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In recent years, much interest has been devoted to defining
the role of the IGF system in the nervous system. The ubiq-
uitous IGFs, their cell membrane receptors, and their carrier
binding proteins, the IGFBPs, are expressed early in the de-
velopment of the nervous system and are therefore considered
to play a key role in these processes. In vitro studies have
demonstrated that the IGF system promotes differentiation

and proliferation and sustains survival, preventing apoptosis
of neuronal and brain derived cells. Furthermore, studies of
transgenic mice overexpressing components of the IGF sys-
tem or mice with disruptions of the same genes have clearly
shown that the IGF system plays a key role in vivo. (Endocrine
Reviews 26: 916–943, 2005)
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I. Introduction

THE AVAILABILITY OF animal models for brain injury
and neuronal degeneration has allowed the investiga-

tion of the role of IGF-I in prevention and rescue of damaged
neuronal cells. These studies have thus pointed to the po-
tential therapeutic use of IGF-I alone or in combination with
other neuroendocrine factors in the treatment of nervous
system diseases.

The main aim of this review is therefore to provide an
up-to-date and comprehensive analysis of the pleiotropic
functions of the IGF system in the nervous tissue. To main-
tain focus on the IGF system, the role and functions of the
insulin system in brain and neuronal cells, also important but
already amply reviewed elsewhere, will only be mentioned
and discussed in brief in this review.

II. Historical Perspective

In 1957, Salmon and Daughaday (1) reported a serum
factor (factors) that mediated the cartilage sulfation and lon-
gitudinal bone growth activity of the somatotrophic hor-
mone (GH) (2, 3). This factor was termed “sulfation factor”
and was produced by hepatic cells after exposure to GH (1).
In conjunction, Dulak and Temin (4) were investigating the
cell proliferative factors in serum and termed one such ac-
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tivity multiplication-stimulating activity. These circulating
factors, which also showed insulin-like activity not suppress-
ible by antiinsulin antibodies [nonsuppressible insulin-like
activity (NSILA) I and II] (5–10), were later found to have a
similar biochemical structure to the �-chain of insulin (11–
13). It was apparent that these activities represented a similar
group of substances with a wider biological activity than first
suspected (3). NSILA I and II were two forms of an insulin-
like hormone with predominant effects on cell and tissue
growth (11). These small molecular mass peptides (NSILA I
and II) were later renamed as somatomedins replacing the
“nonsuppressible insulin-like activity” and sulfation factor
terminology. Further investigation revealed that these fac-
tors mediated the actions of pituitary-derived GH, giving
birth to the somatomedin hypothesis (3).

Shortly thereafter, two mammalian somatomedins were
identified by protein sequence and cDNA data (11, 14–18)
and their structural homology with proinsulin led to their
current designation of IGF-I and IGF-II.

In the middle 1990s, Sara and co-workers (19, 20) identified
a brain-specific variant of IGF-I, des(1-3) or “truncated”
IGF-I, which lacks the first three amino acids and is more
potent than intact IGF-I in various cell culture systems (19–
21), probably due to its lower affinity for IGF binding pro-
teins (IGFBPs) (22). This finding suggested brain synthesis of
IGF-I or its truncated variant. After the isolation of IGF-I
mRNA from postnatal rat brain (23), a number of in situ
hybridization studies (24, 25) demonstrated that IGF-I and
IGF-I receptor mRNA are synthesized in the rat brain in
specific regions, namely olfactory bulb, hippocampus, and
cerebellum (26). In addition IGF-carrier proteins, later named
IGF binding proteins, were also found expressed in similar
brain regions (27–36). The finding of IGF-I mRNA colocal-
ization with IGF-I receptors and the presence of IGFBPs
suggested a paracrine or autocrine role for IGF-I, potentially
modulated by IGFBP, in the developing brain (26, 36–38).

The presence of IGF-I (39) and IGF-I mRNAs (40) in mul-
tiple tissues has necessitated the revision of the original so-
matomedin hypothesis to include both autocrine and para-
crine actions of IGF in addition to its classical endocrine
aspects.

The somatomedin hypothesis has been recently chal-
lenged by several groups employing the liver-specific IGF-I
deficient (LID) mice, which have reduced circulating IGF-I
and elevated GH (41, 42), and the acid-labile subunit knock-
out ALSKO mice (43), which have reduced circulating IGF-I
and IGFBP-3 but normal GH level. The LID mice, contrary
to expectations (altered IGF-I-mediated GH-stimulated
growth), showed normal postnatal growth and develop-
ment (43, 44), whereas the ALSKO mice, despite 65% reduc-
tion in circulting IGF-I, demonstrated only 10% reduction in
body weight. Interestingly, when the LID mice were crossed
with the ALSKO mice (LID � ALSKO) (43), to further affect
the GH/IGF-I axis, the LID-ALSKO mice (very low IGF-I
and very high GH levels) showed postnatal growth retar-
dation and osteopenia, suggesting that circulating IGF-I is
important for postnatal growth and development (44). Al-
though investigations are ongoing in this area, it is accepted
at this stage that IGF-I exerts its pleiotropic functions in an
endocrine, autocrine, and paracrine fashion.

III. Overview of the IGF System

A. The IGF peptides

IGF-I and -II are growth-promoting peptides, members of
a superfamily of related insulin-like hormones that includes
insulin and relaxin in the vertebrates and bombyxin, locust
insulin-related peptide, and molluscan insulin-like peptide
in invertebrates (12, 13, 45–49). However, insulin and IGFs
are the most closely related in terms of primary sequence and
biological activity. The IGFs are major growth factors,
wheras insulin predominantly regulates glucose uptake and
cellular metabolism. They consist of A, B, C, and D domains.
Large parts of the sequences within the A and B domains are
homologous to the �- and �-chain of the human proinsulin.
This sequence homology is 43% for IGF-I and 41% for IGF-II.
No sequence homology exists between the C domains of IGFs
and the C peptide region of human proinsulin. The C domain
of the IGFs is not removed during prohormone processing;
thus the mature IGF peptides are single chain polypeptides
(50, 51). The gene encoding IGF-I is highly conserved (50,
52–56) such that 57 of 70 residues of the mature protein are
identical among mammals, birds, and amphibians (50, 52–
56). For a more extensive review of structure, functions, and
regulation of the IGF-I gene, see Refs. 57–61.

Expression of the Igf-1 gene is affected at many levels
including gene transcription, splicing, translation, and se-
cretion. IGF-I expression is also influenced by hormonal
(GH) (1, 62–66), nutritional (67–69), tissue-specific and de-
velopmental factors (36, 70–73).

B. The IGF receptors and their functions

The biological actions of the IGFs are mediated by the type
I IGF receptor (IGF-IR), a glycoprotein on the cell surface that
transmits IGF binding to a highly integrated intracellular
signaling system (74–77). Binding of the IGFs (IGF-I and II)
to the IGF-IR (74, 78–84) promotes intrinsic tyrosine kinase
activity that phosphorylates the insulin receptor substrates
(IRS-1 to IRS-4), which then leads to the activation of two
main downstream signaling cascades, the MAPK and the
phosphatidylinositol 3-kinase (PI3K) cascades (85–90). How-
ever, IGF-II binds the IGF-IR with lower affinity (74, 78–84).
Expression of the IGF-IR gene (77, 91) has been detected in
many tissues and is constitutively expressed in most cells
(92–94); its promoter is regulated in vitro and in vivo by
transcription factors such as SP1 (95, 96) and the transcription
factor p53 (97, 98).

Various IGF-I receptor subtypes that present distinct struc-
tures or binding properties have also been described. Two of
these subtypes, namely hybrid and atypical IGF-I receptors,
have been particularly investigated in a variety of cell types
(99–102). The atypical IGF receptors are characterized by
their ability to bind insulin as well as IGFs with relatively
high affinity (103). Hybrid insulin/IGF-I receptors have been
reported in cells expressing both IGF-I and insulin receptors
(104–108); however, the physiological significance of hybrid
and atypical IGF receptors is unclear.

The IGF-II ligand has greatest affinity for a distinct recep-
tor, the type-II or IGF-II receptor (109–114). This single chain
polypeptide with a short cytoplasmic domain lacking ty-
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rosine kinase activity is identical to the cation-independent
mannose-6 phosphate (M6P) receptor (107, 115, 116). The
IGF-II/M6P receptor binds two general classes of ligands: 1)
non-M6P-containing ligands, the best characterized of which
is IGF-II; and 2) M6P-containing ligands, including lysoso-
mal enzymes. The multifunctional role of the receptor is
evidenced by its function in the mediation of lysosomal en-
zyme trafficking, endocytosis, and lysosomal degradation of
extracellular ligands, regulation of apoptotic/mitogenic ef-
fects, and possible intracellular signal transduction (115,
117–128).

More recently, high-affinity binding of IGF-II to an insulin
receptor isoform (IR-A) has also been reported (129–131),
thus suggesting that IGF-II might also signal via the insulin
receptor. However, this insulin receptor isoform (IR-A), lack-
ing the alternative spliced exon 11, is preferentially expressed
in fetal and cancer cells (130).

C. The IGFBPs

A family of six high-affinity IGF-binding proteins (IG-
FBP-1 through IGFBP-6) coordinate and regulate the biolog-
ical activity of IGF in several ways: 1) transport IGF in plasma
and control its diffusion and efflux from the vascular space;
2) increase the half-life and regulate clearance of the IGFs; 3)
provide specific binding sites for the IGFs in the extracellular
and pericellular space; and 4) modulate, inhibit, or facilitate
interaction of IGFs with their receptors (111, 132–135). IGFBP
biological activity is regulated by posttranslational modifi-
cations such as glycosylation and phosphorylation (111)
and/or differential localization of the IGFBPs in the pericel-
lular and extracellular space (111, 134–139). It is therefore
hypothesized that IGFBPs, in addition to stabilizing and
regulating levels of diffusible IGFs, might regulate IGF-I
cellular responses by facilitating receptor targeting of IGF-I
or modulating IGF-I bioavailability in the pericellular space
(111, 135).

