THE INTEGRABILITY PROBLEM
FOR G-STRUCTURES()

BY
VICTOR GUILLEMIN

Introduction. One of the main problems of local differential geometry
is to determine when a given differentiable structure (for example, a Rie-
mannian structure, a projective structure or an almost complex structure)
is integrable. There are really two problems involved in this: (1) the
problem of finding a consistent system of differential equations whose
unknowns yield a solution to the problem; and (2) the problem of solving
these equations. It goes without saying that the second problem is more
or less trivial if we are considering analytic structures. On the other hand
for C~-structures it is extremely difficult, since the equations that occur
in (1) are generally not elliptic.

In the paper we will only deal with the first problem which we will refer
to as the problem of formal flatness or formal integrability. Also, for simpli-
city, we will restrict ourselves to studying G-structures, though most of
the resuits of this paper can be extended to more general kinds of pseudo-
group structures (such as projective structures).

We will also formulate the problem in slightly more intuitive terms:
In §2 we will define what we mean by a mapping of one G-structure into
another which is structure preserving to kth order at some point, a notion

which is almost self-evident.
We will try to find conditions on a given G-structure, E — M, such that

every point of M admits a mapping into a neighborhood of an integrable
G-structure which is structure preserving to order k at that point, for
arbitrarily large k. The obstructions to constructing such mappings turn
out to be tensors of type H**(g), defined on E, where the H*(g) are the
bigraded homology groups of a certain chain complex due to Spencer (cf.
§1). Therefore, the character of the integrability problem will be determined
by the cohomology sequence H**(g).

We will also show in this paper that for G-structures of finite type formal
integrability in the sense above implies integrability. For analytic G-
structures we will give a direct proof of the equivalence of these two
notions (not using the Cartan-Kaehler theorem) in a paper to follow
this one.

Finally we mention that the following are known for C® G-structures:
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Formal integrability implies integrability if the linear group, G, is com-
pletely reducible (this is a result of the work of Sternberg and Singer on
the infinite Lie groups [cf. [ 10]]) or if one of the prolongations of G is of
“elliptic type” (cf. Spencer [11]).

1. Algebraic preliminaries. In this chaper g will always stand for a linear
L.A,, that is, given a vector space V, g will be a subalgebra of gL(V). We
are going to associate with g a certain chain complex, the so-called é-
complex of Spencer. The homology theory based on this chain complex
will figure centrally in our theory of integrability of G-structures.

Given G, we define g to be the set of all linear mappings S: V—g such
that for all v and w in V, Sov applied to w equals Sew applied to v.

Having defined g*~? by recurrence, we define g* to be the set of all
linear mappings S: V—g%*~? such that, for all v and w in V, So v applied
to w equals Sow applied to v. Note that this makes sense since g* " is con-
tained in Hom(V,g*?) by recurrence.

The definition of g® can be written more succinctly:

(1.1) &P =g® SV NV SH (V.

£* also has a simple analytical interpretation which will be described
in §3.

Let v be an arbitrary element of V. v can be thought of as a linear func-
tional on V* and can be extended uniquely to a derivation on S(V*) (cf.
Chevalley [4]). We will denote this by D.,.

Let v, ® s, be an element of V ® S**(V*) and 1, ® s, an element of
V® §*Y(V*). We will define the bracket of these two elements (denoted
by the symbol “[ ]’) by the expression

Uy ® D,,1$2°sl — U &® DDZSIOSQ.
Note that this lies in V ® S¥H1(V*),

“[ ]’ extends to a bilinear mapping of V& S*!(V*) x V® S*(V*)
into V® S***(V*). Recalling (1.1), this induces a bilinear mapping of
g% ® g° into V® S***!, which is in fact a bilinear mapping into g**+ .
Moreover “[ ]’ makes the vector space
(1.2) V+g+ 8"+ ... (infinite sum)

into a Lie algebra. Both of these remarks will be obvious in light of §3.
Consider the complex Y C*' = C*, where

4
CH = SHV*H ® A (V.

We will define on C* and antiderivative 6 of bidegree (— 1,1).
By requiring & to be an antiderivative we only have to define it on the
elements of C™° and C™'%:
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Let s be in S*(V*). For each v in V, D,s is in $*"Y(V*); therefore, s

defines an element of Hom(V,S*'(V*)) or C* '!. Denote this by bs.
Let s be in C*'. We can regard it as an element of Hom(V,S* V*)).
For any pair of elements, v and w, in V, we set

(6s,v Aw) = D(sow) — D,(s°v).

és is in Hom(V A V,8*%(V*) or C**2

The definition of 5 now extends without any trouble to all of C*.

