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Intelligent environments are an interesting development and research appli-
cation problem for multi-agent systems. The functional andspatial distri-
bution of tasks naturally lends itself to a multi-agent model and the exis-
tence of shared resources creates interactions over which the agents must
coordinate. In the UMASS Intelligent Home project we have designed and
implemented a set of distributed autonomous home control agents and de-
ployed them in a simulated home environment. Our focus is primarily on
resource coordination, though this project has multiple goals and areas of
exploration ranging from the intellectual evaluation of the application as a
general MAS testbed to the practical evaluation of our agentbuilding and
simulation tools.
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The intelligent home project (IHome) at the UMASS multi-agent
systems lab is an exploration in the application of multi-agent sys-
tems technology to the problem of managing an intelligent envi-
ronment. We have implemented a sophisticated simulated home
environment, populated it with distributed intelligent home-control
agents (including simulated robots) that control appliances and ne-
gotiate over shared resources, and begun experimentation with dif-
ferent coordination protocols and agent adaptability / responsive-
ness to changing environmental conditions.

Our work is akin to the Adaptive House [14] and [5, 8] in that
the objective is for the environment to automate some of the tasks
currently performed by humans – possibly with improvementsin
efficiency or quality of service. However, our focus is on resource
coordination and temporally sequencing agent activities over shared
resources. A broad spectrum of research falls into the general cat-
egory of intelligent environments. For example, one class of work
deals with collecting and integrating information about the activi-
ties that occur within the environment [1] while another class fo-
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cuses on identifying and tracking humans as they move about the
environment [2, 15].

The UMASS simulated IHome environment is controlled by
intelligent agents that are associated with particular appliances; a
snapshot of a sample run is shown in Figure 1. The IHome pop-
ulation set includes agents like an intelligent WaterHeater, Cof-
feeMaker, Heater, A/C, DishWasher, etc., and a robot for fetching
items and moving physical goods from one location to another. The
home agents reason about their assigned tasks and select candidate
actions based on the occupant’s preferences and the availability of
resources. For example, if hot water is scarce, the DishWasher
agent may elect to run a cold cycle, trading-off solution quality for
resource consumption – the agent may also elect to wait untilhot
water becomes available. Agents coordinate over shared resources
like noise, electricity, temperature, and hot water. Resources, re-
source interactions, task interactions, and the performance charac-
teristics of primitive actions are all represented and quantified in
the TÆMS [4] task modeling framework. This enables agents to
reason about the trade-offs of different possible courses of action
and to adapt behaviorally to the changing environment.

The research has several goals, among them are:

1. Examine the intelligent home domain as a general applica-
tion testbed for research in multi-agent systems.

2. Apply the TÆMS [4] domain-independent task modeling frame-
work to a new domain and evaluate its use in the rapid devel-
opment of a new multi-agent application.

3. Test and refine our multi-agent simulation environment [17]
that controls method execution and communication charac-
teristics for a set of distributed agents. The environment em-
ploys a complex time mapping scheme and a process con-
troller to resolve timing issues between the distributed agents
and to ensure reproducibility.

4. Test and refine our java-based generic agent constructionframe-
work [6] that facilitates agent construction through an event-
driven component architecture. The framework also enables
agents to be decoupled from the simulator and executed in
their application domain with a simple change in internal
components, i.e., with a change to the makefile.

Space precludes discussing all of these points. We will focus
on the challenges offered by the application domain, discuss the
TÆMS modeling framework from a high-level view, describe the
application and some of the agents, touch on the simulator wehave
used for the IHome project, and present experimental results. For
information about the agent development tools or more informa-
tion about the project, including screen snapshots, readers should
consult the group web pages [16].



Figure 1:IHome Agents in Action
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Figure 2:TÆMS Task Structure for Making Coffee
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The simulator and the agents in our intelligent home model prob-
lem solving activities using the TÆMS domain independent task
modeling framework [4, 11]. TÆMS models planned actions, can-
didate activities, and alternative solution paths from a quantified
perspective; all primitive actions are described statistically via dis-
crete probability distributions in terms of quality, cost,and dura-
tion. A fourth dimension, uncertainty, is implicit in the probability
distributions. Thus, TÆMS-based reasoners (e.g., [18]) can eval-
uate the quality, cost, and duration (and uncertainties in each of
these) characteristics of each possible course of action and select
the course of action that best� meets the current constraints and
environmental conditions. For example, in a time constrained situ-
ation, an agent may sacrifice solution quality and possibly consume
more resources to produce a result within the specified deadline.