The effects of the IGFBPs are further regulated by the
presence of specific IGFBP proteases, which cleave the bind-
ing proteins, generating fragments with reduced or no bind-
ing affinity for the IGFs (111, 135, 136, 140). Some IGFBPs,
including IGFBP-2 and -3, can induce direct cellular effects
independent of the IGFs (135, 141–144). IGFBP-3, similar to
IGFBP-5, contains sequences with the potential for nuclear
localization (145, 146) and detection of IGFBP-3 in the nuclei
of dividing cells, as reported by several investigators (146,
147), strongly suggesting a role for IGFBP-3 in gene regula-
tion. More recently, perinuclear or nuclear localization has
also been reported for IGFBP-2 (148); however, the role of
IGFBP-2 in this cellular compartment is yet to be determined.

IV. Expression and Pleiotropic Actions of the IGF
System in the Brain

A. IGF expression in the nervous system

Central nervous system (CNS) development begins in the
embryo with the formation and closure of the neural tube,
followed by the rapid division of pluripotential cells (stem
cells), which then migrate to the periphery of the neural tube

and differentiate into neural or glial cells. These cells form
special structures such as nuclei, ganglia, and cerebral cor-
tical layers, and develop a network with their cytoplasmic
extensions, neurites. These complex processes are regulated
by a number of growth factors including the IGFs (149, 150).

IGF-I plays a key role in the development of the nervous
system, with demonstrated effects on many stages of brain
development including cell proliferation, cell differentiation,
and cell survival (36, 37, 149–159). Although recent reports
have demonstrated that postnatal circulating IGF-I might
exert neurogenic/survival activity (160–166) (167–171), sys-
temic IGF-I is not readily transported through the blood-
brain-barrier, and therefore local production of IGF-I is con-
sidered the primary source of the ligand (autocrine and
paracrine action) for brain cells.

During embryogenesis, IGF-I mRNA expression is detect-
able in many brain regions (23, 25, 31, 172–176), with its
expression being particularly high in neuronal rich regions
such as the spinal cord, midbrain, cerebral cortex, hippocam-
pus, and olfactory bulb (23, 177, 178) (Fig. 1). More precisely
IGF-I is found expressed in neuronal cells with large soma
and complex dendritic formations (32, 155), including sen-
sory and projecting neurons such as the Purkinje cells (25).
In most neurons, IGF-I transcription decreases significantly
postnatally, a decrease that correlates with the degree of cell
maturation and reaches very low levels in the adult (23, 175).
However, exceptions are the mitral and tufted cells of the
olfactory bulb, which undergo constant cell renewal/turn-
over (179); in these cells IGF-I expression persists at a high
level throughout life (26, 179).

IGF-II mRNA is abundantly expressed in the embryonic
rat CNS, however data are conflicting on IGF-II expression
in cells of neuroepithelial origin (24, 180, 181). IGF-II is the
most abundantly expressed IGF in the adult CNS, with the
highest level of expression found in myelin sheaths, but also
in leptomeninges, microvasculature, and the choroid plexus,
all nonneuronal structures that enable diffusion of growth
factors to their sites of activity (24, 25, 176, 182–185).

B. Type I and II IGF receptor expression in the nervous
system

The IGF receptors are widely expressed throughout the
CNS, with high levels of expression found in specific regions
and located to specific cell types (25, 26, 36, 38, 119, 153,
186–188). Given that IGF receptors are expressed from early
stages of embryogenesis and throughout life, and that their
ligands also show similar a “temporal-spatial” pattern of
expressions, it is evident that the local brain IGF circuits are
crucial modulators of the processes activated during brain
development. Type I receptors are expressed throughout the
rat CNS (177, 187, 189–191) with high levels of expression
detected in the developing cerebellum, midbrain, olfactory
bulb (Fig. 1), and in the ventral floorplate of the hindbrain (23,
24, 187). The level of IGF-IR decreases to adult levels soon
after birth (192, 193) but remains relatively high in the cho-
roid plexus, meninges, and vascular sheaths (25, 187). It is
thus not surprising that knockout of the IGF-I receptor gene
(194–196) produced, in addition to in utero growth retarda-
tion, a strong brain phenotype, namely a small brain.
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The type II IGF receptor, which has low affinity for IGF-I,
but a high affinity for IGF-II, and also binds mannose-6-
phosphate, is selectively expressed in all major brain regions
(119, 183, 188, 197, 198). It is highly expressed in the pyra-
midal cell layers of the hippocampus, the granule layer of the
dentate gyrus, olfactory bulb, the choroid plexus, and in the
cerebral vasculature, ependymal cells, retina, pituitary,
brainstem, and spinal cord (119, 183, 188, 197). Some of these
regions undergo tissue remodelling, suggesting that the IGF-
II/M6P receptor, in addition to its role in transporting ly-
sosomal enzymes, might also participate in control of neu-
ronal growth, differentiation, and repair, processes regulated
by IGF-II/M6P receptor ligands including LIF, TGF�, and
retinoic acid (198).

Early studies from our laboratory have demonstrated that
some of these regions expressing both the IGF-I and IGF-II
receptors are also rich in insulin receptors (199). Insulin re-
ceptor density is elevated in the choroid plexus, olfactory
bulb, limbic system, and hypothalamus but is much lower in
other brain regions (cortex, cerebellum, pituitary gland, thal-
amus), all regions concerned with olfaction, appetite, and
autonomic functions (199). More recently, ablation of the
insulin receptor in nestin-positive neurons (NIRKO mouse)
(200) suggests a role for insulin in control of appetite sup-
pression and reproduction (200).

C. The IGF ligands are pleiotropic factors

Whether the IGFs are produced locally (23, 25, 31, 172–176,
201) or reach brain cells systemically (160–166), these mol-
ecules exert potent neurotrophic, neurogenic, and neuropro-
tective/antiapoptotic activities. A large number of in vitro
studies have demonstrated that IGF-I promotes mitogenesis

and differentiation in glial cells (202–207), oligodendrocytes
(208–210), neuronal cells (36, 37, 211, 212), adult stem cells
(213), and brain explants (21, 214–217), and regulates axon
myelination (218–220). IGF-I enhances growth cone motility
and promotes neurite outgrowth (221, 222).

Studies using the IGF-I �/� mice models (152, 162, 220)
have clearly demonstrated that most of the IGF functions
determined in vitro also apply to the in vivo situation, affect-
ing a wide range of brain cells. The IGF-I null mice have
reduced brain size and altered brain structures (151, 155) and
show alteration of myelination processes (168, 223). This
appears to be the result of reduced oligodendrocyte prolif-
eration and maturation, which is also associated with reduc-
tion of axonal growth (168, 196, 223). However, some early
studies from Bondy and co-workers (220) have reported in-
stead that in IGF-I null mice, myelination is reduced but
proportionate to the neuronal composition. Furthermore, ab-
lation of the Igf-1 gene has revealed deficit in the numbers of
specific neurons, oligodendrocytes in the olfactory bulb, den-
tate gyrus and striatum (194, 196, 220) and in cochlear gan-
glion neurons (169). These anatomical differences are likely
to be the consequences of alteration in proliferation, survival,
or differentiation caused by the absence of IGF-I during
development. A study from Vicario-Abejon et al. (224) sug-
gests that reduction of stem cell proliferation/differentiation
in the IGF-I null mice might be the cause of reduced plas-
ticity/maturation normally occuring in some brain regions
(i.e., olfactory bulb) postnatally (224). In addition to gross
structural brain abnormalities, the IGF null mice also show
alteration of important brain metabolic functions such as
reduced glucose uptake, the major source of energy of neu-
ronal cells (225). These in vivo models thus show that the IGF

FIG. 1. The IGF system in the rat brain
olfactory bulb. IGF-I is expressed and
synthesized in distinct areas of the rat
brain, adjacent to regions rich in IGF-I
receptors and IGFBPs (i.e., olfactory
bulb is shown). This provides strong ev-
idence for an autocrine and paracrine
action of the IGFs in the nervous sys-
tem. IGF action is modulated by locally
expressed IGFBPs. ONL, Olfactory
nerve layer; GL, glomerular cell layer;
EPL, external plexiform cell layer; MI,
mitral cell layer; GRL, granular cell
layer. Section A-A shows a hematoxy-
lin-eosin staining of olfactory bulb.
[Modified with permission from L. W.
Swanson: Brain Maps: Structures of the
Rat Brain, 2nd edition, Elsevier, Am-
sterdam, 1998/1999 (528).] Area in the
square is enlarged and represented in
the cartoon.
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system affects several steps involved in development and
organization (number of cells, their connection, and the ex-
tracellular matrix) of CNS architecture.

However, actions of IGF are not limited to fetal life (25, 149,
150, 226), but extend into postnatal (21, 217) and adult life
(185, 227–229), with effects on proliferation, neuronal differ-
entiation, and maturation maintained in some regions of the
adult brain. Furthermore, alterations in levels of IGF-I have
been reported in the brains of aging rats (230, 231), alterations
that also correlate with deterioration of cognitive functions
observed in elderly patients with low circulating IGF-I
(232–234).

D. The IGFs are neurotrophic factors

In support of studies by the Gluckman group (235) and
others on the use of IGFs as therapeutic agents (see also
Section VII), many investigators have examined the cellular
and molecular mechanisms of IGF action in nervous system
diseases. In this regard, the IGFs have been shown to be
neurotrophic factors, i.e., they promote the survival and dif-
ferentiation of neuronal cells, including sensory (171, 221,
236), sympathetic (211, 237), and motor neurons (MNs) (236–
238). In fact, the IGFs are the only known growth factors that
support both sensory and motor nerve regeneration in adult
animals (160, 238–243). IGF-I is involved in brain plasticity
processes (21, 217, 224, 244), and it specifically modulates
synaptic efficacy by regulating synapse formation, neuro-
transmitter release, and neuronal exicitability (245–248).