An elementary computation shows that 4= 0; and it is not much
harder to show that the homology theory based on (C*¥,4) is trivial. (This
is the formal analogue of the Poincaré Lemma. Cf. Spencer [11].)

We can extend 5 to the chain complex V ® C*(V*) in the standard way
by letting it act trivially on V. Let

i
(1.3) CHg) =g ® N\ (V.

Because of the identification (1.1), the sum D C*(g) can be thought
of as a subspace of V ® C*(V*) and it is evidently even a subcomplex.

The homology theory based on this bigraded chain complex will be
called the Spencer 6-cohomology of g. It is a consequence of the definitions
that

HYg) =0 forizl,
and
H'(g)=0 fori<DO.

We will be mainly interested in the homology groups H“*(g). Our ob-
structions to integrability will be tensors taking their values in these hom-
ology groups; therefore if certain of these homology groups vanish, we
have a priori information about flatness. It is a result of Spencer’s that
for i sufficiently large the H*/(g) all vanish, which implies that the problem
of determining whether a G-structure is (formally) flat can always be settled
in a finite number of steps.

2. G-structures. In this chapter V will be an n-dimensional vector space,
G a Lie subgroup of GL(V), and g its associated Lie algebra. Let M be an
n-dimensional differentiable(*) manifold. A G-structure on M is a law
which assigns to each point, P, of M a set, ¢p, of linear mappings of V onto
the tangent space of M at P such that:

I1L.IfAisinepand B is inep, A"'B is in G.

II.If Aisinepand B is in G, AB is in ¢p.

In addition it is assumed that ¢» depends differentiably on P, or, in
other words, that

(3 Throughout this paper, differentiable will always mean C~.
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E=Ue

PeM

admits local differentiable cross-sections. The elements of E are called the
“frames” of E.

If we let ep be the set of all linear mappings of V onto the tangent space
at P, we get a GL(V)-structure on M, the so-called principal frame bundle,
which we will denote by F. A G-structure on M is simply a reduction of F
to a principal subbundle with group G.

Let M and M’ be two n-dimensional manifolds and let f be a diffeo-
morphism of M into M’.

At each point, P, of M it defines a mapping f;: Tr— Typ.

If A is in Hom(V, Tp), f4 © A is in Hom(V, Typ); therefore, f induces a
mapping, f, of the principal frame bundle on M into the principal frame
bundle on M’. Suppose that M and M’ both possess G-structures. If f
maps the frames of one into the frames of the other, f is called structure
preserving.

With this definition in mind it is intuitively clear what is meant by a
mapping of M into M’ which is structure preserving to kth order at some
point of M. We must, however, give this notion a precise meaning:

Let M be a differentiable manifold and let N; and N, be two m-dimen-
sional submanifolds of M intersecting at the point P.

We say that N, and N, have kth order contact at P if we can find a
coordinate system for M, (y,---,y,), defined in a neighborhood of P,
such that the equations of N, are given by

yM+1=0’ ym+2=0a cty yn=0y

and the equations of N, by
yM+1 = fm+l(y1’ °* ')yn)y

Yo = fn(yb M '1yn)y
where fni1, fni2 -+, fn have vanishing derivatives of all orders less than
or equal to k at the point P.

Now let M and M’ be two n-dimensional manifolds; let £E— M be a G-
structure on M; let E' - M’ be a G-structure on M’, and let F and F’ be
the principal frame bundles on M and M’. Let P be a point of M and f a
diffeomorphism of a neighborhood of P into M’. We will say that f pre-
serves the G-structure to kth order at P if some frame belonging to E at P
gets mapped by f onto a frame, A, belonging to E’ and if f(E) and E’ have
contact of order k at A as submanifolds of F’.

Note that this notion does not depend on f itself but only on the (k¥ 4+ 1)-
jet of f at P. Therefore it makes sense to say that a (k + 1)-jet with source
P and target @ is structure preserving to order /, [ <k, at P and Q.
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Note also that the composition of two (k -+ 1)-jets which are structure
preserving to order k is structure preserving to order k. Likewise the
inverse of a (k + 1)-jet which is structure preserving to order % is structure
preserving to order k.

3. Properties of integrable G-structures. If we think of V as a differenti-
able manifold, it posssesses a special G-structure defined as follows: At
each point, P, of V, there exists a canonical isomorphism

dP: V- Tp.

The G-structure in question can be written explicitly as the set of all
linear mappings:

dPo A, PeV,AEG.

Any G-structure which is locally equivalent to this G-structure is said
to be integrable or flat(®). We will denote it by E,. Also we will denote the
principal frame bundle on V by F,. In addition we will consider the follow-
ing objects:

(1) E! the set of all (k+ 1)-jets with source at the zero element of V
and target anywhere in V, which are structure preserving to order k.

