THE INTEGRAL REPRESENTATION RING $a(R_kG)$

BY

T. A. HANNULA(¹)

0. Notation.

p = an odd prime.

G = cyclic group of order p with generator g.

R=a commutative ring with identity 1, in which the principal ideal $(p \cdot 1)$ is a nonzero maximal ideal.

 $R_k = R/(p^k)$, using only those k for which $(p^k) \neq (p^{k-1})$. $\mathfrak{M} = \{M | M = R_k$ -free $R_k G$ -module of finite R_k -rank $\}$. $[M:R_k] = R_k$ -rank of M = number of elements in an R_k -basis of M. $I_n = n \times n$ identity matrix.

I. The integral representation ring $a(R_kG)$. The integral representation ring $a(R_kG)$ (see Reiner [6]) is generated by the symbols [M], one for each isomorphism class of modules in \mathfrak{M} , subject to the relations

(1.1) $[M]+[M'] = [M \oplus M']$ and $[M][M'] = [M \otimes_{R_k} M'],$

where $M \otimes M'$ is the R_kG -module with $g(m \otimes m') = gm \otimes gm'$. We note that $a(R_kG)$ is a commutative ring with identity $[R_k]$, R_k the trivial R_kG -module. The Krull-Schmidt theorem holds for elements of \mathfrak{M} , so $a(R_kG)$ is a free Z-module with Z-basis the nonisomorphic indecomposable elements of \mathfrak{M} .

J. A. Green [2] has investigated $a(R_kG)$ when k=1 and G is a cyclic p-group. Some of his results have been simplified in [4]. We will, therefore, assume that k>1 and also that p is odd, unless otherwise stated.

The indecomposable modules in \mathfrak{M} have been determined in [1], for k > 1 and p an odd prime, when R is the ring of integers Z. In this case, the study of these modules is equivalent to the study of the representations of G by matrices over Z_k . Similar results for the general case have been obtained in [3] by somewhat different methods. We collect these results for later use in this paper.

Since $R_1 = R/(p)$ is a field of characteristic p, and G is a cyclic group of order p, there are exactly p nonisomorphic indecomposable R_1G -modules, namely the modules $S_i = R_1[x]/(x-1)^i$ for i=1, 2, ..., p, with g acting on S_i as multiplication by x. For each $M \in \mathfrak{M}$, define \overline{M} to be the R_1G -module M/pM; then we have from [1] and [3]:

Received by the editors May 19, 1967.

⁽¹⁾ This paper is based on the author's Ph.D thesis written under the supervision of Professor Irving Reiner at the University of Illinois.

(1.2) Every $M \in \mathfrak{M}$ has the form $M = M_1 \oplus M_{p-1} \oplus M_p$, where M_i is an R_k G-module with \overline{M}_i a direct sum of copies of S_i , i = 1, p-1, p.

In the sequel we shall refer to such a module M_i as a T_i -module. From (1.2) it follows that a basis of $a(R_kG)$ will be known once the indecomposable T_i -modules are classified to within isomorphism for i=1, p-1, and p. Again from [1] and [3] we have

(1.3) R_kG is an indecomposable R_kG -module, and each T_p -module is a free R_kG -module.

Further,

(1.4) A T_1 -module M affords a matrix representation $g \to I_n + p^{k-1}B$, where B is an $n \times n$ matrix over R_k . Here, $n = [M: R_k]$.

Thus each T_1 -module M has the property that $(g-1)M \subseteq p^{k-1}M$.

Let \overline{B} be the result of reducing the entries of B modulo p; then one can easily show that

(1.5) Two T_1 -modules M_1 and M_2 are isomorphic if and only if \overline{B}_1 and \overline{B}_2 are similar over the field R_1 .

(1.6) A T_1 -module M is indecomposable if and only if \overline{B} is indecomposable under similarity transformations.

The T_{p-1} -modules have been classified in [1] and [3] as follows:

(1.7) Let $A = (g-1)R_kG$ = augmentation ideal in R_kG . Then

(i) M is a T_{p-1} -module if and only if there exists a T_1 -module N such that $M \cong N \otimes A$.

