THE INTEGRAL REPRESENTATION RING $a\left(R_{k} G\right)$

BY
T. A. HANNULA ${ }^{(1)}$

0 . Notation.

$p=$ an odd prime.
$G=$ cyclic group of order p with generator g.
$R=$ a commutative ring with identity 1 , in which the principal ideal $(p \cdot 1)$ is a nonzero maximal ideal.
$R_{k}=R /\left(p^{k}\right)$, using only those k for which $\left(p^{k}\right) \neq\left(p^{k-1}\right)$.
$\mathfrak{M}=\left\{M \mid M=R_{k}\right.$-free $R_{k} G$-module of finite R_{k}-rank $\}$.
[$M: R_{k}$] $=R_{k}$-rank of $M=$ number of elements in an R_{k}-basis of M.
$I_{n}=n \times n$ identity matrix.
I. The integral representation ring $a\left(R_{k} G\right)$. The integral representation ring $a\left(R_{k} G\right)$ (see Reiner [6]) is generated by the symbols [M], one for each isomorphism class of modules in \mathfrak{M}, subject to the relations

$$
\begin{equation*}
[M]+\left[M^{\prime}\right]=\left[M \oplus M^{\prime}\right] \quad \text { and } \quad[M]\left[M^{\prime}\right]=\left[M \otimes_{R_{k}} M^{\prime}\right] \tag{1.1}
\end{equation*}
$$

where $M \otimes M^{\prime}$ is the $R_{k} G$-module with $g\left(m \otimes m^{\prime}\right)=g m \otimes g m^{\prime}$. We note that $a\left(R_{k} G\right)$ is a commutative ring with identity $\left[R_{k}\right], R_{k}$ the trivial $R_{k} G$-module. The Krull-Schmidt theorem holds for elements of \mathfrak{M}, so $a\left(R_{k} G\right)$ is a free Z-module with Z-basis the nonisomorphic indecomposable elements of \mathfrak{M}.
J. A. Green [2] has investigated $a\left(R_{k} G\right)$ when $k=1$ and G is a cyclic p-group. Some of his results have been simplified in [4]. We will, therefore, assume that $k>1$ and also that p is odd, unless otherwise stated.

The indecomposable modules in \mathfrak{M} have been determined in [1], for $k>1$ and p an odd prime, when R is the ring of integers Z. In this case, the study of these modules is equivalent to the study of the representations of G by matrices over Z_{k}. Similar results for the general case have been obtained in [3] by somewhat different methods. We collect these results for later use in this paper.

Since $R_{1}=R /(p)$ is a field of characteristic p, and G is a cyclic group of order p, there are exactly p nonisomorphic indecomposable $R_{1} G$-modules, namely the modules $S_{i}=R_{1}[x] /(x-1)^{i}$ for $i=1,2, \ldots, p$, with g acting on S_{i} as multiplication by x. For each $M \in \mathfrak{M}$, define \bar{M} to be the $R_{1} G$-module $M / p M$; then we have from [1] and [3]:

[^0](1.2) Every $M \in \mathfrak{R}$ has the form $M=M_{1} \oplus M_{p-1} \oplus M_{p}$, where M_{i} is an $R_{k} G$-module with \bar{M}_{i} a direct sum of copies of $S_{i}, i=1, p-1, p$.

In the sequel we shall refer to such a module M_{i} as a T_{i}-module. From (1.2) it follows that a basis of $a\left(R_{k} G\right)$ will be known once the indecomposable T_{i}-modules are classified to within isomorphism for $i=1, p-1$, and p. Again from [1] and [3] we have
(1.3) $R_{k} G$ is an indecomposable $R_{k} G$-module, and each T_{p}-module is a free $R_{k} G$-module.

Further,
(1.4) A T_{1}-module M affords a matrix representation $g \rightarrow I_{n}+p^{k-1} B$, where B is an $n \times n$ matrix over R_{k}. Here, $n=\left[M: R_{k}\right]$.

