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Introduction. One of the main problems of local differential geometry
is to determine when a given differentiable structure (for example, a Rie-
mannian structure, a projective structure or an almost complex structure)
is integrable. There are really two problems involved in this: (1) the
problem of finding a consistent system of differential equations whose
unknowns yield a solution to the problem; and (2) the problem of solving
these equations. It goes without saying that the second problem is more
or less trivial if we are considering analytic structures. On the other hand
for C~-structures it is extremely difficult, since the equations that occur
in (1) are generally not elliptic.

In the paper we will only deal with the first problem which we will refer
to as the problem of formal flatness or formal integrability. Also, for simpli-
city, we will restrict ourselves to studying G-structures, though most of
the results of this paper can be extended to more general kinds of pseudo-
group structures (such as projective structures).

We will also formulate the problem in slightly more intuitive terms:
In §2 we will define what we mean by a mapping of one G-structure into
another which is structure preserving to kth order at some point, a notion
which is almost self-evident.

We will try to find conditions on a given G-structure, E —»M, such that
every point of M admits a mapping into a neighborhood of an integrable
G-structure which is structure preserving to order k at that point, for
arbitrarily large k. The obstructions to constructing such mappings turn
out to be tensors of type Hk,2(g), defined on E, where the Hk\g) are the
bigraded homology groups of a certain chain complex due to Spencer (cf.
§1). Therefore, the character of the integrability problem will be determined
by the cohomology sequence Hk,2(g).

We will also show in this paper that for G-structures of finite type formal
integrability in the sense above implies integrability. For analytic G-
structures we will give a direct proof of the equivalence of these two
notions (not using the Cartan-Kaehler theorem) in a paper to follow
this one.

Finally we mention that the following are known for C" G-structures:
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Formal integrability implies integrability if the linear group, G, is com-
pletely reducible (this is a result of the work of Sternberg and Singer on
the infinite Lie groups [cf. [10]]) or if one of the prolongations of G is of
"elliptic type" (cf. Spencer [11]).

1. Algebraic preliminaries. In this chaper g will always stand for a linear
L.A., that is, given a vector space V, g will be a subalgebra of gL{ V). We
are going to associate with g a certain chain complex, the so-called 5-
complex of Spencer. The homology theory based on this chain complex
will figure centrally in our theory of integrability of G-structures.

Given G, we define ga> to be the set of all linear mappings S: V—>g such
that for all v and w in V, Sov applied to w equals Sow applied to v.

Having defined gik~1] by recurrence, we define gik) to be the set of all
linear mappings S: V—>g(*_1) such that, for all v and w in V, So v applied
to w equals Sow applied to v. Note that this makes sense since g(k~l) is con-
tained in Hom( V,g{k~2)) by recurrence.

The definition of gik) can be written more succinctly:

(1.1) glk) = g ® sk( v*) n v ® s*+1( v*).
gih) also has a simple analytical interpretation which will be described
in §3.

Let v be an arbitrary element of V. v can be thought of as a linear func-
tional on V* and can be extended uniquely to a derivation on S(V*) (cf.
Chevalley [4]). We will denote this by Dv.

Let be an element of V ® Sk+1( V*) and v2 ® s2 an element of
V® S'+1(V*). We will define the bracket of these two elements (denoted
by the symbol "[   ]") by the expression

v2 ® Dns2 o Sl - i>j ® D^si o s2.

Note that this lies in V ® Sk+l+1(V*) ■
"[ ]" extends to a bilinear mapping of V® Sk+l(V*) X V® Sl+1(V*)

into V® S*+i+1(V*). Recalling (1.1), this induces a bilinear mapping of
gik) ® g(0 into V ® S*+i+1, which is in fact a bilinear mapping into £(*+0.
Moreover "[   ]" makes the vector space

(1.2) V + g + g{1) + ■■■ (infinite sum)

into a Lie algebra. Both of these remarks will be obvious in light of §3.
Consider the complex £C* '=C#, where

ck'< = sk(v*) ® A(v*).

We will define on C* and antiderivative 8 of bidegree (— 1,1).
By requiring & to be an antiderivative we only have to define it on the

elements of C" ° and C"1:
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Let s be in Sk(V*). For each Din V, Dvs is in S*_i(V*); therefore, s
defines an element of Hom( V,S*_I( V*)) or G*~u.  Denote this by 6s.

Let s be in Ck l. We can regard it as an element of Hom(V,S*(V*)).
For any pair of elements, v and w, in V, we set

(8s, v A w) = £>„(« OU))- DJs O j;).

