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Abstract

This thesis introduces, specifies and evaluates a novel key establishment mechanism to enable
seamless authenticated handovers in IP networks called Inter-Domain Key Exchange Protocol
(IDKE). The task of the IDKE protocol is to quickly re-establish trust and a shared session-key
between the mobile node and the access network. This is implemented after a mobile node’s
handover by forwarding the session-key from the previous to the new access network. IDKE’s
major strength is in providing a secured key forwarding even when the two domains initially
do not trust each other. The purpose of the transferred key is to secure the access link, thus
providing confidentiality, integrity and access control. Generally such keys are obtained from
the mobile node’s home network, whereas the IDKE protocol forwards the key locally in
between access networks via an exclusively established and secured communication channel.
This work specifies security properties for authentication and secrecy and verifies the IDKE
protocol by model checking. The protocol is modeled by Communication Sequential Processes
(CSP); formal security verification is performed by Failure Divergence Refinement (FDR).
Furthermore, the function for handling concurrent protocol runs is added to the IDKE
protocol. The extended specification is simulated and verified by utilizing the Specification
and Description Language (SDL) in order to analyze the robustness and the scalability of the
protocol. Finally, the performance is compared to other approaches such as the Global System
for Mobile Communications (GSM) and the Wireless Shared Key Exchange Protocol
(W-SKE) using the discrete event simulator OPNET Modeler.
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Chapter 1

Introduction

Technical progress in computer engineering and the evolution in computer science
have improved the capabilities of electronic devices in computation power and
storage. The Internet has also been changed into a publicly accessible network
providing a vast variety of services driven by commercial interests. Hence, the
consumers’ viewpoint has changed to the desire for permanent connectivity, ultra-
high bandwidth and various services on demand. Service development will need to
be based on the paradigm that every user is potentially mobile. It is necessary for the
architecture to be able to carry all types of traffic, some requiring stringent Quality of
Service (QoS) [APF01], others demading only best effort service. Multimedia and
Voice over IP (VoIP) [HCWO01, KKS01, RS98, RS99] involve special requirements on
service-parameters such as delay and delay jitter. Such applications may need to
reserve bandwidth and set up necessary service guarantees at bottlenecks.

1.7 Problem Statement

In order to protect their commercial interests, such as charging users, service
providers require an Authentication, Authorization and Accounting (AAA) [RHK+02]
infrastructure. They enforce AAA mechanisms to be processed before guaranteeing
services or even providing any network access at all. Thus, specific cryptographic
protocols for authentication and session-key establishment are utilized. These
protocols indirectly control access and guarantee integrity and confidentiality of
data. Whenever a user is not known to the network, this procedure involves further
parties acting as guarantors and subsequently requires a significant amount of time.
As this procedure is always performed prior to actually releasing the requested
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resources it becomes problematic when switching networks, because handovers
again involve authentication procedures. Due to AAA mechanisms, the delay caused
by them creates problems when running real-time applications. Hence, it is difficult
to handle the competing desires of mobility and security as a combined task.

1.2 Related Work

The Internet Engineering Task Force (IETF) has made considerable efforts in separately
facing the issues of security and mobility. Security for IP networks is provided by a
security protocol suite referred to as Internet Protocol Security (IPsec). IPsec provides
encryption and authentication of data while a sub-protocol called Internet Key
Exchange (IKE) [PKO00] protocol provides session-key establishment. Mobile IP [Pre(2,
JPA0O4] was also created as an IETF approach to provide IP mobility. Furthermore,
Mobile IP was enhanced with the aim of reducing handover latency. The IETF
SeaMoby working group for instance, suggested a protocol titled Context Transfer
Protocol (CxTP) [LNP+05] which forwards parameters between the access networks
rather than obtaining them from the home network. However, CxTP assumes the
case that a secure channel has already been established. This case is referred to as
intra-domain handover, whereas an inter-domain handover describes the case in
which both networks do not have any common security relationship. These IETF
approaches still lack a solution to the problem of adequately combining performance
driven enhancements with security, since they either assume security has already
been provided or provide security without considering mobility as a factor. All
approaches of the research community such as the context transfer support for IP-
based mobility management [Geo04] are aware of the inter-domain handover
problematic. However, these approaches do not give any concrete solution as to how
to establish the required security association prior to performing CxTP. No formal
security evaluation and robustness verification of concurrent protocols runs have
been performed for a CxTP-based key forwarding approach.

Other approaches such as the GSM [Hei98] and the W-SKE [SBG+03] follow different
principals. Both require the home network to be involved in the session-key
establishment procedure. Under certain circumstances these non-localized
mechanisms may cause huge delays and thus provide lower performance than
localized mechanisms.
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1.3 Solution Description

The focus of this thesis is on introducing a novel mechanism especially designed for
the problematic case of providing authentication and session-key re-establishment
after inter-domain handovers. The main concept is based on building a trust
relationship between the involved domains by authenticating both the Mobile Node
(MN) and the new access network for the previous access network. Consequently, a
secure connection is established between the two domains in order to transfer the
session-key locally. This novel protocol is called the Inter-Domain Key Exchange
(IDKE) protocol [SFN+04, STHO5]. The IDKE protocol involves three entities: the MN,
a previous access router from the domain visited before and a new access router
belonging to the current domain. This thesis deals with introducing and formally
describing the IDKE protocol, specifying all the involved mechanisms and tasks at
each entity, as well as explaining all the exchanged messages in detail. In particular,
work has been carried out in the following problem areas:

1. Security verification of the IDKE protocol against its properties. Therefore, this
thesis gives a formal definition of the protocol, specifies security goals and
analyzes the specification by utilizing formal methods. Security properties
such as the secrecy of key and agreements for authentication are verified by
model checking based on the Communicating Sequential Processes (CSP) algebra
[RSO1].

2. Robustness tests in order to verify the capability of handling concurrent
protocol runs caused by fast moving MNs. The IDKE protocol is specified by
utilizing the Specification and Description Language (SDL) [ITU92, ITU99]. This
specification is then used to simulate specific cases caused by concurrent
requests- and cancel-messages.

3. Performance simulation of the IDKE protocol in comparison with other
approaches. The OPNET Modeler [Opn05], a discrete event simulator, is used
to estimate the overall protocol delay of the IDKE protocol, the key-
establishment-mechanism of the Global System for Mobile Communications
(GSM) [Hei98] and the Wireless Shared Key Exchange protocol (W-SKE) [SBG+03].
The major task of the performance analysis is to figure out under which
conditions the IDKE protocol is faster or slower than the other approaches.

The combination of formal security verification, robustness testing and performance
evaluation examines the protocol from three different viewpoints. Therefore, the
requirement to provide security for mobile devices in a fast manner is expected to be
treated appropriately. Specific behavior involved in this localized solution is
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examined by robustness evaluations in order to finally obtain a suitable session-key
establishment protocol for mobile devices.

1.4 The Structure of the Thesis

This thesis consists of seven chapters as illustrated in Figure 1. The content of all
following individual chapters is briefly introduced below:

Chapter 2 introduces the basic concepts of mobility, cryptography and cryptographic
protocols. Related IETF approaches such as MobileIP and their performance
enhancements in providing seamless connectivity are also given.

