
[ST. J. COMPCTEK ISTEGRATED LIANUFACTURISG, VOL. 1, SO. I,44-49

T h e integrated manufacturing data

Property St
MSlD Library

administration system (1MDAS)-an overview

DON LIBES and ED BARKMEYER

Abstract. Automated manufacturing requires sharing of data
among control, sensory and administrative processes. Since
these processes are invariably distributed over many different
computer systems, we claim that a distributed data system is
necessary. Unlike most extant data systems, a manufacturing
enterprise requires support for: diverse computer systems, data
systems and databases; real -time data access; and integration of
new systems into a running complex. This paper briefly dis-
cusses these ‘ssues and describes a prototype implementation of
a distributed data system that addresses them.

1. Background-issues in manufacturing data access

Increasing industrial automation results in factory
floors containing large numbers of computer systems
controlling and monitoring physical processes. Computer
integrated manufncturing (CIM) refers to the integration of
these systems into an automated production complex
closely coupled to the engineering and administrative
systems that support and drive it. The critical element in
such a complex i s the ability of all the associated programs
and users to share data.

There are several problems in the automated manufac -
turing . environment which are not necessarily
encountered in other distributed computing environ -
ments.

A fundamental characteristic is the diversity of com-
puter systems in a single C IM complex. Rarely does the
same kind of computer system perform engineering sup-
port, real -time control and administrative applications.
Indeed, most industrial facilities contain computer sys-
tems from many different manufacturers. Consequently,
data sharing is complicated by differing operating sys-
tems, hardware architectures, data systems and access
methods. To get the same information from two different
machines, expect to use two different interfaces, phrase
the request in two different ‘languages’ and get back the

~

rludorr: Don Libcs and Ed Barkrncyer. Integrated Syrtcrns Group,
Sational Bureau of Standards, Caithersburg, MD 20899, USA.

information in two different forms. Since data systems
range from very limited to very powerful, it i s possible for
one of two data systems to lack a capability that another
has.

Another problem i s data organization. Because organ-
ization of data has significant performance implications
for most database systems, serious effort i s expended in
getting the optimal organization. In the CIM environ -
ment, almost all data is significant to more than one
application, but the way in which it is best organized for

’ each application area may be different. What usually
results i s separate databases with overlapping information
units.

For example, Production wants to keep track of com-
ponent inventories by part-type and location, while Pur-
chasing wants to organize the components by supplier,
shipment and or& and Accounting wants to track them by
part-lupc, invoice and target produt. Naturally, having been
organized for different applications they haue different
schemas and often use entirely different database man-
agement systems. Because some of the key information
units are the same, a change in one of the databases often
necessitates corresponding changes to the others.

A direct consequence of multiple databases is the
problem of representation. The same logical information
units may have entirely different encodings from one
database to another. For example. one system may
identify a product by i t s production code while another
identifies the same product by i ts commercial catalogue
number. And because different machines store and com -
municate datatypes differently, even the same logical
representation may have different physical representa -
tions on different machines. For example, one data
system may store strings in EBCDIC and another in
ASCII.

I t i s possible for each application to locally take respon-
sibility for integration. This is what is done in most
existing manufacturing enterprises. Once the appropriate
dula reposztoy is identified, an interface to that database
and system is then encoded in the application.

The emerging Manufacturing Automation Protocols

ZMDAS-an overuicw

(;L[=\P) (General hIotors 1986) standards effort has some -
what ameliorated this problem by providing a standard
method of interchanging files between any two computer
systems. Unfortunately, the more interesting databases
are not simple ‘files’ and interchangeable files of the
wanted information must be extracted from those data-
bases before the standard transmission mechanism can be
employed.

T h i s means that application programs must be aware
of the location and organization of the data they use. In
practice, the location and organization of most data
changes and multiplies over time as new applications and
equipment are added and existing ones are upgraded.
Each change requires reprogramming the local integra -
tion in every affected application.