(2) F¥ the set of all inversible (k + 1)-jets with source at the zero element
of V and target anywhere in V.

(3) G* the set of all (k4 1)-jets with source and target at the zero ele-
ment of V which are structure preserving to order k.

It follows from the remarks at the end of §2 that G* is a group, and that
E%is a principal fiber bundle over V with structural group G*. (Note that
G* acts on the right.)

In §4 we will need a more explicit description of G*. We must first of
all, therefore, write out what its algebra is.

Let x;,---,x, be a system of linear coordinates in V and let f(t) be a
(k + 1)-jet belonging to G*, and depending differentiably on t. We will
also assume that f(0) is the (k + 1)-jet of the identity mapping.

There exists a representative of f(f) of the form:

yi=al®x;+ - + U RRO)x; oy
fis represented by the matrix

ay; i J .
3.1) a—: =alt)+ --- + Wa'n LT SRS T
To kth order this must be the form bi(x,, - - -, %, t), where (bi(xy, - -+, Xs, £))
is a matrix in G. Differentiating (3.1) with respect to ¢ we get the follow-
ing conditions on the coefficients of f.

(3) Equivalently this means that one can introduce coordinates (xy,---,%,) locally such that
(a/ax‘,. . -,a/ax") is a local cross-section of the G-structure.
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d .
—aj(0 ,

‘_1.0{1-.~j1+1(0) %le . c Ve Sl+l( V-*) Nge Sl( V*)

dt

for [ Sk
In other words, as a vector space, the Lie algebra of G* is a direct sum
of(*)

*Xj

g+e0+ -+ g%.

It is not hard to show in addition that the bracket operation on the
Lie algebra of G* coincides with the bracket operation already defined on

g+g(l)+g(2)+ .”+g(h)+g(k+l)+._.

truncated at degree k.
The group G* itself is now easy to define abstractly as a semidirect
product of G and the nilpotent Lie group generated by

g(1)+g(2)+,“+g(h)+”./g(h+1)+,”_

We will, however, omit details.

For each m > 0 we will denote by i, the (m + 1)-jet of the identity
mapping of V onto itself with source and target at the zero element. Let
¢ be an element of G*, ¢’ its image in G*! and f a mapping of V into V
having ¢ as its (k + 1)-jet. It is clear that there exists a neighborhood of
¢’ in E&! such that if y is in this neighborhood the composition, f~oy,
is defined.

The correspondence

v—floy

defines on this neighborhood a mapping of Ef™! into Ft~' which maps ¢’
onto i;_;. The 1-jet of this mapping depends only on ¢. Moreover, this
one jet defines a mapping of the tangent space to Et~' at ¢’ onto the tan-
gent space to Ef™! at i,_;.

On the other hand ¢’ regarded as an element of G*! operates on E!™!
on the right, sending i,_; onto ¢’ and the tangent space at i;_; onto the
tangent space at ¢’. If we compose this mapping with the mapping just
described we get a mapping of the tangent space at i,_, onto itself. In
other words, we have a natural representation of G* on the tangent space
to Ef~' at i,_;. We will denote this representation by p;.

We can write it out explicitly in terms of V+ g+ ... + g* ", though
we will not bother to do so here.

() Note that this identification does not depend on the choice of linear coordinates in V.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



550 VICTOR GUILLEMIN [April

4. G-structures which are uniformly k-fiat.

DEFINITION. A G-structure on the manifold M will be called uniformly
k-flat if at each point, P, of M there exists a (k + 1)-jet with target at P
and source at the zero element in V which is kth order structure preserv-
ing(®).

Let the given G-structure be defined by the fibering

E-M.

We define E* to be the set of all (k + 1)-jets with source at the zero element
in V and target at some point of M, which are kth order structure pre-
serving. '

E! is a fiber bundle over M with structural group G* (acting on the
right). We will briefly describe some of its intrinsic properties:

Let ¢ be an element of E*, ¢’ its image in E*~! and f a mapping of V
into M whose (k + 1)-jet is ¢. There exists a neighborhood of ¢’ in E*~!
such that if ¢ is an element of this neighborhood f~'oy is well defined.
The correspondence

v—f oy
defines a mapping of this neighborhood into F§~' which maps ¢’ onto iy-,.
The one jet of this mapping depends only on ¢ and maps the tangent
space to E*"! at ¢’ onto the tangent space to E{~' at i,_;; therefore, it can
be regarded as a one form, defined at ¢’, with values in the vector space

4.1) Vig+ - +g* 7

If we lift this form to ¢ we get a canonically defined one-form at ¢.
This is true for all elements of E*, so we have a canonically defined one-
form on E* with values in (4.1). We will denote this by I'*. We will also
denote its homogeneous parts by «,2° @}, ... Q¢

The transformation properties of I'* are easy to describe in terms of the
representation, ps, of G* on V+ g+ --- 4+ g*~* described in the last section.
If s is an element of G* it acts on the right on E* and thus defines a diffeo-
morphism, 5, of E* on itself. One verifies immediately that

4.2) S = pu(s7HT*

We will now define on E a structural invariant which resembles very
much the Ehresmann-Bernard structure tensor and in fact reduces to it
ifk=0.

