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Abstract

Background: Trans-fatty acids (TFA) are known as a risk factor for coronary artery diseases, insulin resistance and

obesity accompanied by systemic inflammation, the features of metabolic syndrome. Little is known about the

effects on the liver induced by lipids and also few studies are focused on the effect of foods rich in TFAs on

hepatic functions and oxidative stress. This study investigates whether high-fat diets with different TFA levels

induce oxidative stress and liver dysfunction in rats.

Methods: Male Wistar rats were divided randomly into four groups (n = 12/group): C receiving standard-chow;

Experimental groups that were fed high-fat diet included 20% fresh soybean oil diet (FSO), 20% oxidized soybean

oil diet (OSO) and 20% margarine diet (MG). Each group was kept on the treatment for 4 weeks.

Results: A liver damage was observed in rats fed with high-fat diet via increase of liver lipid peroxidation and

decreased hepatic antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase). The

intake of oxidized oil led to higher levels of lipid peroxidation and a lower concentration of plasma antioxidants in

comparison to rats fed with FSO. The higher inflammatory response in the liver was induced by MG diet. Liver

histopathology from OSO and MG groups showed respectively moderate to severe cytoplasm vacuolation,

hypatocyte hypertrophy, hepatocyte ballooning, and necroinflammation.

Conclusion: It seems that a strong relationship exists between the consumption of TFA in the oxidized oils and

lipid peroxidation and non alcoholic fatty liver disease (NAFLD). The extent of the peroxidative events in liver was

also different depending on the fat source suggesting that feeding margarine with higher TFA levels may

represent a direct source of oxidative stress for the organism. The present study provides evidence for a direct

effect of TFA on NAFLD.
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Background
Various food processing techniques have been found to

leave deleterious effects on the processed foods and fats

and oils are no exception [1-3]. In the developing nations,

the intermittent use of reprocessed thermoxidised oil is

widespread [4]. Due to their long shelf life, their suitabil-

ity during deep-frying and their semisolidity, partially

hydrogenated vegetable oils are used by the food indus-

tries to enhance the palatability of baked goods and

sweets. In the process of hydrogenation, unsaturated

vegetable oils undergo the introduction of hydrogen gas

under certain conditions of pressure and temperature

using a catalyst metal (nickel, palladium, platinum, and

ruthenium). The hydrogenation process involves the

transformation of certain unsaturated fatty acids from cis
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to trans configuration. In their natural form, most fatty

acids present only cis-isomerism [5]. Trans fatty acids

(TFAs) are produced through the industrial hardening of

the vegetable oils to make the products more stable and

robust, and thus easier to handle or store [6]. Most TFA

have physical properties similar to saturated fatty acids

(SFA) [7]. More specifically, monounsaturated TFA iso-

mers with 18-carbon chain length (trans-18:1) are some

of the predominant TFAs present in the human diet

[8,9]. TFAs are known as a risk factor for coronary vascu-

lar diseases (CVD), insulin resistance and obesity accom-

panied by systemic inflammation, the features of

metabolic syndrome [10,11]. Recent studies suggest mul-

tiple possible mechanisms that might mediate the asso-

ciation of TFAs with CVD [12]. For example, TFAs

influence prostaglandins balance, which in turn promotes

thrombogenesis [13] and inhibits the conversion of lino-

leic acid to arachidonic acid and to other n-6 PUFA, per-

turbing essential fatty acid metabolism and causing

changes in the phospholipid fatty acid composition in the

aorta [14]. TFAs have been associated with the activation

of systemic inflammatory responses, including substan-

tially increased levels of IL-6, TNF-a, TNF receptors and

monocyte chemoattractant protein-1 [15]. Furthermore,

TFAs have been associated with increased levels of sev-

eral markers of endothelial activation, including soluble

intercellular adhesion molecule 1, soluble vascular-cell

adhesion molecule 1 and E-selectin [10]. TFAs are postu-

lated to be involved in promoting vascular dysfunction,

as reflected by a reduction in brachial artery flow [16].

These observations suggest that TFAs are linked to the

development of CVD, probably via a vascular pro-inflam-

matory response [17]. Oxidative damage is a major con-

tributor to the development of CVD. Nevertheless, little

is known about the effects on the liver induced by lipids

[6] and few studies are focused on the effect of foods rich

in TFAs on hepatic functions and oxidative stress. Oxida-

tive stress results from an imbalance between oxidant

production and antioxidant defenses [18]. Oxidative

stress induced by free radicals has been linked to the

development of several diseases such as cardiovascular,

cancer, and neurodegenerative diseases [19]. When cellu-

lar antioxidant mechanisms are overwhelmed, a long-

term decline in their antioxidant capacity causes the oxi-

dative stress [20,21]. Oxidative stress is now believed to

be an important factor in the development of non alco-

holic fatty liver disease (NAFLD) [20,22]. NAFLD is the

most common liver disorder in the world, and in obesity,

type 2 diabetes and related metabolic diseases, its inci-

dence reaches 70-90% [23]. The disease is characterized

by the accumulation of triacylglycerols inside liver cells,

and the condition can progress into more serious liver

disease, such as non alcoholic steatohepatitis, liver fibro-

sis, cirrhosis, and more rarely, liver carcinoma [23].