8s is in HomiTA V,S*_1(V*)) or C"12.
The definition of 6 now extends without any trouble to all of C*.
An elementary computation shows that 82 = 0; and it is not much

harder to show that the homology theory based on (C*,8) is trivial. (This
is the formal analogue of the Poincare Lemma. Cf. Spencer [ll].)

We can extend 8 to the chain complex V ® C*( V*) in the standard way
by letting it act trivially on V. Let

(1.3) Ck\g)=gk-1^ f\(V*).

Because of the identification (1.1), the sum ZC*'(g) can be thought
of as a subspace of V ® C* (V**) and it is evidently even a subcomplex.

The homology theory based on this bigraded chain complex will be
called the Spencer 5-cohomology of g. It is a consequence of the definitions
that

Hi-\g) = 0 foifel,
and

Hi](g)=0 fori<0.
We will be mainly interested in the homology groups Hl,2(g). Our ob-

structions to integrability will be tensors taking their values in these hom-
ology groups; therefore if certain of these homology groups vanish, we
have a priori information about flatness. It is a result of Spencer's that
for i sufficiently large the BP ̂ g) all vanish, which implies that the problem
of determining whether a G-structure is (formally) flat can always be settled
in a finite number of steps.

2. G-structures. In this chapter V will be an n-dimensional vector space,
Ga Lie subgroup of GL(V), and g its associated Lie algebra. Let M be an
n-dimensional differentiable(2) manifold. A G-structure on M is a law
which assigns to each point, P, of M a set, tp, of linear mappings of V onto
the tangent space of M at P such that:

I. If A is in tP and B is in tP, A~lB is in G.
II. If A is in tP and B is in G,AB is in tP.
In addition it is assumed that tP depends differentiably on P, or, in

other words, that

(2) Throughout this paper, differentiable will always mean C".
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E= \JtP
P€M

admits local differentiable cross-sections. The elements of E are called the
"frames" of E.

If we let ip be the set of all linear mappings of V onto the tangent space
at P, we get a GL( V)-structure on M, the so-called principal frame bundle,
which we will denote by F. A G-structure on M is simply a reduction of F
to a principal subbundle with group G.

Let M and Af' be two n-dimensional manifolds and let / be a diffeo-
morphism of M into AT.

At each point, P, of M it defines a mapping f#: TP—> Tf{P).
If A is in Hom(V, TP), f#°A is in Hom( V, Tm); therefore, / induces a

mapping, /, of the principal frame bundle on M into the principal frame
bundle on M'. Suppose that Af and Af' both possess G-structures. If /
maps the frames of one into the frames of the other, / is called structure
preserving.

With this definition in mind it is intuitively clear what is meant by a
mapping of Af into M' which is structure preserving to kth order at some
point of Af. We must, however, give this notion a precise meaning:

Let M be a differentiable manifold and let Nx and N2 be two m-dimen-
sional submanifolds of M intersecting at the point P.

We say that Nx and N2 have kth order contact at P if we can find a
coordinate system for Af, (y1( ••-,y„), defined in a neighborhood of P,
such that the equations of Nx are given by

Vm+i = 0, ym+2 = 0,        y„ = 0,

and the equations of N2 by
Vm+l — fm+l(yi, ' • '>yn)t

v„ = /„(yi, •••,yn),
where fn+1, fm+%, •••,/» have vanishing derivatives of all orders less than
or equal to k at the point P.

Now let M and M' be two re-dimensional manifolds; let E —+ M be a G-
structure on M; let E' —>M' be a G-structure on Af', and let F and F' be
the principal frame bundles on M and M'. Let P be a point of M and / a
diffeomorphism of a neighborhood of P into M'. We will say that / pre-
serves the G-structure to kth order at P if some frame belonging to E at P
gets mapped by / onto a frame, A, belonging to E' and if f(E) and E' have
contact of order k at A as submanifolds of P'.

Note that this notion does not depend on / itself but only on the (k + 1)-
jet of / at P. Therefore it makes sense to say that a (k + l)-jet with source
P and target Q is structure preserving to order I, I f k, at P and Q.
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Note also that the composition of two (A-f l)-jets which are structure
preserving to order k is structure preserving to order k. Likewise the
inverse of a (k + l)-jet which is structure preserving to order k is structure
preserving to order k.

3. Properties of integrable G-structures. If we think of V as a differenti-
able manifold, it posssesses a special G-structure defined as follows: At
each point, P, of V, there exists a canonical isomorphism

dP: I7— TP.

The G-structure in question can be written explicitly as the set of all
linear mappings:

dP°A, PEV.AEG.
Any G-structure which is locally equivalent to this G-structure is said

to be integrable or flati3). We will denote it by F0. Also we will denote the
principal frame bundle on V by F0. In addition we will consider the follow-
ing objects:

(1) Eo the set of all (k + l)-jets with source at the zero element of V
and target anywhere in V, which are structure preserving to order k.

