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1 Introduction ferential equation by taking many procedures of differentation.

Rotating beams, which have importance in many practical a he variation of the coefficients of the uncoupled governing char-

plications such as turbine blades, helicopter rotor blades, airpla (étfr:'sé'c thequatlon W'"d.be V?%t I?rgs. Takltn? thlet.Frobe?utﬁ
propellers, and robot manipulators have been investigated fo od, the corresponding €eight fundamental solutions of the

: . in thelghth-order ordinary differential equation can be expressed in
power series. However, the fundamental solutions will be diver-

apers by LeisspL], Ramamurti and Balasubramani, Rosen ) S
Pap y el e fent because the region of convergence of a power series is usu-

[3] and Lin[4]. Much attention has been focused on the inves oE
gation of the unpretwisted beam. Most of research of the vibratiGlfy limited.

problem of rotating pretwisted beam have been studied by usingConsidering the Timoshenko unpretwisted beam theory, the in-

numerical method because of its complexity. No analytical solfliience of shear deformation and rotatory inertia on the bending

tion for the vibration of a rotating pretwisted beam has beefiPrations of a rotating beam were investigated by numerous au-
presented. thors. Lee and Lif 6] studied numerically the _coupllng effect of

Considering the Bernoulli-Euler unpretwisted beam theory, tfge rotating speed and the mass moment of inertia on the natural
influence of tip mass, rotating speed, hub radius, setting angiéguencies and the phenomenon of divergence instability 4lin
taper ratio, and elastic root restraints on the natural frequenciesodfained the generalized Green function ofrah-order ordinary
transverse vibrations of a rotating beam were investigated g}rferential equation. This Green function was used to obtain the
many investigators. Lee and Ki&] obtained the exact solution closed-form solution for the forced vibration of a rotating
for the free vibrations of rotating unpretwisted beam with bendinjimoshenko beam. The prediction to the frequencies and the
rigidity and mass density varying in arbitrary polynomial formgnechanism of divergence instability of a rotating beam have not
by taking the Frobenius method. Lee and [&] studied the free been investigated.
vibration of unpretwisted Timoshenko beams. The two coupled For a nonrotating pretwisted beam, approximation methods are
characteristic differential equations governing the bending reery useful tools to investigate the free vibrations of pretwisted
sponse uncouple into one complete fourth-order ordinary differebeams where it is difficult to obtain exact solutions even for the
tial equation with variable coefficients in the angle of rotatiorsimplest cases. These methods are the finite element m¢nd
The four fundamental solutions of the uncoupled fourth-order othe Rayleigh-Ritz method[8]), the Reissner method9]) the
dinary differential equation were obtained using the Frobeniwsalerkin method[10]), and the transfer matrix methdfl1,12)).
method. The frequency equation was expressed in terms of thia [12] derived the exact field transfer matrix of a nonuniform
four fundamental solutions. Similarly, one can decouple the twenrotating pretwisted beam with arbitrary pretwist and studied
coupled governing characteristic differential equations of a rotahe performance of a beam with elastic boundary conditions.
ing pretwisted beam into one complete eighth-order ordinary diftowever, the exact field transfer matrix of a rotating pretwisted
beam can not be derived in a similar way.
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ver Timoshenko beam. Sisto and Chdig| proposed a finite
element method for a vibration analysis of rotating pretwisted
beam. Young and Liff17] studied the stability of a cantilever
tapered pretwisted beam with varying speed by using the Galerkin
method. Kar and Neog18] used the Ritz method to study the
stability of a rotating pretwisted cantilever beam. Hernri&8]

used the finite difference method to determine the natural frequen-
cies of a rotating pretwisted nonuniform cantilever beam. More-
over, the author used the mode-superposition method to determine
the forced vibration of the beam. Surace, Anghel, and ME26k
derived the approximate method based on the use of structural
influence function to determine the natural frequencies of a rotat-
ing cantilever pretwisted Bernoulli-Euler beam. As a result, no
analytical solution has been given to the coupled bending-bending
vibrations of a rotating nonuniform beam with arbitrary pretwist
and an elastically restrained root.

In this paper, the governing differential equations for the
coupled bending-bending-extensional vibration of a rotating non-
uniform beam with arbitrary pretwist, an elastically restrained
root, setting angle, hub radius, and rotating at a constant ang
velocity, are derived by using Hamilton’s principle. For an inex:
tensional beam, without taking account of the coriolis force’s ef-
fect, the three coupled governing differential equations are re-
duced to two coupled equations and the centrifugal force is
obtained. The reduced coupled governing differential equations ) )
are transformed to a vector characteristic differential equation. = 1/t a_”) I A I
The frequency equation of the system is derived and expressed in - ALl at at at
terms of the transition matrix of the vector governing equation. A
simple and efficient algorithm for determining the semi-analyticayhereA is the cross-sectional area of the bedyr, Ky, K1,
transition matrix of the general system with nonuniform pretwisindK, are the translational and rotational spring constants at the
is derived. The frequency relation and the mechanism of instapgft end of the beam in thgandz-directions, respectively. is the
ity of unpretwisted and pretwisted rotating beams are investigatd@ngth of the beanyp is the mass density per unit volume,,, £,

The influence of the rotatory inertia, the coupling effect of thare the normal stress and strain in thelirection, respectively.
rotating speed and the mass moment of inertia, the settidgplication of Hamilton's principle yields the following govern-
angle, the rotating speed and the spring constants on the natiltgldifferential equations:

1 Geometry and coordinate system of a rotating
retwnsted beam

2
pdAdx “

frequencies, and the phenomenon of divergence instability are P 2w pr P P
investigated. El +EI ( ow
a2\ T2 yzz?x2 ax\ " ax
d Ja3w J173v Qzajaw Jau
2 Pretwisted Beam T ax |\ Warzax Tk T ax | ax Tax

2.1 Governing Equations and Boundary Conditions. 2w . dug
Consider the coupled bending-bending-extensional vibration of a _PA(W_Q 5'”97
pretwisted and doubly symmetric nonuniform beam elastically re-
strained, mounted with setting angteon a hub with radius,
rotating with constant angular velocify, as shown in Fig. 1. The +0Q COS@U) =0, (5)
displacement fields of the beam are

. [dug .
+pAQ sind 7+Q sin Ow

9 2w v\ 9 v
oW dv ———|Ely;=—z +El;m— |+ —[N—
u=up(X,t)— za—y v=v(xt), w=w(x¢t), (1) ax? IX ax? ax\  Ix
i i - i +ﬁJ&3W+J &SU)QZ e 3,
Wh_erex, y, andz are the fixed frame_ coordma_tets:s the tlm_e ax | D520 T V2520 Ix | X ax 25
variable. The velocity vector of a poirtk, y, z) in the beam is '
given by A(azu o aauo A cosd (7u0+Q o
" PA| 22 cos el cos r sin 6w
V= E+Q sinf(z+w)+Q cosf(y+v)|i .
+0Q cos&v) =0, (6)
20 costx+R+u) [j+] X _ 0 sina(x+R+u) |k
—_— r— n .
n st v & s ! o Aa o —2pAQ 0 W+ eav + pAQ2(x+ 0
@ o P p sin cos iR (X+ug)=0,
_ _ (7)
The potential energy and the kinetic energy of the beam are
P oy oy and the associated boundary conditions:
1 fo Ade » aw(0)]? L 201) atx=0:
=5 Tyx€ Xt 5 — = K7w4(0,
2 o Ja XXE XX 2 z6 IX 2 zT UOZO, (8)
1 a0n]? 1 5 9w v oW
7 Kyo| =5 | T3 Kyo®(0D), ©) EBlyyoz +Elyr =Ky =0, 9)
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d £ 62W+E| 9%v oW ] J*w v
Y ox2 YZ %2 ax  Yoxot?

ox Xaxat? 1
w o m=p(X)A(X)/[p(0)A(0)], n(§)=a2f m(x)(r +x)dx,
+02 3y +3,—— | +K,rw=0, (10) ¢
X XX
r=R/L, V=vulL,
. 72 . s ) o . . W=w/L, a?=p(0)A0)QLY[E(0)l,y(0)],
vigxr T Elazga Ky =0, (1) Bi=KLITEO),(0)],  Bo=K,LI[E(0)1,(0)],
Bz=KyL/I[E(0)1,(0)],  B4=Ky7L/[E(0)1,y(0)],
2 2 3 3
el Y v) VA A 7=3,(0)/[p(OAO)L?],  A%=p(0)A(0)w’LY/[E(0)I,(0)],
x|\ Yrox? 22 %2 ax  roxot? “Foxot? )
) 5 &=xIL, 7=t/L JE(O)Iyy(O)/p(O)A(O),
1%
+02 J—+J,— |+ = i
Q (Jxax Jzax) K,tw=0, (12) . B; . 1 19)
gt TP 1+
atx=L: the dimensionless governing characteristic differential equations
' of motion for harmonic vibration with circular frequenay are
written as
N(L)=0, (13) d? d?w d?v| d dW)
aF ( Brvag Bﬂdez) df(n a
4 L d{ dw  dv
Elyy— 7 TEly777 =0, (14) 7( 2+A2)d§(gy dE +gxd§)+m(a Sir? 6+ A2)W
+ma? sind cosfV=0, (20)
El i +EI *v N w J W J v d? d>w dvy d [ dv
ax\ Y ox? Y2 o2 ax  Yoxat? “Xoxot? B 4B |+ —n—
d§2 yzd§2 sz§2 df df
+QZ(J Mo (90) 0 (15) d/ dw  dv
Yox | Xogx | o 2 el 2 2
—n(a®+ A )dg(gx TMTT: +m(a?cog 0+ A?)V
2w s +ma?sinfcosdW=0, £e(0,1) (21)
Elyz IX2 +E'zleXz’ =0, (16)  and the associated dimensionless elastic boundary conditions are
given as follows:
até=0:
- P*w £ 3%v N v Pw v FENY q2v dw
ax | Evigz TRz | =N o= am o m( Bny§f+Bsz§Z) *md—§=0, (22)
W Jv 2 2
+QZ(J—+J ) 0, 17 d[, dw _ dv) dw
ax T (7 22| 4g Byyd_§2+Byzd_§2 Nt n(a?+A?)
. . o dw dv
whereE is Young’s modulusl is the area moment inertia of the X gyd— +gxd— + y2W=0, (23)
beam.J,, J,, andJ, are mass moment of inertia per unit length ¢ ¢
about thex, y andz-axes, respectively is the centrifugal force. It d2w d2v dv
is observed that in Eq7) the centrifugal forceN is related taug, 732( By~ + BZZ—2> — Y357 =0, (24)
v, andw. The centrifugal forceN is the parameter of Eqé5) and d¢ d¢ d¢
(6) in terms ofug, v, andw. Thus the system is nonlinear. It is d d2w d2v dv
hard to obtain the solution of the system. But if an inextensional 742{_(Byz_2 +BZZ_2) —n— + (a?+A?)
beam without the Coriolis force effect is considered, the system dé dé dé dé
becomes linear and the corresponding solution can be easily ob- dw av
tained. Moreover, the lateral vibration of a blade subjected to low X| Oy—==+9, = { +yaV=0 (25)
rotational speed is dominant and the effect of the Coriolis force d¢ d¢
may be neglectefil4]. at
For an inextensional beam, without taking account of the Cori- N N
olis force effect, the centrifugal force in EqS,) and(13) can be B d°w B d=v —0 26
expressed as Wagz tByqe Z =0 (26)
d (B d2W+B d*v + p(a®+ A?) + dv) 0
L 2 ez | T la Oy 7 T 7|=0,
N(x):QZJ pA(R+X)dx. s dE\7Vdg T TVide Ydg  Trdg
x 27
d2w d2v
(28)