Figure 2 shows a TÆMS task structure used by the CoffeeMaker
agent to represent its process for making coffee. The simulator has
a differentobjectiveview of the agent’ssubjectivetask structure
and the views may be radically different – this enables experimenta-
tion with situations in which the agent’s model is inaccurate. While
TÆMS is a modeling framework, agents often use it internallyto
reason about the structure of their computation. In this case, it is
akin to a process plan or other meta representations. It is a structure
that describes how the primitive actions relate to accomplishing the
overall objective and often the primitive actions in TÆMS corre-
spond directly to underlying code. TÆMS task structures aremod-
els in the sense that they may be abstracted from some of the execu-
tion details, not in the sense that they are completely isolated from
execution and can only be used in a simulated environment. Inthe
IHome project, programmers describe the agents problem solving
options in TÆMS, usually via a TÆMS graph-grammar-generator,
and then build the tools, or use existing ones, for reasoningwith the
task structures. In this usage, the programmers take the place of a
generative planner or problem solver that would normally produce
the task structures (as in [12]) from its own internal representations.
This enables programmers to rapidly create agents for applications
where an off-the-shelf planner/problem solver is not available.

The task structure shown in Figure 2 describes alternative ways

Due to the combinatorics of the TÆMS scheduling problem, “best” does not nec-

essarily denote optimal.



to obtain water, obtain coffee, and brew the coffee. Consider the
Acquire-Ground-Beanstask; it has two subtasks, one of which is
another decomposable task, and another (Grind-Beans) which is
a primitive action and is described in terms of quality, cost, and
duration. The small icons under the action denote resource usage
– resources and the resource interactions are absent from this fig-
ure to improve readability. The arc leading fromAcquire-Beans
to Grind-Beansis anenablesnon-local-effect (nle) and it denotes
a hard constraint thatAcquire-Beansmust have quality in order
for Grind-Beansto execute, i.e., the agent must have beans before
it can grind them. Theq min quality-accumulation-function (qaf)
associated withAcquire-Ground-Beansdenotes that its quality is
computed bymin(Acquire-Ground-Beans,Grind-Beans), modeling
the notion that poor beans or poor grinding produces poor ground
beans. Acquire-Beanshas two primitive action subtasks. Note
that using frozen beans produces a lower quality result thanbuying
beans from Starbucks, but that it also costs less and is considerably
faster. If the CoffeeMaker is in a hurry, or has limited financial re-
sources, it may thus choose to use frozen beans. However, if the
agent is extremely time constrained, it will probably perform Get-
Coffeeby using instant coffee rather than obtaining ground beans
of either form.

This task structure illustrates the notion of quantified choice
in TÆMS and its facilitation of trade-off behaviors at run-time.
However, it is not a good illustration of the use of uncertainty in
TÆMS as the methods all have simple distributions and no repre-
sented probability of failure. If execution failure shouldoccur the
agent will reschedule accordingly. However, the lack of anyrepre-
sentation of failure may keep the agent from working to reduce the
probability of failure by choosing more conservative options. This
can be important in cases when tight deadlines exist.

The quantifications of items in TÆMS is not regarded as a per-
fect science. Task structure programmers or problem solvergener-
atorsestimatethe performance characteristics of primitive actions.
These estimates can be refined over time through learning [9]and
reasoners typically replan and reschedule when unexpectedevents
occur. Quantification in TÆMS is not limited to the characteriza-
tion of primitive actions. Interactions between tasks, actions, and
resources are also described statistically. For example, agents de-
scribe their resource consumption behaviors in terms of aconsumes
non-local-effect and the effects of the resource on the taskare de-
scribed via alimits non-local-effect. The limits nle describes the
negative effects of lacking sufficient resources to performa task in
terms of power-effects on quality, cost, and duration. These effects
can model a range of behaviors, from an increase in duration in
the case of a network resource to a complete reduction of expected
quality to zero in the case of a hard resource like a locked file. For
a non-consumable resource, e.g., network bandwidth, wherethe re-
source is diminished during the usage and then returned to its initial
state.
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The intelligent home is a model of a small home constructed and
executed using the generic multi-agent simulation environment [17].
The home consists of four rooms: a bedroom, a living room, a bath-
room, and a kitchen, all joined by a common hallway. Though the
home is more of an apartment, size is actually not necessary in this
application to obtain interesting results; the interesting issues arise
when agent controllers interact and a smaller space requires fewer
agents to generate interesting interactions.

