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The insular cortex appears to have a crucial role in emotional processing and cognitive

control in bipolar disorder (BD). However, most previous studies focused on the entire

insular region of BD, neglecting the topological profile of its subregions. Our study aimed

to investigate its subregion topological characteristics using the resting-state functional

connectivity (rsFC) in patients with BD on depression episode. The magnetic resonance

imaging (MRI) data of 28 depressed BD patients and 28 age- and gender-matched

healthy controls (HCs) were acquired. We observed that compared to HCs, depressed

patients with BD exhibited significantly decreased rsFC between the right ventral anterior

insula (vAI) and the left middle temporal gyrus/the right angular, the right dorsal anterior

insula (dAI) and the left precuneus, as well as the right posterior insula and the right lingual

gyrus. Furthermore, hyperconnectivity was observed between the left dAI and the left

medial frontal gyrus, as well as right dAI and left superior temporal gyrus in BD depression.

However, no significant group effect was observed between aberrant FC patterns and

clinical variables. These findings revealed the functional connectivity patterns of insular

subregions for the depressed BD patients, suggesting the potential neural substrate of

insular subregions involved in depressive episode of BD. Hence, these results may

provide a neural substrate for the potential treatment target of BD on depression episode.

Keywords: bipolar disorder, functional connectivity, resting-state magnetic resonance imaging, insular subregions,

neural substrate

INTRODUCTION

Bipolar disorder (BD) is a chronic mental disease, characterized by alternating episodes between
mania and depression (1). The high frequency and long duration of depressed symptoms is
susceptible to psychosocial dysfunction and poor treatment, which further increase disease's
burden, even the risk of suicide (2, 3). Therefore, it is a compelling need to investigate the
mechanisms of depression in BD.

Frontiers in Psychiatry | www.frontiersin.org April 2020 | Volume 11 | Article 2531

Edited by:

Shaohua Hu,

Zhejiang University, China

Reviewed by:

Liming Hsu,

University of North Carolina at

Chapel Hill,

United States

Casimiro Cabrera Abreu,

Queens University, Canada

*Correspondence:

Ting Shen

shen.t@126.com

Daihui Peng

pdhsh@126.com

†These authors share first authorship

Specialty section:

This article was submitted to

Mood and Anxiety Disorders,

a section of the journal

Frontiers in Psychiatry

Received: 09 December 2019

Accepted: 16 March 2020

Published: 15 April 2020

Citation:

Qiu M, Liu G, Zhang H, Huang Y,

Ying S, Wang J, Shen T and Peng D

(2020) The Insular Subregions

Topological Characteristics of Patients

With Bipolar Depressive Disorder.

Front. Psychiatry 11:253.

doi: 10.3389/fpsyt.2020.00253

ORIGINAL RESEARCH
published: 15 April 2020

doi: 10.3389/fpsyt.2020.00253

https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00253/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00253/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00253/full
https://loop.frontiersin.org/people/869313
https://loop.frontiersin.org/people/869313
https://loop.frontiersin.org/people/421663
https://loop.frontiersin.org/people/421663
https://loop.frontiersin.org/people/406258
https://loop.frontiersin.org/people/406258
https://loop.frontiersin.org/people/506714
https://loop.frontiersin.org/people/506714
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles
http://creativecommons.org/licenses/by/4.0/
mailto:shen.t@126.com
mailto:pdhsh@126.com
https://doi.org/10.3389/fpsyt.2020.00253
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2020.00253
https://www.frontiersin.org/journals/psychiatry
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2020.00253&domain=pdf&date_stamp=2020-04-15


Accumulating evidence from neuroimaging studies have
suggested that the insular cortex is critically involved in the
pathogenesis of BD (4–6). Recent meta-analyses of studies using
voxel-based morphometry revealed that patients with BD had
aberrant structure and morphology in the insula (7, 8).
Furthermore, one positron emission tomography (PET) study
found that BD patients showed significantly higher binding rate
of serotonin transporter in the insula (9).