Thus each T_{1}-module M has the property that $(g-1) M \subseteq p^{k-1} M$.
Let \bar{B} be the result of reducing the entries of B modulo p; then one can easily show that
(1.5) Two T_{1}-modules M_{1} and M_{2} are isomorphic if and only if \bar{B}_{1} and \bar{B}_{2} are similar over the field R_{1}.
(1.6) A T_{1}-module M is indecomposable if and only if \bar{B} is indecomposable under similarity transformations.

The T_{p-1}-modules have been classified in [1] and [3] as follows:
(1.7) Let $A=(g-1) R_{k} G=$ augmentation ideal in $R_{k} G$. Then
(i) M is a T_{p-1}-module if and only if there exists a T_{1}-module N such that $M \cong N \otimes A$.
(ii) For T_{1}-modules N_{1} and $N_{2}, N_{1} \otimes A \cong N_{2} \otimes A$ if and only if $N_{1} \cong N_{2}$.
(iii) The T_{p-1}-module $N \otimes A$ is indecomposable if and only if the T_{1}-module N is indecomposable.
II. Multiplication in $a\left(R_{k} G\right)$. From (1.2) it follows that as a Z-module,

$$
a\left(R_{k} G\right)=a\left(T_{1}\right) \oplus a\left(T_{p-1}\right) \oplus a\left(T_{p}\right)
$$

where $a\left(T_{i}\right)$ has as Z-basis the indecomposable T_{i}-modules. Clearly $a\left(T_{1}\right)$ is a subring of $a\left(R_{k} G\right)$. For any $M \in \mathfrak{M}$ with R_{k}-basis $\left\{m_{i}\right\}$, the set $\left\{g^{j} \otimes g^{j} m_{i}\right\}$ is an R_{k}-basis for $R_{k} G \otimes M$. Hence $R_{k} G \otimes M=\sum^{\oplus} R_{k} G\left(1 \otimes m_{i}\right)$, and thus is $R_{k} G$-free. It follows that $a\left(T_{p}\right)$ is an ideal and, by (1.3), $a\left(T_{p}\right)=Z \alpha_{p}$, where $\alpha_{p}=\left[R_{k} G\right]$. Let $\alpha_{p-1}=[A]$; then by (1.7) $a\left(T_{p-1}\right)=a\left(T_{1}\right) \alpha_{p-1}$. Further, it is well known that

$$
\begin{equation*}
\alpha_{p-1}^{2}=1+(p-2) \alpha_{p} . \tag{2.0}
\end{equation*}
$$

It now follows that multiplication in $a\left(R_{k} G\right)$ will be determined by that in $a\left(T_{1}\right)$. In order to investigate multiplication in $a\left(T_{1}\right)$, we replace $a\left(T_{1}\right)$ by the representation ring $a\left(R_{1}[x]\right)$. This is generated by the symbols [V], one for each isomorphism class of $R_{1}[x]$-modules with finite R_{1}-basis, subject to the relations

$$
\begin{equation*}
[V]+\left[V^{\prime}\right]=\left[V \oplus V^{\prime}\right] \quad \text { and } \quad[V]\left[V^{\prime}\right]=\left[V \otimes_{R_{1}} V^{\prime}\right] \tag{2.1}
\end{equation*}
$$

where $V \otimes V^{\prime}$ is an $R_{1}[x]$-module with x acting as $x \otimes 1+1 \otimes x$.

To see that $a\left(T_{1}\right) \cong a\left(R_{1}[x]\right)$, define a mapping $\beta: a\left(T_{1}\right) \rightarrow a\left(R_{1}[x]\right)$ by $\beta([N])$ $=[V]$, where N affords the representation $g \rightarrow I+p^{k-1} B$, and V is an $R_{1}[x]$-module for which the linear transformation "multiplication by x " is represented by \bar{B} relative to some R_{1}-basis. It is clear from (1.4), (1.5), and the well-known facts about $R_{1}[x]$-modules, that β is an isomorphism between the additive groups of $a\left(T_{1}\right)$ and $a\left(R_{1}[x]\right)$. If $g \rightarrow I+p^{k-1} B_{i}$ is a representation of G afforded by N_{i}, $i=1,2$, then since $k>1, g \rightarrow I+p^{k-1}\left(B_{1} \otimes I+I \otimes B_{2}\right)$ is a representation of G afforded by $N_{1} \otimes N_{2}$. Hence β preserves multiplication.