Expanding the size of environment may create an issue of scal-
ability with respect to resource coordination protocols unless the
expansion is achieved through composition of (primarily) indepen-
dent sub-environments. If the intelligent environment were a large
manufacturing factory, for instance, where hundreds of agents shared

common resources like electricity and water, the simple peer-to-
peer agent organization used in this project will probably lead to
combinatorics and high coordination overhead. In situations such
as these, the agents should be organized into work-groups orac-
cording to other partitioning schemes to reduce the scope ofinter-
action.

In our model agents are associated with major appliances. We
decided on the model of associating agents with appliances because
we believe it is likely that in the future intelligent appliances will be
packaged with their own intelligent control software. Different ap-
pliances will probably have different types of agent controllers and
the agents will probably be heterogeneous, interfacing through a
common protocol. This leads to either a peer-to-peer organization
or a group-style organization where agents are perhaps clustered
according to function (e.g., washer and dryer), spatial location, or
resource usage. We choose the peer-to-peer approach for this ini-
tial implementation because it allows us to use the same simple
protocol sets for all agents and it does not limit or reduce agent
interaction. In the future, we plan to experiment with different or-
ganizational structurings.

Thus, agents are associated with major appliances and they in-
teract directly to coordinate over shared resources. Currently, we
model and coordinate over electricity, hot water, noise or sound lev-
els, and room temperature in each of the modeled rooms. Agents
coordinate using a resource coordination protocol discussed in [13].

In terms of modeling issues, we made some simplifying as-
sumptions. Based on work ongoing in the community, we assumed
the existence of supporting technology for: identificationand track-
ing of individuals moving about the environment, obtainingclient
preference profiles that include things like deadlines on particular
activities (e.g., dishes should be done by the time the client gets
home from work), and assimilating different occupant preferences
for parameters like room temperature. Since we currently employ
only one fetching robot, we also did not address spatial constraint
issues like two robots attempting to use the same door simultane-
ously (it is not clear that we will model robots at that fine a level of
granularity in the future either).

The agents that populate the intelligent home are heterogeneous,
each having its own internal problem solver that reasons using TÆMS
task structures. Some of the agents make use of generic agentcon-
trol tools like the Design-to-Criteria scheduler [18], butthere is no
requirement to do so as we are interested in examining the bottom-
up production of agents for this application. All the agentswere
constructed using the generic Java Agent Framework [6], however
the framework’s role is to “glue” together disparate components
and it does not impose any restrictions on the types of agentsthat
can be constructed or how the agents approach particular prob-
lems. Interagent communication is done via KQML [10] routed
through the simulation environment as discussed previously. The
population of the intelligent home includes a mobile robot and ap-
pliance agents like the Dryer, TV, DishWasher, WaterHeater, Vac-
uumCleaner, Heater, A/C, CoffeeMaker, and the OtherAppliances
agent. The OtherAppliances agent is a place holder for otherappli-
ances not currently modeled by agents. It makes resource requests
and otherwise stresses and exercises the system in much the same
way as an additional� agents would. Space precludes discussing
each agent in detail, though the agents are generally characterized
according to the tasks they perform, the alternative ways toperform
them, the resources they consume, and the agents with which they
interact. For example:
A/C Agent Summary: Responsible for climate regulation. Has cooling

ability, limited heating ability by routing air flow throughhome, and
the ability to control humidity by routing air through the compressor.
The agent’s control flow is shown in Figure 3.
Task Performance Options Different fan and compressor levels re-

sulting in different cooling rates with different noise character-
istics.



Shared Resources Noise: interacts with the DishWasher, Dryer,
VacuumCleaner, CoffeeMaker, and TV agents.Electricity:
interacts with the DishWasher, Dryer, VacuumCleaner, TV,
and CoffeeMaker agents.Temperature: interacts with the
Heater agent.

