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THE INTEGRATION OPERATOR IN TWO VARIABLES

A. ATZMON AND H. MANOS

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we consider the integration operator in two variables

on L2[0, l]2 , determine its multiplicity and reducing subspaces, and make

some observations about its invariant and hyperinvariant subspaces.

1. Introduction

The purpose of this paper is to study the Volterra integration operator W in

two variables, that is, the operator defined on L2[0, l]2 by

(Wf)(x,y)^ f ds f f(t,s)dt.
Jo      Jo

In particular we find its multiplicity and reducing subspaces and obtain some
information on its invariant and hyperinvariant subspaces. It will follow from
our results that the properties of W are quite different from the properties of the

classical Volterra operator V (defined on L2[0, 1] by (Vf)(x) = f0x f(t)dt).
It is well known that V is compact and quasi-nilpotent. Since W — V ®V,
the same properties are also shared by W. These facts are also easily verified

directly.
Before describing the content of this paper, we introduce some notation and

recall some definitions. For a complex Banach space X, we will denote by
L(X) the algebra of bounded linear operators on X. If A is a subalgebra of
L(X) which contains the identity operator, then a subset G of X is called

cyclic for A, if the linear span of the set {Tx: x £ G, T £ A} is dense
in X. The smallest cardinality of a cyclic set for the algebra A is called the

multiplicity of A and will be denoted by m(A).
The multiplicity of an operator T in L(X) is defined as the multiplicity

of the algebra generated in L(X) by T and the identity operator and will be

denoted by m(T).
The commutant of F is defined by

T'd= {B £ L(X): TB = BT}.
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511 A. ATZMON AND H. MANOS

A closed subspace M of X is called an invariant subspace of T, if T maps

M into itself. If M is also invariant for every operator in V, then M is

called hyperinvariant for T. Let X be a Hilbert space and F e L(X). A

closed subspace E of %? is called a reducing subspace for T, if E and F1-
are both invariant under F.

It is well known (see [2, Theorem 4.14]) that the invariant subspaces of V

are exactly the subspaces Ma of the form Ma = {/ e L2[0, 1]: / = 0 a.e.

on [0, a]} for some 0 < a < 1. It follows from this, and it is also easily

seen directly, that the function / = 1 is cyclic for V; hence, m(V) = 1. It

also follows from this description of invariant subspaces that V has no proper
reducing subspaces. Also, since V is unicellular, by a general result (see [2,

Corollary 6.27]), every invariant subspace of V is also hyperinvariant.

In §2 we prove that unlike V, the operator W has infinite multiplicity.

In §3 we consider the reducing subspaces of W and prove that the only

such subspaces are S+ and S- , which consist of the symmetric functions and
antisymmetric functions in L2[0, l]2 respectively; that is,

5+ = {/eL2[0,l]2: f(x,y) = f(y,x), a.e. on [0, l]2},

S- = {/ g F2[0, I]2 : f(x, y) = -f(y, x), a.e. on [0, l]2} .

In §4 we give some examples of invariant and hyperinvariant subspaces of
W; however, the complete characterization of these subspaces remains open.

2. The multiplicity of W

In this section we show that W has infinite multiplicity, that is, we prove

Theorem 1.  m(W) = oo.

The proof of the theorem will be based on a result from [1, Proposition 2.1].
For the sake of completeness we include its statement and proof.

Proposition 2. Let T be an operator in L(X), and assume that for some integer
n>2 there exists a nonzero continuous n-linear mapping cf) of Xn into some

topological vector space Y, such that, for every n-tuple (xx, ... , x„) in X"

for which x, = Xj for some 1 < i < j < n and for every pair of nonnegative

integers (kx, k2), 4>(xx, x2, ... , Tk,Xj, xi+x, ... , TklXj, ... , x„) = 0. Then

n < m(T).

Proof. Let A be the subalgebra of L(X) generated by F and the identity

operator. First we note that since the set D = {Tn: n > 0} spans A, the

assumption on <fr implies that for every (Tx, T2) £ A x A and for every n-
tuple (xx, ... , xn) in X" for which x, = Xj for some I < i < j <n

(1) 4>(xx, x2, ... , Txx,■, Xi+i, ... , T2Xj, ... , xn) = 0.