Previous works have shown that feeding rats a high fat

diet (57% of energy from fat) induces hepatic steatosis

and liver damage, which are characteristic of NAFLD and

thus provides a suitable model for the early stages of the

disease [24,25]. But, in these studies TFAs in the fat diet

were not investigated and neglected. Therefore, it is

necessary to examine the relationship between the liver

functions and TFAs consumption in dietary lipids.

We investigated whether high-fat diet (fresh soybean

oil, oxidized soybean oil and margarine) with different

TFA levels induces oxidative stress and NAFLD in rats.

Materials and methods
Analytical determinations of supplemented dietary fat

Soybean oil and margarine were purchased in a local

supermarket. The thermoxidized oil was prepared by

heating soybean oil in an oven set for 24 hours at 200°

C. The extent of lipid peroxidation was determined by

assaying the peroxide value and UV absorbance at 232

and 270 nm (k232 and k270) and p-anisidine value

according to the European Official Methods (EEC 2568/

91) [26]. the oxidative stability index (OSI) was evalu-

ated by the Rancimat apparatus (Mod. 743, Metrohm Ω,

Switzerland) using an oil of 3 g warmed to 120°C and

an air flow of 20 L/h [27]. Results were expressed as

induction time in hours of hydroperoxides

decomposition.

Determination of fatty acid profile

Fatty acid methyl esters (FAMEs) from the oil samples

were prepared as described by Issaoui et al. [28]. Indivi-

dual FAMEs were separated and quantified by gas chro-

matography using a Model 5890 Series II instrument

(Hewlett-Packard, Palo Alto, CA) equipped with a flame

ionisation detector, and a fused silica capillary column

DB-23 (60 m length, 0.32 mm i.d., and 0.25 μm film

thickness; HP-Agilent Technologies, Wilmington).

Determination of antiradical activity

The capacity to scavenge the “stable” free radical 2,2-

dipheny1-1-picrylhydrazyl (DPPH) was monitored

according to the method of Ramadan and Morsel [29].

The solution was incubated at room temperature for 60

min and the decrease in absorbance at 515 nm was

determined after 1, 30 and 60 min using a UV-visible

spectrophotometer (Perkin Elmer Lambda 25).

Animal treatment

Male adult Wistar rats (Central Pharmacy, Tunisia),

weighing about 200 to 280 g, were housed at 22 ± 3°C,

with 12- hour light-dark periods, a 40% minimum rela-

tive humidity and free access to water and standard diet:

protein 17% (methionine and choline accounting 3000

and 2720 milligrams per kilogram, respectively),
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carbohydrate 62%, lipids 4%, ash 7%, and moisture 10%

(SICO, Sfax, Tunisia). All the breeding phases and

experiments were conformable to the rules of the Tuni-

sian Society for the Care and Use of Laboratory Ani-

mals. All experiments were conducted at the animal

facilities of the faculty of Medicine, Monastir; with the

approval of the Faculty of Medicine Ethics committee.

After acclimatization to the laboratory conditions for

one week, the animals were divided into 4 groups of 12

animals each. Group C included the control animals and

received standard chow. Experimental groups that were

fed high-fat diet included 20% fresh soybean oil diet

(FSO), 20% oxidized soybean oil diet (OSO) and 20%

margarine diet (MG). Each group was kept on the treat-

ment for 4 weeks. Water and food consumption and the

individual animal body-weight were recorded daily

throughout the experiment. At the end of the experi-

mental period, the rats were kept fasting overnight and

were sacrificed under diethyl ether anesthesia.

Biochemical analysis of liver functions

Serum Alkaline Phosphatase (ALP) Aspartate Transami-

nase (AST), Alanine Transaminase (ALT) and Lactate

Dehydrogenase (LDH) activities were determined spec-

trophotometrically using commercial diagnostics kits

supplied by Randox Laboratories (Ardmore, Northern

Ireland, UK).

