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ABSTRACT. Let R be a commutative ring with identity and let R' de-

note the integral closure of R in its total quotient ring. The basic question that

this paper is concerned with is: What finiteness conditions does the integral clo-

sure of a Noetherian ring R possess? Unlike the integral domain case, it is pos-

sible to construct a Noetherian ring R of any positive Krull dimension such that

R' is non-Noetherian. It is shown that if dim R < 2, then every regular ideal of

R' is finitely generated. This generalizes the situation that occurs in the integral

domain case. In particular, it generalizes Nagata's Theorem for two-dimensional

Noetherian domains.

1. Introduction. A ring means a commutative ring with identity that is

not necessarily an integral domain. If F is a ring, then T(R) is its total quotient

ring and F' denotes its integral closure in T(R). An overring of F is a ring be-

tween F and 71(F). An element in F is regular if it is not a divisor of zero. A

regular ideal is an ideal that contains a regular element.

A well-known result for integral domains is:

Theorem A ([8, (33.2) and (33.12)]). IfD is a Noetherian domain of

dimension < 2, then D' is a Noetherian domain.

For a history of this theorem, see the Historial Note Appendix of M. Naga-

ta's book [8]. Our purpose is to give a generalization of Theorem A to arbi-

trary commutative rings. We show at the end of §3 how to construct a Noeth-

erian ring F, of any positive dimension such that F' is a non-Noetherian ring.

Hence, there is no possibility of Theorem A remaining true when "domain" is

replaced by "ring". However, we are able to generalize Theorem A to the ring

theory case as follows:

Theorem B.   IfR is a Noetherian ring such that dim F < 2, then every

regular ideal ofR' is finitely generated.

If dim F = 1, then the proof of Theorem B is readily proved by reducing

Received by the editors May 14, 1975.

AMS (MOS) subject classifications (1970).  Primary 13B20, 13E05; Secondary 13A15.

Key words and phrases.   Integral closure, Noetherian ring, valuation ring, Krull dimen-

sion of a ring.

0)   This work was partially supported by a summer research grant at the University

of Missouri.

Copyright © 1976, American Mathematical Society

159

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



160 J. A. HUCKABA

to the integral domain case. However, for dim R = 2 the proof is much more

difficult. Nagata's proof of the two-dimensional case for domains makes use of

a reduction to the one-dimensional case by first factoring out of R'[X] a certain

principal ideal that is a prime ideal of the Krull domain R'[X]. The problems

with the ring theory case when passing from R' to R'[X] are: (1) integral closure

is not preserved; and (2) many new nilpotent elements are introduced. These

new nilpotents are difficult to control. To overcome these problems we make

use of a generalization of Krull domain introduced by J. Marot [7] and some

recent results by L. J. Ratliff [9], [10]. Ratliff's results concern prime divisors

of principal ideals for a certain class of rings of which R, R', and R'[X] are

members.

§2 contains Marot's definition of Krull rings and the major facts about

these rings. §3 is devoted entirely to the proof of the main theorem of this

article-the proof of Theorem B.

The author is indebted to George Hinkle for Step 4 in the proof of Theo-

rem B.

2. Krull rings.   This section develops the theory of Krull rings. Even

though these rings are quite interesting themselves, we will use them only as a

tool to establish Theorem B.

A ring R is called an additively regular ring if for each x G T(R) there

exists uER such that x + u is a regular element of T(R); see [3] and [4].

Noetherian rings and overrings of Noetherian rings are additively regular [1, Lem-

ma B]. Every regular ideal of an additively regular ring is generated by its set

of regular elements [7, Proposition 1.1.2].

Let T be a total quotient ring and let { G, +} be a totally ordered abelian

group. A map v from T onto G U {<*>} is a valuation, if for all x, y E T:

(1) v(xy) = v(x) + v(y);

(2) u(x + y) > min { v(x) ,v(y)};

(3) v(l) = 0 and v(0) = ~.

The ring V = {x G T: v(x) > 0} is called the valuation ring of v. A valuation

ring V (resp., valuation v) is a discrete rank one valuation ring (resp., discrete

rank one valuation), if the group G is isomorphic to the group of integers.