For convenience, denote $R_{1}[x] /(f(x))^{r}$ by $R_{1}(f, r)$. Thus to determine multiplication in $a\left(R_{1}[x]\right)$, we need only find the decomposition of $W=$ $R_{1}(f, r) \otimes_{R_{1}} R_{1}(g, s)$. Moreover, we may assume that $R_{1}(f, r)$ and $R_{1}(g, s)$ are indecomposable, and thus that $f(x)$ and $g(x)$ are irreducible over R_{1}. Letting Ω be an algebraic closure of R_{1}, we have

$$
\begin{equation*}
\Omega \otimes_{R_{1}} W \cong \sum_{i, j}^{\oplus} \Omega\left(\alpha_{i}, p^{t} r\right) \otimes \Omega\left(\beta_{j}, p^{u} s\right) \tag{2.2}
\end{equation*}
$$

where $f(x)=\Pi\left(x-\alpha_{i}\right)^{p^{t}}$ and $g(x)=\Pi\left(x-\beta_{j}\right)^{p t}$ in $\Omega[x]$, and $\Omega(\gamma, m)=\Omega[x] /(x-\gamma)^{m}$.
Let $N_{m}=m \times m$ matrix with 1's immediately below the main diagonal and 0 's everywhere else, $B(m, n)=\left(\lambda I_{m}+N_{m}\right)^{n}, \lambda$ an indeterminate over Ω, and $\left\{\lambda^{d_{n}}\right\}$, the set of nonunit invariant factors of $B(m, n)$. Then the decomposition of (2.2) into indecomposable factors is obtained by means of
(2.3) Lemma. The $\Omega[x]$-module $\Omega(\alpha, m) \otimes \Omega(\beta, n)$, with x acting as $x \otimes 1$ $+1 \otimes x$, has the decomposition

$$
\begin{equation*}
\Omega(\alpha, m) \otimes \Omega(\beta, n)=\sum_{h}^{\oplus} \Omega\left(\alpha+\beta, d_{h}\right) . \tag{2.3.1}
\end{equation*}
$$

Moreover, there are $\min (m, n)$ summands on the right side of (2.3.1).
Proof. Relative to suitable Ω-bases, the action of x on $\Omega(\alpha, m)$ and $\Omega(\beta, n)$ is given by the matrices $\alpha I_{m}+N_{m}$ and $\beta I_{n}+N_{n}$, respectively. Thus the action of x on $\Omega(\alpha, m) \otimes \Omega(\beta, n)$ is given by the matrix

$$
\begin{aligned}
Y(m, n) & =\left(\alpha I_{m}+N_{m}\right) \otimes I_{n}+I_{m} \otimes\left(\beta I_{n}+N_{n}\right) \\
& =\left((\alpha+\beta) I_{m}+N_{m}\right) \otimes I_{n}+I_{m} \otimes N_{n} .
\end{aligned}
$$

The Jordan canonical form of $Y(m, n)$ is determined by the invariant factors of $Y(m, n)-z I_{m n}$ as a matrix over $\Omega[z], z$ an indeterminate over Ω. Use the definition $A \otimes B=\left(A b_{i j}\right)$, and let $\lambda=\alpha+\beta-z$. An easy induction shows that $Y(m, n)-z I$ is equivalent to the matrix

$$
\left[\begin{array}{cc}
I_{m(n-1)} & 0 \\
0 & B(m, n)
\end{array}\right]
$$

where $B(m, n)=\left(\lambda I_{m}+N_{m}\right)^{n}$.