Interestingly, the insula consists of several subregions, namely
the ventral anterior insula (vAI), the dorsal anterior insula (dAI),
and posterior insula (PI) (10), showing distinct histological
characteristics (11). Meanwhile, this segmentation of insular
cortex was confirmed by diffusion tensor imaging (DTI) data
(12, 13). Previous studies found decreased volume of bilateral AI
in BD patients (14, 15), which might be associated with abnormal
emotional regulation in BD (16, 17). Besides, AI may provide
transdiagnostic signatures to differentiate BD from major
depressive disorder (MDD) (18). Taken together, the insular
subregions may play distinctive roles on the pathogenesis of BD.
Therefore, it will be meaningful to explore the topological
profiles of insular subregions in BD.

On the other hand, the functional connectivity (FC) has been
successfully applied for mapping complex neural circuits,
reflecting the organization of brain networks. Numerous
functional magnetic resonance imaging (fMRI) studies have
demonstrated that BD patients showed abnormal FC patterns
in some specific brain regions, such as between the pregenual
anterior cingulate cortex (ACC) and amygdala/thalamus/
pallidostriatum, respectively (19), as well as between amygdala
and dorsal lateral prefrontal cortex (VLPFC) (20). Notably, the
aberrant FC pattern between the insula and the PFC has also
been observed in BD patients (21). Besides, previous study
revealed that the aberrant FC between the AI and the inferior
parietal lobule (IPL) of the executive control network (ECN)
contributed to distinguishing dimension of emotion regulation
between BD and MDD. Thus, the distinct FC patterns of insular
subregions may provide potential neural substrate underlying
emotion regulation dimension in BD patients.

In this study, we examined intrinsic FC of insular subregion
in patients with BD. We hypothesized that depressed patients
with BD would exhibit disrupted FC between insular subregions
and some specific brain regions associated with emotion
regulation. Furthermore, we hope to explore the relationship
between the aberrant FC patterns of insular subregions and the
symptom dimensions of BD on the episode.

METHODS

Participants
Twenty-eight patients with BD on depression episode were
enrolled from outpatient departments at Shanghai Mental
Health Center. The BD patients were diagnosed independently
by two physicians based on the Structured Clinical Interviews for
Diagnostic and Statistical Manual Fourth Edition (DSM-IV).
Including criteria: having been diagnosed as BD with current

depression episode, aged 18–60 years, being right-handed, and
having more than 9 years of education. To reduce the risk of
mood instability, participants with BD were allowed to continue
medication treatment, such as lithium, atypical antipsychotics,
anticonvulsants (e.g., valproate, lamotrigine, carbamazepine, or
topiramate), and antidepressants. The 24-item Hamilton Rating
Scale for Depression (HAMD) >20 (22) and the Young Mania
Rating Scale (YMRS) <7 (23) were collected to assess the clinical
symptoms of BD patients. Thirty age- and gender-matched
healthy volunteers were recruited from local community by
advertisement. Excluding criteria of all participants were as
follows: having a history of Axis I or Axis II psychiatric
disorders of DSM-IV, having a history of substance
dependence or substance abuse within the 6 months prior to
assessment, having a history of electroconvulsive therapy,
suffering serious neurological or medical disorders (e.g., head
trauma and epilepsy), and other MRI contraindications (e.g.,
pregnancy and breast-feeding).

The study was approved by the Investigational Review Board
(IRB00002733—Shanghai Mental Health Center, China). All
participants gave written informed consent after a full
description of the aims and design of the study.