Definition 2.1.   A ring R is a Krull ring if there exists a family {v¡} of

discrete rank one valuations such that:

(1) R is the intersection of the corresponding valuation rings { V¡}

(2) for each regular x G T(R), v¡(x) = 0 for all but a finite number of v¡.

The idea of a valuation ring that contains zero divisors has been explored

by many authors. General results about such rings may be found in [6]. Our

definition of Krull ring is a slight generalization of Marot's definition [7, p. 27].
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It agrees with the definition of Krull domain, when F is assumed to be an inte-

gral domain.

Ratliff [9] considers the following class of rings, which we denote by

(S : F has only finitely many minimal prime ideals and the integral closure of

R/Z is a Krull domain, for each minimal prime ideal Z of F. If F is in (£, then

every ring between F and F' is in (S [9, p. 212]. Every Noetherian ring is in (5.

Theorem 22. If R is an additively regular member o/S, then R' is a

Krull ring.

Proof.   Part 1.   Assume that F is a reduced ring and that {Zi}g=x is

the set of minimal prime ideals of F. Then, N = C\Z¡ = (0). If K¡ is the quo-

tient field of the domain R/Z¡, then T(R) is the direct sum of the fields {K¡}g=x

and F' is the direct sum of {(R/Z¡)'}g=x. Since F is in S, (R/Z¡)' is a Krull do-

main. Write (R/Z¡)' = M Vu, where { Vh}&j is the defining family of discrete

rank one valuation domains for (R/Zt)'. Define W¡, to be the direct sum

A j © • • • © K¡_x © Vu ©äj'+i © ■ " ■ © F„.

Each Wj, is a discrete rank one valuation ring. If w¡, is the valuation associated

with Wy, then {w¡,} satisfies Definition 2.1 for F'. Therefore, F' is a Krull ring.

Part 2.    Suppose that the nilradical N of F is nonzero. If N' denotes the

nilradical of F', we may assume without loss of generality that:

(1) R/N CR'/N C (R/N)' C T(R/N) = T(R'/N);

(2) T(R)IN = T(R)INT(R) C T(R'/N').
Since R/N has only a finite number of maximal prime divisors of zero,

{namely, Z¡ (modulo N), i = 1, 2,. . . ,g}, R/N is an additively regular ring [1,

Lemma B] belonging to (J [9, p. 212]. By Part 1, there is a family of discrete

rank one valuations {v¡}, with corresponding valuation rings { V¡}, such that

(R/N)'=r\Vr
Let V be one of the V¡ and let / be the additive group of integers. In view

of relation (2), we can define a mapping w: T(R) —► / U {<»} via w(x) =

v{x + N). The map w is a valuation. (The only difficulty is checking that w

is surjective. But this follows fairly easily from [4, Lemma 3].) Hence for each

V¡, we can derive a valuation overring W¡ of R. It is clear that R' C D W¡. As-

sume that there is an element x G fl W¡, x ^F'. Then the coset x + A/' ̂  R'/N'.

Since R'/N is the integral closure of R/N in IXR^N1, since T(R)IN' is a subring

of TÍF/AO, and since (R/N)' O 7ÏF)/A/' = R'/N, we have x + N $ (R/N)'.
Therefore, fl V¡ ̂  (R/N)'. This contradiction proves that H W¡ = F'. If w¡ is

the valuation corresponding to W-, then {w¡} satisfies Definition 2.1 for F'.

Q.E.D.

Corollary 23.   IfR is a Noetherian ring, then R' isa Krull ring.
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Theorem 2.4.   IfR is a Noetherian ring and ifP is a prime ideal ofR,

then there are only finitely many prime ideals ofR' that lie over P.

Proof. The proof is somewhat similar to the proof of Theorem 2.3 (first

divide out the nilradical, then pass to the domain case and use [8, (33.10)]). We

will not present the details.

Corollary 2.3 and Theorem 2.4 extend the first two parts of [8, (33.10)]

to rings with zero divisors.