As the automated enrerprise grows, this approach
becomes intractable. The alternative is to provide appli-
cations with an interface to a ‘common data system’. The
data system becomes responsible for the vagaries of
individual data units. Most application software wi l l then
be unaffected by the addition or replacement of equip-
ment. T h e only applications which will be affected are
those k ing added or those wishing to make use of newly
available data.

Finally, a problem which is probably unique to the
manufacturing floor is red-tim access to data. With
increasingly sophisticated automation, it i s common to
see several separate systems cooperating in a single
physical operation, such as a robot handing off a work-
piece to an automated 6xture. While not usually viewed
as a ‘database’ problem, this is just as much a ‘data
sharing’ problem as is obtaining the robot control pro-
g r a m s from an engineering database. I t has different
constraints, but many of the same concerns.

So we see that a manufacturing complex comprises a
large number o f d iss imi lar computer systems, data sys-
tems and databases. The need for sharing data among
these systems results in overiapping databases with
representational inconsistencies. We have argued that
instead of trying to solve the integration problem in each
application, we need to build a ‘common data system’
which solves the integration problem and which all the
applications can use. Finally, we that such a system
must support real-time use. How does one go about
constructing such a system?

2. Approaches

The simplest approach to development of a common
data system is the centralized system: a single common
database on a central computer system with communica -

tion paths to clienr s).stems. The inherent simplicity C>I’

this architecture, particularly with regard to management’
and maintenance, makes it highly desirable i f i t can be
made practicable. With current computer technology. i t

is possible to create a central system with sutXcient
redundancy that a total failure i s extremely unlikely.
However, the ability of such a system to handle all of the
database transactions for the whole manufacturing enter -
prise is very questionable. Inallbut the smallest organir -
ations, performance and cost considerations will dictate
distribution of function and data.

Another possibility is maintaining distributed overlap -
ping databases with conversion of data between them.
This is viable if the number of databases is small and the
interactions between them are carefully timed and con-
trolled. The number of conversion programs will grow
proportionaily to the square of the number of databases.
Any two databases must be id le for a certain period of
time in order for information to be transferred between
them. Moreover, such databases will normally be incon-
sistent and be brought into synchronization only at the
times of transfer between them.

The alternative of modifying programs to access data
from multiple databases has been discussed above. I t

avoids the consistency problems inherent in the database
conversion approach, but it is simply impractical in an
environment of numerous systems and regular changes.
If there are R databases and m programs, every new
program will have up to n interfaces to access the
necessary data, and every change to the data architecture
can require modification of m programs.

By using a common interface between programs and
databases, this complexity can be avoided. Each new
program has only one interface to all data. A change to
the architecture of one database requires modification o f
only its interface to the common service, not to any of the
applications. It is our belief that most enterprises will
benefit from a system of distributed databases with
common interfaces. Th is will enable integration of new
and existing data systems and relieve programs and
programmers of network, access and conversion
problems.

The remaining choice is whether to provide the
common interface from a single server with interfaces to
each of the distributed databkes, or to distribute the
common interface service over several systems with inter-
faces to each other. Again, the centrally controlled system
is simpler and currently practicable, but i ts ability to
handle al l of the transactions, even when i t can distribute
the actual data manipulations, must be in doubt. On the
other hand, the protocol problems that result from trying
to do distributed data management by committee has
been the subject of much academic discourse and few, if
any, sound solutions.

46 D. Libes and E. Barkmcyer

3. IMDAS approach

Our approach to providing a common interface to
distributed data is the Integrated Manufacturing Data Admin-
istration System. IMDAS is characterized by:

(a) a common interface to user programs, and
(6) a common interface to underlying databases

Application programs communicate with IMDAS
using an SQL-like language, referencing data names
from a common dictionary. ANSI-standard SQL (ANSI
1986) was designed for interaction with a user at a term -
inal. With additional features, the IMDAS data manip-
ulation language allows programs to specify files or
buffers as the sources and destinations of data.