Chapter 3 covers the core of the study and thus deals with the IDKE protocol, as well
as including the security properties and formally specifying the message flow. The
basic concept of the protocol is presented and each message is described in detail.
Protocol assumptions and protocol goals are defined as pre- and post-conditions
forming the basis, against which the protocol is verified.

Security, robustness and performance evaluations are shown independently of each
other as denoted by the three pillars in Figure 1:

Chapter 4, the first pillar deals with security and thus introduces security-analyzing
approaches and formal proof methods. The focus here is on model checking
provided by CSP [Sch99], FDR [FDR99] and Casper [Low97]. IDKE is formally
described in the Casper Notation and the analytical results are also presented here. A
CSP specification of the IDKE protocol is given in Appendix C.

Chapter 5, the second pillar, discusses robustness and focuses on concurrent protocol
runs and unwanted states of the participating nodes. SDL is introduced as a formal
method for validating protocol actions. The IDKE protocol is described as a Message
Sequence Chart (MSC) [ITU96] and has been verified by simulation; the results of
which are also given.

Chapter 6 forms the final pillar and concentrates on protocol performance. As the
GSM and the W-SKE protocols are the approaches, to which the performance of the
IDKE protocol is compared, they have been included in this chapter. The
performance has been evaluated by means of the OPNET Modeler that has been
applied as a simulation environment. The simulation results are also presented here.

All three pillars include a section for discussion where the results of security,
robustness and performance are examined separately.

Chapter 7 summarizes the entire study; a conclusion is provided as well as giving an
outlook on future work.
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Chapter 2

Fundamentals & Related Work

This Chapter introduces the basic concepts of mobility, cryptography and security protocols.
A reference scenario is presented which deals with the mobility in IP networks. The challenges
of providing seamless connectivity while roaming are discussed. Seamless connectivity in the
Internet is facing a variety of obstacles especially when moving from one administrative
domain to another, which is referred to as inter-domain handover. IETF approaches are
described for IP mobility, MobilelP, as well as related performance enhancements in order to
provide seamless connectivity. Furthermore, this chapter gives an overview on the current
state of the art in cryptography, security properties, symmetric and asymmetric ciphers,
important algorithms, digital signatures, keyed hashes and cryptographic protocols. Abstract
protocols are discussed as well as real IETF proposals for securing Internet communication.
The Internet security protocol suite (IPsec) together with its related key distribution
mechanisms, and the Internet Key Exchange protocol (IKE) are also introduced in this
chapter.

2.1 The Mobile Internet

Initially, the Internet was created as a robust, non-centralized network. It was not the
purpose of the Internet to provide mobility and security for wireless connected
nodes. Nowadays, wireless Internet-participants wish to stay seamlessly connected
to the network even when moving across subdomains. This desire leads to
enhancements that involve the provision of specific solutions for IP mobility. This is
sometimes referred to as wireless IP. IP mobility in combination with security-
guarantees enables cost-effective, high-quality IP-based wireless multimedia services,
including that of Voice over IP (VoIP) [HCWO01, KKS01, RS98, RS99], for a huge
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Internet user community. The same trend can also be seen in multiplexing voice and
data over the same packed switched network in the mobile phone world. The
evolution from the System for Mobile Communications (GSM) [LHY99] cellular phones
that belong to the second generation (2G) via Universal Mobile Telecommunications
Systems (UMTS) [BAO2] networks which are referred to as the third generation (3G)
[Kor01] is assumed to end up with an all IP based forth generation (4G) [BriO1].
Mobility in 4G enables users to roam between different access-technologies such as
satellite, UMTS and Wireless Local Area Networks (WLANs) [Rec04]. Mobility will be
possible between the different service providers and sub-networks. This is also likely
even among the fixed networks, hotspots and ad hoc networks. Mobility is achieved
on the IP layer by extending the capability of the IP protocol, independently of the
access technology.

2.1.1 Quality of Service and Resource Management

The Internet was originally designed as a connectionless best-effort network without
any Quality of Service (QoS) [APF(01] guarantees and with the vision of keeping the
environment and protocols simple, robust, scalable and self-configuring. Real time
and multimedia applications demand users to obtain adequate QoS guarantees. The
aim of QoS support is to enable services to prioritize the transport of certain IP
packets at the expense of packets carrying best effort traffic. Thus, stringent
requirements have been put in place for premium data: data delay, delay jitter and
packet loss.

Integrated Services (IntServ) [ArmO00, BCS94], Differentiated Services (DiffServ) [BBC+98]
and Multiprotocol Label Switching (MPLS) [RVCO01] are current QoS techniques. These
approaches have problems to provide end-to-end QoS in dynamic, heterogeneous IP
networks with MNs as they are not scalable enough. In particular, re-negotiation of
QoS settings at new access networks requires fast setting re-establishment
mechanisms, although wireless links to the access network are generally
communication bottlenecks. These are due to the movement the user wishes to set up
in order to obtain QoS guarantees between the mobile device and the core network
gateway.

Consequently, the result of QoS guarantees is: the users’ willingness to pay and in
the service providers’ ability to charge for services. This requires security
mechanisms to enable both users and network providers to authenticate each other.
Hence, security mechanisms form the basis for the authorization of the network
access. Moreover, the establishment of accounting methods is required in order to
charge for such services. The conjunction of all these mechanisms is commonly
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referred to as Authentication, Authorization and Accounting (AAA) infrastructure
[RHK+02].

Furthermore, combining seamless mobility and the establishment of QoS settings
together with security properties involves a vast variety of protocols [FHS+04]. Some
protocols aim to support mobility, the encryption and/or authentication of data,
transport credentials, the establishment of security associations and to configure
transfer modes by sending signaling messages. Most of such protocols have been
proposed by the Internet Engineering Task Force (IETF).

2.1.2 The Handover Reference Scenario

The reference scenario for IP mobility shown in Figure 2 shows all of the protocol
actors and their connections as given in a wireless IP based environment [Dix02]. The
roles are as follows:

Mobile Node (MN): The MN is commonly a battery powered low CPU power device
that is moving (roaming) between the different access points. A user usually aims to
profit from some of the services offered by network service providers. A session is
normally established between the user and another party. This might for instance be
a voice call.

Correspondent Node (CN): The CN is the communication partner of the MN. Here it
is presented by some node which is somehow connected to the Internet. The CN can
of course also be a mobile device.

Home Network: The Home Network of an MN recognizes the MN and trusts it.
Home Networks might be a company’s network or a service provider’s network. Pre-
shared keys exist between the MN and its Home Network.

Home Agent (HA): The HA is an actual instance located at the Home Network and
serves as the contact host when the MN is not connected to the home network. The
HA is the initial contact when trying to reach the MN and thus it should always be
aware of the current location of the MN.

Access Point (AP) & Access Router (AR): The reference scenario shows two access
networks (Domain A and Domain B). Three APs and two ARs (AR-A1 and AR-A2) are
inhabiting Domain A; AR-B1 is the AR of Domain B. APs are limited in order to
provide link layer connectivity, whereas the ARs do the actual routing of the IP
traffic based on the IP addresses. Thus, APs are transparent for the IP traffic.