Task Interactions Task sharing with the Heater agent to control
room temperature.
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Figure 3:AirConditioner Agent’s Control Flow

One of the agents in the home is actually a generic agent. It
uses the Design-to-Criteria scheduler so that its behaviors are com-
pletely defined and described in TÆMS and a set of goal criteria
for the scheduler. The generic agent can, in essence, becomeany
of the other agents simply by changing its descriptive task struc-
tures and the scheduling criteria. The generic agent will not always
perform identically to the agent it emulates because the agent may
make different trade-off decisions than those made by the sched-
uler. In the future, we will compare the performance of the generic
agent to the specialized agents to determine the differences and the
relative strengths of each.
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The intelligent Home project was built to test agent’s resources
coordination but also to test our agent framework. The frame-
work, we build is composed of separate entities the Multi Agent
Survivability Simulator (MASS) and the Java Agent Framework
(JAF). MASS was used to simulate the intelligent house, to simu-
late agent’s method execution and resources usage. JAF was used
to build all the agents and is a very nice framework that let peo-
ple concentrate on their agent’s behaviour rather than the technical
aspects of an agent (like how to deal with TCP/IP messages, parse
them, etc..). In fact JAF offers for free all the technical aspects of an
agent like comunication, control, state storage, TÆMS generation.

This section will explain how MASS was designed for evaluat-
ing multi agent systems.
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MASS was designed to be a tool to evaluate agents and agent’s
coordination. When you tried to evaluate agent and multi agent
systems, a lot of problems occurs. The first concerns our ability
to accurately measure the influence of different multi-agent coor-
dination strategies in an unpredictable environment. It issimilarly
difficult to realistically model truely adaptive behavior in multi-
agent systems within a static environment. These two seemingly
contradictory goals lie at the heart of the design of the Mutli-Agent
Survivability Simulator.

A significant advantage multi-agent systems (MAS) have over
traditional designs is the fact that the system is distributed. The
decentralized, partially autonomous and redundant, nature of such
a system makes them less sensitive to certain classes of faults or
attacks. This same decentralization, however, also makes it difficult
to anaylze these systems. How do we recognize the reaction ofa

MAS when a fault occurs? How does one measure its adaptative
capabilities?

If you evaluate a real-world MAS, is it possible to know for
certain that the runtime environment is identical from one run to
the next? Can one know that a failure occurs at exactly the same
time in two different runs when comparing system behavior? Can
it be garunteed that inter-agent message traffic will not be delayed
or corrupted by network events external to the scenario?

If you evaluate a MAS system in a simulated environment, how
can it be known that the system being tested will react optimally
a majority of the time? How many different scenarios have been
attempted? Is the number is large enough to be representative?

Based on these observations, we have tried to design an envi-
ronment that allows us to directly control the baseline simulated
environement (e.g. be deterministic from one run to the next) while
permitting the addition of “deterministically random” events that
can affect the environment throughout the run. This enablesthe de-
terminism required for accurate coordination strategy comparisons
without sacrificing the capricious qualities needed in an environ-
ment to fully test adaptability.

MASS[13] is the next generation of the TÆMS simulator cre-
ated by Decker and Lesser in 1993. Agents running in the MASS
environment still use TÆMS a hierarchical representation of an
agent’s goals and capabilities (see section 2), to represent their
knowledge.

The primary role of the MASS controller is to simulate the exe-
cution of methods requested by the agents. Each agent has a partial
view of the environment, typically describing its local view of a
goal and possible solutions, which determines the expectedvalues
resulting from such an execution. This view of the world local to
the agent is known as itssubjectiveview. The simulator has its own
view of the world (the “correct” one, which we call theobjective
view) which it uses to compute the results of the execution. En-
gineering differences between the subjective and objective views
allow for a wide range of scenarios to be simulated.

We will give here a summary of TÆMS and how it is used to
simulate an execution, the reader should refer to [3] for more de-
tails. In TÆMS, each method is described along three dimensions:
cost, quality and duration, each of which is described with adis-
crete probability distribution. The quality represents any method
value or characteristic that should be maximized, the cost is the di-
mension you want to minimize and duration provides a enabling
mechanism for scheduling, coordination and deadlines. Thesimu-
lator uses the distributions in its objective view when computing the
values for a method execution. Note also that this probabilistic dis-
tribution offers the best case outcomes, the simulator willdegrade
results as necessary (lower quality, more cost or longer duration) if
required resources are not available, or if execution is affected by
interactions with other methods.