(ii) For T_1 -modules N_1 and N_2 , $N_1 \otimes A \cong N_2 \otimes A$ if and only if $N_1 \cong N_2$.

(iii) The T_{p-1} -module $N \otimes A$ is indecomposable if and only if the T_1 -module N is indecomposable.

II. Multiplication in $a(R_kG)$. From (1.2) it follows that as a Z-module,

$$a(R_kG) = a(T_1) \oplus a(T_{p-1}) \oplus a(T_p),$$

where $a(T_i)$ has as Z-basis the indecomposable T_i -modules. Clearly $a(T_1)$ is a subring of $a(R_kG)$. For any $M \in \mathfrak{M}$ with R_k -basis $\{m_i\}$, the set $\{g^j \otimes g^j m_i\}$ is an R_k -basis for $R_kG \otimes M$. Hence $R_kG \otimes M = \sum^{\oplus} R_kG(1 \otimes m_i)$, and thus is R_kG -free. It follows that $a(T_p)$ is an ideal and, by (1.3), $a(T_p) = Z\alpha_p$, where $\alpha_p = [R_kG]$. Let $\alpha_{p-1} = [A]$; then by (1.7) $a(T_{p-1}) = a(T_1)\alpha_{p-1}$. Further, it is well known that

(2.0)
$$\alpha_{p-1}^2 = 1 + (p-2)\alpha_p.$$

It now follows that multiplication in $a(R_kG)$ will be determined by that in $a(T_1)$. In order to investigate multiplication in $a(T_1)$, we replace $a(T_1)$ by the representation ring $a(R_1[x])$. This is generated by the symbols [V], one for each isomorphism class of $R_1[x]$ -modules with finite R_1 -basis, subject to the relations

(2.1)
$$[V]+[V'] = [V \oplus V']$$
 and $[V][V'] = [V \otimes_{R_1} V'],$

where $V \otimes V'$ is an $R_1[x]$ -module with x acting as $x \otimes 1 + 1 \otimes x$.

To see that $a(T_1) \cong a(R_1[x])$, define a mapping $\beta: a(T_1) \to a(R_1[x])$ by $\beta([N]) = [V]$, where N affords the representation $g \to I + p^{k-1}B$, and V is an $R_1[x]$ -module for which the linear transformation "multiplication by x" is represented by \overline{B} relative to some R_1 -basis. It is clear from (1.4), (1.5), and the well-known facts about $R_1[x]$ -modules, that β is an isomorphism between the additive groups of $a(T_1)$ and $a(R_1[x])$. If $g \to I + p^{k-1}B_i$ is a representation of G afforded by N_i , i=1, 2, then since k > 1, $g \to I + p^{k-1}(B_1 \otimes I + I \otimes B_2)$ is a representation of G afforded by $N_1 \otimes N_2$. Hence β preserves multiplication.

For convenience, denote $R_1[x]/(f(x))^r$ by $R_1(f, r)$. Thus to determine multiplication in $a(R_1[x])$, we need only find the decomposition of $W = R_1(f, r) \otimes_{R_1} R_1(g, s)$. Moreover, we may assume that $R_1(f, r)$ and $R_1(g, s)$ are indecomposable, and thus that f(x) and g(x) are irreducible over R_1 . Letting Ω be an algebraic closure of R_1 , we have

(2.2)
$$\Omega \otimes_{R_1} W \cong \sum_{i,j}^{\oplus} \Omega(\alpha_i, p^t r) \otimes \Omega(\beta_j, p^u s),$$

where $f(x) = \prod (x - \alpha_i)^{p^t}$ and $g(x) = \prod (x - \beta_j)^{p^u}$ in $\Omega[x]$, and $\Omega(\gamma, m) = \Omega[x]/(x - \gamma)^m$.