Authentication Authorization and Accounting Server (AAA): The Home AAA server
(HAAA) stores all the MN’s credentials and provides the authentication information
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when the MN wants to access services in a foreign network. The HA utilizes the
HAAA server to authenticate the MN. Each domain has a local AAA server which is
also referred to as foreign AAA server (FAAA). The border of a domain is defined by
the FAAA in which the AR! is connected with.

Correspondent Node Home Agent Home AAA server

CN HA e HAAA
> >
Q
=P
Internet _( |
¢ & 5 Home Network
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W et

——

kwf,fj

Foreign AAA server Foreign AAA server
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AR-A1 AR-A2 AR-B1
(¢
@) (N .
Access Points NccessIBoint Accef\sl»: Point
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Figure 2: Mobility Reference Scenario

The active component in this scenario is the MN which is moving and changing the
point of connectivity. This process of reconnecting to a new point of attachment is
referred to as handover or handoff. A handover can occur on the link layer (layer 2).
This means that an MN switches between two APs which are connected to the same
AR. This so-called layer 2 handover has no influence on the network layer (layer 3)

11t is assumed that the ARs are only connected to one AAA server. It is further assumed that FAAA
servers do not share any trust relationship or security association.
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which is on top of the link layer. An MN, for example, moves within a wireless LAN
environment (e.g. 802.11a, 802.11b, etc. [Rec04]) and switches from one WLAN access
point to another. The IP address of the device does not need to change and so all IP
packages can be routed as previously.The focus here is on the layer 3 handover
where an MN moves from one AR to another. These IP layer handovers cause a
change in the MN’s IP address and therefore have an influence on the routing
process. The link layer is also influenced by the layer 3 mobility and normally a layer
3 handover also implies a re-registration of the layer 2. Layer 2 advertisements are
important for triggering the initiation of the handover. Handovers are either referred
to as MN-initiated or network-initiated, depending on the entity that made the
decision to perform the handover. Handovers are especially challenging for real time
traffic as it is problematic to achieve seamless connectivity. Seamless means the
combining of both a fast and a smooth handover.

Fast handovers aim to reduce handover latency and thus the delay caused by the re-
establishing of the connection to the new AR. The MN is able to use the new link to
send and receive packages again after it has been re-established.

Smooth handovers aim to reduce the amount of package loss (at best to zero) while
performing a handover. Packets that arrive at the old point of attachment are usually
dropped after the MN is disconnected.

Handovers between two ARs vary in the effort to fulfill the desired security and
seamlessness requirements. As illustrated in the reference scenario in Figure 2, the
MN performs a local handover while switching between AR-1 and AR-2 since they
are both connected to the same network. A so-called intra-domain handover takes
place whenever both ARs belong to the same administrative domain and therefore it
is not necessary to change the access technology. It is much easier for most IP
mobility improvements to be able to deal with these types of handovers. Security is
also less complicated to achieve in the intra-domain case, since both ARs are
managed by the same administration entity. Moreover, credentials are accordingly
requested from the same server.

2.2 Mobile IP

Mobile IP (MIP) is an IETF proposal for providing macro-mobility in IP networks. In
contrast to IPv4 where the Mobile IP version 4 (MIPv4) [Per02] is separated from the
IP specification, with IPv6 the Mobile IP version 6 (MIPv6) [JPA(04] is an integral part
of the specification. The basic concept of MIPv4 and MIPv6 is described below.

11
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2.2.1 Mobile IP Overview

The basic concept of Mobile IP is to have two IP addresses for each MN when located
far from its home domain. This is due to the fact that the IP addresses have two
different purposes. One is to uniquely identify the host, while the second is to enable
routing. The former is a fixed so called home address that topologically belongs to
the MN’s home network, whereas the latter is required once the MN attaches itself to
a foreign network. This so called Care-of Address (CoA) is used for routing purposes
because classless inter-domain routing is based on agreeable subnet prefixes. Hence,
the CoA changes whenever the MN moves to a new foreign domain. The CoA can
either be obtained by stateful address auto configuration using the Dynamic Host
Configuration Protocol (DHCP) [Dro02] or alternatively by stateless address auto
configuration using the router advertisements. Routers typically broadcast
advertisements at regular intervals. In cases when an MN needs to obtain a CoA and
does not wish to wait for the periodic advertisement, the MN can broadcast or
multicast a solicitation that will be answered by any router that receives it.
Depending on the protocol used, the CoA either belongs to a so called Foreign Agent
(FA) or to the MN itself. In the case of IPv4, the FA forwards packets to the MN
directly on the link layer. However, with IPv6 the MN can have its own CoA and
thus is able to receive packets directly.

A Correspondent Node (CN?) addresses packets to the MN’s home address in order to
begin communicating with it, as illustrated by (1) in Figure 3. When the MN is not
connected to its home domain, packets are forwarded to a FA/CoA. The forwarding
instance is a dedicated node, the HA, located at the MN’s home domain. The HA as
the tunnel entry encapsulates the entire IP packets and sends them to the FA/CoA
(the tunnel exit) which in turn decapsulates the original packets. IP is commonly
used either unencrypted/unauthenticated (IP-in-IP tunnel) or with encryption and/or
authentication using IPsec (2.5.2). The tunnel between HA and FA is illustrated by (2)
and the forwarding to the MN’s layer 2 address is shown by (3) in Figure 3.
Obviously, the HA always needs to be aware of the MN’s CoA and hence the MN
needs to register the new CoA in the home network. The relationship between the
MN’s home address and the CoA is called binding. Whenever obtaining a new CoA,
the MN needs to send a binding update (e.g. an UDP Datagram). The MN
registration request should be authenticated and the HA should approve the request
before adding the CoA to its routing table. The association between the home
address and the CoA is maintained until the registration lifetime expires. Packages

2 The CN could also be a mobile node. For simplification, the CN is always represented by a fixed
node.

12
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are directly routed on their path back to the CN as illustrated by (4) in Figure 3. The
routing between CN and MN is referred to as triangular routing due to its form.

Correspondent Node Home Agent
CN HA

Home network
Internet

IP-in-IP
or
Ipsec Tunnel

Foreign network

Mobile Node
MN

Figure 3: Mobile IP Routing

2.2.2 Mobile IP Extensions & Optimizations

Although Mobile IP provides host mobility, it is however facing numerous problems:

e Mobile IP uses topological non-correct IP addresses, that cause problems at
tirewalls due to ingress filtering;

e triangular routing creates performance problems;
e handovers may require overhands due to complicated binding updates and
e security for data and signaling needs to be provided.

Thus, a number of extensions and optimizations have been suggested in order to
solve one or more of Mobile IP’s shortcomings.

The extensions described herein endeavor to improve the performance in terms of
reducing the handover latency. Some of these strongly require trust and security

13
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between access points when performing handovers. Hence, it is assumed that all of
the necessary security requirements have been fulfilled. Internet security is
considered in Section 2.5 .