IGF-I also provides constant trophic support to neuronal
cells in the brain and in this way maintains appropriate
neuronal function (245). Alteration of this trophic input may
lead to brain disease as seen in neurodegenerative disorders
such as Alzheimer’s disease (AD) (162, 249), Ataxia telangi-
ectasia (250), Huntington’s disease (251), and Parkinson’s
disease (252), all variably responsive to IGF-I treatment (see
also Section VII). A recent study by Lichtenwalner et al. (253)
showed that neurogenesis declines in brains of aged mice,
but it is efficiently restored after IGF-I administration via
intracerebroventricular infusion.

E. IGF-I prevents neuronal apoptosis

The ability of IGF-I (and IGF-II) to promote neuronal sur-
vival is associated with the ability of these factors to prevent
apoptosis, and IGF-I appears to be a potent agent for rescuing
neurons from apoptosis. For example, IGF-I prevents N-
methyl-d-aspartate (NMDA)- and nitric oxide-induced ap-
optosis in hippocampal and cortical neurons (254–258).

IGF-I has been shown to enhance the survival of rat em-
bryo cerebellar granule cells and stimulate their terminal
differentiation into cerebellar granule neurons (259, 260).
Additionally, IGF-I promotes the survival of rat hypotha-
lamic and hippocampal neurons in vitro (261). IGF-I and -II
rescue chick MNs from injury-induced and developmentally
regulated death (262, 263). A role for IGF-I in the regulation
of Schwann cell survival has also been reported (264), as has
the ability of IGF-I to prevent apoptosis in sympathetic neu-
rons exposed to high glucose (265). Rat hippocampal neurons
are also rescued by IGF-I from the induction of apoptosis by

amyloid-derived peptides (162, 266–268). A similar anti-
apoptotic effect of IGF-I is observed in rat cerebellar neurons
subjected to serum or potassium withdrawal or high KCl
levels (269, 270), okadaic acid treatment (271), and in MNs
during normal development or (262, 272) after axotomy or
spinal transection (273, 274).

Neuroblastoma cells are rescued from hyperosmotic
shock-induced apoptosis by IGF-I (275) or metabolic stress
(265, 276) including exposure to low glucose (277). IGF-I
inhibits mature oligodendrocyte apoptosis during primary
demyelination (278) and prevents apoptosis in neurons after
nerve growth factor withdrawal (279) or serum withdrawal
in brain explants (280) and neuronal cells (281).

F. IGFBP action in the nervous system

A growing body of evidence suggests an important role for
IGFBP in the nervous system. The mRNA expression profiles
and location of the most abundant IGFBP-2, -4, and -5 in the
normal developing and adult CNS are well defined (31–33,
35, 282–284). IGFBP-3 (35, 284, 285) and IGFBP-6 (286) are
also discretely expressed in the CNS but at lower levels, and
therefore data on their mRNA expression distribution are
limited. IGFBP-1 is not expressed in the CNS, but its expres-
sion is induced under certain experimental conditions (287).

1. IGFBP-1. Although IGFBP-1 mRNA is normally not de-
tectable in brain and the effects of Igfbp-1 gene deletion on
CNS have not been reported, the overexpression of IGFBP-1
mRNA in brain has instead generated an interesting brain
phenotype, namely small brain (288–292).

IGFBP-1 is known to inhibit somatic linear growth, weight
gain, tissue growth, and glucose metabolism (293). Increased
expression of IGFBP-1 has been documented in a variety of
situations, such as fetal nutritional deprivation and hypoxia,
and has been considered to be a marker of metabolic dis-
turbances that cause fetal growth retardation. Of interest,
IGFBP-1 transgenic mice demonstrate both intrauterine and
postnatal growth retardation phenotypes (288–292) includ-
ing alteration of the somatotrophic axis (294).

In a study by Doublier et al. (295), a line of transgenic mice
with liver-specific expression of IGFBP-1 also showed im-
paired brain development and hydrocephalus.

Furthermore, a study by Zhou and co-workers (287) de-
scribed disrupted cerebellar morphogenesis and reduction in
cerebellar size in mice overexpressing the hepatocyte nuclear
factor-3� (HNF-3�). The transgenic cerebella displayed lev-
els of IGFBP-1 elevated to 22 times greater than those mea-
sured for wild-type cerebella, an elevation consistent with
the reduction in transgenic cerebellar size.

Together, these in vivo observations suggest that increased
expression of IGFBP-1, as observed in a variety of clinical
situations, may itself contribute to the growth retardation
and impaired fetal brain development. However, it is sug-
gested that the underlying mechanisms in these events in-
volve IGFBP-1-sequestration of IGF-I.

2. IGFBP-2. IGFBP-2 is expressed early in embryogenesis
(296) and by embryonic d 10 is highly expressed in neuro-
ectoderm structures including the neural tube and neuro-
epithelium (296). During development, the most prominent
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sites of IGFBP-2 expression in the CNS comprise cells with
nonneuronal phenotypes including the epithelium of the
choroid plexus, the floor plate, and the infundibulum (30).
Later in development, IGFBP-2 mRNA is detectable through-
out the brain (33, 297), particularly in brain regions under-
going continuous remodelling as is the olfactory bulb (Fig. 1),
the cerebellum, and the hippocampus (33, 35, 36, 297).
IGFBP-2 expression correlates and complements that of IGF-
II, and both IGFBP-2 and IGF-II protein are highly abundant
in the cerebrospinal fluid (CSF) and choroid plexus (36). It is
also known that IGFBP-2 binds IGF-II with a moderate pref-
erential affinity over IGF-I (135).

IGFBP-2 associates to cell surface proteoglycans in rat
brain tissue (134) and neuronal cells (136), and IGF-I/IGFBP-
2/proteoglycan complexes have been identified in rat brain
tissue (298), but the role of these cell membrane complexes
is not completely understood. However, it has been sug-
gested that differential localization of the IGFBPs in the peri-
cellular and extracellular space, involving components of the
extracellular matrix (111, 134–139), might regulate levels of
diffusible/free IGFs. We have recently shown that IGF-I
complexes with IGFBP-2 to promote neurogenesis in adult
stem cells (213) and further demonstrated that neurogenesis
was inhibited by IGFBP-2 antibody blockade (213), thus sug-
gesting a key role for IGFBP-2 in this process. Additional
evidence in support of an IGF-facilitating role for IGFBP-2 in
the brain comes from colocalization of injected IGF-I with
IGFBP-2 (299) and subsequent neuroprotection after hy-
poxic-ischemic injury, an effect not seen with an IGF variant
that does not bind IGFBP-2 (300). It is therefore possible that
brain IGFBP-2 regulates IGF-I cellular responses by facili-
tating receptor targeting of IGF-I or modulating IGF-I bio-
availability in the pericellular space in vivo (111, 135). Cell-
associated IGFBP-2 may therefore act as a “linker” molecule
allowing pericellular storage of IGF.

This IGF-I storage might be affected by the presence of
IGFBP-2 proteases (136, 281, 301, 302) that generate IGFBP-2
fragments which have markedly reduced binding affinity for
the IGFs (135, 136). An IGFBP-2 fragment was identified on
the cell surface of neuronal cells (136). The presence of this
proteolytic fragment of IGFBP-2, capable of binding IGF-I
while simultaneously being bound to the cell surface, might
point to a process whereby proteolysis of membrane-bound
IGFBP-2 provides a mechanism for creating peri-receptor
low affinity IGF-I binding sites (136). Although we have
recently demonstrated that IGFBP-2 proteolysis occurs dur-
ing neuronal differentiation (281), the precise physiological
significance of IGFBP-2 proteolysis in the nervous system
remains to be determined.

Thus, IGFBP-2 possesses endocrine functions elicited by
modulating serum IGF half-life and transport as well as
autocrine/paracrine functions that result from blocking or
enhancing the availability of IGFs to bind cell surface recep-
tors. Despite these key functions, ablation of the Igfbp-2 gene
(303) generated a phenotype less dramatic than that initially
predicted. Selective alterations were reported for spleen and
liver size, whereas the level of other circulating IGFBPs was
found to be increased in the adult animals (304). The absence
of a “brain phenotype” in the Igfbp-2 �/� mouse (303) sug-

gests functional redundancy in the IGFBP family during
development of the CNS (305).

The IGFBP-2 transgenic mouse model developed by the
Hoeflich group (306) has suggested that IGFBP-2 may be a
negative regulator of postnatal growth, including brain
growth, in rodents, potentially by reducing the bioavailabil-
ity of IGF-I. These effects were seen even when hemizygous
cytomegalovirus-IGFBP-2 transgenic mice were crossed with
hemizygous phosphoenolpyruvate carboxykinase-bovine
GH transgenic mice (with very high GH and IGF-I serum
levels) (307), thus suggesting an inhibitory role for IGFBP-2
in vivo. However, in both studies (306, 307), IGFBP-2 was
constitutively overexpressed in most tissues, including the
brain, resulting in very high IGFBP-2 levels, and therefore it
might be possible that any specific local enhancing activities
of IGFBP-2 were overridden by the high systemic level of
IGFBP-2. It is therefore possible that although IGFBP-2 is
abundantly expressed in the brain, expression at nonphysi-
ological levels (up to 9-fold over the normal endogenous
levels) in the transgenic mice would dramatically change
local brain IGF availability leading to the reported effects on
brain size.

An example of physiological change in local brain levels
of IGFBP-2 and how this might affect IGF action has been
reported by Cardona-Gomez et al. (308) in a specialized
group of glial cells of the third ventricle named tanycytes.
These cells have the ability to accumulate IGF-I and thus
regulate IGF-I availability (309–311). Cardona-Gomez’s data
show that estradiol and progesterone regulate local levels of
IGFBP-2, including “peri-IGF-I-receptor” IGFBP-2 (308), and
that these changes affect accumulation of IGF-I in tanycytes.
This accumulation process might involve interaction of IGF-I
with cell surface-associated IGFBP-2 before IGF-I being in-
tracellularly translocated (308).