3. The main theorem. Let S[X] be the polynomial ring in one indetermi-

nate over the ringS.  For fES[X], let Af be the ideal in S generated by the co-

efficients off. The set U of all /G S[X] such that A* = S is a regular multipli-

cative system in S[X]. Define S(X) to be the quotient ring S[X] u. We will

use properties of A* and S(X) without further mention. A general reference for

these concepts is [2]. If / is an ideal of R, then an element x in R is integral

over I in case x satisfies an equation of the form x" + fljx"-1 + • • • + aH,

where a¡ E P. Let Ia be the set of all x in R such that x is integral over /. The

ideal Ia is the integral closure of I in R. If Rad / denotes the radical of /, then

/CIa C Rad /. If /is a principal regular ideal of R, then Ia=IR' DR [II,

Lemma 2.3]. Let Z(R) be the set of zero divisors in R. We need the following

concept, which we label as (A).

(A) If / is an ideal of R such that / C Z(R), then every finite subset of/

has a nonzero annihilator.

Every Noetherian ring satisfies (A) [5, Theorem 82]. If R satisfies (A),

then it is easy to see that an overring of R satisfies (A).

We are now ready for the main result of this paper.

Proof of Theorem B. We treat the one- and two-dimensional cases sepa-

rately.

Case 1.   Assume that dim R = 1.

There is a one-to-one correspondence between the prime ideals of R con-

sisting entirely of zero divisors and the prime ideals of T(R). Since R and R'

have the same total quotient ring, there is a one-to-one correspondence between

{Z,}f=1, the minimal prime ideals in R; and {Z'¡Yl=x, the minimal prime ideals

in R'. In this correspondence Z'tC\R = Z¡. Thus, we may assume that

R/Zf C R'/Z'i C T(R/Z()      (/ = 1, 2.g).

By [8, (33.2)], R'/Z'. is a Noetherian domain. Then R'¡((~)Z'¡) is a Noetherian

ring [8, (3.16)]. Let A be a regular ideal in R' and let n he the canonical

homomorphism of R' onto R'/(C\Z'¿). Choose ax, a2,. . . ,an in A, ax regular,

such that {îr(af)}"=1 generates ir(A). If z EA, then ir(z) = 2"_j n(c¡a¡), where

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE INTEGRAL CLOSURE OF A NOETHERIAN RING 163

c¡ E R'. This implies that z - S"=1 cte¡ = e E H Z\, and therefore e is a nil-

potent element of F'. We note that every nilpotent element of T(R) is integral

over F and is therefore in F'. In particular, the nilpotent element e/ax is in F'.

Thus, z - S"=1 c¡a¡ E axR'. This proves that A has a finite basis.

Case 2.    Assume that dim F = 2.

By [5, Theorem 7], it suffices to prove that every regular prime ideal F of

F' has a finite basis, (i.e., is finitely generated).

Part 1.    Assume that every regular maximal prime ideal of F ' is finitely

generated and assume that F is a regular height one nonmaximal prime ideal in

R'. Using Theorem 2.4 and Nagata's argument [8, p. 121], we may assume that

F is the unique prime ideal of F' lying over F C\R = P. Let

(F) = {xE R': x is regular and x £F}.

Since F' is a Krull ring (Corollary 2.3), R[P') is a discrete rank one valuation

ring [7, Proposition 2.5.3]. Choose x G R[P-) such that v(x) = 1 (v is the valu-

ation associated with R'^y). Then x = b/s with b ER' and s $P, and by Prop-

osition 2.3.2 of [7] we may choose b regular; so bR',p^ = FR',P'y   Replace

F by the Noetherian ring F [b]. We may assume P' is the only prime ideal in

R' lying over P.bEP, and P,R\P-) = PR'tf) = bR\P'y

By [9, Proposition 2.13], bR' = f)/=i P}"0, where P\nd = F¡¡R'P¡ n F',
{Pi}ti=x the height one prime ideals of F' containing b and Px = F. (Note

that R'P. is the usual localization of F' at the prime ideal P¡ and, in general, is

not the same as R[P.).) Since F^"1^ is a F-primary ideal in F',

bR{p.} c F(niV) c p'R'íp') = M'(py

which implies that F("iJ = F. Thus we can write bR' = F n Q2 n • • • n Q't,

where Q'i is a regular height one primary ideal #F. Let Q' = PR.': P'. From

this point, the proof of (33.12) in [8] carries over to show that F has a finite

basis.