2.2.2.1 Route Optimization

The task of route optimization is to avoid asymmetric triangular routing. One might
imagine that the CN is not as distant from the MN as the HA is. This circumstance
may result in an enormous extra latency. In the route optimized approach, the CA is
informed about the MN’s CoA and thus can send the packages directly to the MN
[Sch04].

2.2.2.2 Reverse Tunneling

In contrast to route optimization, reverse tunneling sends and receives all traffic via
the HA. The HA receives traffic from the MN and forwards it to the CN. The
advantage of this approach is that this reverse tunnel prevents the problem of
sending IP packages with incorrect sender IP addresses. In the normal Mobile IP
approach, the MN uses its home address as the sender’s ID. The problem here is the
so called ingress filter which drops packages with incorrect sender IDs due to the
Denial-of-Service (DoS) prevention.

2.2.2.3 Context Transfer

The Context Transfer Protocol (CxTP) denoted by RFC4067 [LNP+05] aims to enhance
IP handover performance. When an MN moves to a new access network, it needs to
continue certain transport-related services or services that have already been
established at the previous subnet. Such services are called context transfer candidate
services. Examples of these are states which are used in header compression, QoS
reservations, AAA profile, IPsec, or firewall configuration [CB94]. Re-establishing
these services at the new access network requires a considerable amount of time for
the protocol exchanges. As a result, time-sensitive real-time traffic suffers.
Alternatively, context transfer data can be forwarded, for example, from the previous
AR (pAR) to the new AR (nAR) so that the services can be re-established quickly. It is
one means of enabling the seamless IP handover operation of application streams
and could possibly reduce the susceptibility to errors. Furthermore, service re-
initiation to and from the MN can be avoided, thereby maintaining the wireless
bandwidth efficiency. CxTP is assumed to be typically used for intra-domain
handovers since it requires trust relationships between the ARs.

14
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2.2.2.4 Cellular IP

The aim of cellular IP [CamO00] is to enhance the handover performance by providing
so called micro mobility for a small compartment. Within this compartment, the MN
is not involved in the authentication process. The geographical area is divided into
small compartments called cells. Each cell is covered by a number of ARs that wholly
communicate with a dedicated gateway router. The cellular IP network is connected
to the IP backbone by means of the gateway router. The gateway router sends out a
so called beacon to all of the ARs in order to keep the gateway advertised as a
potential routing destination. Regardless of the destination address, all ARs route the
packets directly to the gateway router.

In a cellular IP network this functions vice versa, where the MN uses the address of
the gateway node as its current CoA. The gateway router in charge of the MN and
the intermediate nodes in the cellular IP network, permanently need to be aware of
the MN’s current AR. Thus all nodes need to maintain two caches: a mandatory
routing cache and an optional paging cache. The routing cache contains a mapping
between the MN’s ID and its corresponding router. This is the router from which the
MN received the packet. The mapping is set when the MN sends a packet towards
the gateway router®. The paging cache is similar to the routing cache but has a longer
lifetime for the event where the MN cannot be found in the routing caches.
Whenever an MN moves to a new location, it needs to send a route update packet in
order to update cache entries in all intermediate nodes along the path from the AR to
the gateway router.

Cellular IP only provides micro mobility and therefore does not need to send any
binding update when the MN remains in the same cellular IP network. Whenever the
MN moves to a new cell, a renewed Mobile IP update has to be produced in order to
change the CoA binding in the home network. Messages are from now on routed
either to a new gateway router or to a non cellular IP aware AR acting as FA.
Therefore, cellular IP provides faster handover within the boundaries of the cellular
IP network.

2.2.2.5 Hawaii Model

The Hawaii model [Ram00] is similar to the cellular IP in it also provides micro
mobility. The architecture consists of cells where each cell contains a crossover router
and ARs. In contrast to the cellular IP where the MN uses the gateway router’s IP

3 The entry remains valid for a limited period. In order to maintain the validity of the routing table,
the MN needs to send data packets or update packets (ICMP route-update-packets).
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address as CoA, the MN acquires a dynamic IP address from the DHCP server of the
foreign network.

When the MN moves to a new domain within the same cell, it will register itself with
the new AR by sending an update to the crossover router. However, in the event that
the MN switches to a different cell, it needs to reproduce the normal Mobile IP
binding update.

2.2.2.6 Hierarchical Mobile IP

The third approach for providing micro mobility in geographic cells is Hierarchical
Mobile IP (HMIP). Unlike the cellular IP and the Hawaii model, the HMIP organizes
nodes within a tree type cell which is the reason why it is called hierarchical. The
gateway router is the root and ARs are the leaves. However, not all nodes in the
HMIP are involved in the update procedure, as is the case in the other micro mobility
approaches. In HMIP, the MN only informs the nodes up to the point where the
hierarchy is affected. A Mobility Anchor Point (MAP) is an optional management point
providing a regional CoA. The MAP can be located at any level of the hierarchy
between the AR and the gateway router.

2.3 Cryptography and Security

Seamless connectivity over non-centralized IP based networks raises questions on
security considerations. The U.S. National Information Systems Security Glossary
(INFOSEC) defines information systems security as:

“the protection of information systems against unauthorized access to or modification of
information, whether in storage, processing or transit and against the denial of service to
authorized users or the provision of service to unauthorized users, including those measures
necessary to detect, document and counter such threats”.

Protocols aiming to provide security in heterogenic environments need to fulfill
certain security properties based on mathematical functions. A deep understanding
of all the mathematical functions is not required in order to comprehend security
protocols. However, protocol designers should be aware that these functions provide
a toolset for cryptography [KPS02, SHO04].

The purpose of cryptography is to exchange information between two or more
parties in a way that no unauthorized third party can obtain the information. Thus, a
plain text message is transformed by a mathematical function which rearranges the
output into a random string. Although this random code can be viewed by all
persons, only those who are principals are able read the original message. The
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transformation of plaintext to cyphertext is called encryption and the complementary
operation of converting cyphertext to plaintext is called decryption.

2.3.7 Security Services & Properties

When designing a protocol for a given environment it is important to advisedly
define all properties and services that the protocol should provide. Based on
cryptographic algorithms, the tasks of security services are to provide at least one of
the following properties:

Data Integrity guarantees that the data received is the same as that which has been
sent or at least that any changes will be noticed by the receiver, even if the original
data can not be reconstructed. Integrity is especially required when data is sent over
insecure channels. Checksums such as the Cyclic Redundancy Check (CRC) and
attached hashes prevent bit failures caused by transmission errors, whereas keyed
hashes and Message Authentication Codes (MACs) [Tsu92] provide confidence that
messages have not been deliberately modified.

Data Confidentiality (Secrecy) ensures that information is only accessible for
authorized entities and that no information is provided to anybody else. Encryption
is used so that data can be extracted by only those who know the required key.
Encryption and decryption are the essential ingredients for cryptographic protocols
in order to ensure data confidentiality. Therefore, the common encrypting
mechanisms are explained in detail later in this chapter.