Measurement of TBARS levels

According to Buege and Aust [30], lipid peroxidation

was estimated by measuring thiobarbituric acid reactive

substances (TBARS) and expressed in terms of malon-

dialdehyde (MDA) content. For the assay,125 μl of

supernatant (S1) were mixed with 50 μl of saline buffer

(PBS, PH 7.4),125 μl of 20% trichloroacetic acid contain-

ing1% butylhydroxytoluene and centrifuged (1000 g, 10

min,4°C). Then, 200 μl of supernatant (S2) was mixed

with 40 μl of HCl (0.6M) and 160 μl of Tris-thiobarbitu-

ric acid (120 mM) and the mixture was heated at 80°C

for 10 min. The absorbance was measured at 530 nm.

The amount of TBARS was calculated using an extinc-

tion coefficient of 1.56 × 10-5 M-1 cm-1 and expressed

in nmol of MDA/mg protein.

Measurement of conjugated dienes

Conjugated dienes were determined by the method of

Recknagel and Ghoshal [31]. A portion of tissue homo-

genate was transferred to a chloroform/methanol mix-

ture (2:1). The whole mixture was vortexed and

centrifuged at 2500 g. The upper layer was washed with

chloroform/methanol/H2O and centrifuged. The lower

layer was combined with the first lower layer and evapo-

rated under N2. The extract was redissolved in 1 ml

cyclohexane. Absorbance was determined at 233 nm. An

extinction coefficient of 2.52 × 104 mole-1 was used.

Results were expressed as mmoles mg-1 protein.

Liver antioxidant enzymes activities

Superoxide dismutase (SOD) activity in liver homoge-

nate was assayed spectrophotometrically as described by

Beyer and Fridovich [32]. This method is based on the

capacity of SOD to inhibit the oxidation of nitroblue tet-

razolium (NBT). One unit of SOD represents the

amount of enzymes required to inhibit the rate of NBT

oxidation by 50% at 25°C. The activity was expressed as

units/mg protein.

Catalase (CAT) activity was measured at 20°C by a

slightly modified version of Aebi’s method [33]. Hydro-

gen peroxide (H2O2) decomposition by CAT enzyme

was monitored kinetically at 240 nm. The molar extinc-

tion coefficient of 0.043 mM-1cm-1 was used to deter-

mine CAT activity. One unit of activity is equal to the

micromole of H2O2 degraded per minute per milligram

of protein.

Glutathione peroxidase activity (GPx) was assayed

according to the method of Flohe and Gunzler [34]. The

activity was expressed as mmol of GSH oxidized/min/

mg of protein at 25°C.

Protein assay

Protein concentrations in the liver were determined

according to the method of Bradford [35] using bovine

serum albumin as a standard.

Statistical analysis

The data were analyzed using the Statistical Package for

Social Sciences (SPSS) program, release 11.0 for Win-

dows (SPSS, Chicago, IL, USA). In each assay, the

experimental data represent the mean of 12 independent

assays ± standard deviations. Duncan’s test was used to

determine any significant differences between different

groups. The statistical significance was set at p < 0.05.

The results were analyzed using the Student t test for

comparison between the dietary fat parameters. To

point out the correlation between the analyzed para-

meters, Pearson’s test was carried out.

Results and discussion
Analytical parameters of the dietary fat

The analytical parameters of the dietary fat employed

are shown in Table 1. It is very important to assess the

oxidative degradation of fats and oils, because free-radi-

cal initiated oxidation is one of the main causes of ran-

cidity in fats and oils, which results in the alteration of

major quality control variables such as color, flavor,

aroma and nutritional value [36]. The thermally oxidized

soybean oil (OSO) samples composition were different

from the fresh soybean oil (FSO) with a high peroxide,
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Table 1 Mean values of fatty acid composition (%), lipid peroxidation parameters and antiradical properties of high-

fat diet (fresh soybean oil, FSO; oxidized soybean oil, OSO and margarine, MG)

Supplemented high-dietary fat

FSO OSO MG

Fatty acids (%)

