
The Insulin-Related Ovarian Regulatory System in
Health and Disease

LEONID PORETSKY, NICHOLAS A. CATALDO, ZEV ROSENWAKS, AND

LINDA C. GIUDICE

Division of Endocrinology, Department of Medicine (L.P.) and Division of Reproductive Endocrinology,
Department of Obstetrics and Gynecology (Z.R.), New York Presbyterian Hospital and Weill Medical
College of Cornell University, New York, New York 10021; and Division of Reproductive Endocrinology
and Infertility, Department of Obstetrics and Gynecology, Stanford University Medical Center (N.A.C.,
L.C.G.), Stanford, California 94305

I. Introduction
II. Insulin and Insulin Receptor

A. Structures of insulin and insulin receptor
B. Presence of insulin and insulin receptor in the ovary
C. Insulin action and the ovary
D. Summary

III. IGFs and Their Receptors
A. IGF peptides and receptors
B. Expression of IGFs and IGF receptors in the ovary
C. Role of IGFs in ovulatory function and steroido-

genesis
D. Summary

IV. IGF-Binding Proteins (IGFBPs) and Proteases
A. Structural relationships among IGFBPs
B. IGFBP expression in the ovary
C. IGFBP proteases in the ovary
D. IGFBP actions in the ovary
E. Role of IGFBPs in follicular development and

atresia
F. Summary

V. Polycystic Ovary Syndrome (PCOS)
A. Clinical features
B. Theories of pathogenesis
C. Insulin resistance in PCOS
D. Alterations of IGFs and IGFBPs in PCOS
E. Summary

VI. The Insulin-Related Ovarian Regulatory System:
Implications for Therapy
A. Treatment of PCOS
B. Therapeutic use of IGF-I and IGF-II
C. Use of GH in ovulation induction

VII. Summary and Conclusions

I. Introduction

INSULIN, a pancreatic peptide hormone produced in the
b-cells of the islets of Langerhans, plays a major role in

the regulation of carbohydrate, fat, and protein metabolism

(1). The classical target organs for insulin action are muscle,
adipose tissue, and liver (2). Until approximately a decade
ago, insulin was not thought to play a significant role in the
regulation of ovarian function, despite suggestions of the
“gonadotropic” function of insulin (3) in observations of
abnormal ovarian function in young women with type 1
diabetes mellitus by Joslin et al. (4), which predated the
discovery of insulin more than 75 years ago (5). A resurgence
of interest in the ovarian effects of insulin was stimulated by
observations of severe ovarian hyperandrogenism in women
with syndromes of extreme insulin resistance (6, 7), which
led to the hypothesis that high levels of circulating insulin
may cause excessive androgen production in these patients
(8, 9). The demonstration of insulin’s ability to stimulate
steroidogenesis in ovarian cells in vitro (10) and the demon-
stration of insulin receptors in both stromal and follicular
compartments of the human ovary (11, 12) established the
ovary as another important target organ for insulin action.

This field was further expanded by studies of the ovarian
production and ovarian effects of the insulin-like growth
factors, IGF-I and IGF-II, by the discovery of ovarian type I
and type II IGF receptors, and by the discovery of the ovarian
production of binding proteins [IGF-binding proteins
(IGFBPs)] for these two growth factors (13–15). Thus, in ad-
dition to insulin, a role for the structurally related IGFs in
ovarian function has gained recognition. Over the last de-
cade, a significant amount of information has accumulated
about the role of insulin and IGFs in the ovary at the mo-
lecular, cellular, and clinical levels in a variety of normal and
pathological conditions. Therefore, a need has arisen for a
comprehensive review of what we term the insulin-related
ovarian regulatory system. This system consists of the fol-
lowing components (Table 1): insulin; IGF-I and IGF-II; in-
sulin receptor; type I and type II IGF receptors; IGFBPs 1–6;
and IGFBP proteases.

While the pituitary ovarian regulators, LH and FSH, are of
paramount importance to ovarian function (16, 17), the in-
sulin-related ovarian regulatory system likewise participates
in normal follicle development (3, 14, 18–23). Its alterations
may be important in the ovarian dysfunctions observed in a
number of disorders, including diabetes mellitus, obesity,
polycystic ovary syndrome (PCOS), and syndromes of ex-
treme insulin resistance (9, 24–28). The physiological and
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clinical significance of this regulatory system is underscored
by recent observations which demonstrate that pharmaco-
logical agents capable of manipulating the components of
this system may be useful in the therapy of some of these
disorders (29–38).

This article reviews the role of each component of the
insulin-related ovarian regulatory system in both normal
ovarian physiology and in relevant pathological states, the
interactions among the components of this system, and the
therapeutic implications of this system for women with ab-
normal ovarian function.

II. Insulin and Insulin Receptor

A. Structures of insulin and insulin receptor

Detailed reviews of the structures of insulin and its re-
ceptor are available (1, 2, 39–42), and thus only a brief over-
view will be presented here.

Insulin is a 5900 mol wt polypeptide secreted by the b-cells
of the pancreatic islets of Langerhans. The human insulin
gene is located on chromosome 11 (39) and encodes pre-
proinsulin, a 110-amino acid single-chain polypeptide that is
the precursor of insulin (1). Pre-proinsulin is proteolytically
converted to proinsulin, which consists of the A chain, B
chain, and C peptide. Proinsulin is homologous with IGF-I
and -II and can bind to the insulin receptor with approxi-
mately 10% of the affinity of insulin. Insulin is produced after
the C-peptide is cleaved from proinsulin by endopeptidases
active in the Golgi apparatus and in secretory granules. The
endopeptidases preferentially cleave either at the C pep-
tide/B chain junction, between Arg31 and Arg32 (endopep-
tidase type I), or at the C peptide/A chain junction, between
Lys64 and Arg65 (endopeptidase type II). The resulting in-
sulin molecule consists of an A chain (21 amino acids) and
a B chain (30 amino acids), with three disulfide bridges: two
between the A and the B chains (A7-B7 and A20-B12) and one
within the A chain (A6-A11).

The insulin receptor is a heterotetramer consisting of two
a- (135 kDa molecular mass) and two b- (95 kDa molecular
mass) subunits (2). The gene for the insulin receptor is located
on the short arm of chromosome 19 (43–45), contains 22
exons, is more than 150 kb in length, and encodes the pro-
receptor, a single-chain polypeptide with a molecular mass
of 190 kDa that contains one a and one b-subunit. The mature
a2b2 heterotetrameric form of the receptor results from
dimerization and several posttranslational processing steps,
including proteolytic cleavage. An isoform of the receptor
lacking 12 amino acids encoded by exon 11 results from
alternative mRNA splicing. Insulin receptors lacking exon 11

may have biological properties somewhat different from
those containing exon 11 (46), although no significant dif-
ferences in insulin binding and insulin receptor kinase ac-
tivity between these two variants were observed (47).

Insulin receptor a-subunits are extracellular structures
possessing cysteine-rich domains that serve as insulin-bind-
ing sites. Insulin receptor b-subunits have extracellular,
transmembrane, and intracellular domains, the latter con-
taining an ATP-binding site and several tyrosine autophos-
phorylation sites. After insulin binds to the a-subunits, the
b-subunits become phosphorylated on tyrosine residues and
acquire kinase activity, initiating a cascade of intracellular
protein phosphorylation (48, 49). The most important intra-
cellular proteins phosphorylated under the influence of the
insulin-receptor tyrosine kinase are the insulin receptor sub-
strates (IRS), several of which have been described (50–58).
IRS-1, the first of these to be discovered (2, 59), has a mo-
lecular mass of 131 kDa and possesses 14 potential tyrosine
phosphorylation sites. IRS-1 appears to be important in in-
sulin receptor function and its variant forms are sometimes
associated with diabetes (60, 61). Mice deficient in IRS-2
develop a syndrome resembling type 2 diabetes (62). Some
IRS-1 mutations are associated with insulin resistance and
hyperinsulinemia (63), and codon 972 polymorphism of the
IRS-1 gene is associated with impaired glucose tolerance,
PCOS (64), and late onset of type 2 diabetes mellitus (65).
IRS-1 binds phosphatidylinositol-3-kinase (PI-3 kinase), a src
homology-2 (SH2) domain-containing enzyme, activation of
which is necessary for the initiation of glucose transport (2,
59, 66–69). In addition to PI-3 kinase activation, mitogen-
activated protein kinase (MAPK) is also phosphorylated after
insulin receptor binding (2, 49, 59, 70). MAPK activation is
thought to be responsible for the growth-promoting effects
of insulin (2). MAPK can be activated not only by the insulin
receptor, but also by other tyrosine kinase receptors, such as
the type I IGF receptor, and receptors for epidermal growth
factor (EGF) and platelet-derived growth factor (PDGF), as
well as G protein-linked receptors (2, 71, 72). The molecular
link between the MAPK cascade and the insulin receptor
may be p21 Ras, a highly conserved protein involved in cell
growth that may be a critical element in growth factor re-
ceptor and insulin receptor tyrosine kinase action (2, 49, 59).

Tyrosine kinase activation is believed to be the main sig-
naling mechanism of the insulin receptor (48); it appears to
be the earliest postbinding event and is necessary for many,
although not all, of insulin’s effects, including transmem-
brane glucose transport (73, 74). Overexpression of tyrosine
kinase-deficient insulin receptors in muscle causes insulin
resistance in transgenic animals (75). Tyrosine kinase activity
is required in vivo for phosphorylation of IRS-1 and for PI-3
kinase activation (76).

An alternative signaling pathway for the insulin receptor
has also been described. It involves generation of inositol-
glycan second messengers at the cell membrane after insulin
binding to receptor a-subunits but independently of b-sub-
unit tyrosine kinase activation (77). This alternative pathway
for receptor signaling may mediate some of insulin’s effects,
including stimulation of ovarian steroidogenesis (78–80)
(Fig. 1), but the role of this system in propagating the insulin

TABLE 1. Components of the insulin-related ovarian regulatory
system

Insulin
IGF-I
IGF-II
Insulin receptor
Type I IGF receptor
Type II IGF receptor
IGFBPs 1–5
IGFBP proteases
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signal for glucose transport and other insulin effects has not
been fully established.

Insulin binding to its receptor results in a plethora of
metabolic effects, including stimulation of DNA and protein
synthesis, lipogenesis, transmembrane electrolyte transport,
and a variety of effects on carbohydrate metabolism, the most
important of which is stimulation of transmembrane glucose
transport (2). This transport is carried out by a family of
glucose transporter proteins (GLUTs) (81) which, in their
resting phase, reside in intracellular vesicles. After insulin
binds to its receptor, these vesicles are translocated to and
fuse with the plasma membrane. The GLUTs are then in-
serted into the plasma membrane and become functional.
Once glucose transport is completed, GLUTs are recycled to
intracellular vesicles. Insulin signaling for glucose trans-
porter activation is mediated by PI-3 kinase.

Insulin receptor-like proteins are present in lower organ-
isms that do not produce insulin. For example, in certain
species of worms, daf-2, a gene similar to that of the insulin
receptor, regulates glucose metabolism and longevity (82).
Mutation of the insulin receptor in Drosophila leads to small
ovaries lacking oocytes, and thus sterility (83). Insulin re-
ceptor-like molecules are present in mosquito ovaries (84).
The existence of these homologous proteins in insects sug-
gests that the growth and regulatory functions of the insulin/
IGF receptor family arose before the divergence of insects
and vertebrates more than 600 million years ago (83). Con-
servation of the insulin receptor over this length of time in
a variety of organisms indicates its importance for their sur-
vival. Indeed, mice with a genetic knockout of the insulin
receptor die in the neonatal period (85).

B. Presence of insulin and insulin receptor in the ovary

Circulating insulin levels in the peripheral blood of normal
women are approximately 10 mU/ml in the fasting state and
up to 50 mU/ml within 1 h after an oral glucose load. In obese
women, these levels are somewhat higher, averaging ap-

proximately 15 mU/ml in the fasting state and up to 60
mU/ml after a glucose load. In insulin-resistant hyperinsu-
linemic states such as PCOS or the early stages of type 2
diabetes mellitus, serum insulin levels range from 20–35
mU/ml in the fasting state to 120–180 mU/ml after a glucose
load (9, 86). In patients with syndromes of extreme insulin
resistance, circulating insulin levels may be as high as 200
mU/ml in the fasting state and up to 1400–2000 mU/ml after
a glucose load (9).

Ovarian follicular fluid (FF) insulin concentrations range
from less than 2 mU/ml to 65 mU/ml, with a mean value of
approximately 16 mU/ml (87). These do not correlate with
plasma insulin or FF estradiol (E2) or androstenedione (A) con-
centrations, but do correlate directly with those of progesterone
(P) (87). Insulin likely reaches FF from the circulation by tran-
sudation. To our knowledge, intrafollicular concentrations of
insulin have not been reported in women with insulin resis-
tance with or without ovulatory dysfunction.

Both in humans and in animal models, insulin receptors
are widely distributed throughout all ovarian compartments,
including granulosa, thecal, and stromal tissues (3, 11, 12,
88–91) (Table 2). Ovarian insulin receptors have the same
heterotetrameric a2 b2 structure as insulin receptors in other
organs. They possess tyrosine kinase activity (12) and may
stimulate the generation of inositolglycans (79).

The regulation of insulin receptor expression in the human
ovary has been investigated (92, 93). As in other organs,
insulin itself plays a major role in this process: in vitro, insulin
exposure leads to receptor down-regulation, followed by a
return to normal receptor number approximately 4 h after
insulin exposure ends (92). In vivo, down-regulation of ovar-
ian insulin receptors by insulin has been observed in rats
with experimentally induced hyperinsulinemia (94). In post-
menopausal women, in vivo studies have demonstrated a
positive correlation between insulin receptor number on cir-
culating white cells and in the ovary (93). This relationship
was not found in premenopausal women. Since insulin is the

FIG. 1. Insulin receptor, its signaling
pathways for glucose transport, and hy-
pothetical mechanisms of stimulation
or inhibition of steroidogenesis. The
main pathways for the propagation of
the insulin signal include the following
events: after insulin binds to the insulin
receptor a-subunits, the b-subunit ty-
rosine kinase is activated; IRS-1 and -2
are phosphorylated; PI-3 kinase is ac-
tivated; GLUT glucose transporters are
translocated to the cell membrane, and
glucose uptake is stimulated. An alter-
native signaling system may involve
generation of inositolglycans at the cell
membrane after insulin binding to its
receptor. This inositolglycan signaling
system may mediate insulin modula-
tion of steroidogenic enzymes (see text
for more details and references).
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major regulator of receptor number on peripheral leuko-
cytes, these observations suggest, albeit without direct evi-
dence, that insulin is the major regulator of ovarian receptors
in postmenopausal women. In premenopausal women, how-
ever, other circulating factors such as gonadotropins or sex
steroids, or locally produced autocrine regulators such as
IGFs and IGFBPs, may be involved in insulin receptor reg-
ulation. These factors may account for the observation that
in premenopausal women with PCOS and other hyperinsu-
linemic states, ovarian insulin receptor expression is pre-
served (88, 89, 95) and that the insulin receptor may mediate
some of the ovarian effects of insulin despite the presence of
peripheral insulin resistance (9, 79, 96, 97).

Insulin-induced hyperandrogenism is unlikely to result
from an action of insulin through its own receptor, however,
in disorders in which receptor expression or availability is
significantly compromised, such as the type A syndrome of
insulin resistance and acanthosis nigricans, caused by insulin
receptor mutations, or the type B syndrome, associated with
antiinsulin receptor antibodies (6, 7). In the latter two con-
ditions, insulin receptors likely function as inefficiently in the
ovary as in other organs, and another receptor, such as the
type I IGF receptor, is more likely to mediate the effects of
hyperinsulinemia in the ovary (9).

C. Insulin action and the ovary

Numerous actions of insulin on the ovary have been dem-
onstrated both in vitro (Table 3) and in vivo (Tables 3 and 4),
with no significant differences between humans and other
species (3).

1. Effects on steroidogenesis.
a. In vitro studies. In vitro, insulin stimulates ovarian ste-

roidogenesis by both granulosa and thecal cells, increasing
production of androgens, estrogens, and progesterone (3, 10,

96–101). In some studies, the concentration of insulin re-
quired to achieve a stimulatory effect is supraphysiological
(3, 10), suggesting that insulin may be acting through the type
I IGF receptor. Several lines of evidence, however, suggest
that insulin receptors mediate the stimulation of steroido-
genesis by insulin. Willis and Franks (97) demonstrated that
insulin-stimulated steroid production by granulosa cells ob-
tained from both normal women and those with PCOS could
be inhibited by antiinsulin receptor antibodies, but not by
antibodies against the type I IGF receptor. Nestler et al. (79)
recently demonstrated in cultured thecal cells obtained from
women with PCOS that insulin stimulation of testosterone
(T) production could not be inhibited by an antibody against
the type I IGF receptor, suggesting that this effect of insulin
was also mediated by the insulin receptor. Since circulating
levels of insulin rarely are high enough to produce significant

TABLE 3. A summary of insulin effects related to ovarian function

Effect Organ

Directly stimulates steroidogenesis Ovary
Acts synergistically with LH and FSH to

stimulate steroidogenesis
Ovary

Stimulates 17 a-hydroxylase Ovary
Stimulates or inhibits aromatase Ovary, adipose

tissue
Up-regulates LH receptors Ovary
Promotes ovarian growth and cyst formation

synergistically with LH/hCG
Ovary

Down-regulates insulin receptors Ovary
Up-regulates type I IGF receptors or hybrid

insulin/type I IGF receptors
Ovary

Inhibits IGFBP-1 production Ovary, liver
Potentiates the effect of GnRH on LH and

FSH
Hypothalamus/
pituitary

Inhibits SHBG production Liver

See text for details and references.

TABLE 2. Expression of IGFs, IGFBPs, IGFBP proteases, type I and type II IGF receptors, and insulin receptors in the human ovarya

IGF-I IGF-II IGFBP-1 IGFBP-2 IGFBP-3 IGFBP-4 IGFBP-5 IGFBP-2
protease

IGFBP-3
protease

IGFBP-4
protease

Type I
IGF-R

Type II
IGF-R

Insulin
receptor

Early antral
follicles (3–5 mm)

O 2 1 21 21

G 2/2 21 2/2 31/41 2/2 21 11 31/31 31 11
T 21/2 21 2/2 31/41 21 41/ 21 2/21 31 11
S 2/2 2/2 2/2 41/41 41/41 2 2 11
V 2/2 41

Late antral follicles
(7–20 mm)

O 2 21 41 21

G 2/2 41/41 41/ 2/41 31/2 2/41 2/241cu 1 1 111 41/41 41 21
T 2/2 2 2/2 41/41 31/ 21/21 21 1 1 111 2/21 31 21
S 2/2 2/2 2 2/2 41/31 41/41 1 1 111 2 2 11
V /41 /41 /41

Corpus luteum (and
granulosa luteal
cells)

G 2 41/41 41/ 1 111 2/b 41/b 2–31

T 2 2/2 1 111 31
S 2 2/2 1 111 2 2 weak
V /41

a [Data are from Refs. 88,90,91,344,437,458, and 514.] Since there are discrepancies between the groups using in situ hybridization, these
results are reported in the format of Ref. 88/Ref. 344. Data are presented as strongly positive (41) to weakly positive (11). If no number appears,
the data were not reported. IGF-R, IGF receptor; O, oocyte; G, granulosa; T, theca; S, stroma; V, vascular endothelium; cu, cumulus.

b Type I IGF receptor mRNA expression present in granulosa-luteal cells (90).
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binding to the type I IGF receptor, the actions of insulin on
the ovary are likely mediated mainly by the insulin receptor.

