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0. Notation.

p=an odd prime.

G=cyclic group of order p with generator g.

R=a commutative ring with identity 1, in which the principal ideal (p-1) is a

nonzero maximal ideal.

Rk=R/(pk), using only those k for which (p")^^"'1)-

m = {M\M=Rk-fiee ¿kG-module of finite ¿k-rank}.

[M:Rk] = Rk-rank of M=number of elements in an ¿k-basis of M.

In=nxn identity matrix.

1. The integral representation ring a(RkG), The integral representation ring

a(RkG) (see Reiner [6]) is generated by the symbols [M], one for each isomorphism

class of modules in 2JI, subject to the relations

(1.1) [M] + [M'] = [M ® M']   and    [M][M'] = [M ®RkM'\,

where M <g> M' is the ¿fcG-module with g(m <gi m')=gm <g> gm'. We note that

a(RkG) is a commutative ring with identity [Rk], Rk the trivial ¿teG-module. The

Krull-Schmidt theorem holds for elements of SDl, so a(RkG) is a free Z-module with

Z-basis the nonisomorphic indecomposable elements of 5Dc.

J. A. Green [2] has investigated a(RkG) when k=l and G is a cyclic p-group.

Some of his results have been simplified in [4]. We will, therefore, assume that

k > 1 and also that p is odd, unless otherwise stated.

The indecomposable modules in 9JÎ have been determined in [1], for k > 1 and p

an odd prime, when R is the ring of integers Z. In this case, the study of these

modules is equivalent to the study of the representations of G by matrices over Zk.

Similar results for the general case have been obtained in [3] by somewhat different

methods. We collect these results for later use in this paper.

Since Rx = R/(p) is a field of characteristic p, and G is a cyclic group of order p,

there are exactly p nonisomorphic indecomposable ¿^G-modules, namely the

modules St = Ri[x]l(x- 1)' for / = 1, 2,...,/?, with g acting on 5¡ as multiplication

by x. For each M e Wl, define M to be the ¿jG-module M\pM; then we have

from [1] and [3]:
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(1.2) Every MeWl has the form M=MX ® Mp.x © Mv, where M, is an

£fcG-module with M¡ a direct sum of copies of S„ i = 1, p — 1, p.

In the sequel we shall refer to such a module Mt as a Trmodule. From (1.2) it

follows that a basis of a(RkG) will be known once the indecomposable £rmodules

are classified to within isomorphism for /= 1, p— 1, and p. Again from [1] and [3]

we have

(1.3) RkG is an indecomposable £fcG-module, and each £p-module is a free

£*G-module.

Further,

(1.4) A ^-module M affords a matrix representation g-> In+pk~1B, where

B is an n x n matrix over Rk. Here, n = [M:Rk],

Thus each £j-module M has the property that {g- l)M^pk~1M.

Let £ be the result of reducing the entries of B modulo p; then one can easily

show that

(1.5) Two Fi-modules Mx and M2 are isomorphic if and only if Bx and £2 are

similar over the field Rx.

(1.6) A Fj-module M is indecomposable if and only if B is indecomposable under

similarity transformations.

The £p_!-modules have been classified in [1] and [3] as follows:

(1.7) Let A = (g- l)£fcG = augmentation ideal in RkG. Then

(i) M is a TP _ x-module if and only if there exists a ^-module N such that

M^N® A.

(ii) For ^-modules Nx and N2, Nx ® A^N2 <g> A if and only if NX^N2.

(iii) The £p _ x-module N ® A is indecomposable if and only if the Fj-module

N is indecomposable.

II. Multiplication in a{RkG).   From (1.2) it follows that as a Z-module,

a(RkG) = a{Tx) ®a{Tp.x) ®a{Tp),

where a(£,) has as Z-basis the indecomposable £(-modules. Clearly a(Tx) is a

subring of a{RkG). For any MeWl with £k-basis {mt}, the set {g1 <g> g'mt} is an

£k-basis for RkG ® M. Hence RkG <g> Af=2® £kG(l ® nj¡), and thus is £fcG-free.

It follows that a(Tp) is an ideal and, by (1.3), a(Tp)=Zap, where ap = [£kG]. Let

«p-i = M]; then by (1.7) a(£p_1) = a(£1)ap_1. Further, it is well known that

(2.0) a2.x = l+{p-2)ap.

