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The insulating vs. conducting behavior of condensed matter is usually addressed
in terms of excitation spectra. At variance with such wisdom, W. Kohn showed
in 1964 that the insulating state of matter also reflects a peculiar organization
of the electrons in their ground state [1]. Nowadays we are able to relate the two
features by means of a fluctuation-dissipation theorem.

The modern developments of the “theory of the insulating state” started in
1999, and continue to these days. The many-body ground wavefunction of an
insulator is sharply characterized by means of geometrical concepts.

We consider an N -electron system, whose most general Hamiltonian includes
both a “twist” (alias “flux”), and a vector potential A of magnetic origin:
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where the potential V̂ includes a one-body term (the external potential) and a
two-body one (the electron-electron interaction). For any k the ground wave-
function obeys periodic (toroidal) boundary conditions over a 3N -dimensional
hypercube of size L. The Provost-Vallee quantum metric tensor [2], is in our
case:

gαβ(k) = Re 〈∂αΨ0(k)|∂βΨ0(k)〉 − 〈∂αΨ0(k)|Ψ0(k)〉〈Ψ0(k)|∂βΨ0(k)〉,

where Greek symbols are 3-dimensional Cartesian coordinates and ∂α = ∂/∂kα.
The corresponding many-body Berry curvature is

Ωαβ(k) = i[ 〈∂αΨ0(k)|∂βΨ0(k)〉 − 〈∂βΨ0(k)|∂αΨ0(k)〉 ],

and vanishes for time-reversal invariant systems.
The metric g at k = 0 sharply determines the insulating/conducting behavior.

More precisely, the insulating state of matter is characterized by having gαβ(0)/N
finite in the thermodynamic limit, at variance with metals where it diverges [3].
This applies to any kind of insulator; in the simple case of a crystalline system of
noninteracting electrons, this same quantity sets a lower bound for the quadratic
spread of the Wannier functions (which, again, diverges in the metallic case).

The curvature Ω at k = 0, instead, has to do with the Hall effect [4].
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