Let G be any subset of X which contains less than n elements, and consider
the set M — spanfSjc : x £ G, S £ A} . The hypothesis that G contains less

than n elements implies by (1) that Mn c ker^>, and therefore since tp is

continuous, M = M" C ker tp. Remembering that (p ̂  0, we conclude that

M" ^ X" and therefore M ? X.   D

In the proof of the theorem it will be convenient to write W as a convolution
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THE INTEGRATION OPERATOR IN TWO VARIABLES 515

operator. For /, g £ L2[0, I]2 the convolution is defined by

def   fy fX
(g*f)(x,y)=       ds      f(t, s)g(x -t,y-s)dt.

Jo       Jo

It is known and easily verified that the convolution is commutative, asso-

ciative, g*f £ C([0, l]2), and ||/*g||2 < H/lbllslb. If we denote by U
the function U = 1 on [0, l]2 then it is clear that for every / e L2[0, l]2 ,

Wf=U*f.
In view of Proposition 2, the conclusion of Theorem 1 follows from

Proposition 3. For every n>2 there exists an n-linear mapping <p„ that satisfies

the assumptions of Proposition 2 for W.

Proof. For a > 1, we denote by Da the rectangle [0, 1] x [0, I/a] and by Ta

the operator on F2[0, l]2 defined by

,~ ,rr ,s,       v def f f(ay,x/a),       (x,y)£Da,

(2) (Taf)(x,y) = [Q> othemise

It is easily verified that Ta is a continuous linear operator on F2[0, l]2 and

that for every (x, y) £ Ua

(3) (TaWf)(x,y) = (WTaf)(x,y).

Let n > 1, and choose n - 1 real numbers ax,a2,... ,an-X such that

ax = 1 and ak < a^+1 for k = 1,2, ... , n-2, and define the operator Pn on

F2[0, l]2 by

(F"/)(X^) = l0, otherwise.

For every fx, ... , fn in L2[0, I]2 consider the matrix

/    /i        •••        fn    \
Tat fl       " '        Tai fn     I

A(fl,f2,...,fn)= . .

\Tan_,fi     •••      Tan_J„J

and define the mapping <f>n: (L2[0, l]2)" -» F2[0, l]2 by

(4) Mfi,...,/«) =' Pn{det[A(fx ,f2,..., fn)]},

where multiplication in det^4 is convolution. Since for every n functions

gi, ... , gn in F2[0, l]2 we have that

\\gl * g2 * ■ ■ ■ * gnh < llc?l||2||c?2||2 • • • ||gn||2 -

and since the operators Fa. are continuous, it follows that <p„ is a continuous

«-linear mapping of (F2[0, l]2)" into L2[Q, l]2. Next, let (fi,...,fn) e
(L2[0, l]2)" and assume that there exist I < i < j < n such that f = Wrf,

fj = wmf for some / e L2[0, l]2. We have to show that <pn(fx ,...,/„) = 0.

First if (x,y) £ Da„_t then, for every / e F2[0, l]2, (P„f)(x, y) - 0 and so

Wnifi,..., fn)](x,y) = [Pn(detA)](x,y) = 0.
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516 A. ATZMON AND H. MANOS

It remains to prove that this holds also for (x, y) £ Ddn_, . By changing the

order of the columns of A we may assume that i = 1 and 7 = 2, namely,

f = wrf and f2 = Wmf. Then on Da„_,

<pn(Wrf,Wmf,f3,...,fn)

/       Wf W"f h ■■■ fn      \
TatW'f TaxWmf TaJ3       •••        TaJn

(5) =det      : : :     :

\TaJtWrf   Tan_'xW»f   Ta„'_J3    .'•    Tan_Jn)

For every 1 < k < n - 1, an-i > ak; hence, Dan_, c Uak. Therefore, using

(3) and remembering that Wf =U* f and that convolution is associative and

commutative, we obtain that on Dfln_,

<Pn(Wrf,Wmf,h,...,fn)

I       Wf Wmf h ■■■ fn      \
W'TaJ W»Taif TaJ3       ••■        TaJn

= det i i j |

(6) \WTan_J   W"Ta„_J   Tan_xh   ■'■    Tan_Jn)