8:0 nd nd 0.26 ± 0.00##

10:0 nd nd 0.26 ± 0.00##

12:0 nd nd 3.16 ± 0.01##

14:0 0.08 ± 0.002 0.08 ± 0.01 1.84 ± 0.03##

14:1 0.02 ± 0.00 0.02 ± 0.009 0.04 ± 0.00#

16:0 10.96 ± 0.06 12.08 ± 0.01** 30.33 ± 0.04##

trans- 16:1 n-7 0.02 ± 0.00 0.024 ± 0.006 0.03 ± 0.00#

cis-16:1 n-7 0.09 ± 0.00 0.11 ± 0.00** 0.13 ± 0.00#

17:0 0.29 ± 0.02 0.28 ± 0.01 0.20 ± 0.01##

17:1 0.08 ± 0.02 0.08 ± 0.00 0.05 ± 0.01##

18:0 4.82 ± 0.04 3.93 ± 0.01** 4.8 ± 0.01##

trans-18:1 n-9 nd 0.117 ± 0.01** 1.78 ± 0.13##

trans-18:1 n-7 nd nd nd

cis-18:1 n-9 21.96 ± 0.2 25.22 ± 0.02** 30.1 ± 0.13##

cis-18:1 n-7 1.29 ± 0.05 1.71 ± 0.01** 0.73 ± 0.00##

18:2 n-6 (t9. t12) 0.07 ± 0.00 0.138 ± 0.01** 0.096 ± 0.001#

18:2 n-6 (t9. c12) nd 0.054 ± 0.003** 0.052 ± 0.004

18:2 n-6 (c9. t12) 0.09 ± 0.01 0.288 ± 0.1** 0.2 ± 0.01##

18:2 n-6 (c9. c12) 50.75 ± 0.04 48.12 ± 0.01** 21.73 ± 0.3##

cis-18:3 n-6 0.19 ± 0.00 0.40 ± 0.05** 0.14 ± 0.00##

trans-18:3 n-3 0.02 ± 0.00 0.366 ± 0.01** 0.016 ± 0.011##

cis-18:3 n-3 7.65 ± 0.1 4.76 ± 0.02** 2.55 ± 0.02##

18:2 (c9. t11) 0.024 ± 0.001 0.099 ± 0.003** 0.068 ± 0.00##

18:2 (t10. c12) 0.013 ± 0.001 0.056 ± 0.004** 0.042 ± 0.00#

20:0 0.43 ± 0.01 0.43 ± 0.002 0.35 ± 0.00##

trans-20:1 n-9 0.026 ± 0.00 0.199 ± 0.006** 0.06 ± 0.00##

20:1 n-9 0.24 ± 0.01 0.2 ± 0.080* 0.18 ± 0.02#

20:2 n-9 0.08 ± 0.003 0.09 ± 0.002 0.02 ± 0.00##

20:3 n-6 0.03 ± 0.00 0.04 ± 0.02** 0.02 ± 0.00

20:4 n-6 0.03 ± 0.00 0.03 ± 0.00 0.01 ± 0.00#

22:0 0.06 ± 0.00 0.067 ± 0.00* 0.03 ± 0.00##

ΣSFA 16.22 ± 0.13 16.9 ± 0.03** 41.42 ± 0.1##

Σcis MUFA 23.6 ± 0.3 27.47 ± 0.1** 31.25 ± 0.13##

Σ cis PUFA 59.36 ± 0.12 54.21 ± 0.1** 24.81 ± 0.03##

Total TFAs 0.226 < 1 1 < 1.23 < 2 2.4 > 2

Lipid peroxidation

Oxidative stability index (h) 3.74 ± 0.01 0.67 ± 0.04** 4.27 ± 0.63##

Peroxide value (meq O2/kg) 2.66 ± 0.00 6 ± 0.00** 17.33 ± 0.94##

p-anisidine value 2.13 ± 0.7 7.5 ± 2.2** 2.61 ± .024##

k232 (conjugated dienes) 2.77 ± 0.10 4.26 ± 0.04** 3.9 ± 0.07

k270 1.11 ± 0.05 4.01 ± 0.05** 2.54 ± 0.15##

Antiradical ability: DPPH (%) 93.12 ± 0.06 50.16 ± 2.88** 77.91 ± 0.5##

nd: not detected.

Values are given as mean ± SD (n = 3). FSO: Fresh soybean oil, OSO: oxidized soybean oil,

MG: margarine.

*p < .05, OSO vs. FSO; **p < .01 OSO vs. FSO. #p < .05, MG vs. OSO; ##p < .05 MG vs. OSO. Comparison between supplemented-diet compositions was made using

unpaired Student t test.
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conjugated dienes and p-anisidine value (Table 1) and a

significant reduction of oxidative stability (3.74 vs. 0.67

h) and antiradical capacity (93.12 vs. 55.16%), respec-

tively (p < 0.01). Margarine (MG) samples also showed

higher antioxidant ability (77.9%) and oxidative stability

index (4.27 h) and a lower p-anisidine and extinction

coefficient value than OSO (Table 1).