It now follows that multiplication in a{RkG) will be determined by that in

a(Tx). In order to investigate multiplication in a{Tx), we replace a{Tx) by the

representation ring a(Rx[x]). This is generated by the symbols [V], one for each

isomorphism class of ^M-modules with finite £j-basis, subject to the relations

(2.1) [V] + [V] = [V® V]   and    [V][V] = [V ®HlV],

where V ® F ' is an £1[x]-module with x acting as x ® 1 +1 ® x.
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To see that a(Tx)^a(Rx[x]), define a mapping ß: a(Tx)-^ a(Rx[x]) by ß([N])

= [V], where Naffords the representation g -> I+pk~1B, and Fis an ¿Jxj-module

for which the linear transformation "multiplication by x" is represented by B

relative to some ¿rbasis. It is clear from (1.4), (1.5), and the well-known facts

about ¿JxJ-modules, that ß is an isomorphism between the additive groups of

a(Tx) and a(Rx[x]). If g -> I+pk~ 1Bi is a representation of G afforded by N,

/= 1, 2, then since k> 1, g -> I+pk'1(Bx <g> /+/ <g> ¿2) is a representation of G

afforded by Nx ® A^2. Hence /S preserves multiplication.

For convenience, denote Rx[x]l(f(x))r by Rx(f, r). Thus to determihe multi-

plication in a(Rx[x]), we need only find the decomposition of W=

Ri(f,r) ^RXRi(g,s). Moreover, we may assume that Rx(f,r) and Rt(g, s) are

indecomposable, and thus that/(x) and g(x) are irreducible over Rx. Letting £2 be

an algebraic closure of Rx, we have

(2.2) Q ®Ä1 W ~ £ £2(af, />V) ® Q(j3,, /,«*),
i./

where /(x)«EU*-«f)p'andg(x) = U(x-&)""in QM,andQ(y,m) = n[x]l(x-y)m.

Let Nm = mxm matrix with l's immediately below the main diagonal and O's

everywhere else, B(m, n)=(XIm + Nm)n, X an indeterminate over £2, and {Xd>>}, the set

of nonunit invariant factors of B(m, «). Then the decomposition of (2.2) into

indecomposable factors is obtained by means of

(2.3) Lemma. The Q,[x]-module £î(a, ra) <g) Q(j8, «), with x acting as x®l

+1 (8) x, has the decomposition

e
(2.3.1) Q(o, m) ® Q(ß, «) = 2 n(«+ß> *)•

h

Moreover, there are min (m, «) summands on the right side of (2.3.1).

Proof. Relative to suitable Q-bases, the action of x on Ci(a, m) and Q(ß, n) is

given by the matrices alm + Nm and ßln + Nn, respectively. Thus the action of x on

Q(a, m) ® ü.(ß, ri) is given by the matrix

Y(m, «) = (aIn + Nm) ® /, + /„ <8» (^¿ + A^B)

= ((<x + i3)/m + Am) ® ¿ + /m ® ATB.

The Jordan canonical form of F(ra, «) is determined by the invariant factors of

Y(m, ri)-zlmn as a matrix over Í2[z], 2 an indeterminate over Q. Use the definition

yi ® B=(Abtj), and let A=a+^3—z. An easy induction shows that F(ra, ri) — zl is

equivalent to the matrix

AnCn -1) 0

0       ¿(ra,«)J

where ¿(ra, n) = (A/m+A^m)n.
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Since det (£(m, n)) = Amn, each invariant factor of B{m, n) is of the form Adt for

some nonnegative integer d¡. Thus the Jordan canonical form of Y{m, n) is

t((«+ß)hh+Ndh),
h

where the sum is over those A for which dh > 0. Thus

e
Cl(a, m) <g> Í2ÍJS, n) =  2 "(«+& dh).

<J,,>0

Since (g is commutative, we may assume m^n. Moreover, since {Nm)m=0, the

binomial expansion of (A/m + Nm)n shows that (A/m + Nm)n is a multiple of A. Hence

all the invariant factors are multiples of A. Thus there are m = min (m, n) summands

ón the right side of (2.3.1).

We refer the reader to papers by Green [3], Ralley [5], and Srinivasan [7] for

methods of determining these invariant factors.