At this time, there is only limited knowledge about the
specific effects of insulin on ovarian steroidogenic enzymes.
A stimulatory effect of insulin on aromatase has been sug-
gested by some studies of animal and human ovarian cells
in vitro (102–105), but one study (106) failed to confirm this
finding. 17a-Hydroxylase activity appears to be stimulated
by insulin (29, 107–109), but a recent study of 28 women with
PCOS and 18 normal controls found no correlation between
insulin levels and 17-hydroxyprogesterone (17-OHP) levels
after treatment with GnRH agonist (GnRHa) (110). Insulin
increases P450 side chain cleavage (scc) enzyme mRNA in
porcine granulosa cells (111) and P450scc activity in goldfish
follicles (112). A similar effect could not be demonstrated,
however, in a human ovarian thecal-like tumor line (101). In
the latter study, insulin had no effect on the enzyme activity
or mRNA concentration of 17a-hydroxylase/17,20-lyase
(P450c17) or 3b-hydroxysteroid dehydrogenase (HSD), but
forskolin stimulation of 3b-HSD mRNA was enhanced by
insulin. In human luteinized granulosa cells, 3b-HSD ex-
pression was found to be stimulated by insulin (106).

b. In vivo studies (Table 4). It has not been consistently
demonstrated that insulin stimulates ovarian steroidogene-
sis in vivo (113). Several studies have examined the in vivo
effects of insulin on aromatase. In rats with experimental
hyperinsulinemia, an increased estrone (E1) to A ratio was
demonstrated, consistent with a stimulatory effect of insulin
on ovarian or peripheral aromatase (94). In women, an in-
sulin infusion study has suggested a similar effect (114), and
in hyperinsulinemic women with PCOS, an increased E2/A
ratio was seen after gonadotropin stimulation, compared
with normoinsulinemic women with PCOS (115). Relatively
insulin-deficient women with type 2 diabetes show reduced
aromatase activity (116). The increase in circulating A level
observed during insulin infusions in women (117, 118), on
the other hand, suggests that insulin may inhibit aromatase.
In short, it remains unclear whether or how insulin regulates
aromatase in vivo.

The effect of insulin on ovarian androgen production in
women has been extensively studied (Tables 3 and 4). In PCOS,
a positive correlation has been reported between insulin and T
or A levels (119–122) in several studies, while more recent
studies (123–127) failed to find such a relationship. In insulin
infusion studies that maintained hyperinsulinemia for several
hours, a stimulatory effect of insulin on ovarian androgen pro-
duction has not been consistently found. Stuart and associates
(117, 118, 128) demonstrated elevation of A and dehydroepi-
androsterone (DHEA) in normal lean and obese women and in
women with insulin resistance and acanthosis nigricans during
a euglycemic, hyperinsulinemic clamp study. Micic et al. (129)
demonstrated an increase of T in patients with PCOS during a
4.5-h insulin infusion. On the contrary, Diamond et al. (130)
could demonstrate no change in total or free T or in A during
either insulin or glucose infusion in normal women. Similarly,
Nestler et al. (131) could not demonstrate a rise in T in normal
women during insulin infusion. Dunaif and Graf (114) exam-
ined gonadotropin and sex hormone levels basally and during
insulin infusion in normal and PCOS women. No effect on
gonadotropins was demonstrated; E2 levels rose in response to

insulin in normal women. In PCOS women, A levels increased,
but T, free T, and dihydrotestosterone (DHT) levels declined.

Another group of studies has examined the effects of food
intake or oral or intravenous administration of glucose on
circulating androgen concentrations. In normal women,
Parra et al. (132) found an increase in free T and no change
in A after breakfast, but a decline of free T after an oral
glucose load. Elkind-Hirsch et al. (133) failed to demonstrate
a rise of either T or A during a tolbutamide-enhanced in-
travenous glucose tolerance test (IVGTT). Smith et al. (134)
found a positive correlation between insulin responses and
A, T, and DHT levels during oral glucose tolerance testing
(OGTT) in hyperandrogenic and normal women, but Tiitinen
et al. (135) demonstrated no significant change in T or A in
women with PCOS or weight-matched normal controls after
an oral glucose load and Tropeano et al. (136) demonstrated
a decline of T, A, and DHEA during an OGTT. On occasion,
both a stimulatory response and the lack of it have been
observed in the same study. For example, Anttila et al. (137)
reported a tendency to increased serum T levels during
OGTT mainly in a subgroup of PCOS patients with both
hyperinsulinemia and elevated LH levels; most PCOS pa-
tients, however, showed a decline in T. Fox et al. (138) found
that serum androgens declined in PCOS patients during
OGTT, but A rose during a 2-h intravenous insulin infusion
in obese controls. Since a decline of serum T in the course of
a 3- or 4-h OGTT may be attributed to diurnal variations of
T, the lack of an increase of T under these conditions argues
against a significant acute stimulatory or inhibitory effect of
insulin on ovarian androgen production in vivo.

While studies that raise circulating insulin concentration
have produced variable effects on serum androgen levels,
studies in which insulin levels were reduced have consis-
tently demonstrated a decline in serum androgen levels in
insulin-resistant hyperandrogenic women (139, 140) (see Sec-
tion VI.A). Whether insulin levels are lowered with diazoxide
(30, 141), octreotide (34, 142), metformin (29, 31, 108, 143–
146), troglitazone (35, 36), or through weight loss (147–156),
a decline in serum androgen levels is usually found and
ovulatory function improves (Table 4). In contrast to the
studies in which insulin levels were elevated acutely for
several hours, the effect of the reduction of circulating insulin
can be studied over many weeks. If insulin-induced stimu-
lation of ovarian steroidogenesis requires a prolonged ex-
posure to excess circulating insulin, the latter group of stud-
ies is more likely to be able to demonstrate, albeit indirectly,
a stimulatory effect of insulin on circulating steroids. A con-
founding factor in some of these studies is a decline in cir-
culating LH, which may be responsible, at least in part, for
the reduced androgen secretion (157).

In summary, it appears that insulin may have stimulatory
or inhibitory effects on ovarian steroidogenic enzymes, but
the responses of specific enzymes may vary with cell type
and possibly among species. Further studies are needed on
the effects of insulin on steroidogenic enzymes in the ovaries
both in vitro and in vivo.

2. Interactions with gonadotropins. Acting at the ovarian level,
insulin appears to potentiate the steroidogenic response to
gonadotropins, both in vitro and in vivo (96, 102, 157–163). In
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granulosa cells, this effect may be mediated by an increase in
LH receptor number, since insulin in concert with FSH in-
creases ovarian LH-binding capacity (13, 164). In addition,
insulin may act on the pituitary to increase gonadotrope
sensitivity to GnRH. Evidence for this effect comes both from
in vitro studies (165, 166) and indirectly from studies in in-
sulin-resistant patients treated with insulin sensitizers, in
whom circulating LH declined concomitantly with insulin
(29, 31, 35, 108). On the other hand, in rats with experimental
hyperinsulinemia maintained over six 4-day estrous cycles,
the response of gonadotropins to GnRH did not differ from
that of controls (94). In normally cycling women, increasing
body mass index (BMI) did not have an effect on gonado-

tropin secretion and in women with PCOS BMI and LH levels
were inversely related (167–169), while gonadotropin re-
sponsiveness to GnRH did not change after insulin infusion
(114). In summary, it remains unclear whether hyperinsu-
linemia significantly enhances gonadotrope responsiveness
to GnRH in vivo, as it does in vitro.

3. Effects on ovarian growth and cyst formation. In a rat model,
a synergistic interaction between LH/hCG and insulin on the
ovary can be demonstrated directly during experimentally
induced hyperinsulinemia, which enhances hCG-induced
ovarian growth and cyst formation (28, 170) (Fig. 2). This
synergistic action of insulin with LH/hCG is seen regardless

TABLE 4. Selected in vivo studies of the effect of insulin on circulating ovarian androgens, SHBG and LH

Ref Correlative studies

Burghen et al., 1980 119 PCOS and control, obese I positively correlated with T, A
Chang et al., 1983 120 PCOS, nonobese I positively correlated with T, A
Pasquali et al., 1983 121 PCOS, obese and nonobese I positively correlated with A
Elkind-Hirsch et al., 1991 133 PCOS, obese and nonobese;

nonobese controls
I positively correlated with T

Anttila et al., 1991 124 PCOS without acanthosis
nigricans, obese and
nonobese

I did not correlate with T or A

Toscano et al., 1992 123 Hirsute women, with and
without PCOS, obese and
non-obese

I did not correlate with T

Buyalos et al., 1993 125 PCOS, obese and nonobese Basal and integrated I on OGTT
did not correlate with T or A

Studies in which circulating insulin levels were raised

Insulin infusion: Nestler et al., 1987 131 Nonobese normal women;
one obese woman with
IR/HA

No change or 2T in normals; no
change in T in IR/HA;

Stuart et al., 1987 118 Normal obese and nonobese
women; obese women
with IR/HA;

1A in all groups

Micic et al., 1988 129 PCOS, obese 1T
Dunaif and Graf, 1989 114 PCOS with IR, most obese;

obese controls
PCOS: 1A, 2T, 2fT, 2DHT

Normals: A,T,fT,DHT unchanged
Stuart and Nagamani,
1990

128 Normal women and women
postoophorectomy

1A in both groups; no change in T

Fox et al., 1993 138 Normal and PCOS women,
obese and nonobese

1A in normal obese; T unchanged
in all groups

Diamond et al., 1991 130 Normal, nonobese women No effects on T, fT, or A
IVGTT 1 tolbutamide: Elkind-Hirsch et al., 1991 133 PCOS, obese and nonobese;

nonobese controls
No change of A or T in either

group

OGTT: Smith et al., 1987 134 Normal nonobese and HA
obese women

I positively correlated with A, T,
DHT in both groups

Tiitinen et al., 1990 135 Obese and nonobese PCOS;
nonobese controls

No significant effect on A or T in
either group

Anttila et al., 1993 137 Normal and PCOS, obese
and nonobese

2T, 2A in PCOS; 2T in normals

Fox et al., 1993 138 Normal and PCOS, obese
and nonobese

2T, 2A in all groups except
nonobese normal; 1T in
nonobese normal

Tropeano et al., 1994 136 Normal and PCOS, obese
and nonobese

2T, 2A in both groups; no
correlation between I and T

Parra et al., 1995 132 Normal women 2fT after OGTT, 1fT after
breakfast

Studies in which circulating insulin levels were lowered

Diazoxide: Nestler et al., 1989 30 Obese PCOS 2T, 2fT, 2A/E; A and LH
unchanged

Krassas et al., 1998 141 PCOS, obese and nonobese 2fT, 2A, 1SHBG; LH unchanged
Octreotide: Prelevic et al., 1992 34 PCOS 2T, 2A, 2LH

Fulghesu et al., 1995 142 PCOS 2T, 2A, 2LH only if
hyperinsulinemic
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of cotreatment with a GnRH antagonist, suggesting that the
growth- and cyst-promoting effects of insulin are exerted
directly on the ovary. Indeed, insulin can stimulate prolif-
eration of both human and rat theca-interstitial cells in vitro
(171–173). In humans, the ability of high insulin levels to
stimulate ovarian growth in vivo has been suggested by a case
report of a patient with the type B syndrome of insulin
resistance, whose sonographically determined ovarian vol-
ume doubled during a prolonged insulin infusion (174). Fur-
thermore, in women with PCOS, circulating insulin levels are
correlated with ovarian volume (175, 176), and after gonad-
otropin stimulation, the increase in ovarian dimensions ob-
served in hyperinsulinemic PCOS is greater than in normo-
insulinemic PCOS (115).

4. Effects on sex hormone-binding globulin (SHBG) production.
Closely linked to the steroidogenic effects of insulin is its
inhibitory effect on hepatic SHBG production, which has
been shown both in vitro and in vivo (177–180). In fact, SHBG
levels may be useful for screening individuals for insulin
resistance, since they correlate negatively with circulating
insulin levels (181–184). An increase in circulating SHBG, as
may be seen in women with PCOS given insulin sensitizers
(see Section VI.A.3) (29, 31, 35), may lead to decreased cir-
culating levels of free steroid hormones, including free T.
Suppression of SHBG production may be largely responsible
for hyperandrogenism in some patients with hyperinsuline-
mic insulin-resistant states.

5. Effects on IGFBP-1 production. Another protein under the
regulatory control of insulin is IGFBP-1. Insulin and BMI are
the major determinants of circulating IGFBP-1 levels in both
obesity (185–187) and PCOS (183, 188–192). Insulin inhibits
IGFBP-1 production in the liver (193–198), thereby reducing

circulating IGFBP-1 levels. Insulin also inhibits IGFBP-1 pro-
duction in ovarian granulosa cells (see Section IV.B), acting
through its own receptor (199). A detailed discussion of the
role of IGFBPs in ovarian function and their regulation in the
ovary is presented in Section IV.D.

6. Ovulation in diabetes mellitus and in states of extreme insulin
resistance. Insulin and IGFs have been shown to suppress
apoptosis in ovarian follicles, thus reducing rates of their
atresia (200, 201). A variety of clinical and experimental ob-
servations in patients with type 1 and type 2 diabetes mellitus
and states of extreme insulin resistance suggest that insulin
may be involved, either directly or indirectly, in the process
of ovulation (3, 9, 202).

Insulin deficiency in type 1 diabetes has been associated
with disordered ovulation (3, 202). In rats, streptozotocin-
induced diabetes is associated with cessation of ovulatory
cycles, which can be restored with insulin treatment (203). In
mice with alloxan-induced diabetes, a similar reduction in
ovulation rate has been reported (204). While the current
availability of insulin therapy does not allow observation of
a similar phenomenon in human type 1 diabetes, in the
preinsulin era, girls who developed diabetes prepubertally
failed to enter puberty (3, 4). It is difficult to determine
whether it was insulin deficiency itself, the state of chronic
diabetic ketoacidosis, the starvation diets used for treatment,
or the dramatic weight loss that caused the failure of pubertal
development in these girls. In patients with type 1 diabetes
treated with insulin, the hypothalamic-pituitary-gonadal
axis appears to be relatively hypoactive, mainly because of
failure of the GnRH pulse generator (205, 206); low serum sex
hormone levels, including low luteal-phase P levels, have
been described (207, 208). Even with insulin treatment, up to

TABLE 4. Continued

Studies in which circulating insulin levels were lowered (continued)

Weight loss: Kopelman et al., 1981 148 Obese, HA 2T, 2A, 1SHBG
Bates and Whitworth,

1982
150 Obese PCOS 2T, 2A

Harlass et al., 1984 149 Obese with irregular
menses

2T, 2LH, 1SHBG

Pasquali et al., 1989 151 Obese, HA 2T, 2LH
Kiddy et al., 1992 147 Obese PCOS 2fT, 1SHBG; T unchanged
Holte et al., 1995 155 Obese PCOS 2T, 1SHBG; A and LH

unchanged
Guzick et al., 1994 152 Obese PCOS 2fT, 1SHBG; LH and T

unchanged
Metformin: Crave et al., 1995 153 Obese, hirsute 2fT, 2A, 1SHBG, T unchanged

with weight loss; no additional
effect of metformin

Velazquez et al., 1994 144 Obese PCOS 2T, 2fT, 2A, 2LH, 1SHBG
Nestler and Jakubowicz,

1996
29 Obese PCOS 2fT, 217-OHP, 2LH, 1SHBG

Nestler and Jakubowicz,
1997

108 Nonobese PCOS 2T, 2fT, 2A, 2LH, 1SHBG

Diamanti-Kandarakis et
al., 1998

145 Obese PCOS 2fT, 2A, 1SHBG; T unchanged

Morin-Papunen et al.,
1998

146 Obese PCOS 2fT; T, SHBG, LH unchanged

Troglitazone: Dunaif et al., 1996 35 Obese PCOS 2fT, 2A, 2LH, 1SHBG
Ehrmann et al., 1997 36 Obese PCOS 2T, 2fT, 2A, 1SHBG; LH

unchanged

I, Insulin; fT, free testosterone; A, androstenedione; DHT, dihydrotestosterone; LH, luteinizing hormone; SHBG, sex hormone binding
globulin; IR, insulin resistance; HA, hyperandrogenism (hyperandrogenic).

August, 1999 INSULIN-RELATED OVARIAN REGULATORY SYSTEM 541

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/20/4/535/2530845 by guest on 20 August 2022



one third of young women with type 1 diabetes may expe-
rience delayed menarche and oligomenorrhea of hypotha-
lamic origin (205).

Hyperinsulinemia resulting from exogenous insulin ad-
ministration is often present in treated patients with type 1
diabetes. If such patients gain excessive weight, their LH:FSH
ratio increases, SHBG levels decrease, and more than 70%
develop polycystic ovaries (209); the response of 17-OHP to
GnRHa in oligomenorrheic diabetic adolescents is exagger-
ated, resembling the response reported in insulin-resistant
patients with PCOS (29, 108, 210). Some patients with type
2 diabetes have mildly elevated androgen levels or increased
androgen responses to GnRH stimulation (116, 202) as well
as reduced SHBG levels (211), particularly in the early, hy-
perinsulinemic stage of the disease (116, 212). It should be
noted that hyperinsulinemia in patients with diabetes is rel-
atively mild, compared with that seen in patients with syn-
dromes of extreme insulin resistance, and that significant
hyperandrogenism is not characteristic of women with either
type 1 or type 2 diabetes (9).

Hyperandrogenism and polycystic ovaries or ovarian hy-
perthecosis are commonly found in states of extreme insulin
resistance (9, 140, 213). These conditions are sometimes
caused by mutations of the insulin receptor gene (214–216)
and include the type A syndrome (6), leprechaunism (9, 217,
218), Rabson-Mendenhall syndrome (9, 215), and syndromes
characterized by defective insulin receptor signaling (74, 219,
220). Premenopausal patients with the type B syndrome (in-
sulin resistance and acanthosis nigricans associated with the
presence of antiinsulin receptor antibodies) also exhibit hy-
perandrogenism (7, 8).