Concerning the fatty acid (FA) composition, as shown

in Table 1, FSO and OSO were characterized by the

presence of high levels of polyunsaturated fatty acid

(PUFA) fraction with a significant (p < 0.01) difference

(59.36 vs. 54.21% respectively). Whereas, MG was distin-

guished by the presence of SFA (41.42%) and a signifi-

cant low level of PUFA (24.81%). For TFA isomers, FSO

contained about 0.22% of total FA (Table 1). Detection

of TFA isomers in FSO confirms the fact that the oil

retailed in the market even without thermal treatment

has already started deteriorating. This also could be due

to the refining process effect. MG samples contained

higher amounts of total TFAs accounting 10 and 1.23

times than FSO and OSO, respectively. As reported by

Assumpção et al. [37], during hydrogenation, the double

bonds of FA that form triacylglycerols change their posi-

tion and produce trans-geometric isomers. In MG sam-

ples, the trans 18:1 n-9 constituted the highest

proportion among the identified trans-isomers, whereas

polyunsaturated trans-isomers appeared only in small

quantities. However, for OSO, trans PUFA represent

about 60% of total TFA. This is in accordance with

Mayneris-Perxachs et al. [38] who reported that the pre-

dominant trans isomers in industrially processed

products is elaidic acid (trans-9 C18:1) and in agree-

ment with Lichtenstein [39] who reported that the

majority of TFAs in the diet are trans-18: 1, which is

derived from the partial hydrogenation of oils. However,

the process of heating vegetable oils during deodoriza-

tion and frying or baking food in vegetable oils results

in the generation of trans-18:2 [40].

Thus, Supplemented dietary fat contained different

levels of total TFAs ranged from proportions of total fat

<1%, <2% and > 2% in FSO, OSO and MG diets respec-

tively (Figure 1). In addition, the isomer type also differs

with predominance of trans-18:2 in oils and trans-18: 1

n-9 in MG. In observational studies utilizing biomarkers

of TFAs consumption, both 18:1 and 18:2 isomers

appear to contribute to risk of CVD [41].

Growth and nutritional status of rats

Most rats gained weight consistently during the four-

week dietary treatments. The average body weight gain at

the end of the four weeks was 16.4 g in the control ani-

mals, 24.55, 20.33 and 25.83 g in FSO-fed, OSO-fed and

MG-fed rats, respectively (Table 2). Following four weeks

of feeding, the body weight gained in high-fat fed rats

was statistically not significant (Table 2). The feeding effi-

ciency of rats fed with the OSO diet was lower than that

of the FSO-fed rats. This may be explained by the fact

that almost all amino acids react with primary and sec-

ondary products of oxidized lipids, thereby decreasing

the digestive utilization of protein, amino acids and fats,

which may affect a weight gain [42]. On the other hand,

results showed that FSO diet significantly increased the
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Figure 1 Fatty acid isomers in dietary fat diet. trans MUFA: trans monounsaturated fatty acid, trans PUFA: trans polyunsaturated fatty acid,

TFA: total trans fatty acid, CLA: conjugated linoleic acid. Data are expressed as means ± SD (n = 3). Comparison between groups was made

using Duncan’s test. Values followed by different subscript letters are significantly different. (p < 0.05).
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absolute liver weight compared with the control group.

However, no significant changes were observed for OSO

and MG groups (Table 2).

Biochemical indicators of liver function

The levels of plasma hepato-specific enzymes such as,

ALP and LDH were significantly increased (p < 0.05) in

high-fat fed rats compared to control (Table 3). Feeding

(OSO) led to significant higher levels of AST, ALP and

LDH in comparison to fresh oil fed group (p < 0.05).

Enhanced levels of plasma ALT and AST are indicative

of liver damage [43]. Plasma ALP is a sensitive detector

for intrahepatic and extrahepatic bile obstruction [44]. It

is well known that dietary fat sources strongly influence

several biochemical variables both in plasma and in bio-

logical membranes [45-47]. Consumption of OSO and

MG diets causes a significant increase of biochemical

indicators of liver damage. We noticed a close positive

correlation between TFA levels in dietary fat and AST,

ALAT, ALP and LDH (Table 4). These results revealed

hepatic damage in rats consumed TFA.

Liver’s Lipid peroxidation

When compared to control group, we found a clear evi-

dence of liver’s lipid peroxidation of FSO, OSO and

MG-fed rats, as judged by their significantly high con-

tent of conjugated dienes (CD) products, reflecting the

initial phase of lipid peroxidation.

On the other hand, when the degradative phase of

lipid peroxidation was examined, assaying thiobarbituric

acid reacting substances (TBARS), the MDA levels in

the FSO group, comparing to the C group, was

increased by 26.5% (Figure 2). The TBARS in the livers

of high-fat fed animals were found to be significantly

increased compared to control rats (p < 0.05). Elevated

levels of TBARS in liver are a clear manifestation of

excessive formation of free radical and activation of lipid

peroxidation.