I      f f h ■■■ fn      \
Ia\J JatJ J-atJi       '"       J-atJn

= wr+m det     :       :       :     :

\Ta„_tf     Tan_J     TaK_th     •"      Tan_Jn J

Now in the last matrix the first two columns are the same on Oa„_l and, there-

fore, the determinant vanishes on Dan _, . Noticing that if g is any function

that vanishes on some rectangle of the form [0, a] x [0, b]—that is included in

[0, l]2—then Wkg also vanishes on that rectangle for every k, we conclude

that <pn(W'f, Wmf, /3, ...,/„) = 0 on □„„_,.
It remains to show that <p„ is not identically zero. For this consider the

functions gi(x,y) - 1, g2(x, y) - x, ... , g„(x, y) = x"~l. We claim that

<t>n(gi, ■■■ , gn) £ 0. Indeed, by definition (2) and the fact that nan_, c Daic

we have for (x,y) in the rectangle Dan_, and for every 1 < k < n - 1 that

(Takgm)(x,y) = gm(aky,x/ak) = a^~xym-x. By the definition of <pn we get

that on nfllI_,

(I       x      ■■■       xn~x    \
1       y       •••       yn~x

\l   an-xy   •••    annz\y"-x)

where multiplication in the determinant is convolution. Denoting by Mtj the
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THE INTEGRATION OPERATOR IN TWO VARIABLES 517

minors of the determinant, we obtain that on O0nl

n

4>n(gl,...,gn) = Y,(-X)kxk~X*MU<-

k=l

The highest power of x appears when k — n , namely, in the term xn~x • Mx„ .

Therefore, to show that (pn(gi, ■■■ , gn) ^ 0, it suffices to show that xn~x *

Mx„ ^ 0; but since Mx„ is a polynomial, this is obviously true if MXn ̂  0. So

it suffices to prove that

(I y ... yn-2     \

1     a2y     •••    a?~2yn-2

MXn = det . . ^0.

\l   an-iy   ■■■   ann-_\yn-2)

It is easy to see that

(I      1      •••       1   \

1     a2     ■■•    a\~2
Afi„=det    .       . [/*>>*•• •*yn~2

\l   a'n-x    ■■■    a"nZ2x)

where the multiplication in the last determinant is the usual multiplication. But

the last determinant is the Van-der-Monde determinant of ax = I, a2, ... , a„-X

and hence, is equal to Ili>;>i(fli _ ai) > which is not zero since a, > a,-, for

i > j, so MXn £ 0.
This completes the proof of Proposition 3 and, hence, also of Theorem 1.   D

3. The reducing subspaces of W

We recall that a subspace E of F2[0, l]2 is reducing for an operator T

on F2[0, l]2 if E and E1 are both invariant under F, or equivalently if E

is invariant under F and T*. We denote by S+ the symmetric functions in
L2[0, I]2, namely,

S+ = {f£ L2{0, I]2: f(x,y) = f(y,x) a.e. on [0, l]2},

and by S-. the antisymmetric functions in L2[0, l]2 , namely,

S- = {f £ L2[0, l]2 : f(x,y) = -f(y, x) a.e. on [0, 1 ]2} .

Consider the operator t defined on L2[0, l]2 by

(xf)(x,y) = f(y,x).

It is easily verified that t commutes with W. Therefore, if f £ S+ then

x(Wf) = W(xf) = Wf;

hence, Wf £ S+ . Similarly if / e S_ then Wf £ S- ; that is, S+ and S-
are invariant under W. It is easy to see that S- is the orthogonal complement
of S+ , and, therefore, S+, 5_ are reducing subspaces of W.

The main result of this section is the following theorem.

Theorem 4. The only nontrivial reducing subspaces of W are S+ and 5_ .

For the proof of the theorem we shall need several lemmas.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



518 A. ATZMON AND H. MANOS

Lemma 5. Let T be an operator in a Hilbert space %?, and assume M is a

reducing subspace for T. If X is an eigenvalue of multiplicity one and x a

corresponding eigenvector, then x £ M or x £ M1-.

Proof. Let X be an eigenvalue of multiplicity one and x a corresponding eigen-

vector. Suppose x = xx + x2, where xx £ M and x2 £ ML . Then

(7) Xx = Tx = Txx + Tx2.