Although there is evidence that hyperinsulinemia contrib-
utes to the development of hyperandrogenism, not all clinical
conditions associated with hyperinsulinemia lead to ovarian
androgen overproduction. For example, most women with
type 1 diabetes, who are often hyperinsulinemic because of
exogenous insulin administration but usually do not exhibit
significant insulin resistance, do not become hyperandro-
genic, but rather exhibit hypothalamic-pituitary-ovarian axis
hypofunction. It is not clear why hyperinsulinemia devel-

oping in the setting of insulin resistance, rather than any form
of hyperinsulinemia, is associated with ovarian hyperandro-
genism, particularly since correction of hyperinsulinemia
without correction of insulin resistance may improve ovarian
function (38, 221–223).

Dissecting the effects of hyperinsulinemia from those of
insulin resistance is difficult (224, 225). One can postulate,
however, that because the postbinding insulin receptor path-
ways may diverge (2, 9, 226), in conditions characterized by
hyperinsulinemia without primary insulin resistance all in-
sulin receptor-signaling pathways are significantly down-
regulated, whereas when hyperinsulinemia is caused by in-
sulin resistance, only some of these pathways (e.g., glucose
transport) may be deficient, while others may be hyper-
stimulated (9, 227, 228). Thus, if hyperinsulinemia promotes
androgen production by activating insulin-signaling path-
way(s) distinct from those involved in glucose transport,
hyperandrogenism would be more likely to develop in the
setting of insulin resistance and compensatory hyperinsu-
linemia.

7. Interactions of insulin with leptin; leptin-mediated effects on
ovulation. New insights into the relationship between weight
and ovulation and the role that insulin may play in modi-
fying this relationship emerged with the discovery and char-
acterization of leptin. Leptin is a 16-kDa protein produced by
adipose cells (229–233). Circulating leptin levels are stimu-
lated by estrogen and inhibited by androgens (234–236) and
are directly proportional to adipose tissue mass (236–241).
Leptin regulates body weight by binding to specific receptors
in the hypothalamus and thus decreasing food intake (242–
244). Leptin is encoded by the ob gene, which is defective in
genetically obese ob/ob mice (229, 231, 237, 245). These ani-
mals are also insulin resistant and infertile. Replacement of
leptin in ob/ob mice produces weight loss, reverses metabolic
abnormalities, and restores ovulation and fertility (246, 247).
Db/db mice and Zucker fatty rats have a similar phenotype,
which results from a genetic abnormality of the leptin re-
ceptor (237, 245, 248). A human kindred with an ob mutation
has been described, in which two prepubertal cousins with

FIG. 2. The effects of 23 days of daily injections of normal saline (control), hCG, insulin, or insulin plus hCG and GnRHant on gross ovarian
morphology in rats. Female Sprague-Dawley rats were randomized into the following treatment groups: vehicle; high-fat diet (to control for
the effects of weight gain); insulin; hCG; GnRH antagonist (to control for possible central effects of insulin vs. direct effects on the ovary);
GnRHant and HCG; insulin and GnRHant; insulin and hCG; insulin, hCG, and GnRHant. Ovarian morphology in the group treated with insulin
and hCG (not shown) did not differ from that seen in the group treated with insulin, hCG, and GnRHant (shown above). [Reproduced with
permission from L. Poretsky et al.: Metabolism 41:903–910, 1992 (170). rW. B. Saunders Co.]
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a frameshift mutation in the ob gene suffer from massive
obesity (249). It is not yet known whether they will develop
reproductive abnormalities. Similarly, a mutation of the hu-
man leptin receptor gene associated with obesity has been
reported (250).

A rise in circulating leptin levels is associated with and
precedes puberty (251), and higher circulating leptin levels
are associated with a younger age at menarche (252, 253),
possibly because leptin serves as a signal for the initiation of
an early pubertal gonadotropin-secretory pattern (254–257).
A rapid decline of circulating leptin levels is observed during
caloric restriction (258) or starvation (244, 259, 260). A decline
in leptin may be responsible for the activation of the hypo-
thalamic-pituitary-adrenal axis and the inhibition of the go-
nadotropic axis observed with stress (261, 262), since these
responses can be abolished in animals by leptin administra-
tion (233, 263).

Leptin receptors are present in the ovary (264–266). Their
functional capacity and their role in both normal and ab-
normal ovarian function remain to be firmly established
since two leptin receptor isoforms exist, one with a full-
length and another with a truncated intracellular domain
(267). While the action of leptin on gonadotropin secretion is
stimulatory, the direct effects of leptin on ovarian steroido-
genesis may be either inhibitory or stimulatory (264, 266,
268). For example, leptin inhibits insulin-induced P and E2
production in bovine granulosa cells (264) and reduces syn-
ergism between FSH and IGF-I on E2 production in rat gran-
ulosa cells (268). On the other hand, leptin appears to stim-
ulate ovarian 17a-hydroxylase (265).

Insulin stimulates secretion of leptin by adipocytes (269–
272). In addition, by promoting lipogenesis, insulin may
increase adipose tissue mass, thereby further enhancing lep-
tin production. However, there is no apparent acute effect of
feeding on leptin levels (260, 273, 274) and no correlation
between leptin and insulin sensitivity in vivo (273). Never-
theless, circulating leptin levels rise with acute massive over-
feeding over a 12-h period (275).

Leptin inhibits insulin secretion from isolated pancreatic
islets in some studies (276, 277), but stimulates insulin se-
cretion in others, either by a direct stimulatory effect on
pancreatic b-cells (278) or because of its inhibitory effect on
somatostatin (279). Leptin may affect pancreatic function
through the autonomic nervous system (280) and was shown
to improve insulin sensitivity in normal rats, reducing glu-
cose and insulin levels (281). When administered intracere-
broventricularly, leptin enhanced insulin-stimulated glucose
metabolism (282). Leptin has been shown to possess antidi-
abetic properties in some studies (283, 284), but in other
studies it did not affect glucose-stimulated insulin secretion
and did not have a significant effect on glucose transport or
insulin action in either adipocytes or muscle cells (285, 286).
In some circumstances, as, for example, in the setting of
obesity, leptin may contribute to the development of insulin
resistance and diabetes (287–290).

The above observations point to a complex relationship
among insulin, leptin, body weight, ovarian steroidogenesis,
and ovulation (Fig. 3). If a certain “threshold” level of leptin
is needed to activate the hypothalamic-pituitary-ovarian
axis, then a certain mass of adipose tissue must be present for

ovulation to occur (291). In states characterized by hypoin-
sulinemia, such as starvation, weight loss, or untreated type
1 diabetes mellitus, amenorrhea may develop (292, 293), pos-
sibly because of a decline in circulating leptin (294) and a
resultant deactivation of the hypothalamic-pituitary-ovarian
axis (233, 293, 295). Thus, insulin deficiency may contribute
to abnormalities of ovulatory function either directly, by
affecting gonadotropins or the ovaries, or indirectly, by neg-
atively influencing secretion of leptin. On the other hand,
states characterized by insulin excess may be associated with
higher circulating levels of leptin. Whether such putative
leptin excess would play a role in the development of the
hyperandrogenism or anovulation observed in hyperinsu-
linemic states remains to be determined.

8. Effects of insulin on expression of ovarian type I IGF receptors.
In addition to participating, directly or indirectly, in the
regulation of ovarian steroidogenesis and insulin receptor
number in the ovary, insulin may also affect the expression
of ovarian type I IGF receptors. In vivo studies in rats dem-
onstrated that experimental hyperinsulinemia, while down-
regulating ovarian insulin binding, increased ovarian IGF-I
binding (94) (Fig. 4). That this phenomenon may also occur
in humans is suggested by the observations of Samoto et al.
(95) and Nagamani and Stuart (296), who demonstrated that
in women with hyperthecosis or PCOS, ovarian type I IGF
receptors are up-regulated, while insulin receptors are
down-regulated. Pepper and colleagues (297) have reported
that ovarian [125I]IGF-I binding in a patient with ovarian
hyperthecosis was increased over that found in normal con-
trols (12, 298). Interestingly, an increase in type I IGF receptor
expression in PCOS may not be limited to the ovaries: a rise
in erythrocyte type I IGF receptors in these patients has also
been reported (299). Further, hyperinsulinemia may increase
expression of hybrid insulin/type I IGF receptors in a variety
of insulin target tissues (300), although this process has not
yet been described in the ovary.

FIG. 3. The relationships among insulin, leptin, pituitary gonado-
tropins, and ovarian steroidogenesis. Insulin stimulates leptin secre-
tion, enhances pituitary gonadotropin response to GnRH, and pro-
motes ovarian steroidogenesis. Leptin stimulates the hypothalamic-
pituitary-gonadal axis at the level of the hypothalamus and/or
pituitary; it inhibits ovarian E2 and P production, but may stimulate
androgen production by stimulating 17 a-hydroxylase activity or ex-
pression. Leptin and insulin potentiate each other’s secretion, al-
though leptin may inhibit insulin secretion under some circum-
stances. Ovarian sex steroids inhibit FSH production and either
inhibit (E2, T, P) or stimulate (E1) LH responsiveness to GnRH.
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In addition to up-regulating type I IGF receptors in the
ovary, insulin may also increase the cellular pool of p21 Ras
(49, 301). Both up-regulation of type I IGF receptors and an
increase in the pool of p21 Ras may amplify the effects of
IGF-I on steroidogenesis and follicle development. Further-
more, up-regulation of type I IGF receptors may also amplify
the effects of IGF-II, the dominant ligand for the type I IGF
receptors in human granulosa cells (see Section III.B). Finally,
up-regulation of type I IGF receptors by insulin may amplify
the effects of insulin itself in states of extreme insulin resis-
tance, in which circulating concentrations of insulin are very
high and insulin receptors are either genetically defective or
blocked by antiinsulin receptor antibodies. Under these cir-
cumstances, as discussed previously, insulin may act mainly
by binding to the type I IGF receptor via the “specificity
spillover” effect (9, 302). Thus, the ability of hyperinsulin-
emia to up-regulate ovarian type I IGF receptors may con-
tribute to the ovarian growth and stimulation of steroido-
genesis by IGF-I, IGF-II, and insulin.

D. Summary

The role of insulin in the ovary may be summarized as
follows: 1) Insulin receptors are widely distributed through-
out all ovarian compartments. Ovarian insulin receptors
have a subunit structure identical to insulin receptors in
other organs, possess tyrosine kinase activity, and are capa-
ble of stimulating the generation of inositolglycan second
messengers. 2) At this time there is no convincing direct in
vivo evidence that hyperinsulinemia acutely stimulates ovar-
ian steroid production, but there is direct in vitro evidence
and indirect in vivo evidence for a stimulatory effect of insulin
on ovarian steroidogenesis. The in vitro evidence suggests
that the stimulatory effect of insulin on steroidogenesis is
mainly mediated by the insulin receptor and may involve the
inositolglycan pathway. The in vivo evidence is largely de-
rived from experiments in which a reduction in circulating
insulin levels produces a decline of circulating androgens
and from clinical observations in women with both insulin
deficiency and insulin excess. 3) The effects of insulin on
ovulation are complex. A threshold level of insulin is likely

to be required for the normal function of the hypothalamic-
pituitary-ovarian axis, either because of the direct stimula-
tory effects of insulin on this axis or because of the stimu-
latory effects of insulin on leptin secretion (both direct, with
insulin stimulating adipocyte production of leptin, and in-
direct, because of insulin-stimulated lipogenesis). Leptin, in
turn, participates in the initiation of puberty and activation
of the hypothalamic-pituitary-gonadal axis. On the other
hand, excessive circulating insulin, particularly in the setting
of insulin resistance, may enhance ovarian androgen pro-
duction and thus may contribute to the development of
anovulation. 4) Insulin may amplify its own effects, the ef-
fects of IGFs, and those of gonadotropins by up-regulating
type I IGF receptors and gonadotropin receptors, as well as
by inhibiting production of IGFBP-1, both in the liver and
ovary. In the setting of insulin resistance and hyperinsulin-
emia, therefore, a cycle of events that leads to a self-perpet-
uating amplification of the ovarian effects of insulin and IGFs
can develop (Fig. 5).

In reviewing the literature dealing with the effects of in-
sulin on ovarian function, it is important to distinguish those
effects that have been mainly demonstrated in vitro or in
animal systems, and therefore may contribute only in a lim-
ited way to our understanding of normal and abnormal
human ovarian physiology, from those that have been clearly
demonstrated in women in vivo. In our opinion, the only
insulin-related effects on ovarian function that have been
consistently observed in women in vivo are insulin-induced
suppression of hepatic SHBG and IGFBP-1 production. The
importance of these effects in both normal and pathological
conditions still needs to be clarified. The importance for
normal and abnormal human ovarian function of the other
insulin effects discussed in this section, such as its direct
effects on ovarian steroidogenesis, growth, and cyst forma-
tion; its effects on the expression of ovarian receptors for
insulin, IGF-I, and LH; and its synergistic action with go-
nadotropins, remains to be established. The reported ovarian
effects of insulin in vitro and in vivo are summarized in Tables
3 and 4.

FIG. 4. [125I]IGF-I binding to ovarian
homogenates from normal rats (A) and
rats with experimentally induced hy-
perinsulinemia (B). Female Sprague-
Dawley rats were treated with either
vehicle (A) or insulin for 23 days.
[125I]insulin (not shown) and [125I]IGF-
I binding to ovarian homogenates was
examined. In rats treated with insulin,
a doubling of [125I]IGF-I binding was
observed, suggesting amplification of
the number of type I IGF receptors or
hybrid insulin/type I IGF receptors.
[Reproduced with permission from L.
Poretsky et al.: Endocrinology 122:581–
585, 1988 (94). © The Endocrine Soci-
ety.]
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III. IGFs and Their Receptors

A. IGF peptides and receptors

1. IGF-I. IGF-I is a 70 amino-acid, single-chain polypeptide
that shares significant sequence homology with IGF-II, pro-
insulin, and relaxin. The human IGF-I gene is located on
chromosome 12. The major source of circulating IGF-I is the
liver, but IGF-I is widely expressed in most tissues, especially
during postnatal development (303). IGF-I was first known
as somatomedin C and identified as a mediator of GH action
(304). GH rapidly activates IGF-I gene transcription and also
regulates changes in chromatin structure within the IGF-I
gene, delineating a target within the chromatin for GH action
(305). In addition to GH, other activators of IGF gene tran-
scription include estradiol, experimental diabetes, and an-
giotensin II (306). Null mutants for IGF-I are severely growth
restricted in utero but are fertile (307, 308).

2. IGF-II. IGF-II is a 7.5-kDa, 67-amino acid, single-chain
polypeptide that is approximately 70% homologous with
IGF-I and 50% homologous with proinsulin (14, 309–312).
The human IGF-II gene is located on chromosome 11, con-
tiguous with the insulin gene. Pre-pro-IGF-II, the precursor
of IGF-II, is a 22-kDa protein. Inactivation of the IGF-II gene
in animals (308, 313) produces growth-deficient but fertile
and otherwise normal individuals. IGF-II is highly expressed
in fetal tissues and tumors, as well as in normal adult tissues.
IGF-II can bind to type I and type II IGF receptors (see below),
as well as to the insulin receptor (302, 314).

3. Type I IGF receptor. The type I IGF receptor precursor
protein consists of 1367 amino acids, comprising both the a-
and b-subunits of the receptor. The human type I IGF re-
ceptor gene is located on chromosome 15. The mature type
I IGF receptor protein is a heterotetramer consisting of two
a- and two b-subunits and is highly homologous with the
insulin receptor (315, 316). The cysteine-rich regions of the

a-subunits of the insulin receptor and type I IGF receptor are
64–67% homologous, whereas the tyrosine kinase domains
of the b-subunits are 84% homologous. In addition to IGF-I,
the type I IGF receptor can also bind IGF-II and insulin,
although with somewhat lower affinity. In addition to bind-
ing IGF-I, IGF-II, and insulin, the type I IGF receptor has also
been reported to interact with IGFBPs (317), but the signif-
icance of this finding remains to be determined. Type I IGF
receptor postbinding events, similar to those of the insulin
receptor, include tyrosine phosphorylation of receptor
b-subunits and IRS proteins, interactions with PI-3 kinase,
and activation of MAPK (69, 315, 318, 319). Type I IGF re-
ceptor knockout mice weigh 45% of normal at birth and die
immediately afterward (320). Patients with a deletion of the
distal arm of chromosome 15 lack one copy of the IGF-I
receptor gene and exhibit both intrauterine and postnatal
growth restriction (321, 322).

4. Hybrid insulin/type I IGF receptors. Hybrid receptors that
combine an a/b insulin hemireceptor and an a/b type I IGF
hemireceptor have been reported in a variety of tissues, al-
though not in the ovary (41, 323). These receptors can form
in tissues coexpressing both insulin and type I IGF receptors,
theoretically including the ovary. Hybrid receptors have
properties similar to type I IGF receptors, binding IGF-I with
high affinity and insulin with lower affinity. Interestingly, in
situations that are characterized by insulin receptor down-
regulation, the number of hybrid insulin/type I IGF recep-
tors tends to increase (228).

5. Type II IGF receptor. The type II IGF receptor is identical to
the mannose-6-phosphate (Man-6-P) receptor (309, 324–326).
The gene for the type II IGF receptor is located on the long
arm of chromosome 6. This receptor targets Man-6-P-con-
taining enzymes from the Golgi apparatus to the lysosomes
and also mediates the rapid internalization of IGF-II (309).
The receptor is a single-chain polypeptide of approximately
300 kDa with a large extracellular domain containing IGF-II
binding sites (325, 327). The cytoplasmic domain is very short
and includes tyrosine, threonine, and serine phosphorylation
sites. Type II IGF receptor knockout mice exhibit elevated
IGF-II levels and die in utero (328, 329). Interestingly, if the
IGF-II gene is knocked out at the same time, about 50% of the
fetuses survive to birth (328). Type I/type II IGF receptor
double-knockout mice differ from normal controls only in
their patterns of growth (328). These observations, taken
together, suggest that excessive activation of the type I IGF
receptor by IGF-II may be lethal in utero.

The type II IGF receptor can be released from the cell
membrane into the circulation. This mechanism may be prin-
cipally responsible for its loss from the cell surface (330–333).
The circulating form of the IGF-II receptor retains its affinity
for IGF-II (325, 334) and may participate in the local mod-
ulation of organ size in vivo. For example, overexpression of
the soluble IGF-II/Man-6-P receptor in transgenic mice can
significantly decrease the weight of their alimentary canal
(335).