(2) Fo the set of all inversible (k + l)-jets with source at the zero element
of V and target anywhere in V.

(3) G* the set of all (k -f l)-jets with source and target at the zero ele-
ment of V which are structure preserving to order k.

It follows from the remarks at the end of §2 that G* is a group, and that
Fj is a principal fiber bundle over V with structural group G*. (Note that
Gi acts on the right.)

In §4 we will need a more explicit description of G*. We must first of
all, therefore, write out what its algebra is.

Let li, • • xn be a system of linear coordinates in V and let f(t) be a
(k + l)-jet belonging to G*, and depending differentiably on t. We will
also assume that /(0) is the {k + l)-jet of the identity mapping.

There exists a representative of /(f) of the form:

y, = aMXi +■■■+ oTMf)*;, • •
/ is represented by the matrix

(3.1) g = ai(t) + ■■■+ jplT'*»*h ■ ■ ■ W

To kth order this must be the form bi(xlt ■ • •, xn, f), where (b{(xu ■■■,xn,t))
is a matrix in G. Differentiating (3.1) with respect to f we get the follow-
ing conditions on the coefficients of /.

f3) Equivalently this means that one can introduce coordinates (xu • ■ ■ ,x„) locally such that
(d/dx\---,d/dxn) is a local cross-section of the G-structure.
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1^-^1(0) -lxji... xjl+l GV® S'+i( V*) ng ® S*( V)
for I g k.

In other words, as a vector space, the Lie algebra of G* is a direct sum
of(4)

g + ga)+ ■■■ + gm.

It is not hard to show in addition that the bracket operation on the
Lie algebra of G* coincides with the bracket operation already defined on

g + gw + g(2,+ ---+g{k) + gik+1)+---

truncated at degree k.
The group G* itself is now easy to define abstractly as a semidirect

product of G and the nilpotent Lie group generated by

We will, however, omit details.
For each m > 0 we will denote by im the (m + l)-jet of the identity

mapping of V onto itself with source and target at the zero element. Let
0 be an element of G*, <b' its image in G*"1 and / a mapping of V into V
having $ as its (k + l)-jet. It is clear that there exists a neighborhood of
<p' in Ek~l such that if ^ is in this neighborhood the composition, f~l°yj/,
is defined.

The correspondence

defines on this neighborhood a mapping of Fo"1 into Fo"1 which maps as'
onto The 1-jet of this mapping depends only on <b. Moreover, this
one jet defines a mapping of the tangent space to Fo-1 at <t>' onto the tan-
gent space to Fo-1 at

On the other hand <t>' regarded as an element of G*"1 operates on Fo"1
on the right, sending onto <j>' and the tangent space at onto the
tangent space at . If we compose this mapping with the mapping just
described we get a mapping of the tangent space at ik~i onto itself. In
other words, we have a natural representation of G* on the tangent space
to Eq'1 at ik-i- We will denote this representation by p*.

We can write it out explicitly in terms of V + g+ ••• +g(k~1\ though
we will not bother to do so here.

(*) Note that this identification does not depend on the choice of linear coordinates in V*.
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4. G-structures which are uniformly fc-flat.
Definition. A G-structure on the manifold M will be called uniformly

fc-flat if at each point, P, of M there exists a (k + l)-jet with target at P
and source at the zero element in V which is kth order structure preserv-
ing^).

Let the given G-structure be defined by the fibering

E—>M.
We define Ek to be the set of all (k + l)-jets with source at the zero element
in V and target at some point of Af, which are kth order structure pre-
serving.

E» is a fiber bundle over M with structural group G* (acting on the
right). We will briefly describe some of its intrinsic properties:

Let <j> be an element of Ek, </>' its image in Ek~l and / a mapping of V
into M whose (k + l)-jet is <b. There exists a neighborhood of <t>' in
such that if <t> is an element of this neighborhood is well defined.
The correspondence

defines a mapping of this neighborhood into Fq~1 which maps <t>' onto ik-\.
The one jet of this mapping depends only on </> and maps the tangent
space to Ek~l at <p' onto the tangent space to Fj"1 at t*—1> therefore, it can
be regarded as a one form, defined at </>', with values in the vector space
(4.1) V + g+ ••■+gik-l).

If we lift this form to 4> we get a canonically defined one-form at d>.
This is true for all elements of Ek, so we have a canonically defined one-
form on Ek with values in (4.1). We will denote this by r*. We will also
denote its homogeneous parts by üi,ß°,ß1, ■••,Q*~1.