The operating environment is represented in MASS by two mech-
anisms, a visual representation and a list of resources. Thevisual
representation is composed by a 2D map (the floor map of a house,
for example). Each agent connected to the simulator can the post
its visual representation (usually an icon) and location onthe map.
Semblances of movement can be obtained by simply informing the
simulator of a new location. The resource listing shows the state of
all the resources used by agents’ methods during their “simulated”
execution. The simulator is able to define resources a priori, but for
convenience they are usually instantiated dynamically at runtime as
the objective TÆMS view specifies a need for them.

The simulator’s second purpose is to act as a message router for
the agents. The agents send and receive their messages through the
simulator, which allows us to model adverse network conditions
through unpredictable delays and transfer failures. This routing
also plays an important role in the environment’s general determin-
ism, as it permits control over the order of message reciept from



one run to the next.
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In our simulated experiments, our goal is to compare the behav-
ior of different algorithms in the same environment under the same
conditions. To correctly replicate running conditions at some later
time, the simulation should have its own notion of time, its own
notion of random and its own notion of events. Two simulation
techniques exist which we have exploited to achieve this behav-
ior: discrete time and events. Discrete time simulation segments
the time line into a number of slices. In this model, the simulator
begins a time slice by sending a pulse to all of the running compo-
nents, which allows them to run for a period of (real) CPU time.
In our model, a pulse does not have a predefined CPU time; each
agent decides independantly when to stop running, which allows
agent performance to remain independant of the hardware it runs
on. The second type of simulation is event based, which means
that the control is directed by events that force agents to react. The
MASS simulator combines these by using a discrete notion of time
but along with event based control. In this model, agents execute
within descrete time slices, but are also notified of activity (method
excution, message delivery, etc.) through event notification.

In the next section we will discuss discrete time simulationand
the benefits that arise from using it. We will then describe the need
for an event based simulation within a multi-agent environment.
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Because MASS utilizes a discrete notion of time, all agents running
in the environment must be synchronized with the simulator’s time.
To enable this synchronization, the simulator begins each time slice
by sending each agent a “pulse” message. This pulse tells theagent
it can resume local execution, so in a sense the agent functions by
transforming the pulse to some amount of real CPU time on its
local processor. This local activity can take an arbitrary amount
of real time, up to several minutes if the action involves complex
planning, but with respect to the simultaor, and in the perceptions of
other agents, it will take only one pulse. This technique hasseveral
advantages:

1. A series of actions will always require the same number of
pulses, and thus will always be performed in the same amount
of simulation time. The number of pulses is completely inde-
pendent of where the action takes place, so performance will
be independent of processor speed, available memory, etc...

2. Events and execution requests will always arrive at the same
time. Note that this technique does not garuntee the ordering
of these events within the time slice, which will be discussed
later in this section.

Using this technique, we are able to control and reproduce the
simulation to the granularity of the time pulse. Within the span
of a single pulse however, many events may occur, the ordering of
which can affect simulation results. Messages exchanged byagents
arrive at the simulator and are converted to events to facilitate con-
trol over how they are routed to their final destination. Justabout
everything coming from the agents, in fact, is converted to events;
in the next section we will discuss how this is implemented and the
advantages of using such a method.
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Eventswithin our simulation environment are defined as actions
which have a specific starting time and duration, and may be in-
crementally realized and inspected as one may do in the real world

(with respect to our deterministic time line, of course). Note that
this is different from the notion of event as it is traditionally known
in the simulation community, and is separate from the notionof
the “event streams” which are used internally to the agents in our
environment.

All of the message traffic in the simulation environment is routed
through the simulator, where it is instantiated as a messageevent.
Similarly, execution results, resource modifiers or scripted actions
are also represented as events within the simulation controller. We
attempt to represent all activities as events both for consistancy rea-
sons and because of the ease with which such a representationcan
be monitored and controlled.