Data Origin Authentication guarantees that the origin actually matches the claimed
identifier. Data origin authentication can be considered as integrity over the binding
of data with the corresponding sender’s ID. Thus, data origin authentication implies
data integrity. Data origin authentication is fundamental for entity and user
authentication and is the basis of all session-key establishment mechanisms.
Therefore, data origin authentication is often used as an equivalent to integrity, even
if integrity does not necessarily imply user or entity authentication. Experts agree
[Gol01] that it does not make any sense to have data integrity without authentication.
It should be mentioned that in common security notation the sender and receiver IDs
are not part of the message. However, if integrity is assumed, this also applies to the
sender’s ID.

Entity- & User-Authentication provides proof as to whether the sender of a message
(entity or user) is actually the person he or she claims to be [Gol96]. No person other
than the sender is able to authenticate the information. There is no distinction made
in these papers between the user and entity authentication. Thus, Authentication
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refers to either user or entity authentication and involves data origin authentication
as being a fundamental part.

Authorization & Access Control are mechanisms for deciding whether a
communication party is allowed to access information or can make use of services
that are only provided for specific users. This is based on common user
authentication and enables the matching of the entity’s data with the preconfigured
properties stored at a specific database. However, authorization does not necessarily
imply authentication as anonymous paying systems such as electronic coins can be
based on authorization only.

Non-Repudiation is a service to bind the sender’s identity to the data in order to
ensure that users cannot deny having sent the data and is thus the domain of
digitally signing messages. This is especially important for legal or billing purposes.
Non-repudiation implies data integrity and data origin authentication, but does not
imply any confidentiality.

Anonymity/Privacy are properties that protect the user’s identity. An observer
should be unable to determine which event occurred when or from where it had
originated. Obviously, this definition depends on the standpoint of the formal
observer. A possible solution to ensure anonymity of messages is modeling a system
by renaming the origin of each message in a nondeterministic manner.

The above mentioned properties are the essential requirements for a secure
information exchange in modern networks. These requirements are fulfilled by
means of cryptographic algorithms which are presented in subsequent sections. The
algorithms introduced here are grouped as symmetric cryptography, asymmetric
cryptography, authentication mechanism and key exchange protocols.

2.3.2 Symmetric Cryptography

The basis of symmetric cryptography is a shared key K which is only known to the
communicating parties. The mathematical function is symmetric in the sense that the
same key is used for both encryption and decryption. The encryption algorithm F
and the decryption algorithm F” are assumed to be well known so that security only
depends on the knowledge of the key. The ciphermessage C is computed from the
plaintext P as C = F(P,K). The receiver of the message derives the Plaintext from C

as P=F'(C,K). The term {X}, expresses that X is encrypted by key K while X can be

any data either already encrypted or plaintext. Nested brackets refer to multiple
encryptions. For instance, a plaintext P encrypted by K1 and then further encrypted
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by K2 is expressed by {{P}m}m' Appendix A introduces the common security

protocol syntax as a context free grammar.

The main advantage of symmetric cryptography is that the algorithms F and F’ are
easy to implement. Furthermore, high speed is achieved in the process of encrypting
and decrypting messages. Symmetric cryptography can even be very efficiently
realized in hardware which makes it feasible for the use of low CPU power devices
such as set top boxes and mobile devices.

However, a serious disadvantage in using symmetric cryptography is due to the
requirement of having to have a shared key. This leads to the problem of the key
distribution in cases where the two parties have not already exchanged a pre-shared
key. A further complication is that each key is only valid for two communication
entities and therefore it increases the complexity of storing keys for all potential
communicating partners. One possible solution is to use a secure key establishment
mechanism prior to encryption. Meanwhile, this problem can be solved by
asymmetric cryptography that is based on a public/private key pair rather than on a
single private key.

Symmetric ciphers that are used nowadays can be distinguished between two
groups, namely block and stream ciphers. Block ciphers [Lai92] require the message
to be split into blocks of a fixed length. Encryption and decryption can easily be
implemented, especially as a software solution. The last part of the message after
splitting it is most likely to be smaller than the fixed length and therefore a so called
padding is attached to expand the part to the required size. This padding is a well
defined attachment of the message that is removed when the block is received.
Stream ciphers are usually developed as a hardware solution and they are usually
faster to compute than block ciphers. One possible solution for stream ciphers is to
create a pseudo random stream. This stream is generated by the dependence on a key
and a start value which is referred to as Initialization Vector (IV). This pseudo random
stream is used to perform an Exclusive OR (XOR) bit-by-bit. The concept is based on
the fact that an XOR operation with a real random stream is only used once. This is
called One Time Pad (OTP) and is provably secure if the random stream is not known
by anybody except the communicating parties. However, the security depends on the
quality of the pseudo random string and many of the systems available today are
considered to be insecure for this reason.

The Data Encryption Standard (DES) [NBS77] is an example of a 64-bit block cipher
which came to be a widely spread algorithm for symmetric cryptography. DES is
cryptographically strong since the best attack known is the brute force attack. This
means the only way to obtain the key is to attempt all possibilities. The key length is
56 bits plus 8 bits for parity checking. However, this cipher is not considered to be
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secure any more due to the key length of 56 bits being too short. Nevertheless, it was
sufficient 20 years ago when the DES was being developed.

Hence, several successors of the DES have been proposed in order to improve the
key length. The Advanced Encryption Standard (AES) [DRO02] for instance, was
introduced in 1997 and can operate with different block and key sizes. The block
sizes are usually128 bits and the possible key lengths are 128, 192 and 256 bits.
Table 1 gives an overview of some commonly used ciphers.

Category Type Example Algorithms Service

Symmetric Streamcipher RC2 [Riv98] Confidentiality
RC4 [Riv92b]
RC5 [Riv95, Riv95a]
SEAL [RC94]
WAKE [Whe%4]

Blockcipher DES [NGK77]
AESIDEA
SAFER [Mas94, Mas95]
Blowfish [Sch94, Sch94a]

MAC HMAC [KBC97] Data Integrity

Hash Function SHA-1 [NIS94] One-Way-
MD4 [Riv92] Function
MD5 [Riv92a]
HAVAL [ZPS93]

Asymmetric Cipher ElGamal [Gam85, Gam85a] Confidentiality
Cramer-Shoup,
RSA-OAEP
Digital Signature =~ RSA Signature [RSA78] Non-
Repudiation

Table 1: Examples for Commonly Used Cryptographic Algorithms

2.3.3 Asymmetric Cryptography

In contrast to symmetric cryptography where a single secret key is shared,
asymmetric cryptography operates with two different keys for each party. One key is
referred to as the private key since it is only know by its initiator and is not shared
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with anybody else. Each private key has a corresponding public key that is distributed
and should be at best publicly available. Therefore, asymmetric cryptography is also
called public key cryptography, while symmetric cryptography is also referred to as
secret key cryptography.

The concept of asymmetric cryptography is that a plaintext P is converted into a

cyphertext C by means of the public key K, ,, C=F (P,Kpub). The original message

pub’
can only be derived from the cyphertext by using the corresponding private key

K P:F‘l(C,Kpriv). It has got to be guaranteed that it is impossible to gain

priv/
knowledge of the private key when one possesses the public key. Hence, security
depends on the knowledge of the private key.