Since $\operatorname{det}(B(m, n))=\lambda^{m n}$, each invariant factor of $B(m, n)$ is of the form $\lambda^{d_{1}}$ for some nonnegative integer d_{1}. Thus the Jordan canonical form of $Y(m, n)$ is

$$
\sum_{h}^{\oplus}\left((\alpha+\beta) I_{d_{h}}+N_{d_{n}}\right)
$$

where the sum is over those h for which $d_{h}>0$. Thus

$$
\Omega(\alpha, m) \otimes \Omega(\beta, n)=\sum_{d_{n}>0}^{\oplus} \Omega\left(\alpha+\beta, d_{n}\right) .
$$

Since \otimes is commutative, we may assume $m \leqq n$. Moreover, since $\left(N_{m}\right)^{m}=0$, the binomial expansion of $\left(\lambda I_{m}+N_{m}\right)^{n}$ shows that $\left(\lambda I_{m}+N_{m}\right)^{n}$ is a multiple of λ. Hence all the invariant factors are multiples of λ. Thus there are $m=\min (m, n)$ summands on the right side of (2.3.1).

We refer the reader to papers by Green [3], Ralley [5], and Srinivasan [7] for methods of determining these invariant factors.
Now let V be an $R_{1}[x]$-module with finite R_{1}-basis, and suppose that

$$
\begin{equation*}
\Omega \otimes V \cong \sum_{\alpha, t}^{\oplus} n(\alpha, t) \Omega(\alpha, t) \tag{2.4.1}
\end{equation*}
$$

with $n(\alpha, t) \Omega(\alpha, t)$ denoting a direct sum of $n(\alpha, t)$ copies of $\Omega(\alpha, t)$. Further, let

$$
\begin{equation*}
V=\sum_{q, s}^{\oplus} n(q, s) R_{1}(q, s) \tag{2.4.2}
\end{equation*}
$$

with $q(x)$ irreducible, $q(x)=\Pi\left(x-\alpha_{q}\right)^{p(q)}$, with α_{q} ranging over the distinct roots of $q(x)$. It follows that

$$
\begin{equation*}
\Omega \otimes V=\sum_{q, s, \alpha_{q}}^{\oplus} n(q, s) \Omega\left(\alpha_{q}, p^{\varepsilon(q)} s\right) . \tag{2.4.3}
\end{equation*}
$$

On comparing (2.4.1) and (2.4.3), we have:
(2.4) Lemma. If a decomposition for $\Omega \otimes V$ is given by (2.4.1) and one for V by (2.4.2), then

$$
\begin{array}{ll}
n(q, s)=n(\alpha, t), & \text { when } q(x)=\operatorname{Irr}\left(\alpha, R_{1}\right) \text { and } t=p^{e(q)} s \\
n(\alpha, t)=0, & \text { when } q(x)=\operatorname{Irr}\left(\alpha, R_{1}\right) \text { and } t \neq p^{e(q)} s \tag{2.4.4}
\end{array}
$$

Now let $f(x)=\Pi\left(x-\alpha_{i}\right)^{p^{t}}, \alpha_{i} \in \Omega, \alpha_{i}$ distinct; $g(x)=\Pi\left(x-\beta_{j}\right)^{p^{p}}, \beta_{j} \in \Omega, \beta_{j}$ distinct; $C=\left\{\alpha_{i}+\beta_{j}\right\} ;\left\{\lambda^{d}{ }_{n}\right\}=$ set of invariant factors of $B\left(p^{t} r, p^{u} s\right) ;\left\{q_{k}(x)\right\}=$ set of distinct irreducible polynomials over R_{1} of the elements in C; $p^{e(k)}=$ degree of inseparability of $q_{k}(x)$ over R_{1}; and $n(\gamma)=$ number of pairs $\left(\alpha_{i}, \beta_{j}\right)$ such that $\gamma=\alpha_{i}+\beta_{j}$.
(2.5) Theorem. With the above notation, $n(\gamma)=n\left(\gamma^{\prime}\right)$ whenever γ and γ^{\prime} are conjugate over R_{1}. If we let $n_{k}=n(\gamma)$ for any root γ of $q_{k}(x)$, then

$$
\begin{equation*}
R_{1}(f, r) \otimes R_{1}(q, s) \cong \sum_{n, k} n_{k} R_{1}\left(q_{k}, d_{n} / p^{e(k)}\right) \tag{2.5.1}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\Omega \otimes\left(R_{1}(f, r) \otimes R_{1}(g, s)\right) \cong \sum_{i, j}^{\oplus} \Omega\left(\alpha_{i}, p^{t} r\right) \otimes \Omega\left(\beta_{j}, p^{v} s\right) \tag{2.5.2}
\end{equation*}
$$