Although the type II IGF/Man-6-P receptor is important
for IGF-II internalization and degradation, it is unclear
whether this receptor actively mediates IGF-II signaling. Ex-

FIG. 5. Hypothetical insulin/IGF self-enhancement mechanisms in
the ovary. Hyperinsulinemia, acting through insulin receptors, type
I IGF receptors, or possibly through hybrid insulin/type I IGF recep-
tors increases the number of type I IGF receptors and/or hybrid
insulin/IGF receptors and increases cellular pool of p21 Ras, which
may be responsible for the mitogenic effects of insulin or of IGFs.
Hyperinsulinemia also inhibits IGFBP-1 production, leading to a
further increase in bioavailable IGFs. Thus, hyperinsulinemia may
lead to a self-perpetuating cycle of events resulting in the exagger-
ation of the ovarian effects of both insulin and IGFs, leading to ovarian
enlargement and excessive androgen production (please see the text
for details and references). Solid arrow, action via a receptor; broken
arrow, regulation of a receptor.
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amples of such signaling have been reported, including stim-
ulation of G-protein activation and of thymidine incorpora-
tion into rat hepatocyte DNA (325, 336–338). In most
instances, however, the metabolic and growth-promoting
actions of IGF-II appear to be mediated by the type I IGF
receptor (339) or the insulin receptor (314). The type II IGF
receptor, however, may mediate signals involved in angio-
genesis (340) and other processes. Ligands for the type II IGF
receptor, in addition to IGF-II and Man-6-P, include b-ga-
lactosidase and other lysosomal enzymes, proliferin, renin,
latent transforming growth factor (TGF)-b (329), and leuke-
mia-inhibitory factor (341). In the context of these observa-
tions, the functions of the type II IGF receptor within the
ovary remain to be determined.

B. Expression of IGFs and IGF receptors in the ovary

1. Human and nonhuman primate. Distinctive features of IGF
expression in the primate ovary include the predominance of
IGF-II and its pattern of localization (Table 2). Other molecules
that modulate IGF action, including the IGF receptors, IGFBPs,
and IGFBP proteases, are also differentially expressed in the
primate ovary (see below). While the majority of studies that
examined the ovarian expression of IGFs and that of their re-
ceptors were done on human tissue, ovaries from cycling rhesus
monkeys reveal similar expression patterns of IGF-I, IGF-II, and
type I IGF receptor, and there is strong evidence that IGF-II,
aromatase, and IGFBP-4 can be regarded as markers of the
dominant follicle in the rhesus ovary (342).

In the human ovary, IGF peptide expression is follicle
stage-specific and compartmentalized (Table 2). IGF-I
mRNA is barely detectable in the adult ovary and not in the
granulosa layer at any stage of follicular development (88, 89,
343). IGF-II mRNA is expressed in the theca and perifollic-
ular vessels of all follicles and in the granulosa cells of some
follicles. In small antral follicles, IGF-II mRNA and protein
are detectable in both granulosa and theca (88, 89, 343). In
atretic antral follicles, on the other hand, IGF-II is minimally
expressed by the theca. IGF-II is abundantly expressed and
secreted by granulosa cells of preovulatory follicles as well
as by granulosa-luteal cells harvested during oocyte retrieval
after controlled ovarian hyperstimulation (COH) (88, 90,
344–347). These findings, plus the observations that granu-
losa cells do not express IGF-II prepubertally, but do so in a
subpopulation of adult follicles, and that gonadotropins reg-
ulate IGF-II mRNA expression and secretion in human gran-
ulosa-luteal cells in vitro (344, 345), suggest that ovarian
IGF-II gene expression is regulated by gonadotropins.

Follicular fluid (FF) constituents such as IGF peptides are
derived from the circulation as well as from intraovarian
production. In normally cycling women, FF IGF-I levels are
similar in estrogen-dominant and androgen-dominant folli-
cles and do not correlate with follicular size (348). In contrast,
FF IGF-II levels are higher in estrogen- compared with an-
drogen-dominant follicles and correlate positively with fol-
licle size, cycle day, and E2 and negatively with androgen-
estrogen (A:E) ratio (348). In normally cycling women,
simultaneous measurements of IGF-I, IGF-II, and insulin
concentrations in ovarian and peripheral venous blood re-
veal an ovarian gradient only for IGF-II (349), and serum

IGF-I and IGF-II levels in normally cycling women do not
vary during the menstrual cycle (348). These data collectively
suggest that FF IGF-I originates from serum by transudation
and that FF IGF-II derives primarily from local production by
the granulosa and possibly by the theca, in addition to some
contribution from the circulation. After COH, FF IGF-II levels
are about 8 times higher than those of IGF-I, and both IGF-I
and IGF-II levels are lower than in serum (350–353). In con-
trast to spontaneous cycles, these levels in COH do not cor-
relate with follicle size, oocyte maturity, or FF E2. FF IGF-I
and IGF-II levels were noted to rise with increasing cycle day
3 serum FSH, an index of ovarian reserve (354).

Normal circulating levels of IGF-I are not a prerequisite for
normal ovarian follicular development in women, as evi-
denced by cases of ovulation and fertility in individuals with
Laron-type dwarfism, which results from GH receptor de-
ficiency (GHRD) (355–358). Furthermore, a normal follicular
response to injected gonadotropins, leading to ovulation and
conception, has been reported in women with GHRD, whose
serum GH was markedly elevated and both serum and FF
IGF-I barely detectable (355, 356). In such subjects, serum
IGF-II levels were about 25% of normal (FF IGF-II was not
measured). These clinical observations support the conclu-
sion that IGF-I does not play an important role in the ovu-
latory process in women.

Both type I and type II IGF receptors are found in the human
ovary (88, 298, 343, 359). By in situ hybridization, type I IGF
receptor mRNA is predominantly expressed by granulosa cells
and oocytes, with more intense expression in dominant com-
pared with small antral follicles (88, 343). By this technique,
theca and stroma are negative for type I IGF receptors, but
stromal receptors with the specificity of the type I IGF receptor
have been reported in ligand binding studies (298). Type II IGF
receptors are localized to both granulosa and thecal layers, with
more intense expression in the granulosa and in dominant,
compared with smaller, antral follicles (88). By RT-PCR, both
types of receptors were found to be expressed by granulosa,
theca, and stroma and to persist upon culture of both granulosa
and thecal cells (347).

2. Rodent. In the rat, ovarian IGF-I gene expression and pro-
tein production are granulosa specific (360–362); signifi-
cantly, IGF-I is selectively expressed in the granulosa of only
healthy antral follicles, not in atretic or luteinized follicles or
in theca-interstitial cells (342, 360, 363, 364). IGF-II mRNA
expression is limited to the thecal compartment and blood
vessels (342, 362, 363), but the postnatal decline in ovarian
IGF-II content (365) argues against a significant role for this
peptide in rat ovarian physiology. While type I IGF receptor
mRNA is abundantly expressed in granulosa cells (365), the
corresponding protein is detected not only in the granulosa
but also in the thecal compartment, regardless of the matu-
rational stage or health status of the follicle (363), suggesting
that regulation of the receptor is unlikely to play a major role
in follicular maturation (366).

The patterns of IGF-I, IGF-II, and type I IGF receptor ex-
pression are essentially the same in rat and mouse ovary (342,
364, 367). IGF-I expression increases at the secondary pre-
antral stage and is abundant in healthy follicles through the
preovulatory stage. Type I IGF receptor is expressed consti-
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tutively, regardless of follicular developmental stage or
health (367). These findings lay the groundwork for studies
of ovarian function in transgenic mouse models with dele-
tions of these components (368).

3. Livestock species. Porcine granulosa cells in culture secrete
abundant immunoreactive IGF-I, which is increased by FSH,
cAMP, GH, EGF, and TGF-a. IGF-I is abundant in porcine FF,
especially in large follicles. Its levels increase in response to
PMSG and/or GH treatment (369–371). This finding suggests
that gonadotropin and GH action on the granulosa cells of the
developing porcine follicle is mediated in part by local induc-
tion of IGF-I. IGF-II in the porcine ovary is expressed mainly in
the theca and is not under gonadotropin or GH regulation (15,
370, 372). FF IGF-II levels decline in response to GH (370, 372,
373). In the sheep ovary, at least four localization studies of
IGF-I expression have been published, with divergent findings
(374–377). IGF-II is localized to the theca, and its levels in FF are
4-fold greater than those of IGF-I (377, 378). In the cow, IGF-I
is produced by the ovary (379, 380), and its levels in FF increased
with increasing E2 concentrations and increasing follicle diam-
eter in some (379, 381–384), but not all (385–387), studies. IGF-II
is exclusively expressed in the theca, with greater expression in
dominant follicles, compared with subordinate or nonrecruited
ones (388).

C. Role of IGFs in ovulatory function and steroidogenesis
(Table 5)

1. Human. Studies of the effects of IGFs on human granulosa
and thecal cells in vitro have primarily employed IGF-I, al-
though as discussed above, the predominant endogenous
locally produced ligand in vivo is IGF-II. IGF actions on the
ovary include augmentation of DNA synthesis and steroi-
dogenesis. IGF-I stimulates DNA synthesis and basal E2 se-

cretion in granulosa and granulosa-luteal cells and inhibits
IGFBP-1 production (199, 389–396). It also synergizes with
gonadotropins in augmenting E2 and P production (393,
397–400). Several studies have been conducted recently of
the effects of IGF-II on human ovarian cellular constituents.
IGF-II stimulates basal P and E2 secretion by human gran-
ulosa-luteal cells (353, 401). It also stimulates aromatization
of androgen precursors (402) and inhibits IGFBP-1 (396) and
IGFBP-2 (403) production by these cells. The effect of IGF-II
on estradiol production is most pronounced if the cells are
preincubated with insulin (402), possibly due to insulin-in-
duced up-regulation of type I IGF receptors, formation of
hybrid insulin/IGF-I receptors, or inhibition of IGFBP-1 pro-
duction. IGF-II also stimulates granulosa-luteal cell DNA
synthesis and proliferation in vitro (401, 404). In granulosa
cells from both unstimulated and gonadotropin-stimulated
preovulatory follicles, IGF-I, both alone and in synergy with
gonadotropins, stimulates P450 aromatase mRNA expres-
sion and activity (405).

IGFs also exert actions on human thecal cells and oocytes.
In human thecal monolayer cultures, IGF-I enhances DNA
and androgen synthesis (406) and synergizes with LH in A
production (100), although in vivo, a decline of circulating
IGF-I levels after treatment with clomiphene citrate did not
lead to a reduction in hyperandrogenism in PCOS (407).
IGF-II also increases androgen production by human theca
(158). Maturation of immature human oocytes in vitro can be
augmented by IGF-I (408).

2. Rodent. IGF-I actions in rat granulosa and theca have been
extensively reviewed (14, 23, 409, 410). IGF-I acts as a co-
gonadotropin with FSH to stimulate granulosa cells to pro-
duce E2 and P, and with LH to stimulate thecal androgen
production. IGF-I stimulates LH receptor expression in gran-
ulosa and theca (13, 411, 412) and may be required for FSH

TABLE 5. Ovarian actions of IGF-I and IGF-II

Species Granulosa (granulosa/luteal) cells Theca cells/explants Follicles

Human
Promotes: Promotes: Promotes:

Aromatase activity and mRNA Androstenedione production ?Oocyte maturation
Basal E2 and P secretion Testosterone production
FSH-stimulated E2 and P secretion DNA synthesis
DNA synthesis
Cellular proliferation
IGFBP-4 proteolysis
IGFBP-5 production
?IGFBP-2 proteolysis

Inhibits:
IGFBP-1, IGFBP-2 production

Rat
Promotes: Promotes: Promotes:
Adenylate cyclase Androstenedione production ?Ovulatory rupture
Aromatase activity P450scc mRNA
E2 secretion 17a-Hydroxylase Inhibits:
LH receptor synthesis DNA synthesis Apoptosis
Progesterone release Cellular proliferation
Inhibin secretion
Proteoglycan synthesis
DNA synthesis

Inhibits:
IGFBP-5 proteolysis
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receptor expression in granulosa (368); it also stimulates
granulosa cell production of inhibin a-subunit and augments
the stimulation of this response by FSH (413–415). Stimula-
tion of inhibin-a expression in rat granulosa by FSH requires
activation of protein tyrosine kinases by endogenously pro-
duced IGF-I, suggesting that IGF-I signaling is obligatory for
this response (415). IGF-I also stimulates DNA synthesis in
granulosa and theca-interstitial cells (171, 416).

In addition to its role in differentiation and proliferation of
granulosa and theca, IGF-I also plays an important role in
granulosa survival, since it can inhibit apoptosis (201). Gran-
ulosa cell apoptosis, associated with regular cleavage of nu-
clear DNA by endonuclease, is associated with follicular
atresia (417). In vitro, this process is suppressed by IGF-I and
gonadotropins and enhanced by the presence of IGFBPs
(200). In the human ovary apoptosis is characteristic of an-
drogen- but not estrogen-dominant follicles (418), but reg-
ulation of apoptosis by IGFs has not yet been demonstrated
in human ovarian follicles or cellular components, as it has
in the rat (201). To our knowledge, there are no studies
examining specific effects of IGF-II in rodent ovaries.

3. Livestock species. In the sow, similar effects of IGFs on
granulosa and thecal cell function have been reported as in
humans and rodents (419–421). IGF-I stimulates granulosa
cell proliferation and synergizes with FSH in granulosa cell
differentiation (419). IGF-II enhances the delivery of choles-
terol to the P450 scc enzyme complex and enhances the func-
tional activity of this first committed step in P biosynthesis
(421). In sheep, IGF-I stimulates granulosa cells from small
follicles to proliferate and those from larger follicles to pro-
duce P (422), an effect likely mediated through the type I IGF
receptor (423). In the cow, IGF-I stimulates granulosa and
thecal cell proliferation and steroidogenesis (379, 380, 424).

D. Summary

Although both IGF-I and IGF-II have been shown in vitro
to have multiple ovarian effects in various species, IGF-II
appears to be the predominant ovarian IGF in the human.
The IGF-II gene is expressed in the human ovary, and the
effects of IGF-II appear to be similar to those of IGF-I. The
metabolic and growth-related effects of IGF peptides appear
to be mediated under most circumstances by type I IGF
receptors, which are present in all human ovarian compart-
ments. Their numbers appear to be increased under the in-
fluence of insulin, as discussed in Section II.C. Type I IGF
receptors may mediate the effects of insulin in the ovary in
extreme insulin-resistant states with severe hyperinsulin-
emia. Clarification of the presence and the role of hybrid
insulin/type I IGF receptors in the human ovary awaits
further studies.

IV. IGF-Binding Proteins (IGFBPs) and Proteases

A. Structural relationships among IGFBPs

The bioavailability and, therefore, the actions of the IGFs
are regulated, in part, by a superfamily of homologous pro-
teins, called IGFBPs, that bind IGFs with high affinity. There
are six IGFBPs, designated IGFBP-1 through IGFBP-6 (425–

427), whose discovery, gene and protein structures, and
mechanisms of actions have recently been reviewed (329,
428, 429).

All six IGFBPs have core molecular masses of 23–32 kDa.
They are all at least 50% homologous, and for each IGFBP
there is roughly 80% homology among species. The amino
and carboxy termini are most highly homologous among the
different IGFBPs, while the midsequence shows little simi-
larity. The IGFBPs each contain at least 16 conserved cys-
teines, which are important in determining their conforma-
tion. There is also a group of proteins that share limited
sequence homology with the IGFBPs and bind IGFs with low
affinity. Due to their undefined roles as IGFBPs and limited
structural homology to IGFBPs 1–6, they have been called
IGFBP-related proteins (IGFBP-rPs) (427, 428). The high-af-
finity IGFBPs have dissociation constant (Kd) values for the
IGFs in the range of 1029 to 10211 mol/liter, compared with
1026 to 1027 mol/liter for the IGFBP-rPs (428).

The genes for human IGFBP-1 and IGFBP-3 are located on
chromosome 7, the IGFBP-2 and IGFBP-5 genes are on chro-
mosome 2, the IGFBP-4 gene is located on chromosome 17,
and the IGFBP-6 gene is on chromosome 12 (329, 430). IGFBP
genes are in close proximity to homeobox (Hox) gene clusters
(Hox A–Hox D), with which they appear to have coevolved.
Hox genes encode DNA-binding proteins that are transcrip-
tionally regulated by retinoic acid, as are some of the IGFBPs
(430). IGFBP-1 and IGFBP-2 both contain the tripeptide motif
Arg-Gly-Asp (RGD), which can bind to integrins, and their
production and function are related to carbohydrate metab-
olism and metabolic homeostasis. In contrast, IGFBP-3, and
likely the highly homologous IGFBP-5, are primarily in-
volved in growth.

The IGFBPs have several functions, which include 1) to
transport the IGFs in the circulation; 2) to regulate efflux of
IGFs from the vascular space; 3) to prolong the half-life and
metabolic clearance rates of the IGFs; 4) to prevent IGF-
induced hypoglycemia; 5) to directly modulate interactions
of IGFs with their receptors locally within target tissues; and
6) to directly modulate cellular function, independent of their
ability to bind IGFs. All six IGFBPs have been shown to
inhibit IGF action, likely by limiting bioavailable free IGFs
from interacting with their receptors. IGFBP-1 and IGFBP-3
can also be stimulatory to IGF action, presumably by forming
a pool of “slow-release” IGFs. IGFBP-1 and IGFBP-3 addi-
tionally have IGF-independent actions, including alteration
of cellular motility and inhibition of DNA synthesis, respec-
tively. IGFBP-4 and -5 may also have IGF-independent ac-
tions both in the human ovary (431) and in cell lines derived
from other tissues (430, 432). Since the affinities of IGFBPs
1–6 for the IGFs are equal to or greater than the affinities of
the type I and type II IGF receptors for the peptides,
mechanisms have evolved to decrease IGFBP affinities
and increase IGF bioavailability to the receptors. These
mechanisms include phosphorylation, glycosylation, and
proteolysis (329).

This review will focus on IGFBP expression and regulation
primarily in the human and rat ovary and underscore the
mechanisms of ovarian IGFBP production and regulation
common to other species. Also discussed are IGFBP prote-
olysis by specific proteases, the regulation of these enzymes,
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and their putative functions in normal and pathological ovar-
ian conditions.

B. IGFBP expression in the ovary

IGFBPs are expressed by granulosa and thecal cells and are
present in the FF of every species studied. Significant dif-
ferences exist in the patterns of ovarian expression and reg-
ulation of individual IGFBP species between the human and
animal models.

1. Human (Table 2). The human ovary expresses mRNAs for
IGFBP-1, -2, -3, -4, and -5. In situ hybridization shows dis-
tinctive patterns of mRNA expression for each of these
IGFBPs in antral follicles, with parallel localization of im-
munostainable protein (89). IGFBP-1 is localized only to the
granulosa cells of dominant follicles, not to theca or small
antral follicles. IGFBP-2 is expressed by granulosa cells only
in small, nondominant antral follicles, but by thecal cells in
both dominant and nondominant follicles. IGFBP-3 expres-
sion is found in the theca of all follicles and the granulosa of
only dominant follicles. IGFBP-4 is found in both granulosa
and theca in all follicles, with a slight increase in granulosa
expression in dominant compared with small follicles.
IGFBP-5 has also been localized to both granulosa and theca;
its expression is unaffected by follicular development. No
IGFBP-6 mRNA or protein was localized by in situ hybrid-
ization (89), but expression was detected by RT-PCR (347). A
recent study found IGFBP-4 to be expressed in luteal cells
and in the granulosa and theca layers of only atretic antral,
not healthy or preantral follicles (433). The expression of
IGFBP-2, -4, and -5 by both granulosa and thecal cells has
been confirmed by Northern analysis (347). Expression of
IGFBP-1 has also been found in the corpus luteum (434).