In terms of the following dimensionless quantities,
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Byz@ + BZZP = 0,

3,13,(0),
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d d2w d2v , ) dw dv Multiplying Eg. (31) by a;5and Eq.(32) by ag and subtracting the
az Bszgf + Bzzd—gz +n(a+A )( gxd—g +gzd_§) =0 latter from the former, one obtains

(29) dx, <
It should be noted that considering the velocity fié®i results dag - ]21 CiXj, (34)

in the coupling effect of the rotating speed and the mass moment
of inertia, n(e®+A?)d(g,dWdé+g,dV/dé)/d¢é and n(a? where
+A?)d(g,dWIdé+g,dV/dE)/dé. However, if the displacements
of any point in the cross section of the beam is the same as that of
the center of the cross section, i.a=5uUg(x,t), v=v(x,t), and C3= —(azd1s— 1386)/S, Cs= — (a1~ a1536)/S,
w=w(x,t), these effects cannot be consider¢i7]). Further-
more, when the setting angle is zero, the governing equations C5= — (810816~ a2086)/S, Ce= —(Ag16— A1686)/S,
become the same as those given by Rd$gn _ _ _ _

It can be observed that the second terms in E2@. and (21) C7=—(aga1e— a1g86)/S, Cg=—(a7a16— a1786)/S, (35)
present the effect of the centrifugal fona¢o increase the stiffness in which s=a,a;g—ajag. Similarly, multiplying Eq.(31) by a;;
of the beam. Because the second and third terms in@fsand and Eq.(32) by a; and subtracting the latter from the former, one
(21) are positive and negative, respectively, the coupling effect obtains
the rotating speed and the mass moment of inertia, i.e., the third

C1= — (85816~ A1536)/S, Co= — (4216~ A1436)/S;

8
terms in Eqs(20) and(21), presents an axial compressive force to dxg _ E — 36
decrease the stiffness of the beam. Moreover, because the cou- d_g_ = CiXi» (36)
pling effect includes the product of the rotating speednd the
rotatory inertiaz, _the coupling effect on the frequencies is greathere
for the system with large parametersand 7. = — (agay—asay)/s, o= —(asa5,—a.ay)fs,
22 Solution Method. C3=— (83811~ 131)/S, C4=—(@za1,—21,8,)/S,
2.2.1 Transformed Vector Governing EquatiorDefining the Cs= — (10811~ 8021)/S, Ce=—(@ga11— A1931)/S,
state variables as C;=—(agan—a1g1)/s, Cg=—(a,an1—a;ay)fs, (37)
3 _dw _d?w _dw in which's=aga;;— a3, . Based on the relation80), (34), and
X =W, 2T XT g Xt (36), the transformed vector characteristic governing equation can
be obtained as follows:
v av d?v ddv (30) dx
Xs=V, X¢==%, X7===3, Xg=—73,
° o dé T dé TS d—§=A(§)X(§), (38)
Egs.(20) and(21) can be written as, respectively,
where
dx, dxs dx, dxy dXxg dx; T
ald_§+a2d_§+a3d_§+a4d_§+asxl+a6d_§+a7d_§ X(E)=[X1 Xo X3 X4 X5 Xg X7 Xg]',
o 1 0 0O O 0 0 O
dXg dXs
+a8d_§+a9d_§+a10>(5:0- (31) 0O 01 0 0 0 O
dx4Jr dx3+ dx2Jr dxlJr N dx8Jr dx; °c o0 0 1 0 000
Qi Ty Taig o T TausXyt @i, Tai7 o Ci C, C3 C4 Cs Cg C; Cg
dé¢ dé¢ d¢ d¢ dé¢ dé¢ A(8) = . (39)
0O 0 0 0 0 1 0 O
dxg dxs
+a1 _dg +a19d_§+a20x5:0l (32) 0 0 0 0 0 0 1 0
0O 0 0 0 0 0o o0 1
where T
4B LC; C C3 C Cs Csg C; Cg]
a;=Byy, a2=2d—gy, in which the superscript T” is the symbol of transpose of a
matrix.
dBy, 2, \2 dn o299 200 F Equation.The solution of Eq(38) can b
ag=———n+p(a?+Adg,, az=——+p(a?+A%)—2, 2. requency Equation.The solution of Eq(38) can be
d¢ d¢ d¢ expressed as
as=—m(a’si? 6+A%), ag=a;=B,,, X(&)=T(&0)X(0), (40)
dByz d2|3yZ 5 5 where T(&,0) is the transition matrix from 0 t@, to be deter-
a7=alz=2d—§, as=313=d—§r+ n(a”+A%)gy, mined. Moreover, the state variableséat 1 can be written as
8
2, 2y 9% 2 )= Ti(10x(0), i=12,...8 41
ag=a=n(a"tA )d_g' a;0=a;5= —Ma? sin g cos, Xi( )_1:1 ij(1,0x(0), i=12,..., (41)
dB,, d2B,, where Tj; is the elements of the transition matrix from O to 1.
a16=B,;, a17=2d—, a18=?—n+ n(a?+A?)g,, Expressing the boundary conditiorig2)—(25) in terms of the
§ § state variable$x,(0),x,(0), . .. xg(0)} and substituting Eq41)
dn dg into the boundary condition®6)—(29), the frequency equation of
9=~ 4z + p(a?+A?) d_fz a=—Mm(a?cog +A?). the system is obtained,