The transformation properties of r* are easy to describe in terms of the
representation, pk, of G* on V + g + ■ • ■ + described in the last section.
If s is an element of G* it acts on the right on Ek and thus defines a diffeo-
morphism, F, of Ek on itself. One verifies immediately that

(4.2) i*r* = p*(*-1)r*.
We will now define on E a structural invariant which resembles very

much the Ehresmann-Bernard structure tensor and in fact reduces to it
ifjfe = 0.

To do so, let 4> be an element of Ek and P its projection on M.
Let H be a horizontal subspace of the tangent space to Ek at <t> on which

the forms ß°, fl1, •••,ß*"1 all vanish. Such a subspace always exists but in
general is not unique.

(5) The g-structures in question being of course the given g-structure and the integrable
g-structure defined in the previous section.
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Now let v and w be elements of V, and Fand w the corresponding tangent
vectors to Vat the zero element. (0)*Fand (</>)*w are tangent to M at P,
and determine uniquely vectors X and Y in H projecting onto them. Define

nH{v, w) = (drk, X f\Y).

TlH is a linear mapping of VA V into V + g + • • • We will denote
the ith homogeneous part of this mapping by n#.

Proposition 4.1.  n$ = 0, t < k — 1.
Proof. Let X and Y be two vectors which are tangent to Ek at <b and

denote their projections on H by X' and Y'. We will define the two-form
dr*0 H by the relation

<dr* ° H, x A Y) = <dr*. X' A Y'>.
dQ'°H will be similarly defined.

The proposition amounts to showing that dQ' ojH = 0, i < k — 1.
We will first show that, for i < k — 1, the following identities hold:

(4.3) dn'°/7 = dO' + J([a>,fi'+1]+ ••• + [Qi+1,a,]).

First of all notice that both the left- and right-hand sides are horizontal,
that is, their inner product with a vertical vector vanishes. Next, if X
and Y both belong to H, the left-hand side applied to X A Y equals
(dfi'.XAY) and the right-hand does also, since ß°, Q1, • • •, ß,+1 vanish on
H. This establishes the identity.

Now let To be the structure form on Eq. Indicate its components by
wo, • • •, A*-1- It is easy to show that, for i < k — 1

(4.4) dfio + \ (W "o+1] + • • • + W\ o>o]) - 0

(the equations of Maurer-Cartan).
Finally note that the forms u, _1 are obtained from the forms

a>o, •••,Qo~I in the following way. As we have already shown, <t> defines a
mapping 4> of the tangent space to Ek~l at 4>' onto the tangent space to
ES-1 at t*_i. At ik-\ the form To (which takes its values in the tangent
space to Eq~1 at i*_i) is simply the identity map of the tangent space to
Et'1 at ik-i onto itself. By definition r* = 0*To at <t>'.

Also, for i < k — 1, Q' is globally defined on Ek~l and fio is globally de-
fined on E0. It is easy to show that dn' = <p*d% at It follows that the
equation (4.4) implies the vanishing of (4.3). Q.E.D.

The term n^_1) will not in general be equal to zero. We want to deter-
mine, however, to what extent it depends on H. Let us first of all differ-
entiate the right-hand side of (4.3) with i = k — 2. After a simple cal-
culation we obtain: [dük l°H,«] = 0.
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Expressed in terms of n$ u this simply says that «ng_1) = 0.
Thus we have established:

Proposition 4.2. nj/_1) is a cocycle of bidegree (k,2) in the chain com-
plex C*(g) (cf. §1, (1.2)).

We will now prove:

Proposition 4.3. The cohomology class of n#-1) in Hk2(g) is independent
of the choice of the horizontal space H.

Proof. We must show that another choice of H only changes n^""11 by a
coboundary. To show this, let Hf be another choice of a horizontal sub-
space. Associated with H and H' we get an element, sH HI, of g(k) ® V*
defined as follows: As above, for each v in V, we denote the tangent vector
it defines at the zero element of V by F. 4>*Fis tangent to M at P and has
a unique lift, X, to H, and a unique lift, X', to H'. X — X' is tangent to
the fiber and can be thought of as being in the Lie algebra of G*. In fact,
it lies in glk) since both H and H' are annihilated by Q°, We set
sh.rfiv) equal to this element of g(kl

We will show

(4.5) n&-u - nr1' = to**.
Let v and w be in V; let X and Y be vectors in H which project onto

<£*Fand <t>%w, and let X' and Y' be the corresponding vectors in H'. Let
X' - X = a in gik) and Y'-Y-ß.

(dT,X' AY')-(dr,XAY)
= (dr, (X'-X) AY') + (dr,XA(Y' - Y)>
= (a_i drk)(Y') - (ß_>drk)(X).

But by (4.2) we obtain
(a _| dr*)(Y') = ^r'(y')=ao w.