Image Acquisition
MRI raw data was acquired using Siemens 3.0 T MRI scanner in
Shanghai Mental Health Center. High-resolution T1 images were
acquired by the gradient recalled echo (GRE) sequence as the
following parameters: repetition time (TR) = 2300 ms, echo time
(TE) = 2.96 ms, field of view (FOV) = 24 × 24 cm2, slice
thickness = 1.0 mm, 192 slices, gap = 0.0 mm, voxel = 1.0 ×
1.0 × 1.0 mm3, matrix = 240 × 256, and scanning time = 9 min
14 s. Resting-state images were collected by echo planar imaging
(EPI) sequence as the following parameters: TR/TE = 2000 ms/
30 ms, FOV = 220 × 220 mm2, slice thickness = 4.0 mm, 33 slices,
gap = 0.6 mm, voxel = 3.4×3.4×4.0 mm3, scanning time = 6 min
46 s, and 200 bolds. During the scanning, the participants were
instructed to keep resting with their eyes closed.

Data Preprocessing
Resting-state fMRI images were preprocessed using a toolbox of
Data Processing and Analysis for Brain Imaging (DPABI, http://
rfmri.org/dpabi). The first 10 volumes from each subject were
discarded for the stability of the initial magnetic resonance
imaging signal. For each participant, fMRI scans were first
realigned to correct for head motion. Exclusion criteria for
excessive head motion were >2.5 mm and/or translation >2.5°
rotation. The nuisance covariates (i.e., the six motion parameters,
the first time derivations, signals of the global brain, cerebrospinal
fluid, and white matter) were regressed out from the MRI data. The
processed data were band-pass filtered by using a frequency range of
0.01–0.08 Hz. A two-step coregistration method were used to
transform the regressed fMRI data into the Montreal Neurological
Institute (MNI) space: first, each subject's structural images were
coregistered with the mean realigned fMRI image; then the
structural images were segmented into gray matter, white matter,
and cerebrospinal fluid on the basis of transformation parameters
that coregistered with the MNI T1-weighted template. Realigned
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images were then normalized to the MNI space and resampled to
3 × 3 × 3 mm3 voxels. Finally, the images were smoothed with an 8-
mm full width at half maximum (FWHM)Gaussian kernel.We also
calculated frame-wise displacement (FD), which indexes the
volume-to-volume changes in head position (24). There was no
significant difference in mean FD (T = 0.02, p = 0.87) between BD
patients (0.15 ± 0.09) and healthy controls (HCs; 0.16 ± 0.08).

Definition of Insular Subregions
The insular seed regions of interest (ROI) were defined using
masks based on the previous study (25). Selection of target ROIs
of the insular subregions were defined using max voxel locations
as described in Deen et al. (25). Spherical ROI masks (3 mm
diameter) were created for each of the target ROIs using the
DPABI, with max voxel locations as reported in Deen et al.
specified as center of sphere (Table 1).

Resting-State fMRI Analyses
Connectivity maps were obtained at the individual subject level
for bilateral subregions within the insular seed regions by
averaging the signal across all voxels in the ROI. Then, to
calculate Pearson's correlation between the mean ROI time-
series and the time-series from each whole brain acquired
voxel. Correlation maps were converted to z-maps using
Fisher's r-to-z transformation. Mean Fisher's z transformed
values were extracted from target ROI masks using MarsBar
and imported into SPSS (IBM, version 19.0) for analysis.

Seed-to-Voxel
A whole-brain approach was used to explore whole-brain FC
anchored on bilateral insular subregions in BD and HCs. Seed-
to-voxel analyses of the FC differences between the groups were
performed separately using the two-sample t-test using DPABI,
as the age, gender, education, and mean FD were covariates. The
significant threshold was p < 0.05, and it was corrected for
multiple comparisons with a Gaussian random field (GRF)
correction. Once a significant FC difference between patients
and controls (p < 0.05, voxel z value > 2.3, GRF corrected) was
observed, multiple comparison corrections were performed to
identify the surviving clusters.

Relationship Analysis Between Clinical
Variables and FC Patterns

We extracted the mean values of significantly aberrant FC patterns.
Then, Pearson's partial correlations (two-tailed) were conducted
between significantly aberrant FC and HAMD scores, controlling
for age and gender. Notably, the HAMD scale was categorized into
seven subscale factors based on its Chinese version, including
anxiety/somatization, change of weight, cognitive dysfunction,
atypical circadian rhythm, retardation, sleep disorder,
and desperation.