(33) | xijlaxs=0, (42)
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where It can be observed that if the coefficient mathixn the Peano-
ey — 20 _ Baker series is constant, the transition maté#) is the same as

X117 X147 X157~ X16~ X18= Vs X127~ Y1Ls Eq. (45). Hence, when the number of subsections approaches in-

= 7,,B,(0), = 5.,B.,(0): finity, the approximate transition matrix becomes the exact one. ]t

X13= 7128y (0): - Xa7= 712By(0) can be obtained at any desired level of accuracy by taking a suit-

X21= Y21, X22= Y2d n(@®+A?)g,(0)—n(0)], able number of subsections. It should be noted here that while
. numerically determining the natural frequencies, the rate and ten-
X237 ¥22Byy(0),  X24= v2:Byy(0), dency of the convergence of the solutions will be different accord-
_ _ 2, A2 ing to the coordinate positios, in the piecewise constant matrix
X25=0, X26= y2am( e+ A%)gx(0), selected as different values betwden_;, & ]. In this paper, for a
Xor= 72zB§z(0): Xo8= Y22ByA0); better rate of convergencs, is taken to be §_;+ &;)/2.
X31= X32= X34= X35= X38= 0, X33= ¥3ByA0), 3 Frequency Relations
X36= — Y31, X37= Y3:B,A0); 3.1 Frequency Relations of Pretwisted Beams.The rela-
" tions among the setting angk the rotatory inertias, and the
xa1=0,  Xa2= vaem(a®+ A%)gx(0), frequencyA of rotating beams are studied. Meanwhile, one ex-
= 7,,B!(0) = 7,5Bu,(0) pects to predict the parameters of some system according to the
X43= YazPya V) Xaa= Ya2Pyz V) parameters of another system. Two systems denotedyaant
=Y, = @?+A?2)g,(0)—n(0)], “b” have the same parameters excépty, andA. It is observed
Xas=var Xag= vad 0l 180)~n(0)] from the governing Eq920) and (21) that if there exist the fol-
Xa7= YaB1A0),  Xag= va:B,A0); lowing relations, the two systems are similar:
X5=Byy(LDT5(L0+By(1)T(L0, j=12,...8; na(@?+ AL )= my(a®+A)), (47)
Xey= n(a?+ A%y (1) T (1,0 +Bjy(1)Te(1,0 o Sitf 0+ A = SIfF 0y + AL (48)
+Byy(1) T4(1,0+ 7(a?+ A?)g, (1) Te;(1,0 a?cod 0,+ A2 =a?cod f,+ AL, (49)
+By(1)T7(LO+By(1)Tg(1,0, j=12,....8; sin 26, = sin 26y, (50)

wherei denotes théth frequency. Assume that all the parameters

X7 =By DT5(LO+BADT7(10,  j=12,....8; of the systema are given and the parametelrs,, 6, ,A,;} are

Xgj= n(a?+ /\2)(‘;,X(1)-|-2](1,0)4r B)(1)T3(1,0 unknown. It is obvious that Eq$48) and(49) do not be satisfied
simultaneously unlesg,= 6, and A=A, ;. SubstitutingA ,
+By (1) T4(1,0+ n(a®+ A%)g,(1)Tg;(1,0) = Ay, into EQ.(47), 7=, . Itis trivial that the two systems are

, . the same as each other. In other words, one can't predict exactly
+BADT7(LO+B,A1)Tg(1,0,j=1.2,....,8. (43) the parameters of the systdmfrom the parameters of the system
Letting y1,= ¥21= ¥a1= Yar=1 and y1o= y2o= 3= 74,=0, the @ Via the relation$47)—(50).
frequency equation for a cantilever beam can be obtained. However, if the relation(49) is approximated and its effect is
) ) . ) ) very small, the parameters of the systbroan be accurately pre-
([21]) that the following Peano-Baker series is the closed-forqag), and (50). It is observed from Eq(21) that the integrated
transition matrix of Eq(38) parameter of the relatiof49) is the coefficient for the deflection
& X1 v. When the pretwisted angle is small, the deflectiois domi-
A(Xl)f A(x2)dx,dy,; nantand the effect of the relatiga9) is very small. Moreover, the
4 &1 stiffer the system is, the larger the frequencies are. For a stiffer
system its frequency is greatly larger than the rotating speed