Now let V be an £i[x]-module with finite £j-basis, and suppose that

(2.4.1) Q <g> V ~ J n(a, t)Cl{a, t),
a.t

with n(<x, /)i2(a, f) denoting a direct sum of n{a, t) copies of £2(a, t). Further, let

(2-4.2) V = J n{q, s)Rx(q, s),

with q{x) irreducible, q{x) = \~[ {x - a,)""", with a, ranging over the distinct roots

of q(x}. It follows that

(2.4.3) Ü®F=   £  4s)%,í""4
«,s,a.

On comparing (2.4.1) and (2.4.3), we have:

(2.4) Lemma. If a decomposition for Q <g> V is given by (2.4.1) and one for V by

(2.4.2), then

n{q, s) = n{a, t),    when q{x) = Irr (a, Rx) and t = peMs,
(2.4.4)

n(a, t) = 0, ivAen q(x) = Irr (a, Rx) and t ± peiq)s.

Now let f{x) = T\(x-aiyt, ai£Í2, «, distinct; «(*) = IT. (*-&)*". ft e Û, ft

distinct; C={ai+ft}; {Ad»} = set of invariant factors of £(p'r, pus); {qk(x)} = set of

distinct irreducible polynomials over Rx of the elements in C; pe(fc> = degree of

inseparability of qk{x) over £x; and n(y) = number of pairs (a,, ßt) such that

y = ai + ßj.
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(2.5) Theorem. With the above notation, n(y)=n(y') whenever y and y are

conjugate over Rx. If we let nk = n(y)for any root y ofqk(x), then

(2.5.1) Rx(f r) ® Rx(q, i)sj nkRi(qk, djp'™).
h,k

Proof. We have

(2.5.2) £2 ® (Ri(f, r) ® Rx(g, s)) ¡S f £2(ap, p*r) ® £2(j3„ />«*).

Hence by Lemma 2.3,

(2.5.3) £2 ® (Ri(f, r) ® ^(g, j)) s ¿ "(«•+&- *)•
i.í.ft

Collecting like terms yields

(2.5.4) £2 ® (Ri(f, r) ® ¿x(g, î))^2 "W"^ ««•

By Lemma 2.4, we know that the number of times £2(y, dh) occurs is the same for

each y such that qk(y) = 0. This is n(y)mh, where ra„ is the number of times dh occurs

as an invariant factor of B(plr, pus). Thus n(y) is constant, say nk, for each root y of

qk(x). Applying Lemma 2.4, we find that (2.5.1) holds.

(2.6) Corollary. Iff(x) and g(x) are separable over Rlt then

(i) ni.i(x-(«i+ß,)) = nkqHx),
(2) Ri(fi r) <g> Ri(g, s) 3 Ik.n nkRi(qk, dh).

Proof. (1) follows immediately from the hypothesis, and (2) then follows from

the theorem.

III. Nilpotent elements in a(RkG). We now turn our attention to the possible

existence of nilpotent elements in a(RkG). Recall that an element r of a ring is

nilpotent if there exists a positive integer n such that rn=0.

(3.1) Theorem. If a(RkG) has a nonzero nilpotent element, then so does a(Tx).

Proof. If a(RkG) has nonzero nilpotents, then there exists a z e a(RkG) such that

z^O, but z2 = 0. Let z=zx+zp.x + zp, zp£a(¿t). Moreover, zp_x = z'x-ap_x for

some z\ e a(Ti), and zp = «ap for some integer «. Using (2.0), we have

(3.1.1) 0 = z? + (z;)2 + (/j-2)(zi)2ap + z2+2z1z;<xp_1+2z1zp + 2zI,_1zJ,.

It follows from (3.1.1), and results in §1, that

(3.1.2) z2 + (z'i)2 = 0,       2zxz'xap.x = 0.

Again using (2.0), we obtain 2zjzi + 2(p - 2)zxz'xap = 0. Thus zxz'x=0. It now follows

from (3.1.2) that z? = 0 and (zi)3=0. Therefore, if a(Tx) has no nonzero nilpotent
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elements, then zx=0 and zi=0. Hence z=nzv. But z2=0, so n=0. Thus z=0,

contrary to assumption.