Part 2.    We prove that every regular maximal ideal of F' has a finite

basis. Let M be such an ideal. As in Part 1, assume that M' is the only prime

ideal of F' lying over M C\R=M. Then R'/MR' = R'(M)/MR'(M). It is suffi-

cient to prove that jW*F[m) is finitely generated; for then, MR^/MR^ =

M '/MR' is finitely generated, which implies that M has a finite basis. Thus we

may assume that F and F' have unique regular maximal ideals M and M', re-

spectively. Our goal is to prove that M' has a finite basis.

If the height of M" is 1, then R' is a Krull ring and R[M') = F' is a discrete

rank one valuation ring [7, Proposition 2.5.3]. As in the proof of Part 1, M

is principal (and is therefore finitely generated).

Assume that M has height 2.  We break the proof of this case into 7 steps.
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Step 1.   There exist regular elements a and b in R such that a and b are

contained in no common height-one prime ideal of R. By the Principal Ideal

Theorem and by the fact that M is generated by its set of regular elements [7,

Proposition 1.1.2], there exist at least two height-one regular prime ideals of R.

Let P and Q be two such ideals.  Again, P and Q are generated by their respec-

tive sets of regular elements. Choose a regular element aEP- Q and let {P =

Px, P2, . . . , Pt} be the set of minimal prime ideals of the principal ideal aR.

Choose c E Q - ((J,-=i ^¿) and let d be a regular element in (f|/=i P¡) n Q-

There is an element X ER such that c + c/X = b is regular [7, Proposition 1.1.2].

Clearly b E Q - {Jti=x P¡, and {a, b} is the required set.

Step2. R'[a/b] = R'[X]l((bX - a)R'[X\). Let 0: R'[X] -*-R'[a/b] be

the natural homomorphism.  By [9, Lemma 2.4 (5)] and by [10, Corollary 7],

ker 0 is generated by the set {dX - e: d, e E R', 0 =£ be = ad}.  From [9, Prop-

osition 2.13], bR' = Z*"!* n P2"2) D • • • n /*"*), where />,. is a height one

regular prime ideal of R' and fj"^ = P^'R'p. n /?'. Consider one of the genera-

tors, dX - e, of ker <p. Since be = ad ¥= 0, and since W?' and ai?' do not belong

to a common height one prime ideal of R', d E PJ"ö for each /. Therefore d E

bR', and writing d = bs with s G./?', we see that s(bX - a) — dX - e. This

proves that (bX - a)R' - ker </> and R'[X] l((bX - a)R'[X}) as i?'[fl/Z>]. Denote

the ideal (ôX-a)/?'!*] by/.

Step 3. I(R [X] )' n R'[X] = Ia = Rad /.  First we show that Rad / -

{/+ c: fE I and c is a nilpotent element in R'}. Consider f+c, where/El

and where c is nilpotent of index n. Then (f+c)"=f-g + c"=f'gEl.

On the other hand, let / G i?'[AT] such that/" G/. In the natural isomorphism

from R'[X] ¡1 onto R'[a/b] ,/+/-> /(a/6).  But, /(a/è) is nilpotent in T(R)

and thus f(a/b) = cER1, since R' contains all the nilpotent elements of T(R).

However, c + / = /+/ (as elements in the ring R'[X] ¡1) implies that f-c =

f0EI. Therefore,/ = /„ + c.

We always have / C Ia C Rad /. Choose / G Rad /, then / = /0 + c where

fEl and c is a nilpotent element of R'. It follows from [11, Lemma 2.3] that

cEI(R[X])'nR'[X]=Ia.  Thus,/G/a.

Step 4. R'(X) is the integral closure of R(X). We always have T(R)(X) C

T(R [X] ). Let fig E T(R [X] ), where / and g are in R [X] and g is regular. Then

A   is a regular ideal in R; for if not, there exists a ¥= 0, a G R, such that a/l   =

0 (Property (A)), which implies that g is a zero divisor in R [X]. Thus, consider-

ing g as an element of the ring T(R)[X], we see that A   = T(R); so f/g E

T(R)(X). This proves that T(R)(X) = T(R [X] ).  From [2, Exercise 2, p. 415],

R'(X) is the integral closure of R(X) in T(R)(X) = TXflrX]).