The most important classes of events in the simulator are the
executionandmessageevents. Anexecutionevent is created each
time an agent uses the simulator to model a method’s execution.
As with all events, execution events will define the method’sstart
time, typically immediately, and duration, which depends on the
method’s probabilistic distribution as specified in the objective TÆMS
task structure (see section 2). The execution event will also calcu-
late the other qualities associated with a method’s execution, such
as its cost, quality and resource usage. After being created, the exe-
cution event is inserted into the simulator’s time based event queue,
where it will be represented in each of the time slots during which
it exists. At the point of insertion, the simulator has computed,
but not assigned, the expected final quality, cost, durationand re-
source usage for the method’s execution. These characteristics will
be accrued (or reduced) incrementally as the action is performed, as
long as no other events perturbate the system. Such perturbations
can occur during the execution when forces outside of the method
affect its outcome, such as a limiting resource or interaction with
another execution method. For example, if during this method’s
execution, another executing method overloads a resource required
by the first execution, the performance of the first will be be de-
graded. The simulator models this interaction by creating alimiting
event, which can change one or more of the performance vectors of
the execution (cost, quality, duration) as needed. The exact repre-
sentation of this change is also defined in the simulator’s objective
TÆMS structure.

The other important class of event is the message event, which
is used to model the network traffic which occurs between agents.
Instead of communicating directly between themselves, when a
message needs to be sent from one agent to another (or to the
group), it is routed through the simulator. The event’s lifetime in
the simulation event queue represents the travel time the message
would use if it were sent directly, so by controlling the duration of
the event it is possible to model different network conditions. More
interesting network behavior can be modeled by corrupting or drop-
ping the contents of the message event. Like execution events, the
message event may also may be influenced by other events in the
system, so a large number of co-occuring message events might
cause one another to be delayed or lost.

To prevent non-deterministic behavior and race conditionsin
our simulation environment, we utilize a kind of “controlled ran-
domness” to order the realization of events within a given time
pulse. When all of the agents have completed their pulse activ-
ity (e.g. they have sucessfully acknowledged the pulse message),
the simulator can work with the accumulated events for that time
slot. The simulator begins this process by generating a a unique
number or hash key for each event in the time slot. It uses these
keys to sort the events into an ordered list. It then deterministically
shuffles this list before working through it, realizing eachevent in
turn. This shuffling technique, coupled with control over the ran-
dom function’s initial seed, forces the events to be processed in the
same order during subsequent runs without unfairly weighting a
certain class of events (as would take place if we simply processed
the sorted list). This makes our simulation completely determinis-



tic, without sacrificing the unpredictable nature a real world envi-
ronment would have.
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The first results presented here only reflect one type of coordination
and is not yet a comparaison of different negociation protocols. The
primary purpose of the simulator is to allow successive tests using
the same working conditions, which enables us to use the finalre-
sults as a reasonable basis for the comparison of competing adap-
tive techniques. In this section, we will examine performance on
an agent by agent basis, and compose an aggregate observation, us-
ing a working definition of optimal agent performance: the optimal
performance of any agent is the performance achieved when itis
run alone in the environment with ample resources with whichto
perform its tasks. Performance in this case denotes the quality the
agent achieves and the constraints it meets, e.g., preference con-
straints or deadline constraints.

In the three experiments presented in this section, the IHome is
populated by with seven agents, including the DishWasher, Robot,
WaterHeater, CoffeeMaker, Heater, AirConditioner, and the Other-
Appliances agent (that simulates the presence of multiple other
agents in the environment). The communications patterns ineach
experiment are monitored, as is resource consumption and the be-
haviors of the agents. Communications statistics, such as the num-
ber of messages produced, provide a measure of the efficacy of
coordination. The environment is held constant in each of the runs
(in terms of communication bandwidth, execution performance of
actions, etc.) while the availability of resources is varied.

In all three experiments, the preferred temperature setting is 76
degrees in all rooms and temperature change in the house is ef-
fected by the temperature-related agents, but also according to a
curve that describes the heat exchange between the inside ofthe
house and the outside environment and between the rooms of the
house. The temperature related agents (AirConditioner/Heater) are
reactive in nature, they respond to situations in which the temper-
ature is not at its preferred point. In these experiments, the initial
temperature is set at some point other than the preferred temper-
ature and it is the task of the temperature control agents to bring
it back into line. Like the temperature control agents, the Water-
Heater agent works to keep the hot water level between a defined
minimum and maximum capacities, and the tank is assigned an ini-
tial quantity of hot water. Using the MASS simulator, we are sure
that all thoses experiences are done in the same controllable run
and there is no unexplicit randomness. Therefore it’s possible to
compare all thoses runs together.

The objective in the experiments is for the agents to carry out
their assigned tasks, e.g., make coffee or wash the dishes inthe
alloted time. For reactive agents, like the A/C agent, the objec-
tive is to satisfy the expressed preference constraint, e.g., keep the
temperature at 76 degrees, keep the water tank above the defined
minimum, and so forth.