To do so, let ¢ be an element of E* and P its projection on M.

Let H be a horizontal subspace of the tangent space to E* at ¢ on which
the forms 0°Q', ..., Q%! all vanish. Such a subspace always exists but in
general is not unique.

(5) The G-structures in question being of course the given G-structure and the integrable
G-structure defined in the previous section.
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Now let v and w be elements of V, and v and w the corresponding tangent
vectors to V at the zero element. (¢), v and (¢), w are tangent to M at P,
and determine uniquely vectors X and Y in H projecting onto them. Define

Mu(v,w) = @I XA Y).

Iy is a linear mapping of VA Vinto V4 g+ ... +g* V. We will denote
the ith homogeneous part of this mapping by IIf}.

ProrosITION 4.1, 0¥ =0, i<k—1.

Proof. Let X and Y be two vectors which are tangent to E* at ¢ and
denote their projections on H by X’ and Y’. We will define the two-form
drto H by the relation

(@MoH,XAY)=dr X AY').

d® oH will be similarly defined. .
The proposition amounts to showing that dQ'c/[H =0, i <k — 1.
We will first show that, for i <k — 1, the following identities hold:

(4.3) doo H = do' + %([w, a4 [0, 0]+ --- 4 [0 0).

First of all notice that both the left- and right-hand sides are horizontal,
that is, their inner product with a vertical vector vanishes. Next, if X
and Y both belong to H, the left-hand side applied to X A Y equals
d2, X AY) and the right-hand does also, since 9°,@',---,9*! vanish on
H. This establishes the identity.

Now let T'X be the structure form on E! Indicate its components by
wo, - -+, 02 It is easy to show that, for i <k —1

1 ) .
(4-4) d% + '2' ([w()’ Q(l)-*—l] + b + [%+1) “’0]) = 0
(the equations of Maurer-Cartan).
Finally note that the forms w,---,Q*! are obtained from the forms
wp, - -+, %1 in the following way. As we have already shown, ¢ defines a

mapping ¢ of the tangent space to E*~! at ¢’ onto the tangent space to
E:'at i,_,. At i,_, the form I} (which takes its values in the tangent
space to Et™! at i,_,) is simply the identity map of the tangent space to
Et-! at i,_, onto itself. By definition I'* = ¢*T% at ¢’.

Also, for i <k — 1, @ is globally defined on E*~! and @} is globally de-
fined on E,. It is easy to show that dQ' = ¢*d9} at ¢’. It follows that the
equation (4.4) implies the vanishing of (4.3). Q.E.D.

The term II{~" will not in general be equal to zero. We want to deter-
mine, however, to what extent it depends on H. Let us first of all differ-
entiate the right-hand side of (4.3) with i =k — 2. After a simple cal-
culation we obtain: [d* 'oH,w]=0.
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Expressed in terms of I~V this simply says that smfi~? = 0.
Thus we have established:

ProrosiTION 4.2. NIE~Y is a cocycle of bidegree (k,2) in the chain com-
plex C*(g) (cf. §1, (1.2)).

We will now prove:

PROPOSITION 4.3. The cohomology class of I in H**(g) is independent
of the choice of the horizontal space H.

Proof. We must show that another choice of H only changes NI " by a
coboundary. To show this, let H” be another choice of a horizontal sub-
space. Associated with H and H’ we get an element, sy, of g% ® V*
defined as follows: As above, for each v in V, we denote the tangent vector
it defines at the zero element of V by v. ¢,V is tangent to M at P and has
a unique lift, X, to H, and a unique lift, X’, to H’. X — X’ is tangent to
the fiber and can be thought of as being in the Lie algebra of G*. In fact,
it lies in g® since both H and H’ are annihilated by ©°,-..,9**, We set
syr(V) equal to this element of g*:

We will show

(4.5) o — ol =ésyp.

Let v and w be in V; let X and Y be vectors in H which project onto
¢,V and ¢,.w, and let X’ and Y’ be the corresponding vectors in H’. Let
X -—X=aing®” and Y - Y =35.