We now replace a{Tx) by a{Rx[x]) and embed a{Rx[x]) in a\£l[x]) by identifying

[V] with [Q ® V).

If v £ a(Ci[x]), then v=2«.r "(«» r)u(a, r), n(a, r) eZ, and r(a, r) = [iî[x]/(x-a)r].

If n{a, r)^0 for some r, call a a roo/ of v. Let #(i>) be the additive subgroup of Q

generated by the roots of v. Then we may write H(v) = Q0"i H-1- £ío«t> ̂ o

= prime subfield of Q. If H(v)¿Q, define //'(y) = 2P« Q0"i and w=[Q[x]/(x-«,)]•

Using Lemma 2.3, we see that wp = [D.[x]l{x)], the multiplicative identity of a(Q[x]).

(Recall that x acts as x g> 1 +1 igi x on a tensor product.) Further, each a e H{v)

has the form a = h' + iut for some A' £ /£(t>) and some i, Oái'üp— 1. It follows that

v(a, r) = w'v{h', r). Using this factorization, and collecting like powers of w, we

have

v = v0 + wvx-\-hwp~1vp_x,

with each v¡ having all its roots in H'{v). It is clear that v=0 if and only if each

t>¡ = 0.

Let C denote the field of complex numbers and let /l(Q[x]) = C g>z a(A[x]).

Obviously a(ii[x]) can be embedded in /l(ii[x]). Let p be any complexpth root of 1

and   let   u(p) = t>0 + pwt;i + p2w2u2-l-\-p"~1wp~1vp-1.   It   is   clear   that   if

i>n = 2f=o1 »A', then (»0>))"=2,-o &">)%■ It thus follows that

(3.2) Lemma. If v is nilpotent in a(Q[x]), then for any pth-root of unity p in C,

v(p) is nilpotent in A{Q[x]).

(3.3) Theorem. Ifve a{£l[x]) and v^O, then v is not nilpotent.

Proof. We proceed by induction on the rank / of H{v). If /=0, then v = 2 ^v{o, r)

with aTeZ and v{o, r) = [Q[x]/xT]. By Lemma 2.3, we know that v{o,r)v{o,s)

= 2.tbrstv{o,l), with each brst a nonnegative integer, and J,tbrst=min{r,s). Thus

v2 = Zr,, arCtAo,r)v(o, s) = Zr,Sit OraAstVio, t). If t>2=0, then for each t,

2r,s OraA5i = 0. Summing on t, we obtain 2r,s oras min (r, s)=0. If n is an integer

such that am = 0 for all m>n, we find that

nn /n\2/n\2

0=22 W* min (r, s) = ( 2 «i    +   2 a'    +   " ' +a«-
r = l 5 = 1 \i = l      / \i = 2     /

Hence each ar=0 and thus v=0.

Let ffcl, and now assume that whenever the rank of H{v0) is less than / and

f0#0, then v0 is not nilpotent. Let i;£a(Q[;c]), v^O, and let the rank of H{v) be t.

Replacing v by w'v for some /, OSi^p— 1» we may assume that

» = v0 + wvx-i-l-iv''1^-!

with roots of each v, in H'{v) and v0^0. By the induction assumption v0 is not

nilpotent. If v is nilpotent and p is a primitive pth root of 1 in C, then 2y=o f(pO is
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nilpotent in ^(£2[x]), since /4(£2[.x]) is commutative and each v(p') is nilpotent by

Lemma 3.2. But

p-i
2 °o»o = v+v(p)+--+v(pp-1)
1 = 0

= 2 (w^)+2 (pwyv<+• ■ • +2 (p"-1*)^

= jSofo+AWfi-r- • • ■ +j3p-iM'P"1rp-i

where ,8, = 2?-o (/>')' for each í, O^í'^/j-1. Since 130=/; and ft=0 for l£i£p-l,

we see that pv0 is nilpotent. But H(pv0)çH'(v), thus /w0=0 by the induction

assumption. But in this case t>0=0, which contradicts vQ being nonzero. Thus v

cannot be nilpotent and the induction step is completed.

(3.4) Corollary. The ring a(Ri[x]) has no nonzero nilpotent elements, whence

neither does a(Tx).

(3.5) Corollary, The ring a(RkG) has no nonzero nilpotent elements.
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