As each key pair belongs to one entity, the key name includes the entity’s name.
Hence, the public and private key of an entity A is expressed as: PK(A) for the public
key and SK(A) for the secret key. The “secret key” also refers to the private key which
is called “secret” due to the abbreviation “SK”, whereas “PK” refers to public key.
Messages that contain X encrypted by the public key of A are expressed as {X}

PK(A)

The obvious advantage of asymmetric ciphers in comparison to symmetric ones, is
that no secret information has to be exchanged over probably insecure channels and
everyone only needs to possess a single private key for decryption. However, there
are some serious disadvantages as well. The involved mathematical operations are
far more complex in so much that encryption and decryption require more
computation effort and are consequently slower than the symmetric approach. A
further disadvantage is that the keys for asymmetric cryptography need to be larger
in order to achieve a similar level of security. A 128-bit symmetric key for instance,
acquires the same level of security as a 3000-bit asymmetric key.

The most famous asymmetric algorithm is RSA [RSA78, ACG+84, ACG+88] named
after its inventors R. Rivest, A. Shamir and L. Adleman who developed it at the
Massachusetts Institute of Technology (MIT) in 1977. The strength of the algorithm is
based on the actuality that factoring large numbers is difficult [AdI91, Riv93]. More
details on the mathematical background into asymmetric ciphers can be found in
[BR95]. The RSA patent expired in 2000, thus enabling the algorithm to be used freely
nowadays.

2.3.4 Symmetric vs. Asymmetric Cryptography

Comparisons of the advantages and disadvantages of symmetric and asymmetric
cryptography lead to a hybrid approach that combines both mechanisms. As the
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symmetric approach provides higher performance and is easier to implement in
hardware it is used for data encryption whereas the symmetric key is exchanged
based on asymmetric cryptography [BCY92].

A further application for asymmetric ciphers is to use them for signing messages.
Therefore, plaintext is decrypted by using the sender’s secret key and is transmitted
by attaching it to the plaintext. As the sender’s public key should be publicly
available and the mechanism also works in the inverse way, everyone should be able
to decrypt the message by using the sender’s public key. A digital signature of A

signing plaintext X is expressed as expressed as{X}SK( . -Hence, symmetric

cryptography in conjunction asymmetric cryptography provide:

Authentication: Once the receiver succeeds in decrypting the information with the
sender’s public key, he can be sure that the plaintext has actually been encrypted by
the sender. One problem here is that it is necessary to prove that the claimed public
key actually belongs to the sender. This can be solved by means of digital certificates
and a Public Key Infrastructure (PKI), which is explained in more detail in
Section 2.3.5.

Integrity is also provided for digitally signing, as a decrypted cipher message and
plaintext are not equal if either cipher or plaintext has been modified in transit.

Non-repudiation is provided because only the sender could have transmitted the
message. No other person could have generated the cipher text without possessing
the private key. Therefore, the sender cannot deny having sent the message. A
timestamp is usually included in the message in order to ensure that the message is
fresh and that no attacker has been able to resend it.

2.3.5 Public Key Infrastructure

A Public Key Infrastructure (PKI) [BHR99] is an agreement between trusted third-
parties that vouch for user identities. These third parties are servers that vet and
distribute signed certificates. Basically, a certificate binds a user’s public key together
with the corresponding user’s identity. Certificates are digitally signed by a trusted
third party. Thus, users trusting a common third party’s public key will also have
trust in each other’s public keys.

The PKI certificates [HFP+99] are the basis for authenticating users with each other.
Hence, by digitally signing messages using one’s private key, other users are able to
verify the validity of the signatures. Therefore, in order to achieve this, they use the
corresponding public key that is contained in the user's certificate.
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2.3.6 Hash Functions, MACs and One Way Functions

Signatures as provided by asymmetric cryptography would consume too many
resources if applied to the entire document. Thus, a so called hash function is used to
compile small fixed length outputs (e.g., 128 or 160 bits) of an arbitrarily variable
input size. The output is called message digest (MD) and is further signed by using the
sender’s private key. This function is referred to as one way function [Gon89, Sch91,
BM97], as it is computationally difficult to retrieve the original data from a digest.
Further, minor changes to the original input-data should result in totally different
output-digests.

Hashes need to be resistant against brute force and birthday attacks [Gon95]. A
birthday attack is an approach in order to obtain two messages that have equal
digest-outputs. This output is retrieved by altering variable elements of both
messages. Each variable explores the scope and thus the probability is unexpectedly
high in actually receiving two messages with the same digest. Therefore, hashes
consisting of a few hundred bits are required. A 64-bit digest would for instance, be
vulnerable against birthday attacks, since the probability of having two equal
messages exceeds 50% by just increasing the amount of messages to 232.

Hash functions that are widely used are: MD2 [Kal92], MD4 [Riv90, Riv91, Riv92],
MD5 [Riv92a], SHA-1 [MG98a, NIS94], RIPEMD-160. In addition to normal hashes
one could use keyed hashes that are called Message Authentication Codes (MACs)
[BCK96]. MACs aim to provide integrity and data origin authentication with the aid
of a shared secret key. The Hashed Message Authentication Code (HMAC) [KBC97] is a
specific MAC algorithm consisting of two components: firstly, a cryptographic hash
function and secondly, a secret key as an input parameter.

Hash functions themselves are not suitable for authentication use purposes, as they
do not share any secret key between sender and receiver. HMAC algorithms combine
hash functions that basically do not provide any encryption or authentication with a
secret shared key. Therefore, HMACsSs can be used for authenticating communication
endpoints. Popular examples are HMAC-MD5 [MG98] and HMAC-SHA1 [MG98a].
Both of them can be used as IP message authentication within IPsec as described in
Section 2.5.2.

2.4 Cryptographic Protocols

Protocols are abstract conventions or concrete standards that control or enable
connections, communications and data transfers between entities.
Telecommunication is based on communication protocols which describe the
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interaction rules for sending information over a communication channel. They are
represented by a set of rules specifying data representation, signaling, authentication
and error detection.

Cryptographic algorithms, as stated above, provide cryptographic services on data
such as confidentiality by encryption and non-repudiation as well as integrity by
digitally signing and cryptographic hash functions. The combination of
communication protocols and cryptographic algorithms form the basis for
cryptographic protocols (or security protocols). They rely on transport mechanisms
provided by communication protocols and wutilize services of cryptographic
algorithms in order to accomplish specific services between communicating entities.
Cryptographic protocols commonly incorporate at least some of the following
aspects:

e Key agreement, negotiation, or establishment [BM00]
e Entity or user authentication

e Symmetric encryption and data authentication

e Secured application-level data transport

e Non-repudiation methods

The tasks of cryptographic protocols vary from offering essential cryptographic
services to complex responsibilities. Depending on their purpose, cryptographic
protocols can be distinguished as follows:

1. Essential cryptographic protocols: These protocols simply provide
cryptographic properties between the communication entities that are directly
offered by the corresponding cryptographic algorithm. Data, for instance, is
encrypted at the sender-site, transferred and decrypted at the receiver. Thus,
such protocols provide data confidentiality by en- and decryption. These
protocols utilize algorithms together with keys to compute cipher messages.
They may either use pre-shared keys or public private key pairs. When a pre-
shared key is used, data is also authenticated as only one of the key possessors
could have sent the data. These protocols either authenticate messages by
encryption or by attaching digital signatures that may be based on hashes.
Some protocols imply a specific algorithm, whereas others are flexible in
offering and negotiating cryptographic algorithms which are supported at
both communication endpoints. However, the characteristic that all of these
protocols have in common, is they assume that the key has already been
established prior to the protocol-start. They further assume that the
communicating entities have been authenticated and thus deal with data
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authentication and integrity, but neither with the user- nor with the entity-
authentication.