In the first experiment, the resources are configured as follows:
15Kw of electricity is available, 140 gallons of hot water initially
reside in the water tank and the tank maximum is 200 gallons, the
maximum allowable noise level at any time is 120 Db, and the ini-
tial temperatures in the different rooms are as follows: bedroom
50F, bathroom 90F, kitchen 90F, living room 50F.

The results for the first run are shown in Figure 4. In this ex-
periment the agents that require multiple resources to carry out
their tasks, and who have longer sequential chains of actions that
must take place, like the CoffeeMaker and the DishWasher, perform
poorly when compared to their independent performance. Because
these agents require multiple resources at the same moment their
performance requirements are higher and in this situation,where
resources are constrained, they are generally unable to obtain the

necessary resources. In both of the experiments the deadline for
task completion is fairly tight in order to make the coordination
problem non-trivial.

In contrast to the long-planning agents the more reactive agents
(WaterHeater, Heater, AirConditioner) fair better. The only dif-
ference between their individual runs and the group run is that in
the latter case they take longer to achieve the desired results. The
Heater and the AirConditioner take until time 77 to reach their tem-
perature goal of 76F, in contrast to the 41 clicks required inthe
individual case.

The behavior of the CoffeeMaker and DishWasher agents indi-
cate a problem with our simple protocol. Though we have prior-
ity measures, higher priorities are not assigned to agents that are
currently executing their plans. Thus tasks like making coffee are
always superseded and interrupted by other higher prioritytasks.
Additionally, the priorities of tasks are not elevated as they are in-
terrupted, thus they do not become less interruptible over time (a
feature often found in priority based scheduling algorithms) or as
they get closer to their deadlines. The problem also stems from a
flawed implementation of personal preference – agent priorities in
these experiments do not always reflect the client’s personal pref-
erences and thus the notion of a global utility function (even a local
view of one) is somewhat muddied. This issue is currently being
addressed.

The second experiment is identical to the first, with the excep-
tion that the coffee making tasks are assigned the highest overall
priority in the system, enabling the CoffeeMaker to obtain the de-
sired resources to carry out its tasks. However, its resource con-
sumption pushed back temperature regulation tasks resulting in the
A/C and Heater agents taking until time 90 (rather than 77) toreach
their target temperatures.

In the third experiment, Figure 5, the resources are configured
similarly except that the maximum capacity of the water tankis
reduced to 60 gallons and it is empty at the start of the experiment.
This decrease forces all agents using hot water to negotiateover the
resource. In this case, the DishWasher is able to perform only one
task out of its four assigned tasks. The 84 messages sent by the
agent is testimony to its attempts to obtain the resources sothat it
could perform its other tasks (it was refused and canceled bythe
WaterHeater).

Interestingly given the tighter hot water constraints, theWater-
Heater agent also performed fewer tasks than it did in the previous
experiments. This is because the DishWasher was unable to exe-
cute, and the maximum capacity of the tank was reduced, thus the
demand for water from a volume perspective also decreased. It is
also interesting to note that the WaterHeater sent a large number of
nullification or cancellation messages to all of the consumer agents
because it was unable to fulfill all the requests it received.

In this run the AirConditioner and Heater agents also failed
to reach their target temperatures. This is the result of theDish-
Washer’s thrashing behavior. It would request and reserve electric-
ity and thus interfere with the temperature control agents.When the
DishWasher was unable to obtain the desired amount of hot water, it
would release the electricity reservation but the thrashing behavior
confused the (slow to respond to released resources) temperature
control agents, resulting in diminished performance on their part.

In addition to the three coordination experiments, we also per-
formed an experiment in which the appliances are not intelligent
(normal appliances) and do not coordinate over resources. In this
case, appliances are given a set of tasks to perform and they simply
attempt to carry out the tasks. Resources are configured as with the
first coordination experiment, i.e., 15Kw of electricity isavailable,
140 gallons of hot water initially reside in the water tank and the
tank maximum is 200 gallons, and the maximum allowable noise
level at any time is 120 Db. With no coordination, 9 minutes after
the start of the simulation the electricity resource is overwhelmed



Agent # of Tasks Final Quality Resources Mes. Conflict Tasks Dropped
Alone IHome Alone IHome Alone IHome Alone IHome Alone IHome