3. IGFBP-3. IGFBP-3 is normally expressed at a low level in
the CNS, mainly in nonneuronal structures including epi-
thelial cells (35, 37, 312, 313), and the effects of IGFBP-3 gene
deletion on CNS are either unknown or have not been
reported.

Nevertheless, in a study by Ajo et al. (201), IGFBP-3 was
found to be up-regulated in rat cerebral cortical cells after GH
stimulation. Ajo et al. show that GH promotes proliferation
of neural precursors, neurogenesis, and gliogenesis and that
these responses are mediated by locally produced IGF-I and
its modulator IGFBP-3.

Conversely, a study by Rensink et al. (314), investigating
the mechanisms of amyloid-� (A�) deposition in cerebral
blood vessel walls and Abeta-induced toxicity in AD, pro-
posed that IGFBP-3 might contribute to neuronal degener-
ation in AD. It is therefore possible that, as seen in other
systems, IGFBP-3 might promote either enhancement or in-
hibition of IGF-I action in brain cells in vitro, depending on
the experimental conditions.

The function of IGFBP-3 in vivo has been in part elucidated
by the IGFBP-3 transgenic mouse model. This mouse showed
modest intrauterine and postnatal growth retardation de-
spite elevated circulating IGF-I levels (315). These mice
showed a significant reduction in birth weight, reduction in
litter size, and postnatal reduction of both body weight and
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length and organ size. No change in brain growth or phe-
notype has been reported in IGFBP-3 transgenic mice (316).

4. IGFBP-4. IGFBP-4 is normally expressed at a very low level
in the CNS, where its mRNA is found in a variety of brain
cell types including meningeal cells, astrocytes, and fetal
neuronal cells (317). During early brain development,
IGFBP-4 expression is increased, and its mRNA is easily
detectable in regions such as the choroid plexus, meninges,
and the basal ganglia (318). Postnatally, IGFBP-4 mRNA is
found in the meningeal cell layer surrounding the develop-
ing cerebellum in the hippocampal formation and olfactory
bulb (Fig. 1) (35, 317). In some of these IGFBP-4-expressing
brain regions, which maintain a degree of tissue remodel-
ling/plasticity (38), local expression for IGF-I and its receptor
is also seen, thus suggesting that IGFBP-4 may play a role as
a local modulator of IGF action (318).

Overexpression of IGFBP-4 gene has only been recently
investigated in smooth muscle cell-rich tissue, and therefore
the effects to the nervous tissue are unknown.

As discussed earlier, IGFBP-4 generally acts in vitro and in
vivo as a potent inhibitor of IGF-I action (147, 319–322), and
it is therefore intriguing to find IGFBP-4 in sites where IGF-I
exerts its primary mitogenic and trophic actions. A potential
explanation might come from the work of Pintar et al. (305)
on IGFBP-4 null mice, which indicates, contrary to expecta-
tion, that these mice have lower weight at birth. In this case,
the authors argued that the absence of IGFBP-4 diminished
tissue IGF storage capacity (305). This would imply that
physiological levels of IGFBP-4 are indeed required for nor-
mal growth. Whether ablation of the IGFBP-4 gene also af-
fects the CNS of these mice was not reported.

5. IGFBP-5 IGFBP-5 gene expression is highly abundant dur-
ing brain development (32). The early expression of IGFBP-5
at embryonic d 10.5 indicates a key role of this IGFBP during
embryogenesis (323). This hypothesis is further supported by
a recent study from Pera et al. (150) which shows that
IGFBP-5, as well as three IGFs expressed in early embryos,
promoted anterior development by increasing the head re-
gion in Xenopus embryos. Thus, active IGF signals, including
IGFBP-5, appear to be required for anterior neural induction
in Xenopus (150). Whether IGFBP-5 has similar functions in
early mammalian neural development is not known.

In rodents, IGFBP-5 appears to be coexpressed with IGF-I
in principal neurons of sensory relay systems, cerebellar
cortex, hippocampal formation, and many other neuron-rich
regions (32, 324), including the olfactory bulb (Fig. 1) (35).
These data point to the presence of potential autocrine and
paracrine interactions between IGFBP-5 and IGF-I in specific
brain regions where IGFBP-5 may act as a modulator or
determinant of IGF action (325).

In addition to this spatiotemporal coexpression of IGFBP-5
and IGF-I, it is now becoming clear that IGF-I specifically
regulates IGFBP-5. Using two IGF-I transgenic mice lines, Ye
and D’Ercole (326) demonstrated that IGF-I up-regulates
IGFBP-5 expression in vivo. This increase is specific for
IGFBP-5 mRNA, because the level of expression of IGFBP-2
and IGFBP-4 mRNAs in these mice was found unchanged
(326). The effects of IGFBP-5 gene ablation to the brain have
not been reported.

6. IGFBP-6. IGFBP-6 is poorly expressed in the nervous sys-
tem, and information regarding its mRNA expression dis-
tribution, in both the developing and adult nervous system,
is limited.

IGFBP-6’s unique property of preferential binding to the
IGF-II ligand (327), coupled with the fact that this ligand is
the most abundantly expressed IGF in the adult CNS, sug-
gests that the IGFBP-6/IGF-II complex has a unique role in
modulating IGF-II function in the adult brain (286).

During CNS embryogenesis, IGFBP-6 expression is tightly
restricted to trigeminal ganglia and, relative to the rest of the
embryo, this structure has the highest expression (286). The
expression in the forebrain and cerebellum does not occur
until after postnatal d 21 and then is primarily associated
with GABAergic interneurons (286). The highest levels of
expression in the adult animal are in the hindbrain, spinal
cord, cranial ganglia, and dorsal root ganglia (286). These
nuclei in the hindbrain and periphery that express IGFBP-6
are all associated with the coordination of sensorimotor func-
tion in the cerebellum, which indicates an important role for
the IGFBP-6/IGF-II complex in the function and mainte-
nance of these systems.

As introduced earlier, IGFBP-6 preferentially binds IGF-II
and is regarded as a relatively specific inhibitor of IGF-II
actions (327). IGFBP-6 is often expressed in nonproliferative
cells, and its expression is associated with inhibition of
growth of tumor cells in vitro (281, 327, 328) and in vivo (327).
These findings are also supported by overexpression of
IGFBP-6 in vivo, a model recently developed by the Babajko
group (329) with strong expression of IGFBP-6 in glial fibril-
lary acidic protein-positive cells. Preliminary analysis of the
IGFBP-6 transgenic mouse shows reduced cerebellum size
and weight combined with altered differentiation of astro-
cytes (329). Abnormalities in the hypothalamus and pituitary
were also reported (329). The effects on the brain of IGFBP-6
gene ablation remain unknown.

V. The IGF System and Neuroendocrine Cross-Talk
in the Nervous System

A. IGF-I and fibroblast growth factor (FGF)-2

In vivo, growth factors such as IGF-I do not exist in iso-
lation. Hence, the presence of other growth factors (Fig. 2)
may further modulate the biological activity of IGFs and
cellular responses. This modulation can be seen in the neu-
rogenic activity of IGF, which in many cases requires the
presence of basic FGF or FGF-2 to function (21, 330, 331).

Torres-Aleman and co-workers (332) showed that in pri-
mary cultures of hypothalamic cells, FGF-2 combined with
IGF-I, significantly increased the number of neurite bearing
cells, above that seen when either one of the two growth
factors was added in isolation. Indeed, it appeared that the
observed effect of these two growth factors was synergistic
(332).

In a study by Drago and co-workers (330), it was shown
that by blocking the endogenous stimulation of IGF-I with an
antibody, the ability of FGF-2 to stimulate the proliferation
of precursor cells isolated from the neuroepithelium of em-
bryonic d 10 mice was abrogated. In later work by Frodin and
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Gammeltoft (333), it was also found that the IGFs act syn-
ergistically with FGF-2 and nerve growth factor to promote
chromaffin cell proliferation. A recent study from our lab-
oratory (281) demonstrated, in neuroblastoma cells, that
FGF-2 overrides IGF-I mitogenic and survival activity via
induction of neuronal differentiation and blockade of the
antiapoptotic response of IGF-I.

Furthermore, Torres-Aleman (243) recently highlighted
the importance of a number of serum growth factors (in
contrast to brain-produced), which included IGF-I, FGF-2,
and other blood-borne neurotrophic factors (neurotrophins),
in neuroprotective surveillance. All these factors exerted a
tonic trophic input on brain cells, providing defense mech-
anisms ranging from blockade of neuronal death to up-reg-
ulation of neurogenesis.

B. IGF-I and neurotrophic factors

Increased interest has recently been devoted to the inter-
action of IGF-I with other “classic” neurotrophic factors. A
study by Corse et al. (334) has investigated the potential
effects of neuroprotective factors including IGF-I, glial cell
line-derived neurotrophic factor, brain-derived neurotrophic
factor, neurotrophin (NT)-4 and -3 (NT-4/5, NT-3), and cil-
iary neurotrophic factor on mature motor neurons. Only
IGF-I, glial cell line-derived neurotrophic factor, and NT-4/5
were found to be potently neuroprotective, pointing to the
potential combined use of these neuroprotective factors in
treatment of neurodegenerative diseases. Subsequently, the
results from a number of phase III clinical trials with nerve
growth factor, brain-derived neurotrophic factor, and IGF-I
(335) indicate that these neurotrophic factors may find an
application in degenerative disorders or injury of peripheral
nerves and motor neurons (336).