@dr,X’ ANY)—@dr,XA\Y)
=@rL,(X' -X)AY)+{dr, XA (Y -Y))
= (a 1 dT(Y") — (8 1 dT)(X).
But by (4.2) we obtain
(@ 2 dM(Y) = 4THY) =aow.
Similarly we get
(0 2 drH(X) =gouw.
Therefore
Oy (v, w) — Mg, w) = aow — gouv.

However, by definition, « = sy 5 (v) and 8 = sy u(w), so we get (4.5) as
claimed.

We will denote by c* the mapping of E* into H**(g) which we have just
defined. Its transformation properties are easy to write down from (4.2).
It is constant on the fibers of the fibration E*— E; therefore it is actually
defined on E, not on E*. On E it transforms like a tensor of type H*%(g).
We will call ¢* the kth structure tensor of E.
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Our basic theorem is the following.

THEOREM 4.1. Suppose E— M is uniformly k-flat. Let P be a point of
M. If the kth structure tensor vanishes at P there exists a (k + 2)-jet with
source at the zero element of V and target at P, which is structure preserving
to (k+ 1)st order. The converse is also true.

COROLLARY. Let E— M be uniformly k-flat. It is uniformly (k + 1)-flat
if and only if its kth structure tensor vanishes.

CoroLLARY. If H*%(g) = 0, every G-structure which is uniformly k-flat
is uniformly (k + 1)-flat.

Proof of the theorem. Let ¢ be an element of E* projecting on P. We
first remark that the vanishing of c¢* at P implies that there exists a one-
form, ©*, defined at ¢, with values in g® such that the equation

(4.6) dot! +1([w,9"] + [+ o) =0

is satisfied, and such that if X is an element of the Lie algebra of G* and
X is the corresponding vector tangent to the fiber at ¢, ?*(X) is the g®
component of X.

The one-form Q= (0,9’ ---,9) defines a mapping, v, of the tangent
space to E* at ¢ onto the tangent space to Ef at i;,. By defining it properly
on the vectors tangent to the fiber, we extend this mapping to a mapping,
7, which maps the tangent space to F* at ¢ onto the tangent space to F}
at i,. The system of equations for ¥ analogous to those of (4.6) is simply
the condition that 5 be induced by a (k + 2)-jet of a mapping of M into
V mapping P onto the zero element. To prove this we notice that by
Proposition 4.1 every such (k4 2)-jet induces a 1-jet satisfying these
equations and that the number of (k + 2)-jets extending a given (k + 1)-jet
is equal to the number of solutions of these equations (i.e. dim V ® S***(V*)).
We thus establish that ¥ comes from the (k + 2)-jet of a mapping, f, of
M into V. However, by definition, ¥ maps the space tangent to E* at ¢
onto the space tangent to E§ at i,. This implies that f is structure pre-
serving at P to order k4 1. The converse can be proved by exactly the
same argument in reverse order, so we will omit details.

5. G-structures of finite type.

DEFINITION. A G-structure will be said to be of finite type if g® =
for some k. If g*Y =0 and g% = 0, G will be said to be of type k.

It can be proved (cf. §6) that a subgroup of GL(V) which leaves fixed
a positive definite quadratic form on V is of type 1. Since every compact
subgroup of GL(V) satisfies this requirement, every linear representation
of a compact group is of type 1. In fact Cartan has shown that most
completely reducible linear representations are of type 1. The exceptional
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cases are listed by Cartan in [2].
Note that if G is of type k, H*(G) =0 for r > k.
We will prove for finite G-structures the following integrability theorem.

THEOREM 5.1. If G is of type k, a G-structure which is uniformly (k + 1)-
flat is integrable.

Proof. First of all, by the main theorem of the last section, a G-structure
which is uniformly (k + 1)-flat is uniformly (k 4 2)-flat since H**"%(g) = 0.
Since g® = g*+V = 0, the fiber bundles E*, E**!, and E*** are identical.
Therefore the structure forms I**? and I**! are defined on the same mani-
fold, i.e. E* and are identical. It is easy to establish the following prop-
erties for I+

A. If X is tangent to E* at some point and I'***(X) =0, then X = 0;
that is, the components of I**! give rise to a complete parallelism on E*.

B. If X is a vector in the Lie algebra of G* and X is the vector field it
induces on E*, then M*(X) = X.

C.dr*t 44 [r*, "] = 0 (by Proposition 4.1 applied to I'**?).