Hence by Lemma 2.3,

$$
\begin{equation*}
\Omega \otimes\left(R_{1}(f, r) \otimes R_{1}(g, s)\right) \cong \sum_{i, j, h}^{\oplus} \Omega\left(\alpha_{i}+\beta_{j}, d_{h}\right) \tag{2.5.3}
\end{equation*}
$$

Collecting like terms yields

$$
\begin{equation*}
\Omega \otimes\left(R_{1}(f, r) \otimes R_{1}(g, s)\right) \cong \sum_{\gamma \in C}^{\oplus} \sum_{h}^{\oplus} n(\gamma) \Omega\left(\gamma, d_{h}\right) \tag{2.5.4}
\end{equation*}
$$

By Lemma 2.4, we know that the number of times $\Omega\left(\gamma, d_{h}\right)$ occurs is the same for each γ such that $q_{k}(\gamma)=0$. This is $n(\gamma) m_{h}$, where m_{h} is the number of times d_{h} occurs as an invariant factor of $B\left(p^{t} r, p^{u} s\right)$. Thus $n(\gamma)$ is constant, say n_{k}, for each root γ of $q_{k}(x)$. Applying Lemma 2.4, we find that (2.5.1) holds.
(2.6) Corollary. If $f(x)$ and $g(x)$ are separable over R_{1}, then
(1) $\prod_{i, j}\left(x-\left(\alpha_{i}+\beta_{j}\right)\right)=\prod_{k} q_{k}^{n_{k}}(x)$,
(2) $R_{1}(f, r) \otimes R_{1}(g, s) \cong \sum_{k, h} n_{k} R_{1}\left(q_{k}, d_{h}\right)$.

Proof. (1) follows immediately from the hypothesis, and (2) then follows from the theorem.
III. Nilpotent elements in $a\left(R_{k} G\right)$. We now turn our attention to the possible existence of nilpotent elements in $a\left(R_{k} G\right)$. Recall that an element r of a ring is nilpotent if there exists a positive integer n such that $r^{n}=0$.
(3.1) Theorem. If $a\left(R_{k} G\right)$ has a nonzero nilpotent element, then so does $a\left(T_{1}\right)$;

Proof. If $a\left(R_{k} G\right)$ has nonzero nilpotents, then there exists a $z \in a\left(R_{k} G\right)$ such that $z \neq 0$, but $z^{2}=0$. Let $z=z_{1}+z_{p-1}+z_{p}, z_{i} \in a\left(T_{i}\right)$. Moreover, $z_{p-1}=z_{1}^{\prime} \cdot \alpha_{p-1}$ for some $z_{1}^{\prime} \in a\left(T_{1}\right)$, and $z_{p}=n \alpha_{p}$ for some integer n. Using (2.0), we have

$$
\begin{equation*}
0=z_{1}^{2}+\left(z_{1}^{\prime}\right)^{2}+(p-2)\left(z_{1}^{\prime}\right)^{2} \alpha_{p}+z_{p}^{2}+2 z_{1} z_{1}^{\prime} \alpha_{p-1}+2 z_{1} z_{p}+2 z_{p-1} z_{p} \tag{3.1.1}
\end{equation*}
$$

It follows from (3.1.1), and results in §I, that

$$
\begin{equation*}
z_{1}^{2}+\left(z_{1}^{\prime}\right)^{2}=0, \quad 2 z_{1} z_{1}^{\prime} \alpha_{p-1}=0 \tag{3.1.2}
\end{equation*}
$$

Again using (2.0), we obtain $2 z_{1} z_{1}^{\prime}+2(p-2) z_{1} z_{1}^{\prime} \alpha_{p}=0$. Thus $z_{1} z_{1}^{\prime}=0$. It now follows from (3.1.2) that $z_{1}^{3}=0$ and $\left(z_{1}^{\prime}\right)^{3}=0$. Therefore, if $a\left(T_{1}\right)$ has no nonzero nilpotent
elements, then $z_{1}=0$ and $z_{1}^{\prime}=0$. Hence $z=n z_{p}$. But $z^{2}=0$, so $n=0$. Thus $z=0$, contrary to assumption.