Since M and ML are invariant under T, Txx £ M and Tx2 £ Mx, hence

by (7), Txx = Xxx and Tx2 = Xx2 . Since X is of multiplicity one, this implies

that xx = 0 or x2 = 0, hence x £ M or x £ ML .   □

A simple computation shows that the adjoint of W is given by

(W*g)(t,s) = J  dyj g(x,y)dx,        g£L2[0,l]2.

Lemma 6. For every integer n ^ 0, r„ = i/2nn is an eigenvalue of multiplicity

one of the operator W - W*, and the corresponding eigenfunctions are constant
multiples of the function f„(x, y) = e~2ninx - e~lKiny .

Proof. Let X ̂  0 be an eigenvalue of W - W* and F(x, y) a corresponding
eigenfunction. Then (W - W*)F = XF . This implies that

(8) f ds f F(t,s)dt- I  ds I F(t, s)dt = XF(x, y).
JO JO Jy Jx

The left-hand side of (8) is a continuous function, so F is continuous, and
therefore, the left-hand side is a differentiable function. Differentiating (8) with

respect to y, we get that

(9) Jj(t,y)dt = Xd£.

Differentiating (9) with respect to x we obtain the differential equation

d2F
(10) XJWy=°-

From the assumption that X ̂  0, (10) implies that

(11) F(x,y) = f(x) + g(y),

where / and g are differentiable functions on [0, 1]. Substituting this in (9)

we obtain that

j\f(t) + g(y)]dt = X^;

hence,

Cl+g(y)=XdJL,

where Cx = fx f(t) dt. The solution of this differential equation is

(12) g(y) = Be^ + Cx,

where B is a constant. Similarly we obtain that f(x) - Aex/X + C2 , where A

and C2 are constants, and therefore we obtain that for some constant C

(13) F(x,y) = Aex/x + Bey/x + C,
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THE INTEGRATION OPERATOR IN TWO VARIABLES 519

and substituting again (13) in the equation (W - W*)F = XF, we obtain

/  dt fX(Ae''x + Bes^ + C)dt- j  ds f (Ael'x + Bes'x + C)dt
Jo Jo Jy Jx

= X(Aex'x + Bey>1 + C).

This implies that

y[-XA + XAex'x + C] + x[-XB + XBex>x + C]

+ \-XAex>x - XBex/x -C-XC] = 0;

hence, we obtain the following three equations:

(1) -XA + XAexlx + C = 0.
(2) -XB + XBexlx + C = 0.
(3) -XAexlx-XBexlx-C-XC = 0.

By subtracting (2) from (1) we get (B - A)(l - ex<x) = 0.

Possibility a. exlx -1=0. The solutions are: Xn — i/2nn for a nonzero integer

n and then C = 0 and A — -B; namely, the eigenvalues are r„ — i/2nn

and the corresponding eigenfunctions are constant multiples of the functions
fn(x, y) = e-2ninx - e-2niny .

Possibility b. A = B . In this case, C = -2XA/(X - 1) where X is the solution
of the equation exlx = (X + l)/(X - 1). It is easily verified that rn = i/2nn is

not a solution of the last equation. (The solutions of this equation give other

eigenvalues, in which we are not interested here.) So for any n ^ 0, rn is an

eigenvalue of multiplicity one and /„ is a corresponding eigenfunction.   D

Lemma 7. Let Pkm(x, y) = xkym - xmyk and Qkm(x, y) = xkym + xmyk.

Then:

(1) span{{2fcm(x, y), k>m} = S+,and
(2) span{Pkm(x, y), k > m} = S-.

Proof. Let Q denote the set of symmetric polynomials in two variables—that

is, Q = {q; q(x, y) = q(y, x), V(x, y) £ [0, l]2}—and P the set of antisym-
metric polynomials in two variables—that is, P = {p; p(x, y) = -p(y, x),
V(x ,y)e[0, l]2} . It is easily seen that Q is the linear span of the polynomi-

als Qkm and P is the linear span of the polynomials Pkm . This implies the

lemma by observing that Q is dense in S+ and P is dense in S- .