We will denote by I't*' the analogous form on Ef Given an arbitrary
point of E* and an arbitrary point of E}, we can demonstrate the existence
of a unique mapping f, E*— Ef mapping the one point onto the other and
satisfying
(5.2) frTét = ot
(Apply Frobenius’ theorem to A, C, and the analogous statements for

TitL) Condition B implies that this is a fiber mapping. It therefore in-
duces a mapping

gEM-V
and a fiber mapping
g: E—E,
lifting g. From equation (5.2) one gets
(&) wo = w,
which implies that g/ =& (cf. §2). Therefore g is structure preserving.

Q.E.D.

6. Examples.

A. Let G= 0(n), the orthogonal group in dimension n. It is easy to
show that giving an O(n)-structure on a manifold M is equivalent to
giving a Riemannian metric on M. One can also verify without too much
trouble that g'¥ = 0 and H**(g) = 0 (cf. [10]). Therefore O(n) is of type
1 and the only obstruction to integrability lies in H“2. We will show in
§8 that this obstruction is the ordinary Riemannian curvature of M.

B. Let G= 0(n) + R, the conformal group on R". A G-structure on
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M is a conformal structure on M (i.e., an intrinsically defined notion of
angle). One can show (cf. [ 10] again) that g =0 and g ~ R* providing
n>2. (If n=2, g is of infinite type.) As far as the homology goes, if
n =3, H"? = 0 except when i = 2, and if n > 3, H"* = 0 except when i = 1.
This fact explains some of the formal differences between conformal
geometry in three dimensions and conformal geometry in more than three
dimensions. In the first case the obstruction to integrability lies in H?%?
and is the classical conformal tensor of Shouten-Weyl [9]. In the second
case the obstruction lies in H"? and is the Weyl conformal curvature
tensor [13]. ,

C. Let G=GL(C,n), the complex linear group on C*=R* A G-
structure on M is in this case an almost complex structure on M. One can
show that G is of infinite type, and that H* = 0 for all i > 0 and all j. The
only obstruction to (formal) integrability lies in H®Z and is the classical
structure tensor for almost complex structures. A well-known theorem of
Newlander-Nirenberg states that the vanishing of this tensor implies
integrability.

D. Involutive groups. A represented group is said to be inwvolutive if
H" =0 for all i >0 and all j. (The classical definition of involutiveness
is formulated in a rather different way (cf. Cartan [2] and Matsushima
[7]). Serre has shown this definition is equivalent to the one just given
(cf. [8]).)

GL(C,n) is an example of an involutive group; and, more generally,
if A is any n X n matrix, the set of all nonsingular matrices commuting
with A is an involutive group. Other examples are the simplectic group
and the group associated with a multifoliate structure.

If the structure group of a G-structure is involutive the only obstruction
to (formal) integrability lies in H*? and is simply the Ehresmann-Bernard
structure tensor. It is known that the vanishing of this tensor implies
integrability in all of the special cases just mentioned.

E. Let p(x) be a nondegenerate homogeneous polynomial in n indeter-
minates. (This means that p(x) cannot be reduced to a polynomial in
less than n indeterminates by a linear change of variables.) Let G be the
group of linear transformations of the n-variables which leave p(x) fixed.
Singer and I will show in a forthcoming paper that G is always of finite
type. (In fact of type < K if p(x) is of degree K.) We have conjectured
that G is actually of type 1. This is an interesting fact to know in con-
nection with the following question. When can a linear differential operator
be transformed into a constant coefficient operator by a change of co-

ordinates?
APPENDIX

7. Cartan connections. In a series of classical papers Cartan showed that
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the study of certain kinds of geometries gives rise naturally to connections,
for example, in Riemannian geometry, the connection of Levi-Civita. In
this section we will explain how such connections arise in studying G-
structures of finite type.

Let G be a subgroup of GL(V) of type k. The algebra

V+g+g¥+ .-

is finite-dimensional since g¥ =g**Y=... =0, and its underlying
space is
Vtg+ - +g*

We have shown that
g+g(l) + ... +g(k—l)

is the Lie algebra of G* . In the discussion below H will be a Lie group
whose Lie algebra is V+g+g" + - + g%V such that G*! is the sub-
group of H corresponding to the subalgebra g+ --- +g*~".

In §5 we showed that a G-structure which is uniformly (k + 1)-flat is
integrable. We will now consider G-structures which are uniformly k-flat.

Since g¥ = 0, G*= G*! and the representation p, of G* on V+g+
...+ g% reduces to the adjoint representation. Moreover E*= E*”’,
and the structure form of E* T*, is defined on E*~!. One easily verifies
the following properties of T* (compare with §5).

A. If X is tangent to E*~' at some point and I'(X) =0, then X = 0;
that is, the components of I'* give rise to a complete parallelism on E*.