2. Authentication and Session-Key Establishment Protocols: This group of
protocols also utilizes cryptographic services, but provide more complex
properties. Hence, these protocols employ encryption algorithms, hashes and
digital signatures as essential services. A major purpose of these complex
protocols is to provide authentication between the communication entities.
Some of them involve a trusted third party, while others are server-less.
Authentication protocols commonly establish a session-key that is shared by
both entities and is valid for only a limited amount of time. The purpose of the
session-key is for it to be used by further cryptographic protocols in providing
authentication and confidentiality for messages in transit. Moreover, some
protocols exist that provide authentication without any session-key
establishment. These are somewhat controversial, as they lack any practical
relevance. Nevertheless, session-key establishment does not imply
authentication. Some protocols establish session-keys even without
authenticating them.

The two groups of cryptographic protocols interoperate with each other, since the
second group establishes such session-keys which are then used by the first group.
Thus, the security of the entire system is dependent on the authentication procedure
and the quality of the session-key. Authentication and session-key establishment is
considered in more detail in the following section.

2.4.7 Authentication and Session-Key Establishment

Authentication and key session establishment are fundamental for securing
communication protocols. Cryptographic algorithms providing data confidentiality
and integrity, can only perform their function if secure keys have been established
and the participating entities are aware of which parties share such keys.
Authentication and session-key establishment protocols are used for this purpose.

Cryptographic protocols are classified according to their influencing criteria. These
criteria are preconditions for all principals, key generation method requirements, the
number of involved participants and their roles.

Preconditions describe which keys have already been established at which entity.
This includes the awareness of other entities, the knowledge of public keys and the
trust between entities. It is a matter of fact, that it is impossible to establish an
authenticated session without prior existence of either shared secrets or certified
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public keys between the entities (this has been asserted and proven to be true
[Boy93]). Therefore, entities either already share a secret key, are capable of utilizing
an offline server for authentication (this is also referred to as verifying claimed public
keys), or they have access to a trusted third party who acts as the authentication
server.

The key generation method distinguishes protocols according to the principal that
actually generates the session-key or principals involved in the process. A key
transport protocol is a method where one entity generates the session-key, commonly
by a random function and then distributes it to other principals. A key agreement
protocol is a method in which the key is generated by a function. This includes input
parameters for all further users of the session-key. A hybrid protocol generates session-
keys based on inputs of more than one principal, but not of all users. This can be the
case, if a trusted server and one dedicated user, influence and thus agree on the
session-key. Other users would view this protocol as merely being a simple key
transport.

The number and role of involved principals describe the actions of principals
involving at least two, but theoretically unlimited numbers. Principals are considered
as servers, if they do not intend utilizing the session-key for further communications.
Whereas users are principals who potentially make use of the session-key for further
security mechanisms.

2.4.1.1 Goals of Authentication and Key Establishment Mechanisms

The purpose of the security protocol run can vary depending on the desired goal of
each principal. The fact that an entity A wants to communicate securely with another
entity B based on a session-key K, implies that A needs assurance that only B knows
the key (secrecy of K) and that B is actually the desired entity (authentication of B).
Authentication generally describes the process of A determining whether another
party B is in fact the party it claims to be. In the event that B also wishes to
communicate with A in a secure manner, this is termed mutual authentication. Thus,
the objective of authentication and session-key establishment protocols is to
authenticate entities and to guarantee confidentiality for the key. Furthermore, keys
are required to be fresh. This denotes that the key has never been used or transferred
before a certain point in time.

Authentication is achieved by agreeing on variables that can also be identifiers. Each
agreement and secrecy statement is a basic aim. Security protocols commonly aim to
fulfill several secrecy and agreement statements. These statements are formally
defined as:
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Secrecy statements specify the objective that confidential data is only known to
desired entities. A secrecy statement formally specifies the protection of confidential
data against an intruder:

Secret(A,K,[B])

The statement above defines the assurance of A concerning confidential data K to be
known only to him and optionally to B. This statement expresses that any intruder
does not have any possibility of acquiring possession of the secret. However, this
does not claim any assurance that the data is actually known to B. Moreover,
protocols involving a trusted third party tend to accept that the server may also have
knowledge of the secret.

Agreement statements specity the aim that one entity A is assured of the identity of a
second entity B. Authentication can be formally considered as an agreement on a
variable. The agreement statement can be expressed as follows:

Agreement (A, B[V, V, ])

This statement is interpreted as the assurance. Therefore, case A completes a run of
the protocol, apparently with B, then B has run the protocol, apparently with A;
consequently, both principals have agreed upon each other’s roles and upon the
values of Va (involved by A) and of Vs (involved by B). There is a one-to-one
relationship between the runs of A and those of B.

It is not necessary that Va or Vs have secrets between A and B. Hence, if A and B
wishes to agree on a secret key, a supplementary secrecy statement is required.
However, in the event that Va and Vi have never been previously used, freshness is
guaranteed.

2.4.1.2 The Freshness Property of a Session-Key

In contrast to long term keys, a session-key is valid only for a limited amount of time.
This period is referred to as a session. The idea is to generate and distribute session-
keys on demand and to delete them after the session has ended. Apart from the user
oriented objectives for secrecy and authentication, an additional key oriented aim is
that of freshness. The concept of freshness denotes the up-to-dateness of security
data such as keys and messages. Keys and variables are referred to as being fresh if
they have never been used before and at best, have momentarily been generated
prior to usage. Thus, a good key for A to use with B is defined as a key that is only
known to A and B (with the exception of some trusted third party) and is moreover a
fresh key. Freshness of a key can be guaranteed by deriving the actual key from a
function that has, other than a long term secret, a fresh variable as input. This
variable is referred to as a nonce.
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Nonces

A nonce, in the context of security protocols, is a (pseudo-)random value generated
by a pseudo random generator at one principal. The space of possible values is
required to be sufficiently large (e.g. at least 128 bits) and the generation process
must produce unpredictable output-values.

Nonces are used in cryptographic protocols in order to guarantee freshness during
the protocol run by establishing causal relationships between the messages.
Principals involving a nonce in the protocol are subsequently able to verify the
freshness of responses correlating to messages sent previously. A common
mechanism known as Challenge Response Mechanism aims to authenticate participants
by also guaranteeing freshness of the authentication. Assuming A wants to
authenticate B, a challenge response mechanism works as follows:

1. It is assumed that A and B share a long term secret S and both know a
common one way function F.

2. A generates a nonce na at a certain point in time t by utilizing a random
generator. This nonce is also considered as a challenge.