On the other side, IMDAS has a common interface to
underlying data repositories, which can be commercial
database systems, file ' systems or home-grown
application -specific data systems. This minimizes the
work needed to incorporate new databases into the
common data system while dowing existing systems to
continue operating without change.

The dual common interfaces d o r d programmers a
generalized view of data access. They see data manipula-
tion as operations on information units, not databases,
and are not concerned with what system or machine has
the data. T h e result i s conceptually simple. The user sees
a single common database managed by the IMDAS
(Fig. 1).

II

W
Figure 1. IMDAS concept.

4. IMDAS architecture

The internal architecture of IMDAS is a 4-level hier-
archy (Fig. 2). The levels are distinguished primarily by
scope of responsibility for data management. The higher
the level, the more data is administered.

At the bottom level of the IMDAS are the data
repositories, such as commercial DBMS. Also included
are other repositories of sharable information, such as

Master Dam
Adminlsrratlon System LMDAS. 1

>..._.......I\.
Distributed Data
Administration Systems .__............

.,

Distributed Data
Administration S:

.. t \ .-* . . "

Basic Data
Administration Systems

Database
Management Systems

Figure 2. The IMDAS hierarchy.

file systems, controller memories, and home -grown
application -specific data managers.

On each computer system is a basic interface between
the local data repositories and the rest of the IMDAS.
T h i s is the baric datu administration system (BDAS). I t is a lso
at this level that the access to user data areas is provided.
The BDAS and the associated DBMSs execute data mani-
pulations.

At the distribd data administration system (DDAS), the
collection of data repositories managed by a group of
BDASs is logically integrated into a segment of the global
database, using a dictionary describing the distribution of
the data. The DDAS becomes the data manager for that
segment and supervises all manipulations on it. In addi-
tion, each DDAS provides the IMDAS interface to some
set of the user programs.

In order to integrate segments managed by separate
DDASs and.to execute user transactions that requite this
level of integration, a single system i s designated the
master doh odministration system (MDAS).

5. BDAS-basic data administration system

The BDAS integrates data repositories into the
IMDAS. The BDAS must convert the IMDAS internal
form of a transaction to that accepted by the DBMS
which has to execute it, pass it to the DBMS and interpret
the status which comes back. T h i s can be quite com-
plicated since some DBMS use very high-level languages
while others are quite primitive. It may be further
complicated by the local operating system.

The BDAS also converts any data involved between the
DBMS-dependent form and the standard IMDAS form.
In addition, the BDAS must access user data areas and
convert between the user representation and the standard
IMDAS form. The interface to a particular DBMS is
encapsulated by a separate process called the command
translator/data translator (CTIDT) for that DBMS
(Fig. 3).

IMDAS-an overview

4 Nuwork

I BDAS 1

Interface

Figure 3. Typical BDAS.
U

The BDAS,receives commands from and returns status
to the DDAS which supervises it, but it also deals with
other BDASs as network pens for the purpose of delivering
data. In this way, data moves directly between the user
and the data repositories rather than following the
IMDAS hierarchy.

6. DDAS-distributed data administration system

The DDAS:

integrates a collection of BDASs and their
databases into a segment of the global database,
and
provides the IMDAS transaction interface to a
collection of user programs.

programs issue transactions to the IMDAS,
represented by the DDAS executive, which accepts them,
oversees their execution and returns status. User transac -
tions are stated in an SQL-like language. These trans -
actions are parsed into an IMDAS standard internal
form and then modified to reflect the differences between
the user’s cxtemai o h and the IMDAS giobul concspfuul
vim.