Lemma 8. If M is a reducing subspace for W then S- c M or S- C M1-.

Proof. Since M is a reducing subspace for W, it is also reducing for W - W*.

By Lemmas 5 and 6 we get that, for any n # 0, fn(x, y) — e~2mnx - e~2niny

belongs either to M or to M1-. In particular, f(x, y) = e2nix - e2jciy belongs

either to M or to M1.

We now show that if f £ M then S- c M. For every n > 2 consider the

polynomial Pn defined by

Pn(x,y)=y"-xn + x-y.

First we claim that P„ £ M, n = 1, 2, ... . We prove this by induction. Since

f(x, y) = e2nix - e2niy £ M
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520 A. ATZMON AND H. MANOS

and M is invariant under W and W*,

f=4niW*Wf+-^f£M
zni

and

f2 = 4niWW*f+2Wf £M.

A direct computation shows that

Mx, y) = x2 [JL - 1 - ^-e2*iy + y] -y2 [JL - 1 - ±-e2*ix + x] +(x-y)

and

Mx, y) = x2 [J- - ^-.e2*iy + y] - y2 [ J-, - -±-.e2nix + x   .
[2ni     2ni J [2nt     2ni

Therefore,

fi(x, y) - Mx, y) = x-y-x2+y2 = P2(x,y) £M.

A simple computation shows that

Pn+i = (n + l)[WPn-W*Pn + {P2],

and therefore if we assume that P„ £ M, we obtain that also Pn+X £ M, and

the claim is proved.
Next we claim that, for every n > 1, x" - y" £ M. Indeed, since M is

closed and

\\Pn - (x-y)h = \\yn -x"\\2 < \\yn\\2 + ||x"||2 = 2^=L== -^ 0,
V2« + 1

we conclude that x - y £ M. Since for every n > 2

Pn(x,y) =yn-x"+x-y£M,

this implies that for every n > 1

(14) x"-y"£M

and, therefore, for k > m

Wm(xk-m -yk~m) = —;-:-—-.-sr-rPkm(x,y)£M.
K *      '     m\(k-m + l)(k-m + 2)---k Kmy    *'

Hence Pkm £ M and by Lemma 6, this implies that S- c M. Similarly one

shows that if f £ M1- then S-C M± .   D

For every pair of nonnegative integers n, m > 0 denote

ft       ^ (2n+l     \       /2m+1     \
fnm(x, y) = COS I -^-nX) COS ( -J.-^ J  '

Lemma 9. The only eigenfunctions of the operator W* W are constant multi-

ples of the functions {fnm}n,m>o> and the corresponding eigenvalues are X„m =

16/(2« + l)2(2m+l)27r4.

Proof. It is easy to verify that fnm are eigenfunctions of W* W and that Xnm

are the corresponding eigenvalues. Since it is well known that {fnm}n,m>o is
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a complete orthogonal system in F2[0, l]2, it follows that there are no other

eigenfunctions.   □

Lemma 10. If M is a reducing subspace for W then either S+ c M or S+ C

M1-.

Proof. If M is reducing for W then M is also reducing for W* W. Lemma

9 implies that X = 16/7T4 is an eigenvalue of multiplicity one of the operator

W* W, and a corresponding eigenfunction is f(x, y) = cos(7ix/2) cos(7ry/2) •

Hence by Lemma 5, / belongs either to M or to M1-.
We will show that if f £ M then S+ C M. For every n > 1 define

gn(x, y) = 1 - x" - yn . First we claim that g„ £ M for n - 1,2, ... . We

prove this by induction. Since f(x, y) = cos(7rx/2) cos(;ry/2) £ M and M is

invariant under W and W*,

fl = yiW2f-f£M

and

h = 4j£zT2jUW*)2f- ww*n 6 M.

By a direct computation

fi(x,y)=l- cos (|x) - cos (|j;)

and

f2(x, y) = 1 + - [l - cos (|x) - cos (|y)] - (y + x).

This implies that
2

gi =/2--/i eM.
71

A simple computation shows that

S„+1 = (n + 1)   ^j^i - rV*g„ + Wgn   .