Our findings revealed that the rates of hepatic lipid

peroxidation were markedly higher in margarine and

OSO-fed groups than in the fresh oil fed group. How-

ever, for OSO-fed group, the CD concentration was sig-

nificantly increased by 85% and 36% of that in C and

FSO group respectively. The results from lipid peroxida-

tion measurements confirm that the loss of antioxidant

capacity and the increase of TFAs in OSO affect the

liver function, suggesting that feeding oxidized oil may

represent a direct source of oxidative stress for the

organism. A positive correlation between the level of

total TFAs in the diet and the concentration of the

TBARS in the liver of high-fat fed animals (r = 0.84)

was observed. A highly significant positive correlation

was also noted between CD levels in rat’s liver and

trans PUFA in the rat diet (r = 1.0; p < 0.01) (Table 4).

The importance of FAs resides in the finding that biolo-

gical membranes adapt their composition according to

Table 3 Biochemical indicators of liver function in plasma in control (C) and high fat treated rats fed a diet with fresh

soybean oil (FSO), oxidized soybean oil (OSO) and margarine (MG)

Plasma hepato specific enzymes (U/L)

AST ALT ALP LDH

C 120.5 ± 36.06a 55.25 ± 4.03 a 167.85 ± 28.8a 410 ± 20 a

FSO 145.5 ± 2.38 ab 58.5 ± 8.3 a 217.71 ± 36.9 b 585.5 ± 87.1 b

OSO 162.8 ± 15.12 b 61 ± 9.02 a 269.33 ± 10.21 c* 860.5 ± 13.43c**

MG 207 ± 7.3 c++ 76.83 ± 9.23 b+ 248.5 ± 13.7 bc 981.5 ± 118.4 c

Data are expressed as means ± SD (n = 12 rats per group). C: controls group, FSO: Fresh soybean oil fed group, OSO: oxidized soybean oil fed group, MG:

margarine fed group. Alkaline Phosphatase: ALP; Aspartate Transaminase: AST; Alanine Transaminase: ALT; lactate dehydrogenase: LDH

Comparison between groups was made using Duncan’s test. Different parameters values followed by different subscript letters (a, b and c) are significantly

different between groups. (p < 0.05).

*p < .05, OSO vs. FSO group; **p < .01, OSO vs. FSO group. +p < .05, MG vs OSO group; ++p < .05, MG vs. OSO group. Comparison between groups was made

using unpaired Student test.

Table 2 Body weight gain, food intake, water intake and feed efficiency of rats fed with fresh soybean oil (FSO)

oxidized soybean oil (OSO) and margarine (MG).

Growth and nutritional status of rats

Body weight gain (g) Liver weight (g) Food intake (g/day) Water intake (ml/day) Feed efficiency (B.W gain/food intake)

C 16.4 ± 6.67a 6.92 ± 1.42 a 16.03 ± 2.47a 9.33 ± 1.91 ab 1.02

FSO 24.55 ± 9.7 a 8.15 ± 0.83 b 14.94 ± 1.82 ab 10.04 ± 1.53 a 1.64

OSO 20.33 ± 7.81 a 7.54 ± 0.64 ab 13.74 ± 2.41c 9.82 ± 1.5 ab 1.47

MG 25.83 ± 6.64 a 7.27 ± 0.7 a 14.24 ± 2.17 bc 9.07 ± 1.22 b 1.81

Data are expressed as means ± SD (n = 12 rats per group). Control group: C; Fresh soybean-oil fed group: FSO; oxidized soybean oil-fed group: OSO; margarine-

fed group: MG. Comparison between groups was made using Duncan’s test. Different parameters values followed by different subscript letters (a, b and c) are

significantly different between groups. (p < 0.05).
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Figure 2 Malondialdehyde (MDA) and conjugated dienes (CD) in the liver of rats fed with high fat diet with different trans fatty acid

levels. C: controls group, FSO: Fresh soybean oil fed group, OSO: oxidized soybean oil-fed group, MG: margarine-fed group. Data are expressed

as means ± SD (n = 12 rats per group). Comparison between groups was made using Duncan’s test. Values followed by different subscript

letters are significantly different. (p < 0.05).