Similarly we get
(9 _i dr*)(X) = ß ° v.

Therefore
n>(i>, iu) — nw(i;, w) = aow-^oi;.

However, by definition, a = shih (v) and ß = sH Hiw), so we get (4.5) as
claimed.

We will denote by c* the mapping of Ek into Hk,2(g) which we have just
defined. Its transformation properties are easy to write down from (4.2).
It is constant on the fibers of the fibration Ek —»E; therefore it is actually
defined on E, not on Ek. On E it transforms like a tensor of type Hk,2(g).
We will call c* the kth structure tensor of E.
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Our basic theorem is the following.

Theorem 4.1. Suppose E—>M is uniformly k-flat. Let P be a point of
M. If the kth structure tensor vanishes at P there exists a (k + 2)-jet with
source at the zero element of V and target at P, which is structure preserving
to (k + l)st order. The converse is also true.

Corollary. Let E—>M be uniformly k-flat. It is uniformly (k+ \)-flat
if and only if its kth structure tensor vanishes.

Corollary. If Hk,2(g) = 0, every G-structure which is uniformly k-flat
is uniformly (k + I)-flat.

Proof of the theorem. Let at be an element of Ek projecting on P. We
first remark that the vanishing of c* at P implies that there exists a one-
form, ft*, defined at <t>, with values in gik) such that the equation

(4.6) dfi*-1 + i([«,0»] + [12°, fi*"1] + • • • + [a*,*.]) - 0

is satisfied, and such that if X is an element of the Lie algebra of Gk and
X is the corresponding vector tangent to the fiber at <t>, ii*(X) is the gik)
component of X.

The one-form 0= (o>, Q°, • ■ •, Qk) defines a mapping, y, of the tangent
space to Ek at <t> onto the tangent space to Eq at i*. By defining it properly
on the vectors tangent to the fiber, we extend this mapping to a mapping,
y, which maps the tangent space to F* at 0 onto the tangent space to Fl
at it. The system of equations for y analogous to those of (4.6) is simply
the condition that y be induced by a (k + 2)-jet of a mapping of M into
V mapping P onto the zero element. To prove this we notice that by
Proposition 4.1 every such (k + 2)-jet induces a 1-jet satisfying these
equations and that the number of (k + 2)-jets extending a given (k + l)-jet
is equal to the number of solutions of these equations (i.e. dim V ® S*+2( V*)).
We thus establish that y comes from the (k + 2)-jet of a mapping, /, of
M into V. However, by definition, y maps the space tangent to Ek at <j>
onto the space tangent to Eq at i*. This implies that / is structure pre-
serving at P to order k + 1. The converse can be proved by exactly the
same argument in reverse order, so we will omit details.

5. G-structures of finite type.
Definition. A G-structure will be said to be of finite type if g(k> = 0

for some k. If g{k'l) * 0 and g{k) = 0, G will be said to be of type k.
It can be proved (cf. §6) that a subgroup of GL(V) which leaves fixed

a positive definite quadratic form on V is of type t. Since every compact
subgroup of GL(V) satisfies this requirement, every linear representation
of a compact group is of type 1. In fact Cartan has shown that most
completely reducible linear representations are of type 1. The exceptional
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cases are listed by Cartan in [2].
Note that if G is of type k, Hr2(G) = 0 for r > k.
We will prove for finite G-structures the following integrability theorem.

Theorem 5.1. If G is of type k, a G-structure which is uniformly (k + 1)-
flat is integrable.

Proof. First of all, by the main theorem of the last section, a G-structure
which is uniformly (k -f l)-flat is uniformly (k + 2)-flat since Hk+1,2(g) = 0.
Since gik) = gik+l) = 0, the fiber bundles E", and Ek+2 are identical.
Therefore the structure forms r*+2 and r*+1 are defined on the same mani-
fold, i.e. Ek, and are identical. It is easy to establish the following prop-
erties for r*+1:

A. If X is tangent to Ek at some point and r*+1(X) = 0, then X = 0;
that is, the components of r*+1 give rise to a complete parallelism on Ek.

B. If X is a vector in the Lie algebra of Gr and X is the vector field it
induces on Ek, then T*+1(X) = X.

C. drk+l + l2 [Tk+1, Tk+l] = 0 (by Proposition 4.1 applied to r*+2).
We will denote by r{+1 the analogous form on Eq. Given an arbitrary

point of Ek and an arbitrary point of Eb, we can demonstrate the existence
of a unique mapping f, Ek —> Eb mapping the one point onto the other and
satisfying

(5.2) f*rb+1 = Tk+\

(Apply Frobenius' theorem to A, C, and the analogous statements for
Io+1.) Condition B implies that this is a fiber mapping. It therefore in-
duces a mapping

g: M—> V
and a fiber mapping

g': E^Eo
hfting g. From equation (5.2) one gets

(g')*O>0= 01,

which implies that g' = g~ (cf. §2). Therefore g is structure preserving.
Q.E.D.