We now replace $a\left(T_{1}\right)$ by $a\left(R_{1}[x]\right)$ and embed $a\left(R_{1}[x]\right)$ in $a(\Omega[x])$ by identifying $[V]$ with $[\Omega \otimes V]$.

If $v \in a(\Omega[x])$, then $v=\sum_{\alpha, r} n(\alpha, r) v(\alpha, r), n(\alpha, r) \in Z$, and $v(\alpha, r)=\left[\Omega[x] /(x-\alpha)^{r}\right]$. If $n(\alpha, r) \neq 0$ for some r, call α a root of v. Let $H(v)$ be the additive subgroup of Ω generated by the roots of v. Then we may write $H(v)=\Omega_{0} u_{1}+\cdots+\Omega_{0} u_{t}, \Omega_{0}$ $=$ prime subfield of Ω. If $H(v) \neq 0$, define $H^{\prime}(v)=\sum_{i<t}^{\oplus} \Omega_{0} u_{i}$ and $w=\left[\Omega[x] /\left(x-u_{t}\right)\right]$. Using Lemma 2.3, we see that $w^{p}=[\Omega[x] /(x)]$, the multiplicative identity of $a(\Omega[x])$. (Recall that x acts as $x \otimes 1+1 \otimes x$ on a tensor product.) Further, each $\alpha \in H(v)$ has the form $\alpha=h^{\prime}+i u_{t}$ for some $h^{\prime} \in H^{\prime}(v)$ and some $i, 0 \leqq i \leqq p-1$. It follows that $v(\alpha, r)=w^{i} v\left(h^{\prime}, r\right)$. Using this factorization, and collecting like powers of w, we have

$$
v=v_{0}+w v_{1}+\cdots+w^{p-1} v_{p-1}
$$

with each v_{i} having all its roots in $H^{\prime}(v)$. It is clear that $v=0$ if and only if each $v_{i}=0$.

Let C denote the field of complex numbers and let $A(\Omega[x])=C \otimes_{z} a(\Omega[x])$. Obviously $a(\Omega[x])$ can be embedded in $A(\Omega[x])$. Let ρ be any complex p th root of 1 and let $v(\rho)=v_{0}+\rho w v_{1}+\rho^{2} w^{2} v_{2}+\cdots+\rho^{p-1} w^{p-1} v_{p-1}$. It is clear that if $v^{n}=\sum_{i=0}^{p=1} w^{i} v_{i}^{\prime}$, then $(v(\rho))^{n}=\sum_{i=0}^{p-1}(\rho w)^{i} v_{i}^{\prime}$. It thus follows that
(3.2) Lemma. If v is nilpotent in $a(\Omega[x])$, then for any pth-root of unity ρ in C, $v(\rho)$ is nilpotent in $A(\Omega[x])$.
(3.3) Theorem. If $v \in a(\Omega[x])$ and $v \neq 0$, then v is not nilpotent.

Proof. We proceed by induction on the rank t of $H(v)$. If $t=0$, then $v=\sum a_{r} v(o, r)$ with $a_{r} \in Z$ and $v(o, r)=\left[\Omega[x] / x^{r}\right]$. By Lemma 2.3, we know that $v(o, r) v(o, s)$ $=\sum_{t} b_{r s t} v(o, t)$, with each $b_{r s t}$ a nonnegative integer, and $\sum_{t} b_{r s t}=\min (r, s)$. Thus $v^{2}=\sum_{r, s} a_{r} a_{s} v(o, r) v(o, s)=\sum_{r, s, t} a_{r} a_{s} b_{r s t} v(o, t)$. If $v^{2}=0$, then for each t, $\sum_{r, s} a_{r} a_{s} b_{r s t}=0$. Summing on t, we obtain $\sum_{r, s} a_{r} a_{s} \min (r, s)=0$. If n is an integer such that $a_{m}=0$ for all $m>n$, we find that

$$
0=\sum_{r=1}^{n} \sum_{s=1}^{n} a_{r} a_{s} \min (r, s)=\left(\sum_{i=1}^{n} a_{i}\right)^{2}+\left(\sum_{i=2}^{n} a_{i}\right)^{2}+\cdots+a_{n}^{2} .
$$