B. If X is a vector in the Lie algebra of G*! and X is the vector field
it induces on E*~! then M*(X) = X.

C. If s€G, s*1r* = Ads™'T* (cf. equation (4.2)).

In the product space E*~' X H consider the following relation:

(z,0) ~ (x', 1)

if and only if there exists an s in G*”' such that x' = xs and ¢ =s7't.
Denote by E the set of equivalence classes of this relation. E is a fiber
bundle over M with structural group H. Moreover if we associate with
every element x of E the equivalence class of the couple (x,i;_,) we get an
inclusion of E*~! into E. We now extend the form I'* to E. To do so, we
first define it at every point of E*~! by requiring it to satisfy condition B
for all vectors tangent to the fiber, and requiring it to reduce to ™ on
vectors tangent to E*~'!. Next we define it on all of E by condition C.
We will denote this extension of I* by TI'. It is clearly a connection form
on E. Connections arising this way are what Ehresmann calls Cartan
connections (cf. Ehresmann [5]).

The connection defined by I' can also be thought of as a connection on
the homogeneous space bundle E/E*' with fiber H/G*"'. By Theorem
5.1 this connection is flat if and only if the original G-structure is integrable.
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It is also possible to associate Cartan connections with G-structures
which are uniformly (k — 1)-flat. The construction requires, however,
certain supplementary hypotheses about G. For example, it is enough
to assume that if Z*~"? is the space of cocycles in C*~“*(g) then there is
an invariant complement to dC*! in Z*~!?, Supposing this hypothesis sat-
isfied, denote by D a particular invariant complement to 6C*' in Z*~'?
By Proposition 4.3, at each point of E*~' there exists a unique horizontal
space, H, annihilating the g+ g% + ... +g*® component of I~ and
such that N2 is in D. This horizontal space gives one a way of identify-
ing the tangent space to E** at the point in question with the tangent space
toE%'at i,_,. In other words, by choosing D, wegeta (V+g+ ... + g*)-
valued one-form on E*~!. This form satisfies the properties A, B, C; there-
fore just as above, it defines a Cartan connection on E.

As an example we consider the conformal group. By Proposition 6.2
it is of type 2, and by Proposition 6.3 every conformal structure is uni-
formly one-flat. Moreover, since the conformal group is reductive one
can always find an invariant subspace, D, of Z“? complementary to
6C*'(g). Therefore every conformal structure defines a Cartan con-
nection. This connection turns out to be a spherical connection; the
associated homogeneous space bundle is an n-sphere bundle. The ex-
istence of this connection was pointed out by Cartan in [3].

8. The tensors of structure computed in terms of classical invariants.
Let E— M be a G-structure and let w be its structure form. Let A be an
arbitrary linear connection on E. At every point of E, A defines a hori-
zontal subspace, H, of the tangent space to E. The V-valued two-form,
dwo H, is called the torsion form of A. It defines an element (II§” in our
previous notation) of Vo V* A V* called the torsion tensor of the con-
nection at the point in question. Therefore:

ProrosITION 8.1. Let @ be an arbitrary point of E. The lowest order
structure tensor of E—M at Q is the cohomology class in H®*(g) of the
torsion tensor of A at Q.

If this structure tensor vanishes, there exist linear connections on E
without torsion. In fact one can prove a somewhat more general result:

Each element of GG is a homogeneous linear transformation of V; there-
fore it defines an element of G* for all k. In other words there is a canonical
imbedding of G in G*. For each k, therefore, we can think of G as a sub-
group of G*.

Suppose the lowest order structure tensor of E— M vanishes. By our
main theorem E— M is uniformly one-flat; and, therefore, the pro-
longation E' — M is defined. We will prove:

ProPoSITION 8.2. There is a one-one correspondence between torsionless
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connections on E and cross sections of E' — E which commute with G.
Specifically, if ¢: E— E' is a cross section of E' — E commuting with G,
the connection form of the associated connection is ¢*9°, where Q° is the g
component of the structure form of E'.

Proof. It is clear that if ¢ is such a cross section then ¢*Q° is a connection
form on E. Moreover it satisfies

do + [¢*2% 0] =0,

which, as Nomizu has shown (cf. [8]), is equivalent to torsion vanishing.
To establish the correspondence in the other direction suppose that A is
a connection form on E satisfying

dA + [A,w] =0.

Let @ be a point of E. By an argument used in establishing Theorem
4.1 we can prove that the mapping of the tangent space to E at @ onto
the tangent space to E, at iy defined by (w,A) is induced by a two-jet pre-
serving structure to first order at Q. This defines the required lifting
¢: ESEY; and ¢*Q°= A is a consequence of the definitions. Q.E.D.