6. Examples.
A. Let G= 0(n), the orthogonal group in dimension n. It is easy to

show that giving an O(rt)-structure on a manifold M is equivalent to
giving a Riemannian metric on M. One can also verify without too much
trouble that gm = 0 and H° 2(g) = 0 (cf. [10]). Therefore O(n) is of type
1 and the only obstruction to integrability lies in H12. We will show in
§8 that this obstruction is the ordinary Riemannian curvature of M.

B. Let G = 0(n) + R, the conformal group on R". A G-structure on
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M is a conformal structure on M (i.e., an intrinsically denned notion of
angle). One can show (cf. [ 10] again) that g{2) = 0 and gw » R"' providing
n > 2. (If n = 2, g is of infinite type.) As far as the homology goes, if
re = 3, if '2 = 0 except when i = 2, and if n > 3, /T 2 = 0 except when i = 1.
This fact explains some of the formal differences between conformal
geometry in three dimensions and conformal geometry in more than three
dimensions. In the first case the obstruction to integrability lies in H22
and is the classical conformal tensor of Shouten-Weyl [9]. In the second
case the obstruction lies in H12 and is the Weyl conformal curvature
tensor [13].

C. Let G=GL(C,n), the complex linear group on C = Ä2". A G-
structure on M is in this case an almost complex structure on M. One can
show that G is of infinite type, and that ft ' = 0 for all i > 0 and all The
only obstruction to (formal) integrability lies in H0,2 and is the classical
structure tensor for almost complex structures. A well-known theorem of
Newlander-Nirenberg states that the vanishing of this tensor implies
integrability.

D. Involutive groups. A represented group is said to be involutive if
If ' = 0 for all i > 0 and all j. (The classical definition of involutiveness
is formulated in a rather different way (cf. Cartan [2] and Matsushima
[7]). Serre has shown this definition is equivalent to the one just given
(cf. [8]).)

GL(C, re) is an example of an involutive group; and, more generally,
if A is any re X re matrix, the set of all nonsingular matrices commuting
with A is an involutive group. Other examples are the simplectic group
and the group associated with a multifoliate structure.

If the structure group of a G-structure is involutive the only obstruction
to (formal) integrability lies in H0,2 and is simply the Ehresmann-Bernard
structure tensor. It is known that the vanishing of this tensor implies
integrability in all of the special cases just mentioned.

E. Let p(x) be a nondegenerate homogeneous polynomial in re indeter-
minates. (This means that p(x) cannot be reduced to a polynomial in
less than re indeterminates by a linear change of variables.) Let G be the
group of linear transformations of the re-variables which leave p(x) fixed.
Singer and I will show in a forthcoming paper that G is always of finite
type. (In fact of type f K if p(x) is of degree K.) We have conjectured
that G is actually of type 1. This is an interesting fact to know in con-
nection with the following question. When can a linear differential operator
be transformed into a constant coefficient operator by a change of co-
ordinates?

Appendix

7. Cartan connections. In a series of classical papers Cartan showed that
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the study of certain kinds of geometries gives rise naturally to connections,
for example, in Riemannian geometry, the connection of Levi-Civita. In
this section we will explain how such connections arise in studying G-
structures of finite type.

Let G be a subgroup of GL{ V) of type k. The algebra
V + g + gm + ...

is finite-dimensional since gik) = gik+1) = ... =0, and its underlying
space is

V + g+ ■■■+gik-1).

We have shown that

is the Lie algebra of Gk~l. In the discussion below H will be a Lie group
whose Lie algebra is V + g + g{1) + ••• +gik~1), such that G*-1 is the sub-
group of H corresponding to the subalgebra g+ ••• + g{k~1].

In §5 we showed that a G-structure which is uniformly (k + l)-flat is
integrable. We will now consider G-structures which are uniformly A-flat.

Since gik) = 0, G* = G*-1 and the representation pk, of G* on V + g +
• reduces to the adjoint representation.  Moreover Ek = Ek~L,
and the structure form of Ek, r\ is defined on Ek~l. One easily verifies
the following properties of r* (compare with §5).

A. If X is tangent to E*-1 at some point and r*(X) = 0, then X = 0;
that is, the components of r* give rise to a complete parallelism on Ek.