C. IGF-I and GH

Although GH gene expression also occurs in the central
and peripheral nervous system, with brain GH imunoreac-
tivity not affected by hypophysectomy (337) (178), the po-

tential cross-talk between the IGF system and GH in the
nervous system has not been fully investigated. Several ex-
perimental models, in vivo and in vitro, support a key role for
GH in brain development. The Snell dwarf mouse (Pit1) and
the GHRH receptor-deficient little mouse exhibit microce-
phalic cerebra with hypomyelination and retarded neuronal
growth with poor synaptogenesis. Postnatal GH adminis-
tration normalizes neuronal growth in these mice (338, 339).
Recent in vivo studies by the Williams group have demon-
strated that GH is involved in neuroprotection during hy-
poxic/ischemic brain injury (340–342). In these studies, they
also showed GH-like immunoreactivity on injured brain cells
and demonstrated that GH administered intracerebroven-
tricularly is capable of preventing brain cell loss (340–342).
Whether the neurogenicprotective effects of GH involve
IGF-I induction is not clear.

However, some recent in vitro studies by Ajo et al. (337)
have demonstrated that GH promotes proliferation and dif-
ferentiation of fetal cerebral cortical cells in primary culture,
and these effects are mediated by IGF-I. Furthermore, a study
by Edmondson and co-workers (343) has demonstrated that
GH and IGF-I promote growth and survival of melanocytes
(neural-crest derived cells) by a process synergistic with
FGF-2.

Furthermore, there is some evidence that the GH-related
hormone prolactin (PRL) also possesses neurogenic proper-
ties. In female mice during pregnancy, PRL stimulates pro-
duction of neuronal progenitors in the forebrain subven-
tricular zone (344, 345). Whether the neurogenic properties
of PRL are a direct effect of its action or mediated by other
factors, including IGF-I, remains to be determined.

D. IGF-I and erythropoietin

Erythropoietin (EPO) is traditionally known as a hemato-
poietic cytokine produced by the fetal liver and adult kidney in
response to hypoxia (346–350). However, the expression of
EPO and EPO-receptors in the CNS and the up-regulation of
EPO by hypoxic-ischemic insult (346–350) suggest that this
cytokine is an important mediator of the brain’s response to
injury. In fact, in vivo EPO administration protects hippocampal
CA1 neurons and retinal neurons from ischemic damage and
prevents brain injury after a number of “insults” (346–350) by
mechanisms involving both inhibition of apoptosis and neu-
rotrophic actions (346–352). In the brain, EPO expression, reg-
ulated by the hypoxia-inducible factor (HIF)-1�, is mainly
found in astrocytes.

Recent work by Wang et al. (353) demonstrated that IGF-I
protection of primary neuronal cells exposed to low oxygen
concentration correlates with activation of HIF-1� expression
(351, 352). In the same studies using an in vivo model of
hypoxia/ischemic brain injury, they also show that IGF-I
transcriptional activation correlates with that of HIF-1�, sug-
gesting that HIF-1� might mediate some of the IGF-I re-
sponses. In another study by Chavez and LaManna (354), it
was shown that IGF-I induces HIF-1� transcriptional activity
in rat cerebral cortex and neuronal cells (PC12) and that this
induction is abolished by a selective IGF-I receptor antago-
nist (JB-1) (354). Furthermore, an early study by Feldser and

FIG. 2. Neuroendocrine cross-talk. In vivo, growth factors such as
IGF-I do not exist in isolation. Hence, the presence of other growth
factors may further modulate the biological activity and cellular re-
sponses of IGFs.
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co-workers (355), in hepatoma cells, not only showed that
insulin, IGF-I, and IGF-II induced HIF-1� expression but also
demonstrated that HIF-1� is required for expression of IGF-
II, IGFBP-2, and IGFBP-3 (355).

These findings suggest the presence of a potential complex
synergistic cross-talk between the IGF and the EPO system
involving both activation of common intracellular signaling
pathways and regulation of gene expression. The presence of
synergistic cross-talk between the IGF and the EPO system
in neuronal cells has recently been demonstrated by Digi-
caylioglu and co-workers (356), showing that EPO can exert
a more immediate neuroprotective action when adminis-
tered in concert with IGF-I. The neuroprotective mechanism,
after coadministration of EPO and IGF-I, involved synergis-
tic activation of the PI3K–Akt pathway (356). These findings
further support the concept that the coadministration of syn-
ergistic neuroprotective agents rather than a single agent
might provide improved therapeutic outcome. Thus, treat-
ment with appropiate combinations of EPO and IGF-I could
be a future therapeutic strategy for a variety of acute neu-
rological events (356).

E. IGF-I and sex steroids

Among the numerous endocrine systems regulating brain
physiology, sex steroids play an important role. However, it
appears that part of the effects of these hormones on the brain
are mediated by trophic factors including IGF-I (357–361).
Studies from the Garcia-Segura group (357–361) have dem-
onstrated that estradiol and IGF-I increase survival and dif-
ferentiation of developing fetal rat hypothalamic neurons.
They have demonstrated that estrogen-induced activation of
the estrogen receptor requires the presence of IGF-I and that
both estradiol and IGF-I use the estrogen receptor to mediate
their trophic effects on hypothalamic cells. In vivo sex steroids
affect IGF-I levels in the endocrine hypothalamus, arcuate
nucleus, and median eminence (357–361).

Furthermore, increased clinical and basic evidence sug-
gests that gonadal steroids affect the onset and progression
of several neurodegenerative diseases and schizophrenia
and the recovery from traumatic neurological injury such as
stroke. In the brain, similarly to the IGF system, both estrogen
synthesis and estrogen receptor expression are up-regulated
at sites of injury (362, 363). Once again, it is suggested that
the neuroprotective effects of estrogen may be exerted in-
dependently of the classical nuclear estrogen receptors in-
volving modulation of the IGF-I signaling (362, 363). This is
supported by the fact that estrogen receptors and IGF-I re-
ceptor interact in the activation of PI3K and MAPK signaling
cascades and possibly in the promotion of neuroprotection
(362, 363). It is therefore possible that the decrease in estrogen
and IGF-I levels with aging may thus result in an increased
risk for neuronal pathological alterations. Also, in this case
these findings suggest the presence of a potential complex
synergistic cross-talk between the IGF and sex steroids in-
volving activation of common intracellular signaling path-
ways, however the precise mechanism remains unclear.

VI. Altered Expression of the IGF System in
Response to CNS Injury

A role for endogenous IGFs in the injured brain is sug-
gested by a number of studies showing the induction of
components of the IGF system after transient unilateral hy-
poxic/ischemic injury and stroke in the rat model (364–371)
(Fig. 3, A–C). IGF-I mRNA induction is seen within infarcted
regions by 3 d after hypoxia (369) (Fig. 3A). In addition,
IGF-II (365), IGFBP-2 (365, 370) (Fig. 3C), IGFBP-3 (369) (Fig.
3A), and IGFBP-5 (368) (Fig. 3B) genes are differentially in-
duced in specific regions after hypoxic/ischemic injury in the
same model, suggesting that they may modulate the actions
of IGF-I in a spatiotemporal-specific manner. The induced
expression of IGF-I and IGFBP-2, -3, -4, and -5 in reactive
microglia, oligodendrocytes, astrocytes, and surviving neu-
rons (313, 370) of the periinfarcted area, including areas dis-
tant from the region of cell loss, suggests a role for the local
IGFBPs in transporting IGF-I from its sites of production to
the sites of action (313) (Fig. 3, A–C). Furthermore, in the
periinfarcted regions, IGFBP-2 was highly expressed by re-
active astrocytes that were juxtaposed to surviving neurons
(Fig. 3C) (313), therefore suggesting a specific role for
IGFBP-2 in augmenting IGF-I action (313) (Fig. 4).

A facilitative role of IGFBP-2 in IGF-I action in the nervous
system is also suggested by a study from the Gluckman
group (299). Using the hypoxic-ischemic brain injury rat
model, we have demonstrated that centrally administrated
(intracerebroventricular) 3H-IGF-I is rapidly translocated to
neurons and glia in injured sites (299) and that the tritiated
IGF-I signal colocalized with IGFBP-2 protein in neurons and
glia from the cerebral cortex and subregions of the hippocam-
pus. The 3H-IGF-I signal persisted for up to 6 h after admin-
istration, suggesting local storage of the IGF-I molecule (299).
These data, together with their previous reports on the in-
efficacy of the IGF-I analog des(1-3) IGF-I to rescue hypoxic-
ischemic injured neurons (300), further suggest that local
IGFBPs (i.e., IGFBP-2) play a key role in IGF-I delivery to the
injured site (299, 313) (Fig. 4). These findings might point to
a role for cell-associated IGFBP-2 (134) to modulate local
IGF-I bioavailability (Fig. 4).

IGFBP-2 mRNA is induced throughout the injured hemi-
sphere (313) (Fig. 3C) whereas IGFBP-3 is only moderately
induced in reactive microglia and glial cells and is substan-
tially decreased in neuronal cells of the region of injury (372)
(Fig. 3A). However, in the early stages of the injury response,
IGFBP-3 expression increases rapidly in vascular endothelial
cells throughout the affected hemisphere with maximal ex-
pression levels at 24 h, which then become undetectable 48 h
later (372). This early transient induction of IGFBP-3 in brain
vascular endothelial cells is a likely mechanism by which
brain vascular endothelial cells potentially regulate up-take
of circulating IGFs after the hypoxic-ischemic insult (372).
However, the precise mechanism involved remains to be
determined. Nevertheless, these data might point to a po-
tential role for IGFBP-3 as carrier/transporter of vascular
IGF-I into the brain tissue in the early phases of the injury
response, when local IGF-I availability and expression might
not be sufficient to trigger the neuroprotective mechanisms
(Fig. 4).
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After hypoxic-ischemic insult, IGFBP-4 mRNA is also
moderately up-regulated (365, 368). This is also true for
IGFBP-5 (Fig. 3B), which is up-regulated after severe hy-
poxic-ischemic injury in the infant rat brain (368), and its
mRNA is up-regulated in cerebellar granule cells during

apoptosis (325). In both cases, the increase of IGFBP-5 ex-
pression is believed to be required to maximize the avail-
ability of IGF and thus potentiate the IGF-triggered survival
signaling, as has previously been described for cerebellar
granule cells (325).