The regulation of IGFBP production by the human ovary
has been examined in cell culture studies. Two sources of
tissue have been employed: antral follicles from surgically
excised ovaries, and granulosa-luteal cells obtained at oocyte
harvest for in vitro fertilization (IVF) after controlled ovarian
hyperstimulation (COH). Granulosa cells derived from an-
tral follicles in spontaneous cycles release IGFBP-2 and both
core and glycosylated isoforms of IGFBP-4 and express the
corresponding mRNAs (347, 435, 436). Cultures of thecal
tissue derived from these follicles produce IGFBP-2, -3, and
-4; theca from mature healthy follicles also produces pro-
teolytic fragments of IGFBP-3 and -4 (436–438). Thecal
IGFBP-3 accumulation, as determined by ligand blotting,
was stimulated markedly by LH/hCG or GH in one study
(438), but these effects were not noted by others (347, 437).
Thecal expression of mRNA for IGFBP-5, but not IGFBP-1, -2,
-3, or -4, is stimulated by LH (347).

Because luteinizing granulosa cells from IVF oocyte har-
vests are readily available, this model has been extensively
employed to study human IGFBP production. These cells
express mRNAs for IGFBP-1, -2, -3, -4, and -5 in culture and
accumulate all of these proteins except IGFBP-5, as detected
by ligand blotting of conditioned medium (403, 439–443). By
metabolic labeling, they synthesize IGFBP-1 and -2 de novo,
but evidence for IGFBP-3 synthesis is conflicting (403, 444,
445). Although IGFBP-5 mRNA is abundantly expressed

(442), no immunoprecipitable IGFBP-5 protein has been de-
tected in conditioned medium (443, 446). These findings sug-
gest that human granulosa cells elaborate an IGFBP-5 pro-
tease as has been reported in the rat (447, 448).

Production of each IGFBP species by human luteinizing
granulosa cells is uniquely regulated. IGFBP-1 production is
inhibited by FSH, insulin, IGF-I, IGF-II, and the somatostatin
analog octreotide, and increased by LH, EGF, PGs, and phor-
bol ester (199, 396, 439, 449–454). The inhibition by insulin
is mediated through its cognate receptor, not the type I IGF
receptor (199). Both IGF-I and IGF-II inhibit IGFBP-1 pro-
duction more potently than insulin (199, 449, 455) and ap-
parently act via the type I IGF receptor. In fact, the concen-
trations of IGFs present in human FF completely inhibit in
vitro granulosa cell IGFBP-1 production. This finding may
explain the production of IGFBP-1 in cultured, but not in
freshly obtained, human granulosa cells (347), as well as the
observation that IGFBP-1 mRNA is not expressed in gran-
ulosa cells of small antral follicles (89). IGFBP-2 production
is negatively regulated by LH/hCG through increased
cAMP; this effect can be reversed by activin-A or interferon-g
(IFN-g) (403, 443). IGF-II, but not IGF-I, decreases medium
IGFBP-2, possibly through an action at the type II IGF re-
ceptor (403). In two studies, cAMP agonists promoted the
accumulation of IGFBP-3 (403, 456), while a third found that
FSH did not alter accumulation of immunoreactive IGFBP-3
but decreased its level on ligand blots, consistent with the
action of an IGFBP-3 protease (451). In another study,
IGFBP-3 detected by ligand blotting accumulated in condi-
tioned medium during treatment with IGF peptides but not
insulin, possibly reflecting release of IGFBP-3 from the cell
surface upon binding ligand or protection from proteolysis
(403). IGFBP-4 accumulation is inhibited by LH despite mod-
est stimulation of its mRNA, apparently through elaboration
of an IGFBP-4 protease (see Section IV.C below) (435, 436, 443,
457). IGFBP-5 mRNA expression is stimulated by activin-A
(442).

IGFBPs found in human FF may either originate from local
production or may reach the FF from an extraovarian source,
such as the liver. FF IGFBPs have been measured both in
antral follicles from cycling women and in hyperstimulated
follicles aspirated for IVF, using both immunoassay and li-
gand blot techniques. FF from cycling women contains im-
munoassayable IGFBP-1, -2, and -3. IGFBP-1 levels range
from 5–32 ng/ml, with levels positively correlated with fol-
licular size and greater in dominant than cohort follicles (348,
446, 458). In one report, FF contained 15 ng/ml IGFBP-2, but
the type of follicle studied was not stated (446). Mean im-
munoassayable IGFBP-3 in estrogen-dominant follicles (2995
ng/ml) was greater than in androgen-dominant follicles
(2352 ng/ml); these levels were indistinguishable from
those in hyperstimulated follicles (348). Immunoassays for
IGFBP-4, -5, and -6 in these follicles have not been reported.

By ligand blotting, two distinct IGFBP profiles have been
consistently observed in FF from cycling women (446, 459,
460). FF from estrogen-dominant, presumably healthy folli-
cles contains low levels, while FF from androgen-dominant,
presumably atretic follicles contains significantly greater lev-
els of IGFBP-2 and both isoforms of IGFBP-4. The lower level
of IGFBP-4 detectable by ligand blotting in FF from estro-
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genic compared with androgenic follicles results from the
action of a serine metalloprotease found in estrogenic but not
androgenic FF (see below) (435, 436, 457). An IGFBP-2 pro-
tease was also recently reported in estrogenic FF (436), but
negative regulation of IGFBP-2 gene expression by gonad-
otropins (443) probably plays a more significant role in re-
ducing IGFBP-2 levels in the healthy follicle. By contrast,
IGFBP-3 levels are similar in FF from both types of follicles.
In one study, IGFBP-3 levels in dominant follicles declined
slightly but significantly with advancing follicle size and
cycle day (446). IGFBP-1 has not been detected on ligand
blots of FF from spontaneously cycling women (459).

FF obtained after hyperstimulation with menopausal go-
nadotropins followed by hCG contains IGFBP-1, -2, and -3,
identified by immunoprecipitation (352, 434, 461). By im-
munoassay, mean IGFBP-1 levels are 90–160 ng/ml (434, 456,
462, 463), while mean IGFBP-3 levels are consistently near
2400 ng/ml (462, 464, 465), and IGFBP-6 levels are 170 ng/ml
(466). By ligand blotting, IGFBP-1, -2, and -3 are detectable
in FF from hyperstimulated cycles (352, 467).

2. Rodent. IGFBPs 2–6 have been detected in the rat ovary in
both localization and cell culture studies (468–470). Studies
of the cycling ovary revealed that IGFBP-4 and -5 are the
predominant species expressed in granulosa cells of antral
follicles. Both are preferentially localized to atretic follicles,
with IGFBP-4 mRNA signal intensity increasing with the
degree of atresia, and both IGFBP-4 and IGFBP-5 mRNA
expression becoming more widespread in atretic follicles
after the proestrous gonadotropin surge (468–470). In
PMSG/hCG-treated rats, each gonadotropin treatment in-
creased IGFBP-4 mRNA expression in small antral follicles,
but no expression was seen in large follicles (471). Cultured
granulosa cells from immature, diethylstilbestrol (DES)-
treated rats secrete intact IGFBP-4 and IGFBP-5 into the me-
dium (447, 448, 472). These cells respond to saturating doses
of FSH by decreasing accumulation of both IGFBP-4 and
IGFBP-5. These effects result from both decreases in mRNA
expression and increases in elaboration of protease activities
that degrade these IGFBPs into smaller, inactive fragments
(448, 460, 473). Paradoxically, low doses of FSH (1–3 ng/ml)
stimulate IGFBP-4 and -5 release (460). GnRH agonists,
which induce follicular atresia (473) and granulosa cell ap-
optosis (474), stimulate basal IGFBP-4 accumulation without
affecting IGFBP-4 protease activity and block the effect of
FSH on both IGFBP-4 production and protease activity (473).
IGF-I stimulates IGFBP-5 accumulation and decreases
IGFBP-5 protease elaboration, while GnRH agonists can op-
pose the effects of FSH on both IGFBP-5 mRNA and protein
expression and IGFBP-5 protease elaboration (447, 475, 476).
Cytokines and growth factors known to block FSH-induced
estradiol production, including TGF-b, tumor necrosis factor
(TNF)-a, basic fibroblast growth factor, and interleukin-1a,
stimulate IGFBP-4 (477), suggesting that their effects on FSH
action are due to the IGF-I-sequestering properties of
IGFBP-4. Activin-A can decrease both IGFBP-4 and IGFBP-5
mRNA expression and IGFBP-5 protein accumulation (478).

In contrast to the expression of IGFBP-4 and -5 by gran-
ulosa cells, IGFBP-2 mRNA expression and production in
culture are unique to theca-interstitial cells in the rat ovary.

IGFBP-3 expression is limited to theca-interstitial cells and
vascular and perivascular elements of corpora lutea, sug-
gesting that it plays a role in the vascular control of luteal
regression (468, 479–481). IGFBP-6 expression is limited to
the thecal layer (422), while no IGFBP-1 expression has been
detected (448, 468).

IGFBP production has also been examined in the mouse
ovary. Notable differences from the rat include expression of
IGFBP-2 by granulosa cells (364, 367), negative correlation of
granulosa IGFBP-5 expression in antral follicles with atresia
(367), and the failure of FSH to inhibit accumulation of
IGFBP-4 and -5 in granulosa cell-conditioned medium (364,
367). In the mouse ovary, expression of IGFBP-4 was in-
creased in granulosa cells of histologically atretic follicles and
was correlated with positive staining for the DNA fragmen-
tation characteristic of apoptosis (367).

3. Livestock species. The pig ovary expresses IGFBP-2, -3, -4,
and -5, with granulosa cell IGFBP-2 localized by in situ hy-
bridization to small follicles and IGFBP-4 to large follicles
(482). IGFBP-2 mRNA and protein levels decline with ad-
vancing follicular development (483). Cultured porcine gran-
ulosa cells elaborate both IGFBP-2 and -3, with production of
IGFBP-3 and IGFBP-2 stimulated by IGF-I and decreased by
FSH (484, 485). Granulosa cells from medium-sized follicles
also accumulate IGFBP-4 and -5. IGF-I stimulates, while FSH
inhibits, IGFBP-5 mRNA and protein production. FSH stim-
ulates elaboration of 22-kDa IGFBP-4 (484, 486). In porcine
FF, follicular growth is accompanied by a slight increase in
IGFBP-3 and a decrease in IGFBP-2 and IGFBP-4, as assessed
by ligand blotting (487–489). While IGFBP-4 and IGFBP-5 are
undetectable in FF from preovulatory follicles, atresia is as-
sociated with a marked increase of intrafollicular levels of
IGFBP-2 and IGFBP-4 (487, 489, 490).

In the sheep, IGFBP-4 and -5 expression in healthy follicles
is mainly limited to the theca (491–493). In atretic follicles,
both IGFBP-2 and -5 are more strongly expressed in the
granulosa layer than in healthy follicles, while both IGFBP-2
and -4 are more strongly expressed by the theca (493). FF
content of IGFBP-2 and -4 declines, while IGFBP-3 slightly
increases, with follicle growth. Atresia is associated with
increased content of IGFBP-2, -4, and -5 (424, 493).

In the cow, as in the sheep, IGFBP-2, -3, -4, and -5 have been
identified in FF by immunoprecipitation. By ligand blotting
and mRNA expression analysis, IGFBP-2 and -4 are more
abundant in estrogen-poor, atretic follicles than in estrogen-
rich, healthy ones (384, 387, 494–497). Within the dominant
follicle, an increase in IGF-I and IGF-II with a concomitant
decrease in IGFBP-2 may promote follicular dominance
(388).

In summary, since granulosa cells from the pig, sheep, and
cow express IGFBP-2, these three livestock species are better
models for the human ovary than is the rat. The large animal
models also permit the study of FF IGFBP content in relation
to follicular functional status. In every species in which such
studies have been reported, atretic follicles contain higher
levels of IGFBPs -2, -4, and/or -5. Additionally, in cell culture
models, gonadotropins universally decrease accumulation
by granulosa cells of these small IGFBPs. These findings
suggest that in a highly conserved mechanism, IGFBPs -2, -4,
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and -5 serve as IGF antagonists in follicles destined to un-
dergo atresia, and that gonadotropins may exert their an-
tiatretic action in part through down-regulation of IGFBP
production. By contrast, IGFBP-3 may reach FF from thecal
production or from the circulation; its level in FF is not
affected by gonadotropins or atresia, but rather increases
modestly with follicular maturation. By contrast to the
smaller IGFBPs, IGFBP-3 appears not to function as an IGF
antagonist within the follicle, possibly because it is saturated
with ligand.

C. IGFBP proteases in the ovary (Table 2)

IGFBP protease activity was first demonstrated for
IGFBP-3 in human pregnancy serum (498, 499). Subsequent
reports of IGFBP-3 protease activity in pregnancy serum of
other species (500, 501) were followed by nearly a decade of
discovery of IGFBP proteases, which exist for most of the
IGFBP species in a variety of biological fluids and are pro-
duced and secreted by a variety of cell types (329, 430, 502).
The IGFBP proteases comprise a superfamily that includes
several classes of proteases, including metal-dependent pro-
teases, matrix metalloproteinases, disintegrin metallopro-
teinases, kallikreins, and cathepsins. These molecules likely
represent enzymes with multiple active sites, multimeric
proteins with subunit-specific active sites, or a cascade of
enzymes with different activities. Several IGFBP proteases
have been characterized with regard to their active sites and
cofactor requirements, and the human pregnancy serum
IGFBP-3 protease has been purified and characterized as a
disintegrin metalloproteinase (503). Most IGFBP proteases
are specific for particular binding-protein substrates.
IGFBP-3 is the most susceptible to proteolysis by a variety of
proteases, whereas IGFBP-1 appears to be the most resistant
(504). Sequence analyses of IGFBP cleavage sites suggests
that most proteolysis occurs in nonconserved regions (505).

The proteolysis of IGFBPs is likely to be an essential mech-
anism in the complex regulation of IGF action. IGFBP pro-
teases partially proteolyze IGFBPs, resulting in lowered af-
finities of the IGFBP fragments for IGF peptides, thus
increasing IGF binding to their receptors. In support of this
concept, inhibitory effects of IGFBPs on IGF-stimulated DNA
synthesis and mitogenesis are reversed in the presence of
IGFBP protease activity in cultured chick embryo fibroblasts
and prostatic epithelial cells, respectively (506, 507). In se-
rum, proteolysis of IGFBP-3 releases IGFs for transport to the
extravascular space, where they are likely bound to other
IGFBPs, which are subsequently cleaved to promote release
of the IGFs for action within the tissue. IGFBP-3 fragments
may act at the cell membrane to augment the stimulatory
effects of IGFs (508). Spatial and temporal regulation of
IGFBP proteases is essential for controlled IGF actions, as
well as the actions of IGFBP fragments.

It is remarkable that IGFBP-4 protease activity has been
found in the ovaries of all species examined, including the
pig, cow, and sheep. In these livestock species, the patterns
of expression of low mol wt IGFBPs and their proteases in
atretic and growing follicles are similar to those observed in

follicles of other species. Likely this finding reflects a con-
served mechanism that has evolved to regulate IGF bioavail-
ability in the ovarian follicle (509–511). In the next sections,
we will review the IGFBP protease activities that have im-
plications for ovarian function in human and rat ovaries.

1. Human.
a. IGFBP-4 protease. IGFBP-4 exists as a nonglycosylated

25-kDa form and a 32- to 34-kDa glycosylated protein. While
some IGFBPs have inhibitory as well as stimulatory effects on
IGF actions, IGFBP-4 appears to have exclusively inhibitory
actions (429). IGFBP-4 mRNA and protein are abundantly
expressed in small antral (androgen-dominant) follicles of
normal and polycystic human ovaries (89, 343). As noted
above, the apparent absence by ligand blotting of IGFBP-4 in
FF from estrogen-dominant, compared with androgen-dom-
inant, follicles (446, 459, 460, 512) was demonstrated to be due
to an IGFBP-4 protease that decreases the affinity of IGFBP-4
for IGFs (457, 513). This protease is a metal-dependent en-
zyme with a pH optimum between 7 and 9 (436, 457), which
is produced by nonluteinizing granulosa cells before the LH
surge as well as by luteinizing granulosa (436, 443, 457, 513).
The degree of proteolysis of IGFBP-4 is inversely propor-
tional to the A:E ratio within the follicle (513). IGFBP-4 pro-
tease activity is stimulated by gonadotropins, IGF-I and -II,
activin-A, and IFN-g (435, 443, 513); FSH and IGF-II syner-
gistically stimulate this activity in nonluteinizing granulosa
cells (435).

When unsaturated with IGF peptide, IGFBP-3 inhibits pro-
teolysis of IGFBP-4, whereas when saturated, it permits
IGFBP-4 proteolysis (514). The implication of this finding is
that in estrogen-dominant follicles, where IGF levels are high
and IGFBP-3 is presumably saturated, IGFBP-4 proteolysis
can increase IGF bioavailability from the pool of IGFs bound
to this binding protein. In contrast, in androgen-dominant
follicles, where IGFBP-3 is presumably unsaturated due to
low levels of IGF production, any IGFBP-4 protease activity
present is inhibited by the unsaturated IGFBP-3.

b. IGFBP-3 and IGFBP-2 proteases. IGFBP-3 protease in es-
trogen-dominant FF (FFe) obtained at oocyte harvest from
patients undergoing IVF was first demonstrated by Gar-
gosky et al. (465). Iwashita et al. (515) also demonstrated a
protease in FFe that cleaved radiolabeled IGFBP-3 into
smaller fragments, whose activity in medium conditioned by
luteinizing granulosa cells was stimulated by increasing
doses of FSH. A 29-kDa fragment of IGFBP-3 was found in
FF from dominant, compared with small antral, follicles,
consistent with the presence of an IGFBP-3 protease (436,
465). With regard to IGFBP-2, immunoblotting revealed al-
most exclusively a 23-kDa IGFBP-2 fragment in FF from
dominant follicles, compared with nearly exclusively intact
IGFBP-2 and minimal fragments in FF from small cohort
follicles (436). These observations are consistent with an
IGFBP-2 protease in FFe, although specific IGFBP-2 prote-
olysis has not yet been demonstrated in these follicles. FSH
action on luteinizing granulosa cells increases IGFBP-3 im-
munoreactivity in conditioned medium and apparently also
increases IGFBP-3 proteolysis. These effects were found to be
dose-dependent (515). These observations underscore the
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complexity of the mechanisms underlying control of IGF
bioavailability within the human follicle.

c. Thecal and stromal proteases. Limited information is avail-
able regarding IGFBP protease in the thecal or stromal com-
partments of the ovary of humans or other species. In human
thecal cell-conditioned medium, LH decreases IGFBP-2, -3,
and -4 levels, but no increase in low molecular weight forms
consistent with proteolysis was seen. Conditioned medium
contains an IGFBP-3 protease, which was partially inhibited
by metal chelators. No difference was observed in theca from
patients with normal or polycystic ovaries (438, 516).