Let $N_m = m \times m$ matrix with 1's immediately below the main diagonal and 0's everywhere else, $B(m, n) = (\lambda I_m + N_m)^n$, λ an indeterminate over Ω , and $\{\lambda^{d_n}\}$, the set of nonunit invariant factors of B(m, n). Then the decomposition of (2.2) into indecomposable factors is obtained by means of

(2.3) LEMMA. The $\Omega[x]$ -module $\Omega(\alpha, m) \otimes \Omega(\beta, n)$, with x acting as $x \otimes 1 + 1 \otimes x$, has the decomposition

(2.3.1)
$$\Omega(\alpha, m) \otimes \Omega(\beta, n) = \sum_{h}^{\oplus} \Omega(\alpha + \beta, d_{h}).$$

Moreover, there are $\min(m, n)$ summands on the right side of (2.3.1).

Proof. Relative to suitable Ω -bases, the action of x on $\Omega(\alpha, m)$ and $\Omega(\beta, n)$ is given by the matrices $\alpha I_m + N_m$ and $\beta I_n + N_n$, respectively. Thus the action of x on $\Omega(\alpha, m) \otimes \Omega(\beta, n)$ is given by the matrix

$$Y(m, n) = (\alpha I_m + N_m) \otimes I_n + I_m \otimes (\beta I_n + N_n)$$

= ((\alpha + \beta)I_m + N_m) \otimes I_n + I_m \otimes N_n.

The Jordan canonical form of Y(m, n) is determined by the invariant factors of $Y(m, n) - zI_{mn}$ as a matrix over $\Omega[z]$, z an indeterminate over Ω . Use the definition $A \otimes B = (Ab_{ij})$, and let $\lambda = \alpha + \beta - z$. An easy induction shows that Y(m, n) - zI is equivalent to the matrix

$$\begin{bmatrix} I_{m(n-1)} & 0\\ 0 & B(m,n) \end{bmatrix},$$

where $B(m, n) = (\lambda I_m + N_m)^n$.

Since det $(B(m, n)) = \lambda^{mn}$, each invariant factor of B(m, n) is of the form λ^{d_1} for some nonnegative integer d_1 . Thus the Jordan canonical form of Y(m, n) is

$$\sum_{h}^{\oplus} ((\alpha+\beta)I_{d_h}+N_{d_h}),$$

where the sum is over those h for which $d_h > 0$. Thus

$$\Omega(\alpha, m) \otimes \Omega(\beta, n) = \sum_{d_h>0}^{\oplus} \Omega(\alpha+\beta, d_h).$$

Since \otimes is commutative, we may assume $m \leq n$. Moreover, since $(N_m)^m = 0$, the binomial expansion of $(\lambda I_m + N_m)^n$ shows that $(\lambda I_m + N_m)^n$ is a multiple of λ . Hence all the invariant factors are multiples of λ . Thus there are $m = \min(m, n)$ summands on the right side of (2.3.1).

We refer the reader to papers by Green [3], Ralley [5], and Srinivasan [7] for methods of determining these invariant factors.

Now let V be an $R_1[x]$ -module with finite R_1 -basis, and suppose that

(2.4.1)
$$\Omega \otimes V \cong \sum_{\alpha,t}^{\oplus} n(\alpha, t) \Omega(\alpha, t),$$

with $n(\alpha, t)\Omega(\alpha, t)$ denoting a direct sum of $n(\alpha, t)$ copies of $\Omega(\alpha, t)$. Further, let

(2.4.2)
$$V = \sum_{q,s}^{\oplus} n(q,s)R_1(q,s),$$

with q(x) irreducible, $q(x) = \prod (x - \alpha_q)^{p^{e(q)}}$, with α_q ranging over the distinct roots of q(x). It follows that

(2.4.3)
$$\Omega \otimes V = \sum_{q,s,\alpha_q}^{\oplus} n(q,s)\Omega(\alpha_q, p^{\epsilon(q)}s).$$

On comparing (2.4.1) and (2.4.3), we have:

(2.4) LEMMA. If a decomposition for $\Omega \otimes V$ is given by (2.4.1) and one for V by (2.4.2), then