FIG. 3. Altered expression of the IGF system in response
to CNS injury. A role for endogenous IGF system in the
injured brain is suggested by a number of studies showing
the induction of components of the IGF system after tran-
sient unilateral hypoxic/ischemic injury and stroke in the
rat model. IGF-I mRNA induction is seen within infarcted
regions by 3–5 d after hypoxia/ischemic brain injury (d 5
after insult is shown). In addition, IGF-I receptor and
IGFBPs genes are differentially induced in specific re-
gions after hypoxic/ischemic injury in the same model,
suggesting that they may modulate the actions of IGF-I in
a spatiotemporal-specific manner (d 3 and 5 after insult
are shown). In panels A–C, IGF-I, IGF-I receptor,
IGFBP-3, IGFBP-5, and IGFBP-2 mRNA were detected
by in situ hybridization (ISH; 5-�m paraffin sections).
Immunohistochemical staining for glial fibrillary acid
protein (GFAP) is shown in panels A and C, whereas
staining for the 150-kDa neurofilament (150 kDa-NF) is
shown in panel B. Immunoreactivity for IGFBP-2 is
shown in panel C. CO, Cortex; AH, Ammon’s horn; DG,
dentate gyrus; IHC, immunoistochemistry. Hematoxylin-
eosin staining is shown in the left panels [obtained from
L. W. Swanson: Brain Maps: Structures of the Rat Brain,
2nd edition, Elsevier, Amsterdam, 1998/1999 (528), with
permission from Elsevier].
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After peripheral nerve injury (lumbar motoneurons),
IGFBP-6 mRNA and its protein expression are strongly up-
regulated in the spinal motoneurons. This increased expres-
sion of IGFBP-6 in the damaged nerve is spatiotemporally
associated with a local increased expression of the IGFs (373).
It is therefore likely that IGFBP-6 might play a specific role
in controlling IGF availability to lesioned motoneurons and
thus regulates axonal regeneration (373). These findings all
suggest that the IGFs in the brain, after injury, may act as
endogenous neuroprotective agents and limit the degree of
neuronal and glial loss (Fig. 4).

VII. Altered Expression of the IGF System in
Malignancies of the Nervous System

IGF-IR plays a crucial role in the induction and mainte-
nance of the malignant phenotype. Increased expression of
IGF-I, IGF-II, and IGF-IR is present in a wide range of human
cancers (374), including lung, breast, thyroid, and prostate
carcinomas, rhabdomyosarcomas, leukemias, and the pe-
ripheral nervous system tumor neuroblastoma (375, 376).
IGF-IR overexpression leads to cellular transformation (374,
377), tumor cell proliferation (378, 379), and growth (380),
whereas disruption of IGF-IR expression reverses the trans-
formed phenotype (374, 377).

Within the CNS, the IGF family is critical for normal devel-
opment: aberrant expression and/or activation may be associ-
ated with CNS malignancy (381, 382). Components of the IGF
system, in particular IGF-I, IGF-II, and the IGF-IR, are overex-
pressed to varying degrees in numerous CNS tumors (381, 383),
including low-grade gliomas, glioblastomas, medulloblasto-
mas, astrocytomas, ependymomas, and meningiomas.

Expression of the IGF family in CNS malignancy has been
most thoroughly investigated in glioblastoma. IGF-IR ex-
pression is higher in glioblastomas than in normal brain, and
glioblastoma cell lines exhibit a dose-dependent IGF-I stim-

ulation of both receptor autophosphorylation and thymidine
incorporation, indicating a functional receptor (384). Both
ligands for the IGF-IR, IGF-I and IGF-II, have increased
mRNA transcript formation in glioblastoma compared with
normal brain, and the major IGF-II transcript of 6.0 kb found
in glioblastoma is similar to that found in fetal brain (385).
The IGF ligands are also secreted into the CSF of glioblastoma
patients (386). Most of the IGF binding proteins, including
IGFBP-1, -2, -3, -5, and -6, are expressed in glioblastomas,
with the most abundant being IGFBP-3 (387). In addition,
glioblastomas express membrane-bound forms of the bind-
ing proteins, and IGFBP-3 is secreted into culture media
(387). Much of the in vitro work on the role of IGF-IR in
transformation has been performed in rat glioblastoma cell
lines. In this work, researchers have found through muta-
tional analyses that distinct regions of IGF-IR are critical for
the biological actions of the IGF ligands, including mitogen-
esis, transformation, and differentiation, through the induc-
tion of specific downstream targets (388–392).

IGF ligands acting through the IGF-IR are known to affect
several aspects of glioblastoma tumor formation in addition
to growth and transformation. IGF-I stimulates the migration
(393) and invasion (394) of glioblastoma cell lines in culture,
prerequisites for tumor cell metastasis. IGF-I acts as a potent
survival factor in glioblastoma cell lines, even overcoming
proapoptotic stimuli (394, 395). Glioblastoma cell treatment
with IGF-I triple helix-forming DNA (396–398), antisense
IGF-IR (399–402), kinase-defective IGF-IR (403), or addi-
tional IGF-IR mutant dominant-negative constructs (404) all
induce growth suppression and/or apoptosis, resulting in
decreased tumor growth. These studies have led the way for
future work on IGF-IR inhibition and ligand interference in
glioblastoma patient therapy (382).

As previously indicated, expression of IGF system com-
ponents is also altered in other CNS tumors. In infiltrating
astrocytomas, IGF-IR expression increases early in tumor

FIG. 4. A model for neurotrophic and neuro-
protective actions of IGF-I in brain. Secreted
IGF-I exerts local autocrine (1) or paracrine (2)
trophic actions. A family of IGFBPs (3) mod-
ulates IGF-I bioavailability. IGFBP-2, the
most abundant brain IGFBP, mediates peri-
cellular storage of IGF-I via interaction with
cell surface proteoglycans (PG) (4) or compo-
nents of the extracellular matrix. Cell surface
IGF-I/IGFBP-2/PG complexes (4) are sug-
gested to play a role in targeting of IGF-I to its
membrane receptors. IGFBP-2 mediated
IGF-I receptor targeting at the cell surface,
and this event might be further potentiated by
the presence of a specific IGFBP-2 protease
(5), which generates IGFBP-2 fragments that
have reduced affinity for IGF-I. In response to
a number of cerebral insults (i.e., hypoxia/isch-
emic brain injury) (6), IGFBP-2 proteolysis
might also affect the level of pericelluar IGF-I
(7), therefore augmenting its neuroprotective
activity (8). Following cerebral insult activa-
tion and recruitment of specialized brain cells
(9) might further contribute to modulate the
local IGF system (9).
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development, appearing in stage II tumors and continuing
into stage IV (204). IGF-IR protein levels are increased in the
majority of medulloblastoma cases, with concomitant in-
creases in phosphorylated forms of the downstream signal-
ing molecules Erk-1, Erk-2, and Akt/PKB (405, 406). When
IGF-II or activated Akt/PKB is retrovirally transferred into
neural progenitors along with sonic hedgehog-patched, me-
dulloblastomas form (407), suggesting a role for this pathway
in tumor formation. In microarray analyses of ependymo-
mas, high IGF-II expression was detected (408). High IGF-II
expression occurs in meningiomas, and the IGF-II/IGFBP-2
ratio, indicating free IGF-II levels, correlates with tumor ana-
plastic histopathology (381). In fact, meningiomas express
the highest IGF-II mRNA levels of all intracranial tumors
(409). Although IGF ligand levels are increased in the ma-
jority of CNS tumors, ligand increases are not detected in the
CSF, indicating that IGFs act locally in an autocrine and
paracrine fashion to control tumor cell proliferation (386).
This idea is supported by studies in both primary intracranial
tumors and brain metastases from non-small cell lung tu-
mors that show that interference with the IGF-I/IGF-IR au-
tocrine signaling prevents cell growth (410, 411).

The IGF system is also important in neuroblastomas,
which typically occur peripherally but are occasionally
found intracranially. IGF expression is present in all stages
of primary neuroblastoma tumors (412). IGF-I or IGF-II cou-
pled to IGF-IR promotes both autocrine and paracrine
growth and survival of human neuroblastoma cell lines (413–
418). IGF-IR overexpression protects neuroblastoma from
apoptosis (75, 275, 378, 419–423), whereas inhibition of
IGF-IR using antisense strategies blocks tumor growth and
induces regression of neuroblastoma tumors in mice (424).
Because neuroblastoma is also thought to arise through im-
proper differentiation, these studies coupled with the CNS
tumor reports suggest a critical role for the IGF family in
nervous system tumor development and growth.

VIII. IGF-I Therapy in Nervous System
Disease Models

A. IGF-I therapy in acute central nervous system disease

After hypoxic/ischemic brain injury in the 21-d-old rat,
cell death in the pyramidal cells of the CA1/2 region, stri-
atum, thalamus, and cortical layers 3–5 of the ligated hemi-
sphere becomes evident within a few hours, is maximal by
24–72 h after injury, and then reduces (367). In contrast, the
level of endogenous IGF-I mRNA does not rise until after 24 h
from injury, becoming maximal by d 5 (235). This is com-
patible with earlier observations that after traumatic brain
injury (425), bioassayable neurotrophic activity in cortical
wounds is not induced until 6 d after injury in adult rats and
3 d after injury in infant rats. These observations of a tem-
poral mismatch between the induction of cell death and the
expression of neurotrophic activity led to the hypothesis that
earlier administration of potential neurotrophins such as
IGF-I might be neuroprotective.