RESULTS

Demographics and Clinical Characteristics
No significant differences were observed in gender (male/female:
14/14 vs. 18/10), age (31.79 ± 12.83 vs. 33.79 ± 9.95), and
education (13.32 ± 3.37 vs. 13.64 ± 3.35) between BD patients
and HCs (all p > 0.05). The detailed information was showed in
Table 2.

Group Differences in Seed-Based Insular-
Subregion Networks
Compared with HCs, the patients with BD had significantly
decreased FC between the R_vAI and the left middle temporal
gyrus (T = −4.66, p < 0.05, Figure 1), as well as the right angular
(T = −5.17, p < 0.05, Figure 1). BD patients had increased FC
than HCs between the L_dAI and the left medial frontal gyrus
(MFG; T = 5.51, p < 0.05, Figure 2). While showing increased FC
between the R_dAI and the left superior temporal gyrus (STG;
T = 4.19, p < 0.05, Figure 3), BD patients had significantly
decreased connectivity between the R_dAI and the left precuneus
(T = −4.88, p < 0.05, Figure 3) than HCs. Patients with BD also
had significantly decreased connectivity than HCs between the
R_PI and the right lingual gyrus (T = −4.41, p < 0.05, Figure 4).
The detailed information was observed in Table 3. These results
survived even after correction for multiple comparisons
(p < 0.05, voxel z value > 2.3, GRF corrected). No other group

TABLE 1 | The MNI coordinates of the ROIs.

The MNI coordinates

X Y Z

L_vAI −33 13 −7

R_vAI 32 10 −6

L_dAI −38 6 2

R_dAI 35 7 3

L_PI −38 −6 5

R_PI 35 −11 6

L, left; R, right; vAI, ventral anterior insula; dAI, dorsal anterior insula; PI, posterior insula;

MNI, Montreal Neurological Institute; ROIs, regions of interest.

TABLE 2 | Demographic and clinical characteristics of BD and HCs groups.

BD (n = 28) HCs (n = 28) T/c2 p

Gender (M/F) 14/14 18/10 1.17ǂ 0.28

Age (years) 31.79 ± 12.83 33.79 ± 9.95 0.65ǂǂ 0.52

Education (years) 13.32 ± 3.37 13.64 ± 3.35 0.36ǂǂ 0.72

HAMD score 31.04 ± 7.92 – – –

Psychotropic medications, no. 23 – – –

Antidepressants 9 – – –

Lithium 7 – – –

Antiepileptic 10 – – –

Anxiolytics 4 – – –

Antipsychotics 13 – – –

Medication-free, no. 5 – – –

ǂChi-square test for the gender distribution between BD and HCs groups.
ǂǂTwo-sample t-test for the group differences in both age and education.

BD, bipolar disorder; HCs, healthy controls; HAMD, Hamilton Depression Rating Scale; M,

male; F, female.
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FIGURE 2 | Group differences of the whole-brain functional connectivity anchored in L_dAI: compared to HCs, BD patients had significantly higher functional

connectivity between L_dAI and MFG (GRF corrected, p < 0.05, voxel Z value > 2.3). Red indicates larger values in BD. L, left; R, right; BD, bipolar disorder; HC,

healthy control; L_dAI, left dorsal anterior insula; MFG, middle frontal gyrus; GRF, Gaussian random field.

FIGURE 1 | Group differences of the whole-brain functional connectivity anchored in R_vAI: compared to HCs, BD patients showed significantly decreased

functional connectivity between R_vAI and MTG, as well as R_vAI and angular (GRF corrected, p < 0.05, voxel Z value > 2.3). Blue indicates smaller values in BD. L,

left; R, right; BD, bipolar disorder; HC, healthy control; R_vAI, right ventral anterior insula; MTG, middle temporal gyrus; GRF, Gaussian random field.