¢
T(§1§i—1)=|+f A(Xl)Xm"—f
-1
+ ff A(Xl)fX1 A(Xz)fxz A(x3)dxsdx2dx, and the relatior{49) can be approximated.
i-1 §i-1 §i-1

3.2.1 Frequency Relations and Mechanism of Instability
(44) of Unpretwisted Beams.Letting V=®=0 in Egs. (20)—(27),
the governing equations and the boundary conditions of an un-

However, it is impossible to determine the multiple integrals Qfretwisted Rayleigh beam can be obtained, respectively, as
the series analytically or numerically. Hence, an approximate tragyows:

sition matrix is required. In this paper, a simple and efficient al-

+...

gorithm is developed to find the approximate transition matrix. d? d®w\| d dw

imati ici - iecewi —| By | — 73| [n— n(a®+A2)g,] —

By approximating the coefficient matri&k(£) by n piecewise dez |ty ge? dé v e
constant coefficient matrices(s;), i=1,2,...n, one obtains a

characteristic governing equation with constant coefficient matrix. —m(a?®sir? 6+ A?)W=0, (51)
Here s, can be any value betwed®;_;,&;] and & denotes the até=0
coordinate position at the end of thd subsection. Consequently,

the transition matrix of théth subsection frong; , to £ can be d>w dw
obtained: Y1Byy gz & Mgy - 0, (52)
T(£&_)=rEED 5 fe(§.4.8). (45) d d?w _— dw
After applying the composition property of the transition matrix, 22 &(Byy dé&? —In=mnla’+A )gy]d_g +yaW=0,
e, T(&41,&6-1)=T(&+1,8)T(& ,&-1), the overall transition (53)
matrix is obtained: _1.
até=1:
1
d>w
T0=]1 T(s), ée(¢-1.), sc(&-1.6). (46) & =0 (54)
i=]
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d dw dw pen to a pretwisted Bernoulli-Euler beam. Because the effect of
ax ( B”W) —[n—n(a?+ Az)gy] d—§=0. (55) rotatory inertia is to decrease the frequencies, the instability will

also happen to a pretwisted Rayleigh beam. However, for a
One can obtain from Eq$51)—(55) the relationg47) and(48)  pretwisted Bernoulli-Euler beam with>0, y,,>0, and y3;>0
which can be satisfied simultaneously. Given all the parametersitsf fundamental frequency will be greater than the value of zero.
the systena and the setting anglé,, for the systenb, the corre- The reason is that when the hub radiuand the rotational root
sponding frequencied, ; and the rotatory inertiag, of the sys- spring constants,; and y;; are increased from zero, the funda-
tem b can be predicted exactly by using the relatigd8) and mental frequency of a pretwisted Bernoulli-Euler beam is in-
(47), respectively. creased from zero. This means that the instability will not happen
It should be noted that the critical state of instability A$ to a pretwisted Bernoulli-Euler beam with>0, y=y4=1,
=0. If A2<0, the natural frequency is imaginery and the divery1:>0, andyz>0.
gent instability([6]) occurs. Substituting\, ; and the associated 41 2 Unpretwisted Beam.Letting #=v,=r=0 in Eq.
parameters into the relationgl7) and (48), one can predict (g1p), the corresponding fundamental frequency and the mode
whether the divergent instability will happen to the systerhet- shape of an unpretwisted Bernoulli-Euler be@iz—= are ob-
ting Agfo, the critical rotatory inertia and the critical settingtained, respectively,
angle are obtained from Eqg}7) and (48), respectively,

A2 a2 6 Ai=a?, W=wgé. (62)
itical= a1+ , 5 o .
(70)cticar= 7al ai @) (56) One can predict via Eq48) that whené,= 7/2, the associated
(6p) eriticar=SIN”_ */Sir? 05+ Ag,llaz (57) fundamental frequencyy,;=0. When the hub radius or the

. » ) rotational root spring constar®, is increased, the fundamental
under the following necessary condition of the divergentequency of the beam withi, = /2 is increased to be larger than
instability zero and the instability will not happen. It is well known that

Sir? 6a+A,3211/a2<1- (58) when the §etting. gnglg is decreased, the frequencies are increased.
' Thus the instability will not happen also for the beam wjgh
Because the effects of the rotatory inertig and the o r>0,8,>0 andé</2. Itis concluded that in spite of the
setting angled are to decrease the frequencies of the sysetting angleg and the rotating speed the instability does not
tem, under the condition58) the domain of instability is happen to a Bernoulli-Euler beam wit,— %, B8,;>0, andr
{(6,7)| sin (sir? 6,+AZ [ a®)< 6=<m/2, = 1,(1+ A2 /a?)}. >0. On the other hand, it can be observed that whetd or
For Bernoulli-Euler beams without taking account of the effeg8; >0, the fundamental frequency; of the beam withB,—
of the rotatory inertian, only the relation(48) exists. The follow- and =0 is increased to be larger thanand the condition of
ing frequency relation can be obtained by substracting the relatimstability (58) is not satisfied. This predicts also the above
in the (i +j)th mode by that in théth mode, conclusion.
2 2 2 2 Because the frequencies of Rayleigh and Timoshenko beams
AGii = Aqi= b~ Abji- (59) taking account of the rotatory inertia are smaller than those of
It should be noted that for Bernoulli-Euler beams the condition d&€rnoulli-Euler beams under the same conditions, the fundamen-
instability (58) is sufficient. tal frequencies of the unpretwisted Rayleigh and Timoshenko
beams withn>0, §=r=,=0, andB,—> will be less thana
. . and the necessary condition of instabilify8) is satisfied. The
4 Instability of Rotating Beams fundamental frequency is smaller tharand the necessary condi-
tion instability (58) is satisfied untilr and 8, are increased to be
large enough. In other words, the instability will happen to the
unpretwisted Rayleigh and Timoshenko beams véth-, 8,
4.1.1 Pretwisted Beam.Consider the free vibration of >0, >0, and»> 7gitcal -
pretwisted Bernoulli-Euler beams with infinite translational root i o ] )
spring constant and without the rotational root spring, 8, 4.2 Beam With Infinite Rotational Root Spring Constants.