In adult rats with unilateral hypoperfusion injury, intra-
cerebroventricular administration of IGF-I 2 h after injury
was shown to be neuroprotective in a dose-dependent fash-

ion (369, 426) with a marked reduction in cortical infarction,
suggesting that both neurons and glia are protected (426).
The window of opportunity for neuronal rescue was limited
to only within 2 h of injury, but could be extended by several
hours if combined with postischemic hypothermia. The latter
treatment is assumed to slow the processes of delayed cell
death (299, 426). The effects of IGF-I were shown to enhance
functional as well as histological outcome (427). The late
apoptosis that continues for many days after a stroke-like
injury is also inhibited by acute postischemic IGF (427). The
neuroprotective action of IGF-I is likely to be dependent on
the capacity of IGFBPs to translocate IGF-I from the CSF to
the site of injury. IGF-II administered in conjunction with
IGF-I attenuates the neuroprotective effect of IGF-I, possibly
by competing for IGFBPs (300).

In rats, intranasal IGF-I reduced neuronal infarction after
middle cerebral artery occlusion (428, 429). Other studies
have confirmed the neuroprotective effect of IGF-I in spinal
cord injury (430), and in the late gestation fetal sheep subject
to cerebral ischemia (431). In addition, there is indirect ev-
idence in rats of improved cognitive function after traumatic
brain injury treated with IGF-I (432). Studies in the fetal
sheep also suggest that IGF-I can protect oligodendrocytes
and, thus, myelin production (433). This is compatible with
the observation that in overexpressing IGF-I transgenic mice
there is a reduced number of apoptotic oligodendrocytes
(278). However, it has also been shown that IGF-I causes an
increase in microglial number and increased gliosis, as in-
dicated by the density of reactive astrocytes, and both of
these cell types, in turn, express IGF-I (207, 433).

B. IGF-I therapy in chronic central nervous system disease

IGF-I has also been explored in chronic neurological dis-
ease. Clinical trials of IGF-I have been conducted in MN
disease (434–437) based on preclinical in vitro, in ovo, and in
vivo observations in a variety of rodent models (438–440).
The results have been conflicting. A recent systematic review
concluded that although IGF-I therapy may have a modest
effect, the current data are insufficient for definitive conclu-
sions (434). It is also difficult in such studies to separate
effects on the CNS from peripheral effects, for example, on
muscle.

Experimental autoimmune encephalomyelitis is used as a
preclinical model for multiple sclerosis. In this model, IGF-I
is reported to improve neurological and histological outcome
(441, 442). More recently, it has been shown that if IGF-I is
given before motor signs of encephalomyelitis are obvious,
it appears to delay disease onset. Once disease takes hold,
however, it shows either no beneficial effect on remyelination
(443) or worsens disease outcome, particularly if the levels of
bioavailable IGF-I are increased by coadministration with
IGFBP-3 (444). Similarly, it has been suggested that chronic
IGF-I administration may have some therapeutic role in AD
(162, 445, 446). IGF-I in vitro inhibits amyloid induced neu-
ronal death (266), induces choline acetyl-transferase (445),
and affects CNS amyloid-� levels (162). Studies of this kind
are limited by the poor transfer of IGF-I across the intact
blood-brain barrier. However, IGF-I will cross the compro-
mised blood-brain barrier, as in multiple sclerosis or other
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acute syndromes (447), and new delivery approaches are in
development (448).

C. IGF-I therapy in neurodegenerative disorders

1. MN disease. MN disease is a heterogeneous group of neu-
rodegenerative disorders that selectively affect upper
and/or lower MN leading to muscle atrophy and weakness.
This disease of late middle age is relentlessly progressive and
almost invariably lethal within 5 yr of onset of symptoms.
Amytrophic lateral sclerosis (ALS) accounts for approxi-
mately 80% of all cases of MN disease and has an estimated
incidence of three to five cases per 100,000 (449). Of the
remaining patients, some will have a familial form of ALS,
due to a mutation in cytosolic Cu/Zn superoxide dismutase
(SOD1) (450). Although it is not known exactly how mutant
SOD1 injures MN, mice overexpressing mutant SOD1 de-
velop a denervating illness that resembles ALS despite nor-
mal or increased levels of wild-type SOD1 activity (449).

Accumulating data support the therapeutic use of IGF-I in
the treatment of ALS. As discussed earlier, IGF-I is essential
for normal development (37, 451) and is the only known
neurotrophic factor capable of supporting both sensory and
motor nerve regeneration in adult animals (37, 451). The
ability of IGF-I to promote neuronal survival is directly re-
lated to its potent antiapoptotic properties (376). IGF-I pre-
vents apoptosis in MN (439, 452), glial cells (reviewed in Ref.
376), and muscle cells (reviewed in Ref. 453), all cell types
affected by ALS (454). IGF-I serum levels are decreased in
ALS patients (455) and could contribute to the development
of disease (455, 456). IGF-I preserves MNs in the wobbler
mouse (457), and expression of the IGF-I receptor is increased
in the spinal cord of ALS patients, suggesting that there may
be a compensatory increase in IGF-I receptor (458). Two
placebo-controlled trials of IGF-I in ALS patients have pro-
duced mixed results. The North American ALS/IGF-I Study
Group found that patients receiving IGF-I daily for 9 months
had slower disease progression and reported a better quality
of life than placebo-treated controls (435). However, the Eu-
ropean ALS/IGF-I Study Group showed no benefit to IGF-I
therapy in a similar paradigm (437). Thus, although the sc
administration of IGF-I to ALS patients was of uncertain
clinical benefit (435, 459), the data were sufficiently prom-
ising to support another multicenter clinical trial. The Great
Lakes ALS Consortium, under the direction of the Mayo
Clinic, is currently entering patients into a new double-blind
placebo control trial of sc IGF-I in the treatment of ALS
(www.alsa.org). The clinical data in man also lead investi-
gators to employ viral gene therapy for targeted delivery of
IGF-I to MN in mouse models of ALS. Retrograde delivery
of IGF-I to MN occurs after im injection of IGF-I linked to
adeno-associated virus and prolongs survival in a mouse
model of ALS (439). The Robert Packard ALS Center at Johns
Hopkins is proposing a trial of adeno-associated virus-IGF-I
in ALS patients to begin within 1 yr (www.alscenter.org).

2. AD. AD, the most common type of senile dementia in the
elderly, is characterized neuropathologically by the presence
of intracellular neurofibrillary tangles, extracellular diffuse
neuritic plaques, and the loss of neurons in a defined region

of the brain (460–464). The neuritic plaque contains amyloid
filaments, dystrophic neurites, activated microglia, and as-
trocytes. The principal component of amyloid fibrils is the
�-amyloid peptide (A�) (460, 462, 465). Although accumu-
lation of amyloid plaques in the brain (463, 464) appears to
be the major cause of familial AD onset, the role of this
neuroanatomical alteration in sporadic forms of the disease
is not fully understood. Evidence suggests that altered levels
of growth factors and/or their receptors, which exert trophic
and survival function in the nervous system, may underly
neuronal degeneration as seen in AD brain (466–468). Met-
abolic and hormonal functions decline in a variety of severe
age-associated pathologies, including those associated with
alterations in the insulin and IGF systems (162, 164, 445, 467,
469–472). AD patients show changes in circulating levels of
both insulin and IGF-I, often associated with abnormal re-
sponses to insulin (473–475). Compelling evidence indicates
that insulin and IGF-I have a direct effect on the metabolism
and clearance of the A� (162, 446, 463, 476, 477). In neuronal
cells, insulin inhibits A� degradation (162, 476, 477), directly
increases A� secretion, and decreases the intracellular level
of A� peptides by stimulating their intracellular trafficking
(476, 477). On the other hand, serum IGF-I levels correlate
with cerebral levels of A� in aged rodents (162, 446). Liver-
specific deletion of the igf-1 gene also has prematurely in-
creased cerebral levels of A� (162). IGF-I administration to
aged rats decreases the level of A� in the brain parenchyma
to the levels found in young rats (162, 446), which is balanced
by increased levels of A� in the CSF (162, 446). IGF-I increases
A� clearance from the brain by enhancing transport of A�-
carrier proteins into the brain through the choroid plexus
(162). The effects of IGF-I on A� clearance are ablated by
TNF�, a cytokine involved in neurodegeneration-associated
brain impairment (162, 446, 477).

Decreased circulating insulin and IGF-I might influence
the development of neurofibrillary tangles, another AD
“marker.” This process appears to be a consequence of al-
tered tau phosphorylation, a major component of neurofi-
brillary tangles (477–479). Nonphosphorylated tau protein
plays a key role in the assembly of tubulin monomers into
microtubules to constitute the neuronal microtubule net-
work, which is necessary to maintain neuronal cell shape and
axonal transport (477–479). However, hyperphosphoryla-
tion of tau, as seen in AD, produces destabilization and
dissociation of microtubules, forming abnormal filaments
that aggregate in neurofibrillary tangles (477–479). Insulin
and IGF-I reduce tau phosphorylation and promote tau bind-
ing to microtubules in neuronal cells (480–483), whereas
disruption of insulin and IGF-I signaling, as seen in the IRS-2
knockout mouse model (483), increases tau phosphorylation
as seen in AD. These findings indicate a potential key role for
insulin and IGF-I in regulating tau protein phosphorylation,
a failure of which augments the onset of neurofibrillary-
tangle AD pathology. The role of other IGF system compo-
nents, such as the IGFBPs, in AD pathology remains unclear
(474, 484).

The data discussed above point to insulin and IGF-I sig-
naling as a potential therapeutic target in AD. The effects of
IGF-I on key AD markers (i.e., amyloid toxicity, tau phos-
phorylation) suggest the potential usefulness of this growth
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factor in the treatment of neurodegenerative diseases. The
primary challenge in translating successful use of IGF-I in
laboratory research models to growth factor therapy in the
clinic is delivery of IGF-I to the brain in sufficient concen-
trations to influence neuronal functions (445, 448, 477). A
number of recent novel approaches might offer solutions to
this problem. Born et al. (485), and more recently De Rosa’s
group (486), have illustrated growth factor delivery to the
brain via intranasal administration. Carrascosa et al. (448)
have succesfully used IGF-I microsphere therapy (sc deliv-
ery) in rodents to prevent Purkinje cell degeneration. These
studies suggest that IGF-I may potentially be delivered to the
brain to prevent pathophysiological changes associated with
the development of AD.

