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The Integer Points on Three Related

Elliptic Curves

By Andrew Bremner and Patrick Morton

Abstract. The integer points on the three elliptic curves y2 = 4cx3 + 13, c = 1, 3, 9, are

found, with an application to coding theory. It is also shown that there are precisely three

nonisomorphic cubic extensions of the rationals with discriminant -35 ■ 13.

1. In [1] the Diophantine equation

(1) v2 = 4-3A + 13

is shown to arise from coding theory, and its integer solutions are found. By

considering congruence classes of k modulo 3, this equation gives rise to the three

elliptic curves

(2) y2 = 4x3+\3,

(3) v2=12x3 + 13,

(4) v2 = 36x3 + 13.

We find here all integral solutions of (2), (3), (4), giving as a corollary all solutions to

Eq.(l).

2. Since Q(\[\3) has class number 1, Eq. (2) immediately reduces to an equation

v + /Ï3          /           1 + /Ï3 \3
-r-= eK [a + b-=-    ,

where a, b G Z, e = (3 + /TI)/2 is a fundamental unit of Q(JÏ3), and where

without loss of generality k = 0, ±1. Since a3 G Z[/Ï3~] for every integer

a G Q(fÏ3), the case k = 0 is impossible. Comparing coefficients of f\3 in the two

cases k = ± 1 gives respectively

(5) k = 1: 1 = a? + 6a2b + 15a¿?2 + 1lb3,

(6) k = -1: 1 =a3 - 3a2¿? + 6ab2 - b\

Under the respective substitutions (A, B) = (a + 2b, b), (A, B) — (a — b, -b) both

(5) and (6) reduce to

(7) 1 =A2 + 3AB2- 3/?3.

We now work in Q(X), where \3 + 3À — 3 = 0. It is straightforward to verify that

the ring of integers in this field is Z[\], and a fundamental unit is tj = 1 — X. (The
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method of [4, p. 7] may be easily adapted to give a proof that r¡ is fundamental. See

also [6].) Hence from (7), written as Norm(^ — BX) — 1, we deduce that

(8) A- BX= ±if

for some integer n. Note that the minus sign cannot arise because Norm tj = 1.

Now tj = 1 - X, tj2 = 1 - 2A + A2, tj3 = 1 + 3£, with £ = -1 + A2. If n = 2

(mod 3), then 17" = 1 — 2 À + À2 (mod 3), and (8) gives an impossible congruence

(mod 3). Thus n = 3N or 3/V + 1. If n — 3N, then we expand (8) in the form

(9) A-B\ = (l +3£)N= 1 + 3/V£ + 32i^W2 + ....

Comparing coefficients of A2 in (9) gives

(10) 0 = 3tV+32(^)(-5) + 33(^)(-) + ....

If 3" || TV, then every term in this expansion except the first is divisible by 3"+2,

giving a contradiction modulo 3"+2. Accordingly, TV = 0 is the only possibility,

which does indeed give a solution (A, B) = (1,0). Alternatively, we can invoke a

result of Skolem [5] to show that (10) has at most one solution, which is thus TV = 0.

(See also [3, p. 54], and [7].)

Similarly, if n — 3/V + 1, we obtain

A-BX = (l-X)(\ + 3£)N

= 1-A + 3(1-A)/V| + 32(1-A)(^)¿2 + ...,

and comparing coefficients of A2 gives

0 = 37V + 32i^)(-8) + ....

As before, N = 0 is the only solution, corresponding to (A, B) — (1,1).

The solutions (1,0) and (1,1) of (7) give the solutions (a, b) = (1,0), (-1,1) to (5)

and (a, b) = (1,0), (0,-1) to (6), which in turn give (x, v) = (-1,3), (3,11), (-1,-3),

(3, -11) as the only solutions of (2).

3. Equation (3) reduces to the equation

y + {Ï3 I 1 + {Ï3
e"(4+ {ñ)la + b- k = -2,-1,

where we choose the sign of v so that y = l (mod 3) (in order that 4 + /Î3 divide

the left-hand side). Comparing coefficients of /Í3 we have

(11) k = -2: 1 = -a3 + 6a2b- 3ab2 + 5b\

(12) k = -1: 1 =a3 + 3a2b+ \2ab2 + lb3.