;7121; Y32~ 7’.41t: %h ar;d 711.:b7'2t2.: 731f: ?"‘de:t?'dlt is ?ssumedd i 421 Pretwisted Beam.Consider the free vibration of a
at there exists the iree vibration of rigid-body motion and e, with infinite rotational root spring constant and without

mode shape is translational root spring, i.e.y11=y20= y21=v4,=1 and vy,
W=wy¢ and V=uyé, (60) =7v21=v32= ya1=0. It is assumed that there exists a rigid-body
free-vibration motion and its mode shape is

4.1 Beam With Infinite Translational Root Spring
Constant.

wherew, andv, are constants. Equatidf0) satisfies the bound-
ary conditions(22)—(29). Substituting Eq(60) into the governing W=w, and V=uy, (63)
Egs.(20) and(21), one can obtain wherew, and v, are constants. Eq63) satisfies the boundary
—Woa?m(r + &)+ m(a? sir? 0+ A?) Ewg+ ma? sin 6 cosbu oé conditions (22)—(29). Substituting Eq.(63) into the governing
Egs.(20) and(21), the following conditions are obtained:
(a? sir? 6+ A?)wo+ a? sin 6 cosbv =0,
—voa?m(r + &)+ ma? sin 6 cosOwyé+ m(A%+ a? cos O)vé , 5 5
a2 sin 6 cosOw,+ (a? cog 6+ A?)v=0. (64)

=0, (61) Equation(64) results in that the eigenvalue and the mode shape
where the first terms of Eq61a) are derived from the second are A?= — «? and v,=cotéw,. This means that the rigid-body

terms of Eqs(20) and(21), respectively. Letting =0, the follow-  free-vibration motion is unstable. Moreover, when the transla-

=0,

ing conditions are obtained: tional root spring constant is increased to a critical value from
(A%= a? cod 6)W0+a2 sin 6 cosfu =0, zer(;, th(_a eigenvaluef,‘,2 is increased to zer(_) from the vglue of

—a“. Itis concluded that when the translational root spring con-
a? sin f coséwg+ (A% — a? sir? 6)v,=0. (61) stant is smaller than the critical value, the instability will occur.

The first two eigenvalues arkf=0 andA3=a?. Because the 4.2.2 Unpretwisted Beam.Consider the free vibration of
square of fundamental frequency is zero, the instability will hapigid-body motion of a unpretwisted beam with infinite rotational
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Table 1 Convergence pattern of dimensionless frequencies of a rotating pretwisted cantilever doubly tapered beam [8,,
=(1-0.1§)*cos? £m/6+4(1-0.1£)*sin? £m/6, B,,=4(1-0.1£)*cos? £m/6+(1-0.1£)*sin? £m/6, B,,=1.5(1-0.1§)*sin £m/3, a=3.0,
n=0]

Number of

Subsections Aq Ay As Ay Asg
5 5.100 7.791 23.747 44.036 63.632
10 5.119 7.775 23.802 43.897 63.790
20 5.124 7.771 23.817 43.861 63.836
30 5.124 7.770 23.820 43.854 63.844
40 5.125 7.770 23.821 43.851 63.848
50 5.125 7.769 23.821 43.850 63.849
60 5.125 7.769 23.822 43.850 63.850
70 5.125 7.769 23.822 43.850 63.850

root spring constant and without the translational root spring. Sub-It is concluded that for both pretwisted and unpretwisted beams
stituting the mode shap®/=w, which satisfies the boundary with infinite rotational root spring constants the instability will
conditions (52)—(55) into Eq. (51), the following condition is occur when the translational root spring constant is smaller than a
obtained: critical value.

a? sir? 9+ A%=0, (65)

which satisfies the condition of instabilit$8). Letting 6=0, one 5 Numerical Results and Discussion

obtains from Eq(64) that the fundamental frequengy is zero. To demonstrate the efficiency and convergence of the proposed
When the translational spring constant is increased, the fundamerethod, the first five frequencies are determined for a rotating
tal frequency is increased from zero. The condition of instabilitgretwisted cantilever doubly tapered beam. In Table 1, the conver-
(598) is satisfied until the translational root spring constant is larggence pattern of dimensionless frequencies of the beam is shown.
than a critical value. This means that when the translational rdbtshows that the natural frequencies determined by the proposed
spring constant is smaller than a critical value, the condit&8) method converge very rapidly. Even when the number of subsec-
will be satisfied and the instability will occur. Because for Raytions is only five, the differences between these solutions and the
leigh and Timoshenko beams which the effect of rotatory inertia énverged solutions are less than 0.5 percent.