Table 4 Correlation between fatty acid isomers in the diet and oxidative stress parameters in rat’s liver and plasma

hepato-specific enzymes

SOD CAT GPx CD MDA AST ALT PAL LDH

trans MUFA -0.977 -0.952 -0.770 0.105 0.626 0.992 1.000* 0.258 0.829

trans PUFA -0.321 -0.409 -0.719 1.000** 0.844 0.235 0.087 0.989 0.649

total TFAs -0.994 -1.000* -0.934 0.418 0.843 0.980 0.939 0.554 0.964

*p < .05; **p < .01

MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid; TFAs: trans fatty acids; alkaline phosphatase: ALP; aspartate transaminase: AST; alanine

transaminase: ALT; lactate dehydrogenase: LDH; SOD: superoxide dismutase; GPx: glutathione peroxidase; CAT: catalase; CD: conjugated dienes; MDA:

malondialdehyde.
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that of dietary fat [48-50]. Dietary FAs can influence the

susceptibility of cells to oxidative stress, perhaps due to

changes in cell membrane FA composition [51]. As well

known, lipid peroxidation starts with abstraction of OH•

from a -CH2- group of PUFA, where the carbon radical

is usually stabilized by a molecular rearrangement form-

ing conjugated dienes, compounds containing two dou-

ble bonds separated by a single bond. Conjugated dienes

react with O2 forming peroxyl radicals that react with

OH• atoms from other lipids, producing lipid hydroper-

oxides or forming cyclic peroxides, and several products

are formed, including MDA [52]. Lipid peroxidation is

the process of oxidative degradation of PUFAs and its

occurrence in biological membranes causes impaired

membrane function, structural integrity, decrease in

membrane fluidity and inactivation of a several mem-

brane bound enzymes [53]. Niu et al. have reported that

phospholipids in biological membranes containing TFAs

are known to attract cholesterol [54]. This phenomenon

plausibly alters cell membrane structure, including rede-

fining lipid raft and non-raft regions in size, organiza-

tion and composition. Lipid rafts are important for

cellular signalling, as they provide docking sites for

receptors, co-receptors and mediators including adhe-

sion molecules [55]. Recent animal experiments indicate

that TFAs impair fat cell membrane fluidity. When

TFAs are incorporated into cell membranes, the mem-

brane fluidity is reduced and the cells do not function

as well. The resulting effect is then to promote further

production of reactive oxygen species which explain the

increase in lipid peroxidation in groups fed with TFAs

diet.

Liver’s activities of antioxidant enzymes

The removal of reactive oxygen substances is accom-

plished by enzymatic and non-enzymatic reactions in

biological systems. In enzymatic reactions, SOD converts

superoxide anions to hydrogen peroxide (H2O2), and

H2O2 can be rapidly degraded by CAT and GPx to H2O

[56]. The activities of SOD and CAT in the liver were

significantly (p < 0.05) lowered in rats fed with high-fat

diet than control group animals (Figure 3). Loss of CAT

activity results in oxygen intolerance and triggers a

number of deleterious reactions such as protein and

DNA oxidation, and cell death [52]. The GPx activity

was significantly decreased in liver of rats fed with OSO

and MG diet as compared to the control and FSO-fed

rats (p < 0.05) (Figure 3). High-fat diets can cause the

formation of toxic intermediates that can inhibit the

activity of antioxidant enzymes [57] and the accumula-

tion of O2
- radicals and H2O2 which in turn forms

hydroxyl radicals [58]. The activities of SOD and CAT

were significantly decreased in OSO group than FSO

group (p < 0.05) (Figure 3). A close negative correlation

was noted between TFA levels in the diet and SOD (r =

-0.99), CAT(r = -1.0) and GPx (r = -0.93) activities in

rat’s liver suggesting that increasing consumption of

TFAs is associated with the decrease of the efficiency of

the antioxidant-enzymatic system and therefore, with

the increase of oxidative stress in rat’s liver. TFAs may

impart their effect by enhancing intrinsic signaling

mechanisms leading to a chronic, pro-inflammatory

state. Consumption of diets high in TFAs may induce

long-term progressive changes in the antioxidant

enzyme’s activities.

Histopathological lesions

Histopathologically, liver sections from rats fed with the

standard diet had shown normal morphological appear-

ance (Figure 4a). Livers of the experimental groups

showed a clear difference from those of the control

group. In the group that fed FSO, the initial phase of

NALFD, during which fat accumulates in the liver (Fig-

ure 4b, thin arrow). and cytoplasm vacuolation of hepa-

tocytes were observed (Figure 4b, black triangle). As

previously reported by Samuhasaneeto et al. [59], one

hundred percent fat diet caused mobilizing of free fatty

acid from adipose tissue and transporting into hepato-

cytes. These results are in agreement with previous stu-

dies of the effects of high-fat diet in inducing the early

stage of NAFLD [59].