We write ( 11) in the form

(11') 1 =Norm(/i -BO),

where (A, B) = (-a + 2b, b) and 63 - 96 + 15 = 0. The ring of integers in Q(6) is

Z[0], and a fundamental unit is p = -53 + 180 + 902, so from (IT) we deduce that

A - B6 = ±p",       A3 G Z.
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Setting p = 1 + 9£, with £ = -6 + 26 + 62, and expanding 3-adically, we see by the

same arguments as in Section 2 that n = 0 is the only solution, giving (a, b) = (-1,0)

and (x,y) = (1,-5).

Similarly, write (12) in the form

(12') \ =Norm(A - B<p),

where (/I, /?) = (a + ¿?, ¿?) and <i>3 + 9<f> — 3 = 0. The ring of integers in Q(<$>) is

Z[</>], and a fundamental unit is 5 = 1 — 3<f>, with Norm S = 1. From /I - Zty = ô"

we have the 3-adic expansion

A- B4>=\ - 3n<> + 32 ( 2 ) <í>2 — 33 ( 3 ) <i>3 +_    '

and comparing coefficients of <f>2 yields

0 = 32(^)+3<(J)(-9) + 3^)(. ) + ....

By Skolem [5] this has at most two solutions. But n = 0 and n = 1 do give solutions,

and hence these are the only ones. (Note that elementary arguments will also succeed

as before.) Thus (a, b) = (1,0), (-2,3), leading to (x, y) = (-1,1), (29,541).

4. Treating Eq. (4) in the same manner, we deduce first of all that

V + /Ï3 2/ l + /l3\3
-= e"(4+/l3)    a + 6-    ,        k = -2,-1.

where y = 1 (mod 3). Comparing coefficients gives the equations

(13) k = -2: 1 =a3+ \2a2b + 2\ab2 + \9b3,

(14) k = -1: 1 = 5a3 + 33a2b + lUb2 + 59b3.

In fact (13) is

1 = Norm((a + 106) + b<i>2),

with (¡> defined as in (12'). Thus

a+ \Qb + b<p2 =8"-I- 3ncb + 32(2)<í>2 ~ ^(^j^ +•••<

and comparing coefficients of <i> yields the only solution n = 0 as above, giving

(a,Z>) = (l,0)and(jc, v) = (l,7).

Further, it may be checked that the right-hand side of (14) is Norm A, where

A = (-19a - 43b) + (2a - b)6 + (2a + 3¿?)02,

and 6 is defined as in (11'). Thus A = ±p", so that A = ± 1 (mod 3). However this

gives the congruences modulo 3 :

-19a-436=±l,   2a-b = 0,   2a + 3b = 0,

which are clearly incompatible. Hence (14) has no solutions and (1, ±7) are the only

integer points on (4).

5. To summarize, we have

Theorem. The only integer points on

(i)v2 = 4.x3 + 13 are (-1, ±3), (3, ±11);

(ii)v2= 12x3+ 13 are (I, ±5), (-1, ±1), (29, ±541);

(Hi) v2 = 36x3 + 13 are (1, ±7).
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Corollary. The only integer solutions of

v2 = 4 • 3A + 13

are(k, y) = (1,±5), (2, ±7), (3, ±11).

6. Remarks. The fields Q(6), Q(<¡>), although having the same discriminant

-35 • 13, are nonisomorphic. In fact, there are precisely three cubic extensions of Q

with this discriminant, the third generated by a root i// of x3 — 9x + 24 — 0. For,

using Hasse [2], we see that if K is any such field, then A"(\/-39 ) is a cyclic cubic

extension of Q(j-39 ) with conductor 9. Since the 3-Ringklassengruppe with con-

ductor 9 in Q(f-39 ) is a product of 2 cyclic groups of order 3, the corresponding

class field has exactly 4 cubic subfields, each with a conductor (which has to be a

rational integer) dividing 9. Similarly, the 3-Ringklassengruppe of conductor 3 has

order 3, and so precisely one of these fields has conductor 3. (Note that Q(\l-39 ) has

class number 4, so none of the fields has conductor equal to 1.)

It only remains to verify that the fields Q(6), Q(<t>), Q(^) are nonisomorphic. This

may be seen from the fact that the rational prime 5 splits in Q(6) but not in Q(<}>),

and that 2 splits in Q(\p) but not in either of Q(6), Q(<j>). (In fact, 2 is an inessential

discriminant divisor in Q(\p).)

The above also shows that Q(X) is the unique cubic field of discriminant -33 • 13.
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