FIGURE 3 | Group differences of the whole-brain functional connectivity anchored in R_dAI: while showing decreased functional connectivity between R_dAI and

precuneus, BD patients had significantly higher functional connectivity between R_dAI and STG compared to HCs (GRF corrected, p < 0.05, voxel Z value > 2.3).

Blue indicates smaller values in BD and red indicates larger values in BD. L, left; R, right; BD, bipolar disorder; HC, healthy control; R_dAI, right dorsal anterior insula;

STG, superior temporal gyrus; GRF, Gaussian random field.
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differences were observed by seeding the L_vAI or L_PI (p > 0.05,
voxel z value > 2.3, GRF corrected).

Associations Between Insular Subregions
Connectivity and Clinical Symptoms
We explored the relationships between these abnormal FC
patterns of the insular subregions and clinical symptoms.
However, no significant correlation was found between FC
indexes and age, depression, or other clinical characteristics
within BD group.

DISCUSSION

Using a seed-based ROI analyses, our study showed the aberrant
FC between right vAI and left middle temporal gyrus, right vAI
and right angular, left dAI and left MFG, right dAI and left STG,
right dAI and left precunus, as well as right PI and lingula gyrus.
Therefore, the present study provides evidence that the insular
subregions have aberrant FC patterns in BD patients on
depression episode.

Emerging evidence suggests that the insular cortex, as an
integral hub of salience network (SN), plays a pivotal role in
behavioral stimuli detection modulating the dynamic
coordination between internal and extra-personal stimuli, and
integrating information of diverse cognitive control, emotional
processes (26–29). Previous findings showed that BD was
associated with abnormal structure and function in specific

subdivisions of the insula (30–32). Neuroimaging studies
focusing on the resting-state FC (rsFC) of insular subdivisions
revealed the discriminative ability of dysfunctional connectivity
patterns of anterior insula for bipolar depression (18, 33). Hence,
the aberrant profiles of insular subregions may provide a novel
insight for the pathophysiology of BD depression.

Our finding showed increased FC between right AI and several
specific brain regions, including the middle temporal gyrus and
angular, which are known as nodes of the default network (DMN).
These findings are consistent with previous studies of aberrant FC in
BD (33–35). Ellard et al. (33) observed that compared to patients
with unipolar depression andHCs, BD patients showed significantly
aberrant FC between right AI and the IPL in DMN. The DMN
might involve in self-referential mental process and social cognition
(29, 31, 36, 37). Furthermore, it is reported that the DMN was
associated with the symptom of BD patients, such as rumination.
Lois and his colleague found decreased FC within the DMN in
remitted BD patients (38). Converging evidence from neuroimaging
studies using memory tasks indicated that the DMN involves in the
retrieval processing of self-related episodic memory (39, 40). In
consistent with previous findings, our findings revealed that
abnormal intra-network between the SN and the DMN involved
in BD on the depression episode (5).

Among insular subregions, the vAI is closest to limbic cortex
showing extensive relationships with other cortical regions, while
the dAI primarily is connected with dorsal ACC (dACC) along with
other regions of control networks(41–43). Consistently, our results
demonstrated increased FC between left vAI and MFG, STG, and

FIGURE 4 | Group differences of the whole brain functional connectivity anchored in R_PI: BD patients had significantly decreased functional connectivity between

R_PI and lingual gyrus (GRF corrected, p < 0.05, voxel Z value > 2.3). Blue indicates smaller values in BD. L, left; R, right; BD, bipolar disorder; HC, healthy control;

R_PI, right posterior insula; GRF, Gaussian random field.

TABLE 3 | Group differences in seed-based functional connectivity of the insular subregions.