E R N

Dishwasher 4 2 135 76 10 10 0 21 1 5 0 2
Robot 5 5 10 10 0 0 0 0 0 0 0 0

WaterHeater 83 10 26 3 0 0 0
OtherAppliances 37 33 10 10 42 36 0 8 15 2 0 4

CoffeeMaker 4 0 80 0 3 3 0 1 11 24 0 4
4 4 125 125 3 3 0 0 0
4 4 125 125 3 3 0 0 0

Heater 8(41) 7 (77) 40 40 8 7 4 8 3 0 0 1
AirConditioner 8 (41) 12 (77) 35 20 16 24 4 12 4 0 0 0

Figure 4: Experiment 1:Alone indicates the performance when the agent executed alone in the environment with sufficient resources. The
IHomecolumn indicates performance when the agents are executed in a group and resources are shared.E/R/N indicates conflicts emitted,
received, or nullified.

Agent # of Tasks Final Quality Resources Mes. Conflict Tasks Dropped
Alone IHome Alone IHome Alone IHome Alone IHome Alone IHome

E R N

DishWasher 4 1 135 40 10 84 0 16 2 11 0 3
Robot 5 5 10 10 0 0 0 0 0 0 0 0

WaterHeater 50 10 43 0 31 0 0
OtherAppliances 37 28 10 10 42 37 0 1 13 9 0 9

CoffeeMaker 4 0 80 0 3 3 0 3 4 21 0 4
4 4 125 125 3 3 0 0 0
4 4 125 125 3 3 0 0 0

Heater 8(41) 9 (*) 40 40 8 9 4 6 2 0 0 0
AirConditioner 8 (41) 10 (*) 35 20 8 22 4 1 6 0 0 0

Figure 5: Experiment 3:Alone indicates the performance when the agent executed alone in the environment with sufficient resources. The
IHomecolumn indicates performance when the agents are executed in a group and resources are shared.E/R/N indicates conflicts emitted,
received, or nullified.

by the DishWasher’s pre-rinse cycle and the CoffeeMaker’s brew-
ing in conjunction with the other appliances being active. The to-
tal demand was 19Kw. The severity of this event is dependent on
one’s model of what should happen in the event of an overload,e.g.,
circuit breaker cutting out and all actions coming to a halt until a
human resets the breaker. If we ignore the electricity overload and
continue, the appliances later exceed the noise threshold of 120Db
by 10db. Other examples abound. Obviously, this experimentis
based on the assumption that all tasks would be carried out atthe
same time without intelligent controllers, when in fact, a human
would be handling the sequencing. It is intended only to illustrate
the role of coordination in this context.

� ��
� ����
� �
� ���� ����

We have designed and implemented a simulated intelligent home
environment and populated it with intelligent appliance agents. The
agents interact and coordinate using the simple protocol over shared
resources, contract over task-allocation interactions, and use a dif-
ferent coordination protocol for task overlap conditions.While we
are pleased with this work, there is much room for improvement
and expansion.

IHome environment scenarios and situations requiring morecom-
plex negotiation between the agents. Temporal chains of multi-
resource tasks is one example of this – particularly if member tasks
are assigned to different agents. This leads to an interrelated multi-
agent task and resource coordination problem. The introduction of
multiple robots in the environment will motivate this area of ex-
ploration. We will also explore survivability, adaptability, and re-
sponsiveness issues in this context. We feel that diagnosisis a key
part of adaptability, which is needed to make MAS more robustin
changing or adversarial environments. Our goal is to use diagnosis
[7] and adaptability to allow the agent to dynamically work towards

the appropriate tradeoff of robustness versus efficiency. Ongoing
research is looking at diagnosis of coordination activities, and how
diagnostic and evidential information can be modeled in a domain
independent manner.

As mentioned, other areas of improvement include refining our
evaluation metrics so that we can more easily evaluate experimental
data and fully incorporating personal preference profiles into the
agents’ priority mechanisms.

But we have alsa tested our MAS Simulator and its associated
framework to built the Ihome project very quickly. The MAS Sim-
ulator will allow us to really compare all the protocols we are going
to implement.

In short, the intelligent home is proving to be an interesting en-
vironment for experimentation with MAS technologies. The mul-
tiple different types of resource and task interactions present in this
application domain provide a rich landscape for work in coordina-
tion and local agent control.
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