(2.4.4)
$$n(q, s) = n(\alpha, t), \quad \text{when } q(x) = \operatorname{Irr}(\alpha, R_1) \text{ and } t = p^{e(q)}s,$$
$$n(\alpha, t) = 0, \qquad \text{when } q(x) = \operatorname{Irr}(\alpha, R_1) \text{ and } t \neq p^{e(q)}s.$$

Now let $f(x) = \prod (x - \alpha_i)^{p^t}$, $\alpha_i \in \Omega$, α_i distinct; $g(x) = \prod (x - \beta_j)^{p^u}$, $\beta_j \in \Omega$, β_j distinct; $C = \{\alpha_i + \beta_j\}$; $\{\lambda^{d_h}\} =$ set of invariant factors of $B(p^{t_r}, p^{u_s})$; $\{q_k(x)\} =$ set of distinct irreducible polynomials over R_1 of the elements in C; $p^{e(k)} =$ degree of inseparability of $q_k(x)$ over R_1 ; and $n(\gamma) =$ number of pairs (α_i, β_j) such that $\gamma = \alpha_i + \beta_j$.

556

(2.5) THEOREM. With the above notation, $n(\gamma) = n(\gamma')$ whenever γ and γ' are conjugate over R_1 . If we let $n_k = n(\gamma)$ for any root γ of $q_k(x)$, then

(2.5.1)
$$R_1(f,r) \otimes R_1(q,s) \cong \sum_{h,k} n_k R_1(q_k, d_h/p^{e(k)}).$$

Proof. We have

(2.5.2)
$$\Omega \otimes (R_1(f,r) \otimes R_1(g,s)) \cong \sum_{i,j}^{\oplus} \Omega(\alpha_i, p^t r) \otimes \Omega(\beta_j, p^u s).$$

Hence by Lemma 2.3,

(2.5.3)
$$\Omega \otimes (R_1(f,r) \otimes R_1(g,s)) \cong \sum_{i,j,h}^{\oplus} \Omega(\alpha_i + \beta_j, d_h).$$

Collecting like terms yields

(2.5.4)
$$\Omega \otimes (R_1(f, r) \otimes R_1(g, s)) \cong \sum_{\gamma \in C}^{\oplus} \sum_{h=1}^{\oplus} n(\gamma) \Omega(\gamma, d_h).$$

By Lemma 2.4, we know that the number of times $\Omega(\gamma, d_h)$ occurs is the same for each γ such that $q_k(\gamma) = 0$. This is $n(\gamma)m_h$, where m_h is the number of times d_h occurs as an invariant factor of $B(p^tr, p^us)$. Thus $n(\gamma)$ is constant, say n_k , for each root γ of $q_k(x)$. Applying Lemma 2.4, we find that (2.5.1) holds.

(2.6) COROLLARY. If f(x) and g(x) are separable over R_1 , then (1) $\prod_{i,j} (x - (\alpha_i + \beta_j)) = \prod_k q_k^{n_k}(x)$, (2) $R_1(f, r) \otimes R_1(g, s) \cong \sum_{k,h} n_k R_1(q_k, d_h)$.

Proof. (1) follows immediately from the hypothesis, and (2) then follows from the theorem.

III. Nilpotent elements in $a(R_kG)$. We now turn our attention to the possible existence of nilpotent elements in $a(R_kG)$. Recall that an element r of a ring is nilpotent if there exists a positive integer n such that $r^n = 0$.