Seed Connected regions L/R Voxels BA MNI coordinates T

X Y Z

R_vAI Middle temporal gyrus L 14 39 −42 −68 27 −4.66

Angular R 7 19 41 −66 42 −5.17

L_dAI Medial frontal gyrus L 12 29 −9 54 −3 5.51

R_dAI Superior temporal gyrus L 8 31 −54 15 −9 4.19

Precuneus L 7 6 −27 −76 39 −4.88

R_PI Lingual gyrus R 45 6 27 −72 3 −4.41

BA, Broadmann area; BD, bipolar disorder; HC, healthy controls; dAI, dorsal anterior insula; AI, ventral anterior insula; PI, posterior insula; MNI, Montreal Neurological Institute.
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precuneus in BD depression. Furthermore, our study observed that
depressed patients with BD had aberrant rsFC profiles anchored on
dAI, including the hyperconnectivity with the MFG and the STG,
and hypoconnectivity with the precuneus. The MFG and STG has
been identified as key nodes in ECN involvement in goal-directed
behavior and cognitive control (26, 44, 45). Previous studies have
found the altered FC between dAI and the IPL in the ECN, which
was related to impairments of perceived emotion control (33).
Additionally, our study observed that BD patients had
hypoconnectivity between dAI and precuneus. As a key node of
DMN, the precuneus is important for self-reference processing (46),
consciousness (47), integration of past and present information
(48), and perspectives of social interaction (49). Young and his
colleague found that BD patients showed increased hemodynamic
activity in the anterior insula during positive memories recall of
specific autobiographical memory (AM) tasks, while showing
decreased activity in the precuneus during negative memories
recall of AM tasks (50).

As a major hub of the SN, the AI serves as identifying the salient
stimuli information and forwarding to higher cognitive regions (31).
Furthermore, emerging evidence supports the idea that the AI
might perceive regulatory control demands and facilitate dynamic
switching between DMN and ECN (28, 29, 51). Interestingly, our
results showed aberrant rsFC patterns of the AI, including
hyperconnectivity with nodes of ECN and hypoconnectivity with
nodes of DMN. These results indicated that the AI could integrate
the abnormal affective and cognitive process in BD patients, and
facilitate the switching between DMN and ECN (28, 29, 51).

As for the rsFC patterns of PI, we detected its dysconnectivity
with the lingual gyrus within the visual recognition network, which
may be involved in the perception of facial emotion stimuli (52–54).
Neuroimaging studies using rsFC and DTI approaches have
observed the abnormality of lingual gyrus in patients with BD
(55, 56). Consistently, numerous task-based fMRI studies found
abnormal activation of lingual gyrus in patients with BD during
emotional face processing (57).

LIMITATION

Although our study provided substantial evidences showing
abnormal FC between insular subregions and other brain areas,
several limitations should be considered when interpreting our
findings. First, our study reveals the potential mechanism of
insular subregions' connectivity patterns underlying BD. However,
the cross-sectional study may neglect the characterization of
disease's development trajectory, and ignore the dynamic changes
of brain function along with mental states. Second, the sample size
of our study is modest, which may impose some restriction on the
reliability and generality of our findings. Third, although we
acknowledge the well-established relationship between abnormal
rsFC patterns of insular subregions and clinical symptoms, we failed
to replicate the significant correlation in our study. It may be due to
the less sensitivity of HAMD scale for its variety of clinical
symptoms in BD patients on depression episode. And lastly, most
patients with BD were treated with lithium, antiepileptics,
anxiolytics, or antidepressants, and even some with frequent

polymedication at the time of MRI in the study. We further
explored the possible effects of BD medication on insular
subregions connectivity, and finally found an effect of antiepileptic
on lingual regions (in the file of Supporting Information-2). As a
consequence, further research is needed to assess the effects of
psychotropic medications on BOLD signal with a relatively large
sample to replicate our results in future study.

CONCLUSION

Our study found that BD patients on depression episode had
abnormal FC among insular subregions and other brain regions,
including the medial temporal gyrus, angular, MFG, STG,
precuneus, and lingual gyrus involved in DMN, ECN, and the
visual recognition network. Considering that these regions
related to the emotional process and cognitive control, our
findings provided substantial evidence of abnormal brain
functional network of BD on depression episode.
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