considered their fundamendal frequencies are smaller than that oFor comparison, a uniformly pretwisted cantilever beam with
a Bernoulli-Euler beam under the same parameters, the conditmnstant cross section is considered. The natural frequencies ob-
(58) for Rayleigh and Timoshenko beams is satisfied as soon tained by the proposed method as well as those given by Subrah-

the condition for a Bernoulli-Euler beam is satisfied. manyam and Kaz#@l4] and Lin [12] are tabulated in Table 2.
Table 2 Effect of inertia constant  » on the dimensionless frequencies of a rotating pretwisted cantilever beam [Byy=cos2 P30
+45sin? 0, B,,=4 cos? éb+sin? £, B,,=15sin2 £b, a*=a/3.51602]
= =0. 1 =0.001
Mode 7=0 7=0.000 7=0.00
D a* Number # ## present present present
30 deg 0 1 3.5245 3.5245 3.5245 3.5235 3.5149
2 6.9585 6.9585 6.9586 6.9526 6.8994
3 22.339 22.338 22.339 22.298 21.945
4 42.896 42.896 42.898 42.649 40.576
5 63.423 63.419 63.423 63.138 60.758
1 1 5.1824 - 5.1824 5.1804 5.1632
2 7.1461 - 7.1462 7.1386 7.0705
3 24.055 - 24.055 24.010 23.618
4 43.735 - 43.737 43.479 41.335
5 65.103 - 65.104 64.811 62.367
3 1 8.2156 - 8.2156 8.1990 8.0502
2 11.749 - 11.748 11.743 11.694
3 34.834 - 34.834 34.763 34.136
4 49.804 - 49.805 49.488 46.845
5 77.191 - 77.193 76.843 73.907
90 deg 0 1 3.5900 3.5899 3.5900 3.5882 3.5716
2 6.4847 6.4849 6.4850 6.4815 6.4500
3 24.531 24.530 24.530 24.457 23.833
4 37.457 37.459 37.460 37.317 36.096
5 72.973 72.962 72.965 72.470 68.460
1 1 5.1120 - 5.1121 5.1086 5.0780
2 6.8250 - 6.8253 6.8202 6.7753
3 26.041 - 26.039 25.960 25.281
4 38.533 - 38.536 38.385 37.102
5 74.400 - 74.392 73.887 69.798
3 1 7.9774 - 7.9776 7.9688 7.8908
2 11.804 - 11.804 11.792 11.688
3 35.872 - 35.871 35.755 34.741
4 46.044 - 46.047 45.841 44.101
5 84.936 - 84.929 84.353 79.672

#: given by Subrahmanyam and KaZa]; ##: given by Lin[12]
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Table 3 The frequency relations between rotating unpretwisted Bernoulli-Euler beams [%=0, r=0, Byy=(1—0.2§)3, m

=(1-0.28)]

« 0 A AS A3 A=A AS=A3
0 deg 17.8707 450.0783 3223.7197 432.2076 2773.6414
2 45 deg 15.8707 448.0783 3221.7197 432.2076 2773.6414
BrL—>® 90 deg 13.8707 446.0783 3219.7197 432.2076 2773.6414
Bo—> 0 deg 55.5119 648.9802 3750.9751 593.4683 3101.9949
6 45 deg 37.5119 630.9802 3732.9751 593.4683 3101.9949
90 deg 19.5119 612.9802 3714.9751 593.4683 3101.9949
0 deg 16.8900 421.6602 3023.3622 404.7702 2601.7020
2 45 deg 14.8900 419.6602 3021.3622 404.7702 2601.7020
Bri—> 90 deg 12.8900 417.6602 3019.3622 404.7702 2601.7020
Bo=50 0 deg 53.6052 616.3647 3540.1596 562.7595 2923.7949
6 45 deg 35.6052 598.3647 3522.1596 562.7595 2923.7949
90 deg 17.6052 580.3647 3504.1596 562.7595 2923.7949

Subrahmanyam and Kaf&4] studied the vibration of a rotating over, the instability will happen to the pretwisted Rayleigh
pretwisted cantilever beam by using the finite difference meth@hd Bernoulli-Euler beams with infinite rotational root spring
and the Ritz method. Lif12] studied the vibration of a nonrotat- constants.
ing nonuniform pretwisted beam by using the modified transfer The influence of the rotating speed on the first three natural
matrix method. Subrahmanyam and Kd44] did not consider frequencies of doubly tapered beams with nonuniform pretwists is
the effect of the rotatory inertia and the coupling effect of thehown in Fig. 3. It is observed that the effect of the rotating speed
rotating speed and the mass moment of inertia. Without considen the first two frequencies are almost the same for all three
ing these effects, i.e=0, excellent agreement is obtained besystems. However, the effect on the higher mode frequencies are
tween the previous numerical results and those by the propogpgdatly different.
method. Moreover, the effect of the inertia constanwill de- Figure 4 shows the influence of the total pretwist anglen
crease greatly the natural frequencies. The effect of the inertfee first four frequencies of cantilever beams with different ratio
constanty on the natural frequencies of higher modes is relativelgf area moment inertia in theandy-directionsl ;7(0)/1yy(0). If
greater than that on the natural frequencies of lower modes. As the cross section of the beam is almost square, e.g.,
rotating speedr increases, the effect of the inertia constgrmn 1,,(0)/ly(0)=2, the influence of the total pretwist angle on
the natural frequencies increases. The reason is that the couptimg frequencies is small. However, whierz(0)/11(0)= 100, the
effect includes the product of the rotating speednd the rotatory influence of the total pretwist angfe on the frequencies is great.
inertia 7. The influence on the frequencies of higher modes is greater than
The frequency relation$48) and (59) between rotating un- that on the frequencies of lower modes.
pretwisted Bernoulli-Euler beams is proved numerically in Table
3. The frequency relation&7)—(50) among rotating pretwisted .
beams are proved numerically in Table 4. A pretwisted cantilevgr Conclusion
beam with a small pretwisted angle is considered in Table 4. It isA solution procedure for the bending-bending vibration of a
shown that the prediction of frequency via the relati¢fid, (48), rotating nonuniform beam with arbitrary pretwist and an elasti-
and(50) is very accurate. cally restrained root is derived. A simple and efficient algorithm
Figure 2 verifies the facts revealed in Sections 4.1.1 and 4.Zar deriving the semianalytical transition matrix of the general
that the instability will happen to a pretwisted Rayleigh beam withystem with nonuniform pretwist is proposed. The algorithm can
infinite translational root spring constants, but not to a pretwistds applied to linear control systems. The divergence in the Frobe-
Bernoulli-Euler beam withi >0, §<m/4 andy,;= y,;=1. More- nius method does not exist in the proposed method. The frequency