Feeding OSO for four weeks, rat’s liver showed

increased incidences of hepatocytes hypertrophy (Figure

4c, black triangle), fat deposition (Figure 4c, thin arrow)

and infiltration of a mixed population of inflammatory

cells in the liver, as well as ballooning degeneration of

hepatocytes characterized by cell swelling with empty

intracellular content, indicating cell necrosis (Figure 4d,

thick arrow). As known, dietary lipids in the form of

chylomicrons are transported from the gut via the lym-

phatic system to the liver where they are incorporated

after release from lipoproteins by hepatic lipoprotein

lipase [60]. Physiologically and during the postprandial

phase, dietary lipids are stored in the liver, where they

are processed and assembled with apolipoprotein B 100

(ApoB) to form very-low-density lipoprotein (VLDL).

These particles are secreted and distribute lipids to

lipid-storing adipose tissue [60]. When the hepatocyte is

injured, plasma membrane can be disrupted and the

leakage through extra-cellular fluid of the enzyme

occurs where they can be detected at abnormal levels in

the serum [61]. This is clearly evident by a substantial

increase in plasma levels of AST, ALP and LDH in OSO

group (Table 3). Previous studies have reported that

trans fats appear to affect lipid metabolism through sev-

eral pathways. In vitro, TFAs alter the secretion, lipid

composition, and size of apolipoprotein B-100 (apoB-

100) particles produced by hepatic cells [62,63]. The
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liver failed to synthesize apolipoprotein that was used

for packaging and exporting of fat from the liver. There-

fore, triglycerides accumulated in the liver [64]. As

reported by Mensink et al [65], trans fats increase the

blood levels of triglycerides as compared with the intake

of other fats. In this study, triglycerides levels were

found to be increased in the plasma of rats fed with MG

diet followed by OSO diet and FSO diet (data not pub-

lished). The higher inflammatory response in the liver

was induced by MG diet. Liver histopathology from MG
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Figure 3 Antioxidant enzyme activities in the liver of rats fed with high fat diet with different trans fatty acid levels. CAT, SOD and GPx

of rat’s liver exposed to different high-fat diets. C: controls group, FSO: Fresh soybean oil-fed group, OSO: oxidized soybean oil-fed group, MG:

margarine-fed group. Data are expressed as means ± SD (n = 12 rats per group). Comparison between groups was made using Duncan’s test.

Values followed by different subscript letters are significantly different. (p < 0.05).
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group showed severe cytoplasm vacuolation, hepatocyte

hypertrophy (Figure 4e, black triangle) and a noticeable

hepatocyte ballooning demonstrating a large area of

necroinflammation (Figure 4f, thick arrow). The

histological and pathogenic features of NAFLD were

clearly developed in the MG group which is submitted

to margarine diet with TFA level reaching the 2% of

total fat. Previous studies proved that oxidative stress is

c 

CV 

S 

HT 

a 

b 

d 

e 

f 

Figure 4 Effect of high fat diet with different trans fatty acid levels on rat’s liver histology. Normal liver histological aspect from a control

(H&E 32 ×). Panel (a) it is composed of hexagonal or pentagonal lobules with central veins (CV) and peripheral hepatic triads (HT) embedded in

connective tissue. Hepatocytes are arranged in trabecules running radiantly from the central vein and are separated by sinusoids (S) containing

Kuppfer cells. Liver from experimental groups (H&E 100×): FSO Panel (b): moderate lipid accumulation is seen in many hepatocytes; OSO Panel

(b); abundance of cytoplasm vacuolization and ballooned hepatocytes and MG Panel (e); severe lipid accumulation in hepatocytes and high

number of ballooned hepatocytes. Cytoplasm vacuolization in parenchymatous cells of the liver (thin arrow), hypertrophied hepatocytes (black

triangle). Liver from OSO Panel (d) and MG Panel (f) groups (H&E 32×): photomicrograph of degenerated hepatocytes and necrosis (thick arrow).
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now believed to be an important factor in the develop-

ment of NALFD [66]. These alterations in the liver of

rats fed with OSO and MG diet containing respectively

more than 1% and 2% TFAs of total fat implicate TFAs

in triggering the development of NAFLD and/or acceler-

ating the progression of the disease.

Conclusion
In conclusion, oxidized edible oils fed to rats for four

weeks induced lipid peroxidation in liver compared with

the same non-oxidized oils. It seems that a strong rela-

tionship exists between the consumption of TFAs in the

oxidized oils and lipid peroxidation. The extent of the

peroxidative events in liver was also different depending

on the fat source suggesting that feeding margarine with

higher TFA level may represent a direct source of oxida-

tive stress for the organism. The present study provides

evidence for a direct effect of TFAs on liver dysfunction

causing the disturbances in liver lipid metabolism that

result in NAFLD which is a key component of the cardi-

ometabolic syndrome. This suggests that TFAs may

influence risk factors for CVD.
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