth on the natural frequencies of higher modes is relativ
greater than that on the natural frequencies of lower modes. As
rotating speeda increases, the effect of the inertia constanth on
the natural frequencies increases. The reason is that the cou
effect includes the product of the rotating speeda and the rotatory
inertia h.

The frequency relations~48! and ~59! between rotating un-
pretwisted Bernoulli-Euler beams is proved numerically in Ta
3. The frequency relations~47!–~50! among rotating pretwisted
beams are proved numerically in Table 4. A pretwisted cantile
beam with a small pretwisted angle is considered in Table 4.
shown that the prediction of frequency via the relations~47!, ~48!,
and ~50! is very accurate.

Figure 2 verifies the facts revealed in Sections 4.1.1 and 4
that the instability will happen to a pretwisted Rayleigh beam w
infinite translational root spring constants, but not to a pretwis
Bernoulli-Euler beam withr .0, u,p/4 andg215g4151. More-
Journal of Applied Mechanics
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over, the instability will happen to the pretwisted Rayleig
and Bernoulli-Euler beams with infinite rotational root sprin
constants.

The influence of the rotating speed on the first three natu
frequencies of doubly tapered beams with nonuniform pretwist
shown in Fig. 3. It is observed that the effect of the rotating sp
on the first two frequencies are almost the same for all th
systems. However, the effect on the higher mode frequencies
greatly different.

Figure 4 shows the influence of the total pretwist angleF on
the first four frequencies of cantilever beams with different ra
of area moment inertia in thez andy-directionsI ZZ(0)/I YY(0). If
the cross section of the beam is almost square, e
I ZZ(0)/I YY(0)52, the influence of the total pretwist angleF on
the frequencies is small. However, whenI ZZ(0)/I YY(0)5100, the
influence of the total pretwist angleF on the frequencies is grea
The influence on the frequencies of higher modes is greater
that on the frequencies of lower modes.

6 Conclusion
A solution procedure for the bending-bending vibration of

rotating nonuniform beam with arbitrary pretwist and an elas
cally restrained root is derived. A simple and efficient algorith
for deriving the semianalytical transition matrix of the gene
system with nonuniform pretwist is proposed. The algorithm c
be applied to linear control systems. The divergence in the Fro
nius method does not exist in the proposed method. The freque
Table 4 The prediction of the fundamental frequency Lb of pretwisted cantilever beams †aÄ0.1, haÄ0.001, rÄ1, B yy
Ä„1 – 0.1j…cos 2 Fj¿1000„1 – 0.1j…3sin 2 Fj, B zzÄ1000„1 – 0.1j…3cos 2 Fj¿„1 – 0.1j…sin 2 Fj, B yzÄ„5000„1 – 0.1j…3 – 0.5„1 – 0.1j……
sin 2 Fj‡

F ua La ub hb Lb L̄b

0 deg 3.62623 90 deg 0.00100076 3.62485 3.62485
0.1 deg 20 deg 3.62607 70 deg 0.00100058 3.62501 3.62501

40 deg 3.62566 50 deg 0.00100013 3.62543 3.62543
60 deg 3.62520 30 deg 0.00099942 3.62589 3.62589
0 deg 3.61501 90 deg 0.00100077 3.61363 3.61415

5 deg 20 deg 3.61493 70 deg 0.00100059 3.61387 3.61426
40 deg 3.61468 50 deg 0.00100013 3.61444 3.61453
60 deg 3.61439 30 deg 0.00099962 3.61509 3.61483
0 deg 3.53790 90 deg 0.00100080 3.53648 3.54079

15 deg 20 deg 3.53829 70 deg 0.00100061 3.53721 3.54051
40 deg 3.53920 50 deg 0.00100014 3.53895 3.53970
60 deg 3.54019 30 deg 0.00099960 3.54090 3.53870
0 deg 3.44536 90 deg 0.00100084 3.44391 3.45405

25 deg 20 deg 3.44647 70 deg 0.00100064 3.44536 3.45312
40 deg 3.44914 50 deg 0.00100015 3.44889 3.45065
60 deg 3.45212 30 deg 0.00099958 3.45285 3.44778

Lb : determined by using Eq.~48!
L̄b : substitutingLb into Eq. ~47!, hb is obtained. Further, determineL̄b by using the proposed method for the general system.
NOVEMBER 2001, Vol. 68 Õ 851
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relations among different systems are revealed. The mechan
of instability is discovered. The effects of several parameters
the instability of rotating beams is investigated. It is shown th

1 due to the coupling effect of the rotational speed and
rotatory inertia, when the rotating speeda increases, the effect o
the inertia constanth on the natural frequencies increases.

2 the effect of the rotatory inertia on the natural frequencies
higher modes is relatively greater than that on the natural frequ
cies of lower modes.

3 the instability does not happen to a unpretwisted Bernou
Euler beam with infinite translational root spring constant anr
.0. However, if the rotational root spring constant is smaller th

Fig. 2 The influence of the root spring constants on the insta-
bility of a pretwisted tapered beam †B yyÄ„1 – 0.1j…cos 2 pjÕ4
¿100„1 – 0.1j…3 sin 2 pjÕ4, B zzÄ100„1 – 0.1j…3 cos 2 pjÕ4
¿„1 – 0.1j…sin 2 pjÕ4, B yzÄ†50„1 – 0.1j…3 – 0.5„1 – 0.1j…‡sin pjÕ2,
aÄ2, uÄ30 deg, rÄ0.1‡

Fig. 3 The influence of the rotating speed a on the first three
natural frequencies of cantilever doubly tapered beams with
uniform and nonuniform pretwists †B yyÄ„1 – 0.1j…4 cos 2 w
¿100„1 – 0.1j…4 sin 2 w, B zzÄ100„1 – 0.1j…4 cos 2 w
¿„1–0.1j…4 sin 2 w, B yzÄ49.5„1 – 0.1j…4 sin 2 w, hÄ0.001, uÄpÕ3,
rÄ0.2; : wÄpj2Õ2; : wÄpÕ2 sin „jpÕ2…; : w
ÄpjÕ2‡
852 Õ Vol. 68, NOVEMBER 2001
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a critical value, the instability will happen to the Rayleigh an
Timoshenko unpretwisted beams with infinite translational spr
root constant,r .0 andu.0.

4 if the translational root spring constant is smaller than a cr
cal value, the instability will happen to Bernoulli-Euler, Rayleig
and Timoshenko unpretwisted and pretwisted beams with infi
rotational root spring constant.

5 the instability will not happen to a pretwisted Bernoulli-Eul
beam withr .0, g215g4151, g11.0, andg31.0. The instability
will happen to pretwisted Rayleigh and Timoshenko pretwis
beams.
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