(3.1) THEOREM. If $a(R_kG)$ has a nonzero nilpotent element, then so does $a(T_1)$,

Proof. If $a(R_kG)$ has nonzero nilpotents, then there exists a $z \in a(R_kG)$ such that $z \neq 0$, but $z^2 = 0$. Let $z = z_1 + z_{p-1} + z_p$, $z_i \in a(T_i)$. Moreover, $z_{p-1} = z'_1 \cdot \alpha_{p-1}$ for some $z'_1 \in a(T_1)$, and $z_p = n\alpha_p$ for some integer *n*. Using (2.0), we have

$$(3.1.1) \quad 0 = z_1^2 + (z_1')^2 + (p-2)(z_1')^2 \alpha_p + z_p^2 + 2z_1 z_1' \alpha_{p-1} + 2z_1 z_p + 2z_{p-1} z_p.$$

It follows from (3.1.1), and results in §I, that

$$(3.1.2) z_1^2 + (z_1')^2 = 0, 2z_1 z_1' \alpha_{p-1} = 0.$$

Again using (2.0), we obtain $2z_1z'_1 + 2(p-2)z_1z'_1\alpha_p = 0$. Thus $z_1z'_1 = 0$. It now follows from (3.1.2) that $z_1^3 = 0$ and $(z'_1)^3 = 0$. Therefore, if $a(T_1)$ has no nonzero nilpotent

elements, then $z_1=0$ and $z'_1=0$. Hence $z=nz_p$. But $z^2=0$, so n=0. Thus z=0, contrary to assumption.

We now replace $a(T_1)$ by $a(R_1[x])$ and embed $a(R_1[x])$ in $a(\Omega[x])$ by identifying [V] with $[\Omega \otimes V]$.

If $v \in a(\Omega[x])$, then $v = \sum_{\alpha,r} n(\alpha, r)v(\alpha, r)$, $n(\alpha, r) \in Z$, and $v(\alpha, r) = [\Omega[x]/(x-\alpha)^r]$. If $n(\alpha, r) \neq 0$ for some r, call α a root of v. Let H(v) be the additive subgroup of Ω generated by the roots of v. Then we may write $H(v) = \Omega_0 u_1 + \cdots + \Omega_0 u_t$, $\Omega_0 = prime$ subfield of Ω . If $H(v) \neq 0$, define $H'(v) = \sum_{i=1}^{\Phi} \Omega_0 u_i$ and $w = [\Omega[x]/(x-u_i)]$. Using Lemma 2.3, we see that $w^p = [\Omega[x]/(x)]$, the multiplicative identity of $a(\Omega[x])$. (Recall that x acts as $x \otimes 1 + 1 \otimes x$ on a tensor product.) Further, each $\alpha \in H(v)$ has the form $\alpha = h' + iu_t$ for some $h' \in H'(v)$ and some $i, 0 \leq i \leq p - 1$. It follows that $v(\alpha, r) = w^i v(h', r)$. Using this factorization, and collecting like powers of w, we have

$$v = v_0 + wv_1 + \cdots + w^{p-1}v_{p-1},$$

with each v_i having all its roots in H'(v). It is clear that v=0 if and only if each $v_i=0$.

Let C denote the field of complex numbers and let $A(\Omega[x]) = C \otimes_z a(\Omega[x])$. Obviously $a(\Omega[x])$ can be embedded in $A(\Omega[x])$. Let ρ be any complex *p*th root of 1 and let $v(\rho) = v_0 + \rho w v_1 + \rho^2 w^2 v_2 + \cdots + \rho^{p-1} w^{p-1} v_{p-1}$. It is clear that if $v^n = \sum_{i=0}^{p-1} w^i v'_i$, then $(v(\rho))^n = \sum_{i=0}^{p-1} (\rho w)^i v'_i$. It thus follows that

(3.2) LEMMA. If v is nilpotent in $a(\Omega[x])$, then for any pth-root of unity ρ in C, $v(\rho)$ is nilpotent in $A(\Omega[x])$.

(3.3) THEOREM. If $v \in a(\Omega[x])$ and $v \neq 0$, then v is not nilpotent.