In summary, since IGFs are potent stimulators of steroi-
dogenesis and follicular growth in the human ovary, their
regulation by IGFBPs and IGFBP proteases is temporally and
spatially related within ovarian tissues. This is likely to pro-
vide timed promotion and inhibition of growth factor action
during periods of follicular development and of limited fol-
licular growth or steroidogenesis, respectively.

2. Rodent. Cultured rat granulosa cells secrete intact IGFBP-4
and IGFBP-5 into the medium (see above). When rat gran-
ulosa cells are cultured with FSH, there is a dose-dependent
decrease in intact IGFBP-4 and an increase in a 17.5-kDa
IGFBP-4 fragment, suggesting the stimulation of an IGFBP-4
protease by FSH (448, 473, 517). This proteolytic activity has
a neutral pH optimum and is inhibited by EDTA, but not by
other protease inhibitors, suggesting its dependence on a
divalent cation (517). Some studies, however, failed to find
IGFBP-4 protease activity in granulosa cell-conditioned me-
dium, regardless of FSH stimulation (447, 518). FSH, but not
IGF-I, also stimulates proteolysis of IGFBP-5. The granulosa-
derived IGFBP-5 protease appears to be a zinc-dependent
metalloprotease of molecular mass greater than 100 kDa,
which is specific for IGFBP-5. The resulting degradation frag-
ments were estimated at 18 and 14 kDa in one study (447) and
19.5 and 17.5 kDa in another (518). Under cell-free conditions,
IGF-I attenuates IGFBP-5 proteolysis, suggesting that bind-
ing to IGF-I may be protective (447, 518). GnRH, which
increases IGFBP-4 and IGFBP-5, does not induce protease
activity for either of these IGFBPs under basal conditions, but
it completely blocks the ability of FSH to inhibit IGFBP-4 and
IGFBP-5 accumulation and stimulate protease activity (473,
476, 518). Since IGFBP-4 and IGFBP-5 are effective inhibitors
of FSH action in rat granulosa cells, regulated production of
their proteases is likely to be important in FSH-dependent
control of follicle growth and development.

In summary, IGFBP proteases are produced by granulosa
and theca cells at distinct times of follicle development in
ovaries from a variety of species. This conservation of ex-
pression and their regulation by gonadotropins, IGFs, and
other peptides and cytokines underscore the importance of
IGFBP proteases in regulating IGF bioactivity at unique
stages of follicle development. The striking absence of
IGFBP-4 protease in androgen-dominant follicles and the
presence of this enzymatic activity in estrogen-dominant
follicles argue strongly for an important role for the IGF
peptides as co-gonadotropins and for IGFBPs as antigona-
dotropins during follicular growth, steroidogenesis, and
atresia.

D. IGFBP actions in the ovary

Studies of IGFBP actions in the ovary have largely em-
ployed IGFBPs purified from the FF of large animals or
prepared by recombinant DNA technology, with cultured
granulosa cells from DES-primed, immature rats as the tar-
get. When IGFBP-1, -2, -3, or -4 is added to cultured rat
granulosa cells, each can inhibit FSH-stimulated steroido-
genesis (471, 519, 520), while IGFBP-6 is ineffective (422).
Porcine IGFBP-3 and IGFBP-2 inhibit FSH-stimulated E2 and
P release; their lack of efficacy in the presence of IGF-I an-
tiserum or IGF peptide suggests that they act by neutralizing
endogenous IGF-I (471, 519, 521). In this model, IGFBPs also
decrease mitosis and cAMP generation. Human IGFBP-1, -2,
-3, and -4 all similarly decrease FSH-stimulated P output
(471, 522); human IGFBP-6 does not, possibly because of its
lower affinity for IGF-I, the principal IGF produced by rat
granulosa cells, compared with IGF-II (422). The physiolog-
ical relevance of IGFBP actions on the granulosa is strongly
suggested by in vitro studies showing the greater potency of
IGF peptide analogs that do not bind to IGFBPs, compared
with the native peptides, only under conditions of high-
medium IGFBP levels (522). These observations have led to
the conclusion that intrinsic IGF-I is an obligatory mediator
of FSH-induced E2 and P production by rat granulosa. Ad-
ditional in vivo evidence for the biological relevance of IGFBP
action on the ovary comes from studies showing that injec-
tion of IGFBP-3 into the rat ovarian bursa or introduction of
IGFBP-3 into the in vitro perfusate of rabbit ovaries each can
decrease the rate of follicular rupture at ovulation (523, 524),
and from the recent observation that transgenic mice over-
expressing IGFBP-1 have reduced numbers of ovulations per
estrous cycle (525).

IGFBP actions on human granulosa cells are similar to
those on cells from the rat. In cultured granulosa-luteal cells,
IGFBP-1 and -3 decrease IGF-I-stimulated E2 production;
IGFBP-1 also decreases IGF-I-stimulated mitosis (390, 399,
513, 526, 527). IGFBP-3 fails to inhibit the steroidogenic effect
of des(1–3)IGF-I, an analog that does not bind to IGFBPs. In
granulosa cells obtained from women during unstimulated
cycles, IGFBP-1 and IGFBP-3 inhibit IGF-I-stimulated E2 and
P production (399).

Recombinant human (rh) IGFBP-4 inhibits IGF-stimu-
lated E2 production by human granulosa cells (431, 435,
512, 513). Iwashita et al. (513) employed luteinizing gran-
ulosa cells, whereas Chandrasekher et al. (435) and Mason
et al. (512) used nonluteinizing granulosa cells, showing
that rhIGFBP-4 can inhibit both IGF-II- and FSH-stimu-
lated E2 production. This inhibition exceeded 80%, while
in similar experiments IGFBP-2 or IGFBP-3 inhibited gran-
ulosa cell steroidogenesis by only about 20% (512). In
contrast to the inhibitory effects of intact rhIGFBP-4 on E2

production, addition of proteolyzed IGFBP-4 was without
effect (513). These findings support an important role for
IGFBP-4 and IGFBP-4 protease in the regulation of follic-
ular steroidogenesis in the human ovary. IGFBP-4 inhibits
FSH-stimulated E2 production in the absence of added IGF
peptide or in the presence of type I IGF receptor antibody,
suggesting either IGF-independent action or antagonism
of a locally produced IGF (431, 435, 512). Nevertheless,
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IGFBPs consistently display actions on cultured ovarian
tissues opposite to those of IGF peptides and gonadotro-
pins, suggesting that an excess of IGFBPs can be antigo-
nadotropic (409, 528) and result in either follicular arrest
(as in PCOS) or atresia.

In addition to regulating follicular differentiation and mat-
uration, IGFs and IGFBPs also likely play a role in regulating
apoptosis of granulosa cells, which is associated with follic-
ular atresia (201). In a rat antral follicle culture system, both
gonadotropins and IGF-I can prevent the apoptosis of gran-
ulosa cells that occurs spontaneously in serum-free medium,
and IGFBP-3 reverses the protection from apoptosis afforded
by hCG, FSH, GH, and IGF-I (200, 529). The restriction of
IGFBP-4 expression in the mouse follicle to histochemically
apoptotic granulosa cells (367) also supports a role for
IGFBPs in promoting follicular atresia in vivo.

E. Role of IGFBPs in follicular development and atresia

In the growing estrogen-dominant follicle, a number of
mechanisms have evolved to increase IGF peptide bioavail-
ability and thereby amplify granulosa responsiveness to the
growth-promoting, steroidogenesis-promoting, and anti-
apoptotic actions of FSH (Fig. 6). These include up-regulation
of IGF receptors by gonadotropins and, in the rat, by estro-
gens (90, 530, 531); increase in IGF expression by gonado-
tropins (345, 532); inhibition by IGFs and gonadotropins of
inhibitory IGFBP synthesis (403); and stimulation by gonad-
otropins and IGF-II of IGFBP protease activity (435, 513). The
net result is maximum bioavailability of IGF peptides. In
contrast, in the androgen-dominant follicle that is arrested in
development or destined for atresia, these mechanisms are
reversed (Fig. 6): FSH receptor numbers are low; IGF ex-
pression is almost undetectable; there is abundant expression
of inhibitory IGFBPs (IGFBP-2 and IGFBP-4); and there is
minimal detectable IGFBP protease activity. The net result is
that aromatase is not induced, and thus precursor androgen

persists in these follicles, in association with developmental
arrest or atresia.

The question remains, however, whether relative IGFBP
expression is causally involved in selection and maturation
of the dominant follicle. The study of IGFBPs in PCOS (see
Section V) had been anticipated to shed some light on their
role in follicular maturation in this disorder. Women with
PCOS appear to have a defect in antral follicular maturation,
but the cause of this defect has not been identified. Levels of
IGFBPs in FF and IGFBP mRNA expression in follicular cells
of the PCOS ovary are similar to those in small antral (largely
atretic) follicles in normal women (89, 347, 533, 534). This
appears to exclude a unique defect in IGFBP regulation in the
ovary as a cause of the PCOS follicular maturation defect.
Rather, in both the PCOS and normal ovary, the challenge is
to explain how FSH can be successful in suppressing IGFBP
production in one follicle (destined for dominance) while
failing to do so in others (cohort follicles destined for atresia).

F. Summary

The high levels of expression of IGFs and low levels of
expression of inhibitory IGFBPs in healthy follicles, and the
reverse in atretic follicles, suggest that the level of bioavail-
able IGFs may play a role in regulating follicular growth,
steroidogenesis, and apoptosis. IGFBPs and IGFBP proteases
could thus assume importance in determining follicular des-
tiny, since they can modulate the bioactivity of members of
the IGF family.

V. Polycystic Ovary Syndrome (PCOS)

A. Clinical features

PCOS is a disorder of unknown, probably heterogeneous,
etiology, characterized by chronic anovulation, biochemical
and/or clinical evidence of hyperandrogenism, and en-
larged, polycystic ovaries (535, 536). When first described by
Stein and Leventhal (537) in 1935, the syndrome was defined
by ovarian enlargement and multiple small cysts, in associ-
ation with amenorrhea and hirsutism. PCOS affects between
5–10% of women of reproductive age (538, 539), and the onset
of clinical manifestations often occurs at the time of puberty
(191). In recent years, varying definitions of this syndrome
have been used in studies of this disorder, with some inves-
tigators requiring polycystic ovaries on ultrasound for in-
clusion, and others requiring an elevation of serum LH or
LH:FSH ratio (540). A consensus definition of PCOS was
reached in 1990 under NIH auspices, which requires only
hyperandrogenism of ovarian origin and oligomenorrhea or
amenorrhea, with exclusion of other specific disorders such
as steroid 21-hydroxylase deficiency (541). Other endocrine
abnormalities that are inconsistently present in women with
PCOS include obesity, peripheral insulin resistance and hy-
perinsulinemia, and elevations of serum PRL or DHEA-sul-
fate. Phenotypic differences among PCOS study populations
may reflect underlying genetic differences in etiology or
pathophysiology or in peripheral manifestations such as hir-
sutism (542, 543). Differences in diagnostic selection criteria
can make comparison of studies on PCOS difficult.

FIG. 6. Model of IGF, IGFBP, and IGFBP protease actions in human
ovary. In the estrogen-dominant, healthy growing follicle (shown at
top left), granulosa cell IGF-II production increases, synergizing with
FSH. IGF-II action is amplified by decreased synthesis and increased
proteolysis of IGFBPs. In the androgen-dominant follicle (shown at
top right), both increased IGFBP synthesis and decreased IGFBP
proteolysis contribute to decreased FSH and IGF-II action on the
granulosa, resulting in atresia or developmental arrest.
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PCOS is perhaps the most common disorder in which the
association between insulin resistance and ovarian function
appears to be important. Since several comprehensive re-
views on this subject are available (26, 27, 140, 535), we focus
herein on the controversial issues related to the pathogenesis
of PCOS and the changes in the insulin-related ovarian reg-
ulatory system observed in PCOS. In the following section,
we will review recent studies that have evaluated the use of
inhibitors of insulin secretion and insulin-sensitizing agents
in the therapy of PCOS.

B. Theories of pathogenesis

Determining the etiology or etiologies of PCOS has proven
elusive. It was recognized as early as 1980 by Yen (544) that
in PCOS a number of endocrine abnormalities perpetuate
themselves in what has been described as a “vicious cycle.”
These include abnormal gonadotropin secretion, with excess
circulating LH and low, tonic FSH levels; hypersecretion by
ovarian thecal and stromal compartments of androgens,
which were viewed as both disrupting follicular maturation
and providing substrate for peripheral aromatization to es-
trogens in adipose and other sites; and negative feedback of
this tonic estrogen production on the pituitary to decrease
FSH secretion and thus trophic support of the granulosa cell
(544). The vicious cycle concept was further supported by
studies suggesting that normal ovulatory function can occur
after disruption of this cycle, e.g., by ovarian wedge resection
or cautery or during recovery from GnRHa-induced sup-
pression (545–548). The vicious cycle concept does not, how-
ever, provide an explanation of how the abnormalities be-
come established. A number of endocrine disorders can
produce similar anovulatory, hyperandrogenic states, such
as functional or drug-induced hyperprolactinemia (549, 550)
and adult-onset congenital adrenal hyperplasia resulting
from 21-hydroxylase deficiency (551, 552). The primary ab-
normality in PCOS has been proposed to be of central, ovar-
ian, adrenal, or peripheral metabolic origin. These theories
will be briefly reviewed below.

1. Central hypothesis. Abnormalities in LH-secretory pattern
and its regulation have been observed in PCOS. Women with
PCOS often have both increased LH pulse amplitude and
frequency, compared with ovulatory controls (168, 553–555).
This results in increased or disordered LH secretion and may
lead to an elevated serum LH:FSH ratio. These central al-
terations may be mediated by the altered steroid milieu of
PCOS rather than being primary, since during recovery from
GnRHa suppression no difference was seen between PCOS
and normal women in the recovery of LH pulse frequency
(556). On the other hand, while P normally slows GnRH
pulse frequency, women with PCOS appear relatively resis-
tant to this effect (557, 558), and chronobiological abnormal-
ities of LH secretion can be observed in adolescent girls with
features of PCOS (559), suggesting a primary abnormality of
GnRH pulsatility in this disorder.

Abnormally rapid GnRH pulse generation is assumed to
underlie abnormal LH secretion in PCOS. Abnormalities in
other neuroendocrine modulators, such as the endogenous
opioids, dopamine and leptin, have also been proposed as

determinants of gonadotropin secretion in PCOS. Endoge-
nous opioid excess may sensitize the gonadotrope to GnRH,
particularly in association with hyperinsulinemia (37, 560).
Decreased dopaminergic inhibition of LH release (561) and
an increased incidence of an allelic form of the D3 dopamine
receptor have been noted in women with PCOS (562). Re-
cently, the possible role of leptin in PCOS has been examined.
An initial report found serum leptin levels in a small sub-
population of women with PCOS greater than predicted
from their BMI (563), but subsequent reports have failed to
confirm this finding (564–568). In one study, hyperinsulin-
emia was associated with increased circulating leptin in
PCOS subjects (141), although no association of serum leptin
and insulin in women with PCOS was found in two other
studies (567, 569). It seems unlikely that leptin is responsible
for increased LH secretion in PCOS, since either an inverse
(565, 570) or no relationship (563, 566) has been reported
between serum leptin and LH levels. At this time, it is unclear
whether leptin plays a role in the etiology of PCOS.

2. Ovarian hypothesis. An intrinsic ovarian functional defect
has also been postulated as the source of the self-sustaining
abnormalities in PCOS. Thecal hypertrophy and overpro-
duction of androgens are recognized features of the PCOS
ovary. When placed in culture, PCOS thecal cells continue to
hypersecrete androgens, and when deprived of trophic sup-
port through GnRHa suppression, the PCOS ovary continues
to hypersecrete 17-OHP in response to hCG in vivo (571–573).
Dynamic short-term GnRHa testing in PCOS produces an
exaggerated ovarian 17-OHP-secretory response (107, 573,
574). This response may reflect the increased thecal mass
present in the ovary, but has been also interpreted as re-
flecting dysregulation of the activity of the steroidogenic
enzyme P450c17, which is responsible for both 17-hydroxy-
lation of C21 steroids and for the 17,20-lyase activity neces-
sary for androgen (C19) synthesis (575). The recent report
that the lyase activity of P450c17 can be promoted by serine
phosphorylation of the enzyme (576) suggests a possible
mechanism for abnormal steroidogenesis in PCOS. It is in-
triguing that excessive serine phosphorylation of the insulin
receptor has been proposed as a cause of peripheral insulin
resistance in some women with PCOS (577) (see below; Sec-
tion V.C).

Granulosa cell steroidogenic and mitogenic abnormalities
have also been found in PCOS. Aromatase activity is low in
PCOS granulosa cells in vivo, reflecting decreased FSH ac-
tivity, but is normal or exaggerated when they are cultured
(105, 578). This observation led to the concept that the PCOS
follicle contains excessive amounts of inhibitor(s) of FSH
action. While IGFBP-2 and -4 are FSH antagonists (471, 521)
that are abundant in FF from PCOS antral follicles, their
expression in the PCOS ovary is indistinguishable from that
in the cycling ovary (89, 533, 579) (see above), weakening the
argument for an etiological role of these proteins. Other
studies suggested that an inhibin a-subunit-processing prod-
uct, pro-aC, can serve as an FSH antagonist and is found in
FF (580, 581), but its presence and role in PCOS follicles are
unknown. Granulosa cell mitosis also appears defective, in
that granulosa cell numbers in PCOS follicles are lower than
in healthy size-matched follicles from cycling women (582),
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but whether abnormal granulosa cell mitosis is important in
the pathogenesis of PCOS has not been directly tested.

3. Adrenal hypothesis. Many women with PCOS develop ir-
regular menses shortly after menarche. It has been hypoth-
esized that excessive production of adrenal androgens,
which increases at puberty, can supply substrate for extrago-
nadal aromatization and result in tonic estrogen inhibition of
FSH secretion (544). Premature adrenarche is associated with
a higher incidence of both functional ovarian hyperandro-
genism, with exaggerated 17-OHP response to GnRHa chal-
lenge (583, 584), and insulin resistance (585, 586). Hyperin-
sulinemia can stimulate adrenal as well as ovarian
steroidogenesis (587). Since insulin resistance accompanies
puberty and may contribute to adrenarche, an important
unanswered question is why pubertal insulin resistance fails
to resolve in adolescent girls who develop PCOS, and
whether the effect of hyperinsulinemia on the adrenal, on the
ovary, or on both of these organs is significant in the patho-
genesis of PCOS.