Let Z"%(g) be the cocycles of bidegree (1,2) in the Spencer é-chain
complex and let I1 be the projection of Z"*(g) onto H"*(g).

PRroOPOSITION 8.3. If A is a torsionless connection on E and R is its curva-
ture tensor, R takes its values in Z“*(g) and the first order structure tensor
of E is NIR.

Proof. Let ¢ be the cross section of E’ — E associated with A. Let @
be a point of E and H the horizontal space at @ defined by the connection.
By definition ¢, H is annihilated by Q% therefore the structure tensor at
@ is the cohomology class of the element in g ® V* A V* associated with
do’o ¢, H. But by definition ¢* of this is dAo H, which is the curvature

form of A at Q. Q.E.D.
Let us now choose, for once and for all, a torsionless connection on E

with connection form A.
Consider the following system of differential equations on E.

dA + %[A,A] + [w,A'] =0,

dn' + 5 (4 A+ [, 4D + [o,47] =0,
@.1) o :
da' 4 o (A A7 (A5 AT ]  + [A5A) + o, 4] = 0.

The term A' is to be a one-form taking its values in g, and the brackets
are defined according to the conventions of §1. A solution to these equa-
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tions will be called admissible if the forms A', > 0, are horizontal on E
(that is, zero when restricted to the fibers) and transform as forms of type
g° under the action of G. Let ¢ be the cross section of E’ — E associated
with the torsionless connection.

We will prove:

ProrosiTioN 8.4. If (8.1) has an admissible solution, then E—M is
uniformly k-flat. Moreover, there is a one-one correspondence between ad-
missible solutions to the system (8.1) and cross sections of E*— E which extend
¢ and commute with G. Explicitly, if ¢ is such a cross section, y*@', [ =1,
...,k — 1, is an admissible solution to (8.1), where @' is the g® component
of the structure form on E*.

Proof (by induction). The first step in the induction has been demon-
strated by Proposition 8.2. We will assume that the system of equations
(8.1) has been solved up to order £ — 2, which implies by induction that
E— M is uniformly (k — 1)-flat and that there exists a cross section y:
E—E"! such that A'=y*0, I=1,..-, k- 2.

Let A*! be a g* V-valued one-form on E satisfying

dA* 2+ %([A, A4 4 (AR AD) 4 e, AR

Let @ be a point of E and H the horizontal space determined by the
connection at @ . We will define a g*~"-valued one-form at ¢( Q) by re-
quiring it to be equal to A*™* on ¢, H and to take the appropriate values
on the vertical vectors corresponding to g% + ... + g* V. By definition

dﬂk-2+%([9k—2’ QO] + [Qh—-B’ 91] _+_ . + [QO, Qk—2]) + [w’ Qk—I] =0

at (@), and
\l/*Qk_l — Ak*l‘

Referring again to the argument used to prove Theorem 4.1, the map-
ping of the tangent space to E*~! at y(Q ) onto the tangent space to Et!
at i,_, defined by (,9% ---,2*7") is induced by a (k + 1)-jet lifting ¥( Q)
and preserving structure to kth order at Q. Thus E— M is uniformly k-

flat and A*! defines a cross section y’: E— E* extending y: E— E*L.
Q.E.D.

CoROLLARY. Suppose E— M is uniformly k-flat. Its kth structure tensor
can be written as a polynomial expression in the curvature tensor of A and
its first k — 1 covariant derivatives.

Proof. We will indicate the first stage of the proof. If E— M is uni-
formly two-flat then the equation
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dA+%[A,A]+ [w,A']=0

has an admissible solution. Let @ be a point of E. The expression dA’
+ [A, A'] defines an element of g ® V* A V* at @, and this is easily seen
to be a cocycle in the cohomology class of the tensor of structure at Q.
However A! is a horizontal form whose coefficients, in terms of w, are
linear expressions in the coefficients of the curvature tensor; and dA'
+ [A,A!] is the covariant derivative of A' (cf. Nomizu [8]). Therefore,
it is a horizontal form whose coefficients (in terms of w) are linear ex-
pressions in the first covariant derivatives of the curvature tensor.

In general the kth tensor of structure is determined by an expression

of the form:
DAk—l +';‘([A1, Ak_z] + e + [Ak—2’ Al])’

where D is covariant differentiation, and the forms A',...,A*"! are an
admissible solution to (8.1). By induction the coefficients of these forms
in terms of w are polynomial expressions in R and its first £ — 2 covariant
derivatives. Therefore, the kth structure tensor is an expression in R and
its first k — 1 covariant derivatives. Q.E.D.
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