Proof. We proceed by induction on the rank t of H(v). If t=0, then $v = \sum a_r v(o, r)$ with $a_r \in Z$ and $v(o, r) = [\Omega[x]/x^r]$. By Lemma 2.3, we know that v(o, r)v(o, s) $= \sum_t b_{rst}v(o, t)$, with each b_{rst} a nonnegative integer, and $\sum_t b_{rst} = \min(r, s)$. Thus $v^2 = \sum_{r,s} a_r a_s v(o, r)v(o, s) = \sum_{r,s,t} a_r a_s b_{rst}v(o, t)$. If $v^2 = 0$, then for each t, $\sum_{r,s} a_r a_s b_{rst} = 0$. Summing on t, we obtain $\sum_{r,s} a_r a_s \min(r, s) = 0$. If n is an integer such that $a_m = 0$ for all m > n, we find that

$$0 = \sum_{r=1}^{n} \sum_{s=1}^{n} a_{r}a_{s} \min(r, s) = \left(\sum_{i=1}^{n} a_{i}\right)^{2} + \left(\sum_{i=2}^{n} a_{i}\right)^{2} + \cdots + a_{n}^{2}.$$

Hence each $a_r = 0$ and thus v = 0.

Let $t \ge 1$, and now assume that whenever the rank of $H(v_0)$ is less than t and $v_0 \ne 0$, then v_0 is not nilpotent. Let $v \in a(\Omega[x])$, $v \ne 0$, and let the rank of H(v) be t. Replacing v by $w^i v$ for some $i, 0 \le i \le p-1$, we may assume that

$$v = v_0 + wv_1 + \cdots + w^{p-1}v_{p-1}$$

with roots of each v_i in H'(v) and $v_0 \neq 0$. By the induction assumption v_0 is not nilpotent. If v is nilpotent and ρ is a primitive pth root of 1 in C, then $\sum_{j=0}^{p-1} v(\rho^j)$ is

1968]

nilpotent in $A(\Omega[x])$, since $A(\Omega[x])$ is commutative and each $v(\rho^{j})$ is nilpotent by Lemma 3.2. But

$$\sum_{j=0}^{p-1} v(\rho^{j}) = v + v(\rho) + \dots + v(\rho^{p-1})$$

= $\sum (w^{i}v_{i}) + \sum (\rho w)^{i}v_{i} + \dots + \sum (\rho^{p-1}w)^{i}v_{i}$
= $\beta_{0}v_{0} + \beta_{1}wv_{1} + \dots + \beta_{p-1}w^{p-1}v_{p-1}$

where $\beta_i = \sum_{j=0}^{p-1} (\rho^i)^j$ for each $i, 0 \le i \le p-1$. Since $\beta_0 = p$ and $\beta_i = 0$ for $1 \le i \le p-1$, we see that pv_0 is nilpotent. But $H(pv_0) \le H'(v)$, thus $pv_0 = 0$ by the induction assumption. But in this case $v_0 = 0$, which contradicts v_0 being nonzero. Thus vcannot be nilpotent and the induction step is completed.

(3.4) COROLLARY. The ring $a(R_1[x])$ has no nonzero nilpotent elements, whence neither does $a(T_1)$.

(3.5) COROLLARY. The ring $a(R_kG)$ has no nonzero nilpotent elements.

References

1. V. S. Drobotenko, E. S. Drobotenko, Z. P. Zhilinskaya and E. V. Pogorilyak, Representations of cyclic groups of prime order p over rings of residue classes mod p^{*}, Ukrain. Mat. Ž. 17 (1965), 28-42.

2. J. A. Green, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607-619.

3. T. A. Hannula, Group representations over integers modulo a prime power, Ph.D Thesis, Univ. of Illinois, Urbana, 1967.

4. T. A. Hannula, T. G. Ralley and I. Reiner, *Modular representation algebras*, Bull. Amer. Math. Soc. 73 (1967), 100–101.

5. T. G. Ralley, Decomposition of products of modular representations, Bull. Amer. Math. Soc. 72 (1966), 1012–1013.

6. I. Reiner, The integral representation ring of a finite group, Michigan Math. J. 12 (1965), 11-22.

7. B. Srinivasan, The modular representation ring of a cyclic p-group, Proc. London Math. Soc. (3) 14 (1964), 677-688.

UNIVERSITY OF MAINE, ORONO, MAINE