B. If X is a vector in the Lie algebra of G*"1 and X is the vector field
it induces on Ek~1 then r*(X) = X.

C. If seG*-\ s*T* = AdsV (cf. equation (4.2)).
In the product space F*"1 X H consider the following relation:

(x,t)~(x',t')

if and only if there exists an s in G*_1 such that x' = xs and t' = s_1i.
Denote by E the set of equivalence classes of this relation. £ is a fiber
bundle over M with structural group H. Moreover if we associate with
every element x of E the equivalence class of the couple (x, ik„x) we get an
inclusion of Ek~l into E. We now extend the form r* to E. To do so, we
first define it at every point of Ek~l by requiring it to satisfy condition B
for all vectors tangent to the fiber, and requiring it to reduce to r* on
vectors tangent to Ek'x. Next we define it on all of E by condition C.
We will denote this extension of r* by r. It is clearly a connection form
on E. Connections arising this way are what Ehresmann calls Cartan
connections (cf. Ehresmann [5]).

The connection defined by r can also be thought of as a connection on
the homogeneous space bundle E/Ek~l with fiber ff/G*-1. By Theorem
5.1 this connection is flat if and only if the original G-structure is integrable.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] the integrability problem for g-structures 557

It is also possible to associate Cartan connections with G-structures
which are uniformly (k — l)-flat. The construction requires, however,
certain supplementary hypotheses about G. For example, it is enough
to assume that if Z*~1,2 is the space of cocycles in Ck~1,2(g) then there is
an invariant complement to dCkl in Zk~1,2. Supposing this hypothesis sat-
isfied, denote by D a particular invariant complement to 8CkA in Z*~1,2.
By Proposition 4.3, at each point of E*"1 there exists a unique horizontal
space, H, annihilating the g + gw + •■■+g(k~2) component of r*-1 and
such that n^"2) is in D. This horizontal space gives one a way of identify-
ing the tangent space to Ek'x at the point in question with the tangent space
to£o_lati,_i. In other words, by choosing D, we get a (V + g + ••• +gik~1])-
valued one-form on Ek~l. This form satisfies the properties A,B,C; there-
fore just as above, it defines a Cartan connection on E.

As an example we consider the conformal group. By Proposition 6.2
it is of type 2, and by Proposition 6.3 every conformal structure is uni-
formly one-flat. Moreover, since the conformal group is reductive one
can always find an invariant subspace, D, of Z1,2 complementary to
8C2,l(g). Therefore every conformal structure defines a Cartan con-
nection. This connection turns out to be a spherical connection; the
associated homogeneous space bundle is an ra-sphere bundle. The ex-
istence of this connection was pointed out by Cartan in [3].

8. The tensors of structure computed in terms of classical invariants.
Let E—>M be a G-structure and let w be its structure form. Let A be an
arbitrary linear connection on E. At every point of E, A defines a hori-
zontal subspace, H, of the tangent space to E. The V-valued two-form,
du>° H, is called the torsion form of A. It defines an element (njr1' in our
previous notation) of Vo V* A V* called the torsion tensor of the con-
nection at the point in question. Therefore:

Proposition 8.1. Let Q be an arbitrary point of E. The lowest order
structure tensor of E^-M at Q is the cohomology class in H°,2(g) of the
torsion tensor of A at Q.

If this structure tensor vanishes, there exist linear connections on E
without torsion. In fact one can prove a somewhat more general result:

Each element of G is a homogeneous linear transformation of V; there-
fore it defines an element of G* for all k. In other words there is a canonical
imbedding of G in G*. For each k, therefore, we can think of G as a sub-
group of G*.

Suppose the lowest order structure tensor of E —> M vanishes. By our
main theorem E—>M is uniformly one-flat; and, therefore, the pro-
longation El —>M is defined. We will prove:

Proposition 8.2. There is a one-one correspondence between torsionless
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connections on E and cross sections of E1 —> E which commute with G.
Specifically, if <p: E^E1 is a cross section of E1 —>/£ commuting with G,
the connection form of the associated connection is <t>*Q°, where Q° is the g
component of the structure form of E1.

Proof. It is clear that if <t> is such a cross section then <p*tt° is a connection
form on E. Moreover it satisfies

dw + [«*n°,w] = o,

which, as Nomizu has shown (cf. [8]), is equivalent to torsion vanishing.
To establish the correspondence in the other direction suppose that A is
a connection form on E satisfying

dA+ [A,u] = 0.

Let Q be a point of E. By an argument used in establishing Theorem
4.1 we can prove that the mapping of the tangent space to £ at Q onto
the tangent space to E0 at i0 defined by (u>,A) is induced by a two-jet pre-
serving structure to first order at Q. This defines the required lifting
<b: E—^E1; and (p*Q° = A is a consequence of the definitions.      Q.E.D.