C. Insulin resistance in PCOS

1. Putative causes and role in pathogenesis. A majority of women
with PCOS demonstrate peripheral insulin resistance involv-
ing skeletal muscle and adipose tissue, which results in com-
pensatory hyperinsulinemia (140). Insulin resistance does
not appear to involve ovarian steroidogenesis, because gran-
ulosa and thecal cells from PCOS ovaries demonstrate a
normal dose response to insulin in culture (96, 97). As a
result, excessive insulin stimulation may promote thecal an-
drogen hypersecretion.

Insulin resistance can be determined by measuring insulin
levels during frequently sampled IVGTT (588) or by eugly-
cemic, hyperinsulinemic clamp studies (589). Obese women
with PCOS are more insulin resistant than weight-matched
controls (589–591), suggesting that obesity and PCOS exert
independent effects on insulin resistance. Many studies have
found insulin resistance in lean as well as obese subjects with
PCOS (120, 168, 589, 592), although at least one study failed
to confirm this finding (593), and normal insulin sensitivity
can be restored in some obese women with PCOS with
weight loss (155).

The molecular basis of insulin resistance in PCOS is a
subject of active research and has recently been reviewed
(140, 594). Pedigree studies have suggested a genetic basis of
PCOS in some kindreds, with premature balding as the male
phenotype (595). In these families, linkage to the variable
number of tandem repeats locus upstream of the insulin gene
has recently been demonstrated (596). Mutations in the in-
sulin receptor gene or defects in its intrinsic tyrosine kinase
activity are rarely found, and insulin receptor binding is
normal (216, 597–605). The defect of insulin action in PCOS
appears to be at the postbinding level and to involve glucose
transport (603); it may be observed only in some cell types
(e.g., in adipocytes but not skin fibroblasts) (606) and may be
accompanied by a defect in insulin-induced inhibition of
lipolysis (605, 607). Several molecular mechanisms for the
glucose transport defect have been suggested by recent stud-
ies. In one of these, abdominal adipocytes of PCOS subjects

had a lower content of the GLUT4 glucose transporter than
controls (608). Another noted that the insulin receptor in
about half of women with PCOS is excessively phosphory-
lated on serine, a state that reduces signal transduction (577).
In another report, PCOS adipocyte insulin sensitivity could
be restored by an adenosine receptor agonist, suggesting that
depletion of cellular adenosine may lead to insulin resistance
(609). The correction of insulin resistance by a thiazolidinedi-
one, troglitazone (35, 36), suggests that women with PCOS
may be deficient in signal transduction through peroxisome
proliferator-activated receptor-g (PPAR-g), the natural li-
gand for which appears to be a PG of the J series or an
essential fatty acid (610, 611) (see below).

The potential links between hyperinsulinemia and the in-
creased androgen production observed in PCOS (27, 612)
have been discussed previously (Section II.C); they include
direct stimulation of ovarian androgen secretion by insulin,
possibly through stimulatory effects on the 17a-hydroxy-
lase/17,20-lyase and P450scc enzymes; direct stimulation of
LH secretion by insulin or sensitization of LH-secreting pi-
tuitary cells to GnRH stimulation; up-regulation of ovarian
type I IGF receptors with the amplification of IGF-I, IGF-II,
and insulin actions in the ovary; decreased levels of SHBG,
with concomitant elevation of free androgens; decreased
IGFBP-1 production, both in the liver and in the ovary, with
concomitant elevation of free IGFs in the circulation and in
the ovary; and the synergistic growth- and cyst-promoting
action of insulin and LH.

In addition to these effects, an action of insulin on gran-
ulosa cells has been implicated in the follicular developmen-
tal disorder of PCOS. Granulosa cell numbers are decreased
relative to follicle size in PCOS (582), and it has recently been
suggested that acquisition of granulosa cell LH responsive-
ness too early in follicular development may have an anti-
proliferative effect on granulosa cells in PCOS (613, 614).
Hyperinsulinemia could accelerate development of granu-
losa cell LH responsiveness by amplifying the induction of
LH receptors (13, 96, 164, 613).

It has been proposed both that hyperandrogenemia may
contribute to insulin resistance in PCOS and that hyperin-
sulinemia can promote hyperandrogenism (3, 9, 120). The
results of pharmacological modification studies have sug-
gested that the latter mechanism is more operative than the
former. Androgen levels in PCOS have been reduced and
their action blocked by the use of GnRHa and androgen
receptor blockers. Suppression of ovarian or adrenal steroi-
dogenesis has not improved insulin resistance (615–617),
although in some studies, antiandrogens such as flutamide
and spironolactone (618–620) have led to partial improve-
ment. Ovarian cautery, which lowers androgen secretion,
does not alter insulin resistance (621). Direct administration
of androgens to oophorectomized women has no effect on
insulin levels, though it increases circulating levels of IGF-I
and suppresses SHBG (622). On the other hand, pharmaco-
logical reduction in the level of hyperinsulinemia, either by
insulin sensitizers such as metformin or troglitazone or by
insulin secretion inhibitors such as octreotide or diazoxide,
has consistently improved circulating androgen levels (29–
31, 34–36, 108, 142, 143, 221, 623, 624). Additionally, the
occurrence of hyperandrogenism in states of extreme insulin
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resistance other than PCOS (9, 140) and in association with
hyperinsulinemia induced by valproate therapy for epilepsy
(625) supports a primary role for insulin excess in producing
ovarian dysfunction.

In addition to decreased insulin sensitivity, insulin secre-
tion in patients with PCOS also appears to be abnormal (137,
626). In particular, early insulin release after ingestion of
glucose appears to be exaggerated (155, 627, 628). A decrease
in the amplitude of meal-related insulin pulses and defective
insulin clearance in peripheral tissues have also been re-
ported (629, 630). Patients with PCOS exhibit abnormal en-
trainment of insulin secretory pulses in response to an os-
cillatory glucose infusion (626). These abnormalities,
however, may be secondary to insulin resistance, since they
can be reversed with the use of insulin-sensitizing agents
(36). Both obese and nonobese women with PCOS appear to
have inadequate insulin secretion for their degree of insulin
resistance (631), placing them at an increased risk for the
development of type 2 diabetes (538).

2. Role of obesity in PCOS. Some aspects of insulin action in
obesity resemble those seen in PCOS (632–635). Many pa-
tients with obesity are insulin resistant and hyperinsulinemic
(636–638) and, when central obesity is present, often have
reduced circulating levels of SHBG and mildly elevated an-
drogen levels (639–644). Because insulin resistance has not
been consistently encountered in populations of lean women
with PCOS, the existence of a cause of insulin resistance in
PCOS distinct from that associated with obesity remains
open to question. That obesity contributes significantly to
both insulin resistance and hyperandrogenism in overweight
women with and without PCOS is evident from the im-
provement in androgen levels usually seen with weight loss,
sometimes to levels observed in weight-matched ovulatory
women (121, 147–155, 632, 633, 639, 645–647). Anovulatory
hyperandrogenemic adolescents and adults are more insulin
resistant than weight-matched ovulatory controls (191, 586,
635, 648–651). Since there is some evidence that androgens
may contribute to insulin resistance, however (619, 620, 652–
654), this finding fails to resolve the question of whether
insulin resistance in PCOS is independent of obesity.

The cause of obesity-related insulin resistance is itself not
well understood. As discussed above, obese individuals are
usually insulin resistant, and in some individuals obesity
may be a necessary factor for the development of diabetes.
For example, Sigal et al. (655) recently demonstrated that
glycine-arginine polymorphism in codon 972 of the IRS-I
gene clusters with diabetes and obesity, suggesting that this
polymorphism may predispose to the development of type
2 diabetes only if obesity is also present. A Pro115Gln acti-
vating mutation in the PPAR-g2 receptor has been associated
with obesity (656); activation of this receptor may reduce
insulin resistance, and individuals with this mutation appear
to have lower circulating insulin levels than obese individ-
uals without this mutation. Recent studies have implicated
the cytokine TNF-a as a contributor to insulin resistance in
obesity (241, 657–666). In Native American Pimas, in whom
insulin resistance and obesity are highly prevalent, and in
whom oligomenorrhea is common (212, 634), a mutation
closely linked to TNF-a has been associated with insulin

resistance (667). TNF-a is produced by adipose tissue and
stimulates IRS phosphorylation on serine, which in turn ap-
pears to inhibit insulin receptor tyrosine kinase and PI-3
kinase activation (659, 662, 668–671). Interestingly, TNF-a
may also interfere with the action of IGF-I, although this
effect of TNF-a may involve not only the inhibition of type
I IGF-receptor tyrosine kinase, but also stimulation of IGFBP
production (672). TNF-a can also inhibit expression and sig-
naling through PPAR-g (673, 674), which serves as a major
target for thiazolidinediones; it is controversial whether thia-
zolidinediones block TNF-a inhibition of PPAR-g expression
(675). TNF-a can also inhibit the synergism between insulin
and FSH in stimulating steroidogenesis (676). Although all of
these findings are of great interest, the ability of TNF-a to
induce insulin resistance in vitro or in vivo has not been firmly
established (677–679). Further, circulating as well as FF
TNF-a concentrations in PCOS appear to be similar to those
in normal women (680, 681). Leptin may also contribute to
the insulin resistance of obesity via mechanisms similar to
TNF-a, but ob/ob mice, which lack functional leptin, develop
insulin resistance (287). Furthermore, in the Zucker fatty rat,
which lacks a functional leptin receptor, IRS-1 and -2 are
down-regulated in the liver, leading to a dramatic reduction
in PI-3 kinase activity in spite of the leptin resistance (289).

In summary, the cause of insulin resistance in women with
PCOS appears to be, at least in part, related to obesity, and
insulin resistance is not present in all women with PCOS
(682). Whether there is a component of insulin resistance in
PCOS independent of the insulin resistance of obesity will be
clarified once the specific molecular mechanisms of insulin
resistance in both of these conditions are better understood
(670, 683, 684). It has been proposed that the pathogenesis of
PCOS is different in obese and nonobese women, with in-
sulin resistance and hyperinsulinemia playing a central role
in obese patients, and abnormalities of the GH-IGF-I axis
being important in PCOS in lean women (168, 685, 686).

D. Alterations of IGFs and IGFBPs in PCOS

1. Ovarian IGF production. By in situ hybridization and im-
munohistochemistry, the patterns of IGF-I and IGF-II mRNA
and protein expression in the antral follicles of the PCOS
ovary were identical to those of the small antral, nondomi-
nant follicles of cycling women (89). In human thecal cell
cultures from PCOS ovaries, no differences were noted in
IGF-I or IGF-II production compared with cultures derived
from control women (438). In FF, levels of IGF-I in PCOS are
similar to or slightly greater than in FF from cycling women
(687, 688). To our knowledge, basal levels of IGF-II in FF have
not been reported in PCOS. However, after gonadotropin
stimulation for IVF, intrafollicular IGF-II levels are lower in
PCOS than in control women, and IGF-II expression by gran-
ulosa cells is lower as well (689).

2. Ovarian IGFBP production. IGFBP production has been
examined in the PCOS ovary. In an in situ hybridization
study, each IGFBP displayed a pattern of mRNA expression
identical to that seen in the small antral follicles of cycling
women (89). In a recent study, IGFBP-4 localization in PCOS
antral follicles correlated with insulin sensitivity: insulin-
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resistant women had greater IGFBP-4 staining in theca than
in granulosa, while the reverse was seen in non-insulin-
resistant subjects (433). Two groups have examined IGFBP
production by cultured cells derived from PCOS ovaries. San
Roman and Magoffin (579) reported the presence of IGFBP-3
in media conditioned by both granulosa and theca cell cul-
tures from three women with PCOS, with levels declining
after gonadotropin stimulation. TGF-b increased IGFBP-3
production by granulosa cells and antagonized the effect of
FSH. In a similar study, another group found no detectable
IGFBPs by ligand blotting and no IGFBP-3 or IGFBP-2 by
immunoblotting in granulosa cell-conditioned medium,
while thecal cell-conditioned medium from PCOS ovaries
showed the same IGFBP profile as that derived from cycling
women (438).

The three groups that examined IGFBP profiles by ligand
blotting in FF from cycling women (see Section IV.B.1) also
examined FF from women with PCOS (460, 533, 579). They
all found FF IGFBP profiles in PCOS similar to those in the
androgen-dominant follicles of cycling women: levels of
IGFBP-2 and IGFBP-4 are markedly elevated in PCOS folli-
cles compared with estrogen-dominant follicles. By contrast,
no differences in IGFBP-3 levels were noted in FF from PCOS
follicles, androgen-dominant follicles, and estrogen-domi-
nant follicles from cycling women (459, 579). These findings
indicate that the bioavailability of IGFs within the PCOS
follicle, as in all androgen-dominant follicles, is likely low-
ered by higher IGFBP levels. Two studies have noted that a
spontaneous preovulatory follicle found in a woman with
PCOS had an IGFBP profile similar to that of the preovula-
tory follicles of cycling women (460, 690), suggesting that the
expression of IGFBP-2 and IGFBP-4 can be regulated nor-
mally in some women with PCOS. FF IGFBP-1 levels have
been studied in PCOS by immunoassay. Levels in size-
matched PCOS follicles were 48% of those from cycling
women (458), possibly reflecting a greater inhibitory effect of
insulin on IGFBP-1 production.

3. Serum IGFs. Perhaps as a consequence of decreased serum
IGFBP-1 levels, serum free IGF-I levels are elevated in PCOS
(348, 691). This latter finding suggests that IGF-I may be more
available to the theca in PCOS than in normal women and
may contribute to the increased androgen production by the
PCOS theca cell (692). Serum free IGF-I levels do not correlate
with IGFBP-1 levels, however, arguing against a causal re-
lationship between decreased serum IGFBP-1 and increased
IGF bioavailability at the follicular level. Serum total IGF-I
and IGF-II levels are not different between PCOS and normal
women (348, 691).

4. Serum IGFBPs. The role of circulating IGFBPs in modu-
lating normal ovarian function is uncertain, in view of the
lack of cycle-dependent changes in serum IGFBP-1 and
IGFBP-3 (348, 693) and the lack of evidence from selective
venous catheterization for a significant ovarian contribution
to serum levels of these IGFBPs (694). Conversely, it is likely
that FF IGFBP levels can be influenced by changes in serum
levels, since FF contains transudated serum proteins. Be-
cause of the availability of immunoassays, IGFBP-3 and
IGFBP-1 have been most extensively studied in PCOS.

No difference has been found by immunoassay in serum
IGFBP-3 levels between PCOS and ovulatory controls (168,
348, 695, 696). Similar integrated 24-h IGFBP-3 levels were
found in obese and lean women with PCOS, which also did
not differ from obese or lean controls (168). One study ex-
amined the effect on serum IGFBP-3 of octreotide, which
decreases insulin secretion in hyperinsulinemic women with
PCOS (142). In women with PCOS unselected for insulin
resistance, octreotide increased serum IGFBP-3 levels by
42%, while decreasing serum IGF-I by 63%. No change in
IGFBP-3 and a smaller but significant decrease in IGF-I were
observed in control women (696). The effect of octreotide on
insulin secretion cannot explain this decrease in serum
IGFBP-3, since insulin does not modulate circulating
IGFBP-3 (697). The decrease in serum IGF-I also cannot ex-
plain the increase in IGFBP-3, since IGF-I does not appear to
regulate serum IGFBP-3 (698). Rather, these findings suggest
a central alteration in the GH/IGF-I axis in PCOS (168, 699).

Women with PCOS, particularly if obese, have lower se-
rum IGFBP-1 levels than their normally cycling counterparts
or anovulatory women without PCOS (348, 444, 592, 691, 700,
701). Fasting serum IGFBP-1 levels are negatively correlated
with serum insulin levels in all human subjects, including
those with PCOS (192, 194, 198, 701). In women with PCOS,
IGFBP-1 levels decline during both OGTTs and IVGTTs in a
fashion mirroring the insulin response (190, 192). Weight loss
increases serum IGFBP-1 (702), while ovarian electrocautery,
which improves ovulatory function, and GnRHa suppres-
sion of ovarian steroid production each has no effect on
serum IGFBP-1 or insulin sensitivity (546, 621, 703). Thus,
serum IGFBP-1 levels reflect both short-term fluctuations in
insulin levels (183) and the degree of peripheral insulin re-
sistance. It has been proposed that IGFBP-1 levels in women
with PCOS may be useful clinically as a marker for insulin
resistance (621).

E. Summary

Multiple abnormalities of the components of the insulin-
related ovarian regulatory system are present in PCOS. It
remains to be confirmed whether any of these abnormalities
are primary in the pathogenesis of PCOS and whether they
play an important role in the development of hyperandro-
genism and anovulation in this disorder.

VI. The Insulin-Related Ovarian Regulatory System:
Implications for Therapy

If abnormalities of the insulin-related ovarian regulatory
system are of clinical importance in patients with altered
ovarian function, one would expect the reversal of these
abnormalities to lead to clinical improvement (32). There are
several types of therapeutic interventions that may influence
the ovarian insulin-related regulatory system: low calorie
diets and weight reduction; insulin-sensitizing agents, in-
cluding metformin, troglitazone, b3-adrenergic receptor ago-
nists, and vanadate; inhibitors of insulin secretion, such as
octreotide and diazoxide; promoters of insulin clearance,
such as the opioid antagonist naltrexone; IGF-I and IGF-II;
and GH, which can act both through its own receptors and
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by affecting IGF-I production in the liver and IGFBP pro-
duction in both the liver and the ovary.

A. Treatment of PCOS

1. Dietary modification. In numerous studies of women with
PCOS, caloric restriction (even without weight loss) or
weight-reducing diets have resulted in normalization of in-
sulin sensitivity and gonadotropin and androgen metabo-
lism (including P450scc and 17a-hydroxylase activity); im-
provement of acanthosis nigricans, which is commonly
observed in obese insulin-resistant women (704–706); and
restoration of ovulation (147–152, 154–156, 646, 702, 707). As
discussed above, mechanisms underlying such improve-
ments may include a decline of insulin-stimulated gonado-
tropin secretion as well as a reduction of the direct stimu-
latory effect of insulin on the ovary and/or the adrenal and
alleviation of insulin-induced inhibition of both SHBG and
IGFBP-1. Additionally, the reduction of leptin levels ob-
served during caloric restriction may lead to the deactivation
of the hypothalamic-pituitary-ovarian axis. In practice, how-
ever, sustained long-term weight loss using dietary inter-
vention can be accomplished only in a small number of obese
individuals (636). Therefore, other therapeutic approaches
are usually needed.