The DDAS attempts to map the transaction into a set

of operations on elements of the global database which are
managed by individual DBMSs. In order to do this, it

consults a ftasmrntation dictionary describing how data is
distributed over the integrated databases. The result is a
set of tasks to be executed by specific DBMSs. If any of
the data i s outside the segment managed by the DDAS,
the transaction i s xnt to the MDAS. Otherwise the
collection of tasks is given to the DDAS transaction
manager. When the transaction is completed, status is
returned to the user.

The transaction manager schedules execution of the

I I 1
I

Transaction
Manager

Figure 4. DDAS (between dashed lines).

entire transaction based on other activity in the system.
. The current strategy used is two-phase locking (Eswaran

et al. 1976). This means that one cannot reference some-
thing which is currently being. modified or referenced.
Any transaction which would violate this rule waits until
the conflicting transaction completes. I f there are no
conflicts, transactions proceed in parallel.

In the simplest case, the transaction consists of one task
which is sent to one BDAS, and the whole transaction,
including interaction with user data areas, is executed
there. ‘But more complex transactions may involve
distributing different tasks to several BDASs on different
computer systems and controlling their timing so that the
results of one task can be used as input to another.

7. MDAS-muter data administration system

The LMDAS is an optional component of the IMDAS
which is made necessary by having more than one
DDAS. So, from our point of view, the issue of central -
ized versus distributed control of the distributed data-
bases does not have to be resolved at the outset. I f a single
system can manage all data activity in an enterprise, one
installs the sole DDAS there and makes i t s controlled
segment the whole global database. But when more than
one DDAS becomes necessary (as we expect must
ineviiably occur), rather than trying to solve the crossover
problems by committee, we appoint a master DAS.

The MDAS supervises, in a limited way, all DDASs.
When a DDAS receives a user transaction which it does
not have th! data to complete, it passes the transaction to
the MDAS. Like the DDAS, the MDAS has a fragmenta -
tion dictionary which describes the location of data.
However, while the DDAS dictionary describes the actual
data repositories, the MDAS dictionary describes the
DDASs as the data repositories. Hence the MDAS will

.- - . - . ,

48 D. Libes and E. Barkrnqw

fragment the transaction into a set of tasks to be per-
formed by one or more DDAS, the MDAS transaction
manager wi l l schedule the transaction and pass each
subtask to the designated DDAS for execution at the
proper time. When the transaction is completed, the
MDAS will report completion to the originating DDAS,
which wil l report to the user. Consequently, the DDAS
executive is both a user of the MDAS services and a

The internai structure of the MDAS is s i m i l a r to a
DDAS with a simplified fragmentation dictionary. Since
the L M D A S always receives transactions in internal form
(from a DDAS), it does not need a parser. The value of
this close resemblance is that an MDAS can be instanti -
ated on any system which has a DDAS, since almost all of
the code is common. Th is allows the choice of MDAS to
be d e by the system manager when the system is
started or resumed after a crash, thus avoiding the single
point of failure.

; subordinate of the MDAS transaction manager.

8. Current system

An IMDAS prototype exists and supports another
prototype-the Automated Manufacturing Research
Facility (AMRF) (Nanzetta 1984) at the National Bureau
of Standards in Gaithenburg, MD, USA. The AMRF is
a test bed of manufacturing equipment and systems that
mearchers from NBS, industrial h s , universities and
other government agencies can uae to experiment with
new standards and to study new methods of measurement
and qudity control for automated factories.

The AMRF implementation consists of one DDAS and
a number of BDASs. Together with user programs, the
IMDAS communicates over the AMRF network. The
IMDAS software is written in C and Pascal and rcuu in
both UNW and VMS m environments. We anticipate
minimal effort willbe necessary for porn to other systems.
The user programs have no language constrainu and
currently indude C. Pascal. Lisp, BASIC and Forth.
User systems include Symboliu, Sun Microsystem, HP
and VAXTM.

ASN. 1 (IS0 1984) is used to encode all data uniw for
transmission. T h i s machineindependent representation
supports primitive types (e.g. integers, strings) as well as
complex user-deked types (e.g. relations, query trees).
This enhances portability at a minimal expense of time
and space and is another example of the use of a
single-common interchange format.