Hence each $a_{r}=0$ and thus $v=0$.
Let $t \geqq 1$, and now assume that whenever the rank of $H\left(v_{0}\right)$ is less than t and $v_{0} \neq 0$, then v_{0} is not nilpotent. Let $v \in a(\Omega[x]), v \neq 0$, and let the rank of $H(v)$ be t. Replacing v by $w^{i} v$ for some $i, 0 \leqq i \leqq p-1$, we may assume that

$$
v=v_{0}+w v_{1}+\cdots+w^{p-1} v_{p-1}
$$

with roots of each v_{i} in $H^{\prime}(v)$ and $v_{0} \neq 0$. By the induction assumption v_{0} is not nilpotent. If v is nilpotent and ρ is a primitive p th root of 1 in C, then $\sum_{j=0}^{p=1} v\left(\rho^{\prime}\right)$ is
nilpotent in $A(\Omega[x])$, since $A(\Omega[x])$ is commutative and each $v\left(\rho^{f}\right)$ is nilpotent by Lemma 3.2. But

$$
\begin{aligned}
\sum_{j=0}^{p-1} v\left(\rho^{j}\right) & =v+v(\rho)+\cdots+v\left(\rho^{p-1}\right) \\
& =\sum\left(w^{i} v_{i}\right)+\sum(\rho w)^{4} v_{i}+\cdots+\sum\left(\rho^{p-1} w\right)^{4} v_{i} \\
& =\beta_{0} v_{0}+\beta_{1} w v_{1}+\cdots+\beta_{p-1} w^{p-1} v_{p-1}
\end{aligned}
$$

where $\beta_{i}=\sum_{j=0}^{p-1}\left(\rho^{i}\right)^{j}$ for each $i, 0 \leqq i \leqq p-1$. Since $\beta_{0}=p$ and $\beta_{i}=0$ for $1 \leqq i \leqq p-1$, we see that $p v_{0}$ is nilpotent. But $H\left(p v_{0}\right) \subseteq H^{\prime}(v)$, thus $p v_{0}=0$ by the induction assumption. But in this case $v_{0}=0$, which contradicts v_{0} being nonzero. Thus v cannot be nilpotent and the induction step is completed.
(3.4) Corollary. The ring $a\left(R_{1}[x]\right)$ has no nonzero nilpotent elements, whence neither does $a\left(T_{1}\right)$.
(3.5) Corollary. The ring $a\left(R_{k} G\right)$ has no nonzero nilpotent elements.

References

1. V. S. Drobotenko, E. S. Drobotenko, Z. P. Zhilinskaya and E. V. Pogorilyak, Representations of cyclic groups of prime order p over rings of residue classes mod p^{3}, Ukrain. Mat. \mathbf{Z}. 17 (1965), 28-42.
2. J. A. Green, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607-619.
3. T. A. Hannula, Group representations over integers modulo a prime power, Ph.D Thesis, Univ. of Illinois, Urbana, 1967.
4. T. A. Hannula, T. G. Ralley and I. Reiner, Modular representation algebras, Bull. Amer. Math. Soc. 73 (1967), 100-101.
5. T. G. Ralley, Decomposition of products of modular representations, Bull. Amer. Math. Soc. 72 (1966), 1012-1013.
6. I. Reiner, The integral representation ring of a finite group, Michigan Math. J. 12 (1965), 11-22.
7. B. Srinivasan, The modular representation ring of a cyclic p-group, Proc. London Math. Soc. (3) 14 (1964), 677-688.

[^0]: Received by the editors May 19, 1967.
 $\left.{ }^{(}{ }^{1}\right)$ This paper is based on the author's Ph.D thesis written under the supervision of Professor Irving Reiner at the University of Illinois.