D. Neuropathy: a potential target for IGF-I therapy

The study of the IGF system in peripheral nerve injury has
focused on both crush and transection of the sciatic nerve.
Sciatic nerve crush in the rat increases IGF-I mRNA distal to
the crush site, whereas IGF-I expression at the crush site is
not increased until 4 d after injury (487). IGF-I and IGF-IR
up-regulation are observed after sciatic nerve transection
(373, 488). During the first 3–7 d after transection, the ex-
pressed IGF-I is localized mainly in Schwann cells of the
intact nerve and the distal stump (488, 489). IGF-I expression
has also been detected in transected facial nerve 4–7 d after
transection, where it is mainly localized in astrocyte pro-
cesses (490).

IGF-I supports neurite outgrowth in guinea pig myenteric
plexus neurons, (491) chick sympathetic and motor neurons
(272, 492, 493), and rat sensory and sympathetic neurons (265,
494). Most of the evidence for IGF-promoted neurite exten-
sion comes from studies of transected peripheral nerves. For
example, rats treated with IGF-I after sciatic nerve transec-
tion exhibit increased MN survival and re-innervation of
muscle, showing that IGF-I mediates functional neurite re-
generation in vivo (495). Functional sciatic nerve regeneration
is also promoted by IGF-I treatment in mice after sciatic nerve
crush (496). The spatiotemporal regulation patterns of the
IGFs and IGF-IR suggest a functional endogenous role of the
IGF system in neurite regeneration after injury.

Because of these neurite-promoting effects, IGFs may have
a role in the treatment of neuropathy, particularly in the
treatment of diabetic neuropathy. Decreased IGF expression
may contribute to the development of diabetic neuropathy
(497–499); sc IGF-II restores pain and pressure thresholds
toward normal in diabetic rodents (497), whereas IGF-I and
IGF-II increase sciatic nerve regeneration after injury in ro-
dents with diabetes (500). The beneficial effects of IGF are not
limited to peripheral neuropathy, with reported therapeutic
effects of IGF-I in a rat model of diabetic autonomic neu-
ropathy (501). Studies have also shown that IGFs may have
a therapeutic role in chemotherapy-induced neuropathies.
IGF-I can prevent vincristine-, cisplatinum-, and taxol-me-
diated neuropathies (502, 503).

E. Targeting the IGF/IGF-IR signaling in cancer therapy

Interference with IGF ligand and IGF-IR autocrine or para-
crine signaling provides a novel therapeutic target for CNS

malignancies (504). In fact, targeting IGF-IR expression and
signaling is a new therapeutic approach to cancer treatment
in numerous tumor types (380, 505, 506). A truncated IGF-IR
that acts as a dominant negative receptor or antisense RNA
to IGF-IR prevents metastatic breast carcinoma (399, 507). A
kinase-defective IGF-IR dominant negative receptor and
�-IR3, the IGF-IR blocking antibody, inhibit glioblastoma
tumor growth in mice, as discussed above (403). A dominant
negative IGF-IR introduced using retroviral infection de-
creases pancreatic tumor burden, particularly when used in
combination with chemotherapeutic drugs (508). Antisense
IGF-IR strategies also enhance the susceptibility of Ewing’s
sarcoma to doxorubicin-induced apoptosis (509), implying a
use for IGF-IR disruption in combinatorial drug therapy
(388). Other cancers for which IGF-IR interference is effective
as a treatment strategy include melanoma, lung carcinoma,
ovarian carcinoma, and rhabdomyosarcoma (reviewed in
Ref. 510). One problem with these treatment strategies in the
CNS is delivery, although direct injection into brain tumors
or implantation of antisense IGF-IR-containing cells via cra-
niotomy (400) has proven effective. However, gene therapy
approaches will likely be more advantageous and less trau-
matic for IGF-I inhibition treatment paradigms in CNS tu-
mors (511). Additional human clinical trials targeting both
the IGF-IR and IGF-I are ongoing (381, 382).

F. The potential therapeutic use of N-terminal peptides
derived from IGF-I

The hypothesis that IGF-I might be degraded by removal
of an N-terminal peptide to leave des-N-(1-3) IGF-I, which
would have lower affinity for the IGFBPs but maintain af-
finity for the receptor, was first suggested by Sara and col-
leagues (512). However, des-IGF-I has subsequently been
shown to be markedly less neuroprotective than IGF-I (300).
This suggested the possibility that the N-terminal tripeptide,
GPE, might itself have biological function. Sara et al. (512)
previously showed that GPE stimulates dopamine and ace-
tylcholine release, and Bourguignon and Gerard (513) have
presented data suggesting that GPE might act as a NMDA
receptor antagonist, followed by a report that GPE can pre-
vent NMDA-induced neuronal toxicity in vitro (512).

The effect of GPE in models of brain disease has since been
extensively investigated. GPE given centrally or as an iv
infusion has marked neuroprotective effects in rodent mod-
els of hypoxic-ischemic injury (514). The window of oppor-
tunity is considerably longer than for IGF-I and extends for
greater than 11 h after injury (514). GPE protects a wide
variety of neuronal phenotypes and after hypoxic-ischemic
injury prevents the loss of choline acetyltransferase-express-
ing neurons and up-regulates neuronal nitric oxide synthase
(514). It has also been demonstrated to be protective in neu-
rotoxic models of brain disease induced by 6-hydroxydopa-
mine (515) and by quinolinic acid (516). The actions of GPE
include neuronal protection and inhibition of both caspase-
3-dependent and caspase-3-independent neuronal cell death
and protection of astrocytes. The tripeptide is now in phase
1 clinical studies for use as an acute neuroprotectant.
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IX. Perspectives for Future Directions

Since the discovery of Salmon and Daughaday (1) in 1957,
a considerable body of investigation has been devoted to
defining the role of the IGF system in many tissues, including
the brain. There is no doubt that these pleiotropic factors, in
concert with their receptor and binding proteins, are in-
volved in controlling key processes in brain development
and traumatic or degenerative disorders of the nervous
system.

Although the development of in vivo models such as the
transgenic and knockout mice or disease/injury models has
contributed to providing unique information about the
growth promoting, neurogenic and neuroprotective actions
of the IGF system, much research remains. An area of study
that is currently receiving more interest from a large number
of investigators is that related to stem cell research in the
developing and adult brain. It is well known that progenitor
cells in the dentate gyrus of hippocampus and the subven-
tricular zone of lateral ventricles generate new neurons
throughout the life of mammals, however very little is known
about how stem and progenitor cells “decide” whether to
proliferate or exit the cell cycle. Some of these events are
directly or indirectly controlled by the IGFs, and therefore
detailed studies directed to understand the mechanisms by
which the IGFs control neuronal proliferation and differen-
tiation and the complex intracellular signaling cross-talk ac-
tivated by these ligands are required. Knowledge in this area
could be of potential relevance to neurodegenerative disor-
ders such as AD.

Intriguingly, and in contrast to the mentioned role of IGF-I
in normal physiology, recent data on the role of IGF and
insulin signaling pathways on longevity in Caenorhabditis
elegans, Drosophila, and rodents suggest that partial blockade
of these signaling systems dramatically extends life span
(517–524). In C. elegans, restoration of IGF signaling in neu-
ronal cells, but not other cell systems, reverses the extended
longevity, suggesting that IGF signaling in the nervous sys-
tem is critical in this process (517, 518, 525). Reduced nutri-
tion, which lowers circulating and brain IGF content is sim-
ilarly effective in enhancing longevity (518), whereas in C.
elegans selective ablation of nutritionally responsive olfactory
and gustatory neurons (IGF receptor-rich regions in mam-
mals) similarly extends longevity (526, 527).

The mechanisms by which IGF and nutritional responsive
regions of the brain regulate longevity remain unclear, but
paradoxically too much IGF in the brain may enhance neu-
ronal survival but may reduce the life span of the organism.

Although there is an increasing body of evidence for the
potent antiapoptotic and neuroprotective effects of IGF-I, we
still lack a clear understanding of the in vivo cellular and
molecular mechanisms involved. This is a critical goal to be
achieved for the development of IGF-I based preventive pro-
tective and regenerative therapies. However, it should be
remembered that in vivo, IGF-I does not act in isolation and
other growth factors might potentially modulate its biolog-
ical action (Fig. 2). It is critical therefore to develop improved
in vitro and in vivo models for the investigation of these
potential interactions and the mechanisms involved.
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Fifth International Symposium on Hormonal Carcinogenesis
Montpellier, France, September 10–13, 2006

Sponsoring Organization: INSERM, University of Montpellier, France
Contact: Tandra Price, Univ. of Kansas Medical Center, Dept. of Pharmacology,

3901 Rainbow Blvd., Kansas City, KS 66160 USA
Telephone: 913-588-4744

Fax: 913-588-4740
E-mail: tprice@kumc.edu

Web site: http://www.kumc.edu/hormonecancers

The Hormonal Carcinogenesis Symposia is a forum to foster scientific collaborations and the exchange of
the latest developments to advance our knowledge of hormonal cancers (e.g., breast, prostate, ovarian,
endometrial). The goal of this Symposium is to focus on significant advances in the rapidly growing field
of hormonal cancers by bringing together world leading scientists working at the cutting edge of endocrine-
related cancer research. With this new information arising from this meeting, it will foster progress for
improved strategies for the prevention and treatment of these malignancies, so prevalent in the USA and
worldwide. The 1st International Symposium on Hormonal Carcinogenesis was in 1991 in Cancun, Mexico;
the 2nd in 1994 at the Karolinska Institute, Stockholm, Sweden; the 3rd in 1998 at the Fred Hutchinson Cancer
Center, Seattle, Washington; and the 4th in 2003 at the Instituto Valenciano de Oncologia in Valencia, Spain.
All four symposia received overwhelmingly excellent ratings by participants.
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