2. Agents that lower circulating insulin without affecting insulin
sensitivity. Both diazoxide and octreotide can directly inhibit
pancreatic insulin secretion; these agents also reduce andro-
gen levels, and octreotide has been shown to restore ovula-
tion (30, 34, 142, 221, 623). The long-term use of these agents
in PCOS, however, is not desirable, since they may worsen
glucose tolerance and further increase the risk of developing
diabetes (224, 538, 708).

Opioid antagonists such as naltrexone can decrease the
insulin response during OGTT and may do so largely by
increasing the rate of insulin clearance in a subset of women
with PCOS who may have defective insulin clearance (37,
223, 709, 710); they do not affect glucose utilization during a
clamp study (223). Although naltrexone treatment has not
been associated with lowering of LH or androgens (37, 711,
712), improvements in both spontaneous ovulation and re-
sponsiveness to clomiphene have been noted in association
with the decline in circulating insulin (38).

3. Insulin-sensitizing agents. The biguanide metformin is an
insulin sensitizer that can reduce hyperglycemia in type 2
diabetes. Its mechanisms of action involve suppression of
hepatic glucose output and improvement in insulin sensi-
tivity in peripheral tissues (713–717). Metformin has also
been reported to increase insulin receptor tyrosine kinase
activity in vascular smooth muscle (718). Metformin does not
appear to have a direct effect on ovarian steroidogenesis
(719) or on synthesis of IGFBP-1 (720).

The effects of metformin on circulating levels of insulin,
androgens, and gonadotropins and on ovulatory function
have been examined in PCOS. In a dose of 500 mg three times
daily for 4–8 weeks, metformin improved insulin sensitivity
and decreased hyperinsulinemia, with integrated insulin se-
cretion during OGTT decreasing by 35–40% (31). Along with
the reduction of circulating insulin, SHBG was increased and

serum LH and androgens, as well as the exaggerated 17-OHP
secretory response to GnRHa, were reduced (29, 31, 108, 143,
145, 624). These improvements occurred in both obese and
lean subjects and were noted in placebo-controlled studies
(29, 108). In one of these, reduction in serum free T and LH
was accompanied by restoration of menstrual cyclicity in 21
of 22 subjects, associated in most with ovulatory P levels
(143). A recent report also suggests that metformin can im-
prove the ovulatory response to clomiphene in PCOS (721).
Metformin appears to exert its inhibitory effect on androgens
by reducing hyperinsulinemia, which in turn leads to de-
creases in pituitary LH secretion, thecal androgen secretion,
and an increase in SHBG. Several studies, however, have not
found an improvement in insulin sensitivity or androgen
metabolism in PCOS with metformin (153, 722–724). In one
of these, weight was deliberately maintained at a controlled
level (723). In another study, obese, hirsute women were
treated with a low calorie (1500 kcal/day) diet and in a
randomized fashion with either placebo or 850 mg met-
formin/day. Diet led to a reduction in insulin levels, a rise
of SHBG, and a fall in free androgen levels, but metformin
had no additional effect (153).

Troglitazone, a thiazolidinedione, decreases peripheral in-
sulin resistance and is useful in the treatment of type 2
diabetes (725–728). Thiazolidinediones are high-affinity li-
gands for PPAR-g (729, 730), a member of the steroid nuclear
receptor superfamily, and are believed to exert their effect on
insulin sensitivity by activating this receptor. Activation of
PPAR-g in adipocytes promotes their differentiation and in-
creases the expression of the fatty acid binding protein aP2
(731–733), as well as uncoupling proteins (734–736), which
act in mitochondria to uncouple oxidation and phosphory-
lation. PPAR-g activation is promoted by insulin (733). It is
not known how thiazolidinediones mediate insulin sensitiv-
ity. It has been suggested that they may act in part by an-
tagonizing TNF-a-induced insulin resistance (660, 673, 733)
or by leading to a decreased production of leptin (737, 738).
In subjects with impaired glucose tolerance or frank diabetes,
troglitazone improves glycemic control and decreases circu-
lating insulin concentration (725, 727, 739). In obese nondi-
abetic humans, troglitazone increases glucose disposal rate
and improves insulin sensitivity (740). It has been proposed
that troglitazone can delay or prevent the development of
type 2 diabetes in insulin-resistant individuals, including
women with a history of gestational diabetes (740, 741).

In two studies of obese women with PCOS, defined by
hyperandrogenemia and oligomenorrhea or amenorrhea,
troglitazone decreased circulating insulin levels and in-
creased insulin sensitivity (35, 36). Notably, troglitazone also
decreased serum free T and increased SHBG levels, the latter
apparently a direct result of the decline in circulating insulin.
In a study in which subjects were not selected for glucose
intolerance (35), serum LH also declined. This study noted
that 2 of 21 women (9%) ovulated spontaneously on trogli-
tazone, based on serum P elevation. When subjects were
selected for impaired glucose tolerance (36), serum total T
declined and the 17-OHP response to leuprolide was also
decreased, but LH levels were unchanged. The return of
ovulation was not reported. In this group of subjects, char-
acterized by abnormal pancreatic b-cell entrainment of in-
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sulin secretion to an oscillatory glucose infusion, troglitazone
normalized the insulin-secretory response (36, 742). Al-
though the effect of troglitazone to lower circulating andro-
gens is thought to be mediated by a reduction in plasma
insulin, troglitazone has recently been reported to inhibit
3b-HSD, and thus P production, in cultured porcine gran-
ulosa-luteal cells (743). The relevance of this finding to tro-
glitazone treatment of women with PCOS remains to be
determined.

Taken together, studies of metformin and troglitazone in
PCOS suggest that reduction of insulin resistance and hy-
perinsulinemia leads to a decline in ovarian androgen hy-
persecretion, lending further support to the hypothesis that
insulin resistance and hyperinsulinemia are indeed instru-
mental in the development of hyperandrogenism in PCOS.

Three other insulin-sensitizing agents are of potential use
in PCOS: d-chiro-inositol (also called INS-1), b3-adrenergic
receptor agonists, and vanadate (744, 745). d-chiro-Inositol,
which may serve as a precursor for inositolglycan mediators
of insulin signal transduction, has been shown to lower cir-
culating insulin and improve insulin action in spontaneously
insulin-resistant primates (744). A recent study suggests that
inositolglycans mediate the stimulation of thecal steroido-
genesis by insulin (79), and another report suggests that
d-chiro-inositol, given to women with PCOS in a placebo-
controlled trial, decreases insulin secretion during OGTT and
increases plasma SHBG. Accompanying these changes was
a significant restoration of spontaneous ovulation (746).

b3-Adrenergic receptors are located in brown fat, a tissue
responsible for nonshivering thermogenesis and weight reg-
ulation. Ablation of brown adipose tissue in transgenic an-
imals induces insulin resistance (747). When given to obese
rodents, b3-adrenergic receptor agonists can produce weight
loss and a reduction in insulin resistance (745).

Vanadate appears to improve insulin action through
mechanisms distal to insulin-receptor kinase activation (748–
752). Vanadium may activate cytosolic protein tyrosine ki-
nase and thus may mimic the effects of insulin (748, 753).
Both in insulin-resistant animals and in those with strepto-
zotocin-induced diabetes, vanadate reduces blood glucose
concentration and, in the former group, it reduces circulating
insulin levels (745). Vanadyl sulfate can reduce insulin re-
sistance in patients with type 2 diabetes (754).

It remains to be established whether d-chiro-inositol, b3-
adrenergic receptor agonists, or vanadate are clinically use-
ful in women with insulin resistance and hyperandrogenism.

B. Therapeutic use of IGF-I and IGF-II

IGF-I has been used therapeutically in several studies in
patients with type 1 or type 2 diabetes (755–759), in syn-
dromes of extreme insulin resistance (329, 745, 760), and in
myotonic dystrophy and other diseases (761, 762). IGF-I ap-
pears to be effective in enhancing the sensitivity of tissues to
insulin and in directly inhibiting insulin secretion by pan-
creatic b-cells (763, 764). Its side effects include symptomatic
hypophosphatemia, seen mainly with intravenous adminis-
tration; arthropathy; and occasional cranial nerve palsies
(745).

In patients with syndromes of extreme insulin resistance,

injections of IGF-I result in a decline of plasma glucose con-
comitant with a decrease in insulin and C-peptide (745, 763,
765, 766). The mechanisms of these effects of IGF-I are not
well understood. It is possible that in addition to having
insulin-like actions of its own mediated by the type I IGF
receptor, IGF-I can also indirectly activate the insulin recep-
tor, possibly by initiating insulin receptor phosphorylation
(type I IGF receptor/insulin receptor “cross-talk”). Long-
term (2-yr) administration of IGF-I to a patient with extreme
insulin resistance (type A syndrome) led to a reduction of
glucose levels but was associated with worsening of her
hyperandrogenism (767). Similarly, prolonged administra-
tion of IGF-I to women with GH receptor deficiency is as-
sociated with the development of hyperandrogenism (768).
To our knowledge, there are no clinical trials of IGF-II in
patients with insulin resistance and/or anovulation. When
overexpressed in transgenic mice, IGF-II produces improve-
ment in insulin sensitivity and increases in lean body mass
without affecting body size (769). The reproductive function
of mice overproducing IGF-II has not been examined in de-
tail. Whether IGFs can be safely used in humans with insulin-
resistant states, and whether their use will affect ovarian
function, awaits further study.

C. Use of GH in ovulation induction

1. GH effects on ovarian function. Another manipulation of the
components of the insulin-related ovarian regulatory system
that may have therapeutic implications is the use of GH along
with gonadotropins in ovulation induction. GH can poten-
tially influence follicular function in four ways: direct action
on follicular cells through GH receptors; direct action to
increase ovarian IGF production; action on the liver to in-
crease circulating IGF-I; and modulation of intrafollicular
and hepatic IGFBP production and/or IGFBP levels in FF
and in the circulation.

There is evidence for direct effects of GH on human gran-
ulosa cells, which express GH receptors (770–772). GH treat-
ment of granulosa cells in vitro stimulates both steroidogen-
esis and mitogenesis (773–776). Since evidence points against
production of IGF-I by human granulosa cells, it is ques-
tionable whether GH actions on the human ovary are me-
diated through ovarian IGF-I. Only the theca layer expresses
IGF-I mRNA, but it does not appear to express GH receptors
(777). In one study, GH actions on human granulosa cells
could be blocked by antibodies to IGF peptides or the type
I IGF receptor (775), but in two others (773, 776), IGF-I pro-
duction by granulosa cells was not detected, even with GH
treatment. The latter studies, in addition to those showing
that the human ovary, unlike its rodent counterpart, does not
produce IGF-I (13, 14, 88, 89), suggest that GH can act directly
on granulosa cells through its own receptor. At least one
study, however, found no effect of GH on granulosa cell
steroidogenesis (778).

GH increases hepatic production of IGF-I, and IGF-I me-
diates many of the effects of GH. When GH is given on an
alternate-day schedule in ovulation induction protocols,
both circulating and FF IGF-I levels rise (464, 779–786). The
increase of intrafollicular IGF-I most likely mediates the ad-
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juvant effect of GH seen in ovulation induction of some
anovulatory patients (see below).

GH treatment added to ovulation induction protocols may
also influence intrafollicular IGFBP levels. GH is the princi-
pal stimulator of hepatic IGFBP-3 production and hence a
major regulator of serum IGFBP-3 (429). In studies of poor
responders to conventional gonadotropin ovulation-induc-
tion regimens, GH did not affect levels of IGFBP-1 or IGFBP-3
in FF, but it did raise serum IGFBP-3 (461, 464, 784). In a study
of unselected women undergoing IVF (786), however, GH
raised FF levels of IGFBP-1, -3, and -4, as well as serum levels
of IGFBP-3, compared with matched placebo cycles in each
subject. The increase in IGFBP-1 likely arises within the fol-
licle, since serum IGFBP-1 is transiently reduced by GH (787).
Differences in the IGFBP-3 response among patients suggest
that the beneficial effect of increased IGF-I with GH may be
blunted by stimulation of IGFBP-3 in some women (786).

The effects of GH treatment on follicular steroidogenesis
have also been examined. In COH cycles, FF levels of E2 and
P did not differ between GH- and placebo-treated groups
(406, 464, 774, 783, 788, 789). In one study, E2 and P produc-
tion by granulosa cells in culture was unaltered by in vivo GH
exposure (788), but in another, levels of mRNA expression
for 3b-HSD and aromatase in freshly harvested granulosa
cells were increased by GH (774). Supporting the latter result,
a third study found that steroidogenesis by cultured gran-
ulosa cells immediately after harvest was increased by in vivo
GH exposure (775).

There is evidence that endogenous GH secretion may af-
fect ovarian function, particularly in response to gonadotro-
pin stimulation. Women with higher basal GH levels had
greater E2 and oocyte number than those with lower GH
levels in one study (790), and in another, serum IGFBP-3 level
before stimulation, presumably reflecting integrated GH se-
cretion, was positively correlated with serum E2 and follic-
ular response to gonadotropins (791). GH reserve, measured
by response to a clonidine-provocative test, was lower in
poor responders in two studies (792, 793), but not different
in a third (794). The GH rise in response to gonadotropin
stimulation (795) was predictive of pregnancy, but not of the
degree of ovarian stimulation (796). Age and weight may be
important confounders, however, as GH levels are lower in
women of advanced reproductive age and in obese women
(168, 797, 798).

2. Clinical trials of GH in ovulation induction. Given the po-
tential physiological involvement of the GH/IGF-I axis in
ovulation, many investigators have attempted to use exog-
enous GH as an adjuvant for ovulation induction. A prelim-
inary trial by Homburg et al. (799) found that GH, in a dose
of 20 IU on alternate days, significantly augmented the ovar-
ian response to human menopausal gonadotropins (hMG) in
four of seven patients undergoing ovulation induction. The
four patients who showed improvement all had hypogona-
dotropic anovulation. The same group of investigators then
undertook a randomized, double-blind, placebo-controlled
trial, in which 16 women with hypogonadotropic anovula-
tion were treated with placebo or GH, 24 IU every other day,
in addition to hMG. The duration of treatment and the total
number of ampules of hMG needed were reduced in the GH

group, compared with the placebo group (800). Another
report noted a similarly decreased hMG requirement in three
anovulatory women, which persisted in the subsequent cycle
(801). A study in IVF patients, who were not selected for
anovulation but included a majority with ultrasound-dem-
onstrated polycystic ovaries, also found that GH reduced
hMG requirement (779). Two other studies, in hypogonado-
tropic women with polycystic ovaries (802) or clomiphene-
resistant women with PCOS (803) undergoing ovulation in-
duction with GnRHa and hMG, found an improvement in
hMG response with GH cotreatment. A large, multicenter
placebo-controlled study of 64 hypogonadotropic, anovula-
tory women confirmed that GH decreases the total hMG
requirement in a fashion dependent on GH dose, but GH
lowered pregnancy rates (804).

In contrast to these results in anovulatory women, studies
in ovulatory women undergoing hyperstimulation for IVF
have largely failed to show a benefit of adjunctive GH. The
largest group of these studies examined poor responders to
GnRHa-down-regulated hMG stimulation cycles (779, 784,
789, 805–808). These studies administered GH, typically in a
dose of 12 IU on alternate days, concurrently with hMG until
adequate follicular maturation was achieved. None demon-
strated a statistically significant improvement in pregnancy
rate with GH. Of the four studies that employed a double-
blind, placebo-controlled design, two (789, 808) found no
benefit of GH on cycle stimulation parameters, while two
others (779, 784) found a significant improvement with GH
only in the fertilization rate. Two studies, however, did note
a decreased hMG requirement with GH (779, 805).

GH has also been studied as an adjunct to short (flare)
GnRHa-hMG regimens for stimulation before IVF. In a pla-
cebo-controlled study of poor responders receiving conven-
tional leuprolide doses, no benefit of GH was found (785). In
an open-label study of GH in a microdose (40 mg twice daily)
leuprolide flare regimen, follicular development was found
to be superior with GH and cycle cancellation avoided in
patients whose previous long GnRHa cycles had been can-
celed (809). In normal responders to hMG or unselected
women, no effect of GH was seen on follicular response,
oocyte or embryo quality or number, or pregnancy rate in
four studies of women undergoing GnRHa-down-regulated
hMG treatment for IVF (783, 786, 788, 806).

Given the suggestion of a beneficial effect of GH in some
women, particularly those with impaired ovulation, several
approaches have been taken to identify candidates for ad-
junctive GH. In two placebo-controlled studies, women with
polycystic ovarian morphology undergoing IVF showed sig-
nificant improvement with GH in numbers of follicles, oo-
cytes collected, and oocytes fertilized (779, 780). In another
approach, blunted responses to provocative tests for GH
secretion, which may indicate occult or borderline GH de-
ficiency, have been used to select patients for GH treatment.
Anovulatory, nonobese women with decreased GH reserve
on a clonidine provocative test showed a 30% lower hMG
requirement when given adjunctive GH (792). In another
study, conception rates in a mixed IVF/in vivo fertilization
population were increased by GH in clonidine-nonrespon-
sive, but not in clonidine-responsive, subjects (810).
Clonidine-negative women may have dysovulatory features
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similar to those of PCOS, which has been associated with
decreased basal GH levels as well as decreased responsive-
ness to clonidine and l-DOPA (168, 699, 798, 811).

The extensive literature on the use of adjunctive GH in
hMG-based ovulation induction regimens has failed to dem-
onstrate the general clinical utility of GH, despite the evi-
dence for an involvement of the GH/IGF-I axis in ovarian
follicular function. As noted above, many of the studies had
small numbers of subjects, lacked placebo controls, used
inconsistent protocols of GH administration, and lacked uni-
form definitions of “poor responders.” These features make
comparisons of these studies difficult. At present, given its
cost, in our opinion the use of adjunctive GH in all ovulation
induction protocols is not warranted. Further large-scale ran-
domized, double-blind clinical trials, which could help de-
termine parameters that allow selection of those patients who
will benefit from GH use in ovulation reduction protocols
should be conducted.

VII. Summary and Conclusions

In summary, the ovarian insulin-related regulatory system
consists of insulin, insulin receptors, IGF-I, IGF-II, type I IGF
receptors, type II IGF receptors, IGFBPs 1–5, and IGFBP
proteases. There is evidence that the components of this
system interact in a complex way (Fig. 7). The insulin-related
ovarian regulatory system appears to participate in the reg-
ulation of normal ovarian function, including initiation of
puberty and ovulation, and its components are altered in
certain pathological states, which include type 1 and type 2
diabetes mellitus, obesity, reproductive abnormalities asso-
ciated with weight loss and starvation, PCOS, and states of
extreme insulin resistance. Therapeutic approaches directed
toward normalization of the components of this system ap-
pear to be promising in some of these diseases.
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Progesterone, Progestins and Antiprogestins
in the Next Millennium
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The Symposium will encompass new developments in both basic and clinical aspects of progesterone,
progestins and antiprogestins. The program will be tailored for both basic scientists and physicians (in-
cluding internists, obstetricians, gynecologists and endocrinologists, who are in both academia and clinical
practice).
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