Table 4 The prediction of the fundamental frequency A, of pretwisted cantilever beams [«=0.1, %,=0.001, r=1, B,
=(1-0.1§)cos? ®£+1000(1-0.1£)3sin? @£, B,,=1000(1-0.1£)3cos? £+ (1-0.1€)sin? d&, B,,=(5000(1-0.1£)3-0.5(1-0.1£))
sin2 ®&]

X b Aa Oy b Ap Ay
0 deg 3.62623 90 deg 0.00100076 3.62485 3.62485
0.1 deg 20 deg 3.62607 70 deg 0.00100058 3.62501 3.62501
40 deg 3.62566 50 deg 0.00100013 3.62543 3.62543
60 deg 3.62520 30 deg 0.00099942 3.62589 3.62589
0 deg 3.61501 90 deg 0.00100077 3.61363 3.61415
5 deg 20 deg 3.61493 70 deg 0.00100059 3.61387 3.61426
40 deg 3.61468 50 deg 0.00100013 3.61444 3.61453
60 deg 3.61439 30 deg 0.00099962 3.61509 3.61483
0 deg 3.53790 90 deg 0.00100080 3.53648 3.54079
15 deg 20 deg 3.53829 70 deg 0.00100061 3.53721 3.54051
40 deg 3.53920 50 deg 0.00100014 3.53895 3.53970
60 deg 3.54019 30 deg 0.00099960 3.54090 3.53870
0 deg 3.44536 90 deg 0.00100084 3.44391 3.45405
25 deg 20 deg 3.44647 70 deg 0.00100064 3.44536 3.45312
40 deg 3.44914 50 deg 0.00100015 3.44889 3.45065
60 deg 3.45212 30 deg 0.00099958 3.45285 3.44778

Ay determined by using Ed48) -
Ay, : substitutingA, into Eq.(47), #y is obtained. Further, determin', by using the proposed method for the general system.
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Fig. 2 The influence of the root spring constants on the insta- Fig. 4 The influence of the total pretwist angle ® on the first
bility of a pretwisted tapered beam [Byy=(1—0.1§)cos2 w§4  four natural frequencies of cantilever doubly tapered beams
+100(1-0.1£)8 sin? wg4, B,,=100(1-0.1&)% cos? wg4 [B,,=(1-0.1&)* cos? &b+1,(0)/1y(0)(1-0.1£€)* sin? &b, B,
+(1-0.1§)sin? #g4, B,,=[50(1-0.1£)%-0.5(1-0.1&)]sin wg2, =177(0)/1y(0)(1-0.1£)* cos? &b+(1-0.1£)* sin? £@, By,
a=2, =30 deg, r=0.1] =1,7(0)/(21,,(0))(1-0.1&)* sin? &b, »=0.001, #=0, r=1; :
a=4; — — — a=1]

relations among different systems are revealed. The mechanisms
of instability is discovered. The effects of several parameters ancritical value, the instability will happen to the Rayleigh and
the instability of rotating beams is investigated. It is shown thafTimoshenko unpretwisted beams with infinite translational spring

. . root constantr >0 and 6>0.
1 due to the coupling effect of the rotational speed and the4 if the translational root spring constant is smaller than a criti-

rotatory Ineria, when the rotating speadncreases, the effect of cal value, the instability will happen to Bernoulli-Euler, Rayleigh,

the inertia constany on the natural frequencies increases. d Timoshenko unpretwisted and pretwisted beams with infinite
2 the effect of the rotatory inertia on the natural frequencies i~ inal root spring constant

higher modes is relatively greater than that on the natural frequen-5 the instability will not happen to a pretwisted Bernoulli-Euler

cies of lower modes. eam Withr >0, 1= y4;,=1, y1,>0, andys;>0. The instability

3 the instability does not happen to a unpretwisted Bernoulli-: K . . )
Euler beam with infinite translational root spring constant and bg;::]asppen to pretwisted Rayleigh and Timoshenko pretwisted

>0. However, if the rotational root spring constant is smaller than
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