Step 5.  If {Px, P2, . . . , Pt} is the set of height-one prime ideals of

R'[X] such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE INTEGRAL CLOSURE OF A NOETHERIAN RING 165

(a) P, => /,

(b) PtCM'R'[X],

then IR'iX) = (CiUl WW = H,Li 0V*'(*))•
Note that there can be only finitely many height-one prime ideals satisfying

(a) and (b)  [9, Corollary 2.14].  Let {Mß} be the set of maximal ideals of R'

and let F D I be a height-one prime ideal of R'[X].  If P C \JßMßR'[X], then

PR'iX) is a prime ideal of R'(X). Thus, for some ß, PR'(X) C MßR'iX); hence

P C MßR'[X]. Assume that M' # Mß, then Mß C Z(R'). Since ICP.IC

MßR'[X]. Write bX - a = Xsi=x a¡f¡, where a( E Mß and f¡ E R'[X]. By Prop-

erty (A), there exists c ¥= 0 such that c annihilates {ax,a2, . . . ,as}. Then

c(bX - a) = 0. This contradiction proves that if F is a height-one prime ideal of

R'[X],PD I, and PC U0 MßR' [X] ; then P C M'R'[X].

From Step 4,R[X]CR'[X]C(R[X])'CR'(X). Let/ = D-=iP,-  It follows

from Step 3 that IR'(X) = I(R [X] )'R'(X) = Ia R'(X) = JR'(X) - f|,= i (P^'(Z)).

Sfep 6. If p is a minimal prime ideal of R'(X), then

T(R [X] /p n F [*] ) = T(R'[X] /p n F' [X] ) = T(R(X)I\> H F (A)) = 7ÏF'(*)/p).

This holds since p intersected with any of the rings in question is a prime ideal

consisting entirely of zero divisors.

Step 1. M' is finitely generated.  From Step 5, IR'(X) = H/=i (Pfi'VO)

where each P¡ is a height-one prime ideal of R'[X] such that P¡ C MR'IX]. For

each / fix pf, a minimal prime ideal of R'(X) such that P¡R'(X) J pf. Then

P¡R'(X) n F(Z) j p,. n Ä(^. Let 5 = F(X)/(p,. D R(X)) and 5* - R'(X)/p..

Then 5 and 5* are integral domains such that

(i) S C S* C T(S),
(ii) S* is integral over 5,

(iii) S is a Noetherian domain,

(iv) dim S = dim S* = 2.

Let Pf be the height-one prime ideal of 5* corresponding to P¡R'(X). By

[8, (33.10)] and the fact that S* C S', S*¡Pf is an almost finite integral exten-

sion of S/(Pf n S), and dim S/(PfDS) = 1.  By the Krull-Akizuki Theorem [8,

(33.2)], S*lPf = R'(X)I(P¡R'(X)) is a Noetherian ring. By [8, (3.16)],

R'(X)I(D PtR'(X)) m R'(X)IIR'(X) is a Noetherian ring. Thus M'R'(X)IIR'(X)

is finitely generated. This implies that M'R'(X) has a finite basis. If {/)}/=1

are elements of R'[X] that generate MR'(X), then the coefficients of the f¡

form a generating set for M'. Thus, M has a finite basis.   Q.ED.

We close this paper with a result that shows how to construct a Noetherian

ring R of any positive dimension such that R' is non-Noetherian. Hence, Theo-

rem A cannot be generalized by replacing "domain" with "ring".
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Proposition 3.1. Let D be an ndimensional local (Noetherian) domain,

n>2. Assume that P is a height-one prime ideal ofD of depth n - 1, and

assume that A is a P-primary ideal distinct from P.  If R = D/A, then R' is a

non-Noetherian ring of dimension n - 1.

Proof. Assume that R' is a Noetherian ring. Choose a regular nonunit

b in the Jacobson radical ofR, and hence in the Jacobson radical ofR'. The

nilradical N1 of R' is a nonzero ideal in R'. Since /?' contains all the nilpotent

elements of T(R), bN1 = N1. By Nakayama's Lemma [5, Theorem 78], N' =

(0), a contradiction. Therefore, R' is a non-Noetherian ring. Clearly dim R' =

it-1. Q.E.D.
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