Therefore, if we assume that gn £ M, we obtain that also gn+x e M, and the

claim is proved. It is easy to see that g„ —► 1 in L2[0, l]2, and therefore since

M is closed, the function U = 1 belong to M. Since gn £ M, this implies
that, for every n > 0, xn + y" £ M, and therefore, for every 0 < m < k,

Hence Qkm £ M, and by Lemma 7 we conclude that S+ c M. A similar

argument shows that if / € M± then S- c M1-.   U

Proof of Theorem 4. Let M be a reducing subspace for W. It follows from

Lemmas 8 and 10 that there are four possibilities:

(1) 5_ CM and S+C M.
(2) S- C ML and S+ C M± .
(3) S-CM and X+CM1.
(4) 5_ C M-1 and 5+ C M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



522 A. ATZMON AND H. MANOS

Since S- © S+ = L2[0, l]2, possibility (1) implies that M = L2[0, l]2 and
possibility (2) implies that ML = L2[0, l]2; hence, M = {0} . Since S± = S- ,

possibility (3) implies that M = S- and possibility (4) implies that M = S+ .
This concludes the proof of the theorem.   □

4. Invariant and hyperinvariant subspaces for W

It is easy to see that if E is a measurable subset of [0, l]2 , which satisfies
the condition

(x,y)£E^[0,x]x[0,y]CE,

then the subspace

(15) ME = {f£L2[0, l]2:/ = 0a.e. on F}

is an invariant subspace for W. These subspaces are in a sense analogous to

the invariant subspaces of the classical Volterra operator V; however, there are

many other invariant subspaces for W. For example, such are the subspaces

S+ and 5_ considered in §3; and if G is any finite subset of L2[0, l]2 , then
in view of Theorem 1 the cyclic subspaces generated by G—that is, the closed

span of the set {Wf: f £ G, n > 0}—is a proper invariant subspace of

W. In particular, if G consists of the single function U = 1, then it is easily

verified that this subspace consists of all functions / in F2[0, l]2 , which are
of the form f(x, y) = g(xy), where g is a measurable function on [0, 1].

These examples indicate that W has a very rich and varied supply of invari-
ant subspaces, and a characterization of all of them might be a hopeless task.

On the other hand, it might be easier to characterize all the hyperinvariant
subspaces of W.

First we note, that unlike for V, not every invariant subspace of W is also
a hyperinvariant subspace. Indeed, since the operator x (introduced in §3)

commutes with W, every hyperinvariant subspace for W must be invariant
for x . This implies, in particular, that a necessary condition for an invariant
subspace of the form ME to be hyperinvariant is that E should be a symmetric
set (that is, if (x, y) £ E then (y, x) £ E for almost all (x, y) £ E). Thus,
for example, if 0 < a, b < 1 and a ^ b then the subspace M[0 a]x[0 ^ is an

invariant subspace for W which is not hyperinvariant.
It should be observed that not every invariant subspace of W which is also

invariant for x is hyperinvariant for W. Such examples are provided by the

subspaces S+ and S- which are not hyperinvariant for W, since they are not

invariant for the convolution operator defined on L2[0, l]2 by Lnf = h* f,

with h(x, y) — x, which commutes with W.

We conclude with two problems.

Problem 1. Let E be a measurable subset of [0, l]2 which satisfies

(1) (x,y) £E=> [0,x] x [0,y]CE, and
(2) (x,y)£E^(y,x)£E.

Is Me a hyperinvariant subspace for W ? In particular, is the answer positive

if E = [0, a]2 for some 0 < a < 1 ?

Problem 2. Is every hyperinvariant subspace for W of the form Me , where E

is a subset as in Problem 1?
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Figure 1. MBa, Moa, MNa consist of all functions that

vanish in the domains Ba,Ga, and iVfl respectively

We mention without proof that one can show that if for 0 < a < 1 we denote

Ba = {(t, s)£[0, I]2 : (1 - 0(1 -s) > a}, Ga = {(t,s) £ [0, I]2 :ts<a},
and, for 0 < a < 2, Na — {(t, s) £ [0, I]2 : s + t < a} , then all the subspaces

Mb„ , MGa, and MNa are hyperinvariant subspaces for W. (See Figure 1.) Thus

we obtain a positive answer to the first part of Problem 1 in these particular

cases.
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