At the BDAS level, interfaces to a variety of data
systems exist, including R"I/Ingtes (Ingres 1986) and
BCS/RIM (Boeing 1985). In addition to commercial
DBMS, there also exist interfaces to the AMRF geometry
modeling system (Hopp 1987) and the AMRF Process-

Planning System (Brown and M c L e r t n 1986) and :o
common memory (Libes 1985) and file systems tor USIS
and VMS.

Near -term plans include expanding the system to
include the IBM 4381 running VM, building the inrer -
face to SQL/DS (IBM), and constructing the f i r s t
MDAS. Existing subsystems of the IMDAS are under-
going continuing testing and refinement. We envisage
that a number.of efforts in improving performance and
reliability wi l l become important as the project is trans-
ferred from the research environment to actual users.

Credits

T h e IMDAS was designed and implemented by mem-
bers of the Database Systems Research and Development
Center at the University of Florida, and the staff of the
Factory Automation Systems Group at NBS.

T h e IMDAS i s partially supported by funding from the
Navy Manufacturing Technology Program.

Mention of commercial products in this paper i s used
only to adequately specify the experimental faciiity. I t

does not imply endonempnt by NBS nor does it imply
that i t i s necessarily the best available for the purpose.

References and related readings

ANSI, 1986, American National Standard Database Language
SQL. American National Standards Institute, Inc.. New
York, December.

BARKMEYER. E., MITCHELL. M.. MIKKILINENI, K.. Sv, S.
and LAM. H.. 1986, An architecture for an integrated
manufacturing data administration svstem. NBSIR 863312,
Gaithenburg, MD. USA, January.

BOUNG 1985, BorinJ R IM Usrr's Manual, Version 7.0, 20492-
0502, Boeing Computer Services, Seattk, WA, USA.

BROWN, P. and MCLEAN C.. 1986. Interactive process plan-
ning in the ARMRF. h d n g s of tht 1986 ASME Winter
A m 4Matiq, Anaheim, CA, USA, December.

Eswrrw, K. P., GRAY. J. N.. LORIE, R. A. and TRAIGER.
1. L., 1976 The notion of consistency and predicate locks in a
database system, .CAW 19, 624-633.

GENERAL MOTORS ADVANCED TECHNICAL STAFF. 1986
Manufacturing automation protocol-a communications
network protocol for open systems interconnect. Generai
Motors, Warren. MI. USA, August.

HOPP, T. H., 1987, AMRE' database report format: Part
model. NBSIR 87-3672, Gaithenburg, MD, USA,
November.

IBM. SQL/DS Concepu and Facilities for VMSP. IBM
manual GH24-5065.

INCRFS,1986, Relational Technology, Inc, Alameda. CA
94501, USA, January.

IS,(International Organization for Standardization) 1984,
Information processing-open systems interconnec -
tion-basic encoding rules for abstract syn tax notation one
(ASN. 1). ISO/TC 97/SC 21 N25, July.

LIBES. D., 1985. User -level shared
Summer I985 L'SE.L'IX Conjerence.
lune.

LCIDAS-an o m o i e w 49

variables. Proceedings of' the
Portland. Oregon. USA.

ed as Dalenbank -Ajsteme jur Buro. Technrk lcnd IVi,~en,chat/.
(Sew York: Springer -\'dag)

X.bZETT.4, P., 1984, Update: NBS research facility addresses
problems in set-ups for small batch manufacturing. Industria[Trademark
Engineering, June, 68-73.

SAM'. Pracrcdings of GI-Fachtagung, Karlsruhe, FRG. reprint - VMS are trademarks of Digital Equipment Corp.
Sti. S., 1985 Modeling integrated manufacturing data using t-"X is a registered trademark of A T 8~ T. VAX and