Let Zl,2(g) be the cocycles of bidegree (1,2) in the Spencer 5-chain
complex and let n be the projection of Z1,2(g) onto H1,2(g).

Proposition 8.3. If A is a torsionless connection on E and R is its curva-
ture tensor, R takes its values in Z1,2(g) and the first order structure tensor
of E is nR.

Proof. Let <b be the cross section of E' —> E associated with A. Let Q
be a point of E and H the horizontal space at Q defined by the connection.
By definition </>* H is annihilated by P.0; therefore the structure tensor at
Q is the cohomology class of the element in g V> V* A V* associated with
dQ0o<p%H. But by definition 4>* of this is dhoH, which is the curvature
form of A at Q- Q.E.D.

Let us now choose, for once and for all, a torsionless connection on E
with connection form A.

Consider the following system of differential equations on E.

dA + 5[A,A]-f-[a.,A1]=0I

dA1 + ^([A,A1]+[A1,A]) + [a),A2] = 0,

(8.1) :       :- :
dA*"2 + \ ([A, A*"2] + [A1, A*"3] + ... + [A*-2, A]) + [«, A*-1] = 0.

The term A1 is to be a one-form taking its values in gil), and the brackets
are defined according to the conventions of §1. A solution to these equa-
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tions will be called admissible if the forms a', / > 0, are horizontal on E
(that is, zero when restricted to the fibers) and transform as forms of type
gll) under the action of G. Let <t> be the cross section of E' —► E associated
with the torsionless connection.

We will prove:

Proposition 8.4. // (8.1) has an admissible solution, then E—>M is
uniformly k-flat. Moreover, there is a one-one correspondence between ad-
missible solutions to the system (8.1) and cross sections of Ek—>E which extend
<t> and commute with G. Explicitly, if $ is such a cross section, ^*o', / = 1,
■ ■■,k — 1, is an admissible solution to (8.1), where fi' is the gil) component
of the structure form on Ek.

Proof (by induction). The first step in the induction has been demon-
strated by Proposition 8.2. We will assume that the system of equations
(8.1) has been solved up to order k — 2, which implies by induction that
E—>M is uniformly (k — l)-flat and that there exists a cross section ^:
E^>Ek'1 such that a' = l=l,---,k-2.

Let A*"1 be a g(*_1)-valued one-form on E satisfying

dA*"2 + \ ([A, A*"2] + • • • + [A*"2, A]) + k A*-1].

Let Q be a point of E and H the horizontal space determined by the
connection at Q . We will define a ^""-valued one-form at \p( Q) by re-
quiring it to be equal to a*-1 on 4/*H and to take the appropriate values
on the vertical vectors corresponding to gll) + ••• By definition

dfi*"2 + \ ([n*-2, ö°] + [ak-3, n1] + • • • + [0°, A*"2]) + k fi*"1] = 0

at rfriQ), and
+ *Qk-i = a*"1.

Referring again to the argument used to prove Theorem 4.1, the map-
ping of the tangent space to at Q ) onto the tangent space to Ek0~l
at ik~i defined by ■ ■-,Qk l) is induced by a (k + l)-jet lifting +(Q)
and preserving structure to kih order at Q. Thus E—>M is uniformly k-
flat and A*-1 defines a cross section f: E^Ek extending \p: E—>Ek~\
Q.E.D.

Corollary. Suppose E^>M is uniformly k-flat. Its kth structure tensor
can be written as a polynomial expression in the curvature tensor of a and
its first k — 1 covariant derivatives.

Proof. We will indicate the first stage of the proof. If E—>M is uni-
formly two-flat then the equation
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dA + ^[A,A]+ [o>,A1] = 0

has an admissible solution. Let Q be a point of E. The expression dA1
+ [A, A1] defines an element of g{1> <8> V* A V* at Q, and this is easily seen
to be a cocycle in the cohomology class of the tensor of structure at Q.
However A1 is a horizontal form whose coefficients, in terms of «, are
linear expressions in the coefficients of the curvature tensor; and dA1
+ [A, A1] is the covariant derivative of A1 (cf. Nomizu [8]). Therefore,
it is a horizontal form whose coefficients (in terms of co) are linear ex-
pressions in the first covariant derivatives of the curvature tensor.

In general the kth tensor of structure is determined by an expression
of the form:

DA^'-r-^^A^+.-. + fA^A1]),

where D is covariant differentiation, and the forms A1, • • •, A*-1 are an
admissible solution to (8.1). By induction the coefficients of these forms
in terms of w are polynomial expressions in R and its first k — 2 covariant
derivatives. Therefore, the kth structure tensor is an expression in R and
its first k — 1 covariant derivatives.      Q. E. D.
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