3. A sends the nonce na to B.

4. B while receiving na computes a response r by the well known function F so
that the response r := F(na, S) is dependent on the secret S and the challenge
na.

5. Bsends rasareply to A.

6. A also computes F(na, S) and compares function output with the received r.
When these values are equal A assumes B as authenticated. The authentication
is fresh since B has to have computed r after a known point in time ¢.

It should be mentioned here that the nonce na is sent in plaintext and thus can be
read by anyone. Counters or timestamps can also be used to provide freshness in lieu
of random values.

Timestamps

While nonces are only local markers in time, meaningful to the creator only,
timestamps act as global markers and are meaningful to every principal. Timestamps
are especially important when protocols should provide freshness to more that one
participant. Furthermore, the number of messages is reduced. However, random
nonces require a challenge exchange for each principal in order to authenticate
others, whereas encrypted identifiers and timestamps involve a single message for
authentication. Therefore, timestamps have significant drawbacks. Clocks are
required at each principal and time needs to be synchronized between all
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participants and at best even globally. Validity checking and interpretation of
timestamps is also more expensive in terms of computation power than forwarding
or modifying nonces.

2.4.1.3 Forward Secrecy

Forward secrecy, also referred to as Perfect Forward Secrecy (PFS), is an extended goal
which is provided by session-keys. Forward secrecy aims to provide confidentiality
after one session has ended, even if the participants are then compromised.

In cases where a session-key is sent from one principal to another via a secured
channel, the key is also considered secure. An intruder that has meanwhile captured
the entire communication is capable of decrypting the secured channel once it has
compromised at least one of the agents. The intruder is then able to decrypt the
secured channel in order to obtain the session-key which was employed for
encrypting the entire captured communication.

Therefore, forward secrecy is a property that prevents intruders from obtaining any
data on the condition that once a session has ended, both agents delete their session-
keys and copies of the confidential data are no longer stored by any principal.
Forward secrecy can be achieved by utilizing the mathematical concept of one way
functions while each agent constructs a so called half key.

Assume the two one-way functions F1 and F2 (both can even be publicly known) and
also take into consideration the following equivalence:

Session Key := F2(F1(a),b) = F2(F1(b),a)
The session-key is established as follows:
1. A chooses a while B chooses b respectively.
2. Asend F1(a) to B whereas B sends F1(b) to A.

3. Both A and B compute the session-key due to the above mentioned
equivalence.

Trivially, when knowing a and b one can compute the session-key. Hence, once the
session-key is generated A and B delete 2 and b. It has also got to be guaranteed that
no function F3 exists (or at least is not efficiently computable) to compute the session-
key based on both half keys:

Session Key = F3(F1(a),F2(b))

In Section 2.4.2.2, the Diffie-Hellman Key Exchange Protocol is introduced as an
abstract protocol providing forward secrecy.

29



The IDKE Protocol Chapter 2 Fundamentals & Related Work

2.4.2 Authentication Protocol Approaches

Two different approaches exist for the authentication of protocols. The first
mechanism, called arbitrated authentication protocol, relies on a trusted third party. The
second method does not need any direct access to a third party for providing
authentication between the two entities and is therefore called direct authentication.

2.4.2.1 Authentication by a Third Party - The Needham-Schroeder
Example

Authentication between two parties A and B can be achieved by a third party trusted
by both A and B. Each time A and B desire to authenticate each other it involves a
unique trusted party C. Many different protocols have been developed for this
purpose. It depends on the various conditions that apply to the party requiring
authentication. This could even be on a mutual basis. A simple protocol for this
purpose is the Needham-Schroeder shared Key Protocol which is based on symmetric
encryption between the communicating parties. The trusted party C shares a key
with each party. Two keys exist in this simple example, one shared between A and C
referred to as Kac and one shared between B and C termed Ksc. The purpose of the
authentication procedure is to establish the shared key Kas between A and B.
Assuming that A wants to talk to B, A begins by sending a message to C. This
message is not encrypted and includes the following parameters:

e |DA: Identification of A
e [DB: Identification of B
e A A random number created by A

When C receives the message from A it generates a session-key Kas for any
subsequent communication between A and B. C then sends a message back to A:
{A IDB, K,;, {IDA, K ;)

ran’ K }
BC ) Ky

The message is totally encrypted by the key shared between A and C, so that only A
is able to decrypt the message. Firstly, A checks if the random number is the one it
used for the request. This guarantees that the message is fresh and that the answer
received is not a replay attack by some malicious sender. The message contains the
ID of B so that A knows what session-key it has received; one might also consider the
case of A requesting more than one key at the same time.

The session-key Kaz is actually included twice in the message, but has only been
encrypted once by Kac .It has also been bound together by A’s ID and encrypted by
the key shared between B and C. A forwards the part encrypted by Ksc to B. B then
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generates a random number B and sends {B,,} , the encrypted random number

KAB ’
back to A by means of the shared session-key. When the message is received, A is
able to decrypt it since it also has the shared key Kas. A subsequently decrements the

random number Brx and encrypts it by means of Kas. Thus, A sends {B,, -1}, back

ran

to B.

This simple protocol illustrates session-key establishment and authentication.
Initially, both parties receive the session-key from C, directly in the case of A and
indirectly in the case of B. This element pertains to the key establishment mechanism.
The ultimate two messages in which A receives and returns the random number,
correspond to the authentication part of the protocol. This aims to prove the identity
of A. Authentication here denotes proving that A has in fact knowledge of the key
Kas. This indicates that A shares a key with the trusted party C and is thus considered
trustworthy.

2.4.2.2 Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DH), initially published in 1976 [DH76], is a
cryptographic protocol which allows two principals having no prior knowledge of
each other to establish a session-key over an insecure communication-channel. This
authentication mechanism does not involve any third party and is thus called server-
less or direct authentication.

Both parties A and B agree on a finite cyclic group G and a generating element g in G.
G is a multiplicative group modulo p while p is relative prime in G [APR83]. Integers
between 1 and p-1 are used with normal multiplication, exponentiation and division,
except for the fact that after each operation the result retains only the remainder after
it is divided by p.

The distribution of G, p and g is commonly carried out long before the rest of the
protocol. G, p and g are assumed to be known by everyone including all potential
attackers. The HD protocol works as follows:

1. A chooses a random natural number a and sends g“ mod p to B.

2. B also selects a random natural number b and sends g"modp to A

respectively.

3. A computes the session-key as K, := ( g’ mod p)a mod p.

4. B computes the session-key as K, := ( g“mod p)b mod p.

Finally, both A and B share a session-key K due to the homomorphic property of
exponentiation:
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K=K, = (gb mod p)a mod p=g"*“mod p = g*“""mod p = (g“ mod p)b modp =K,

Although DH lacks any authentication, it provides the basis for a vast range of
authentication protocols. It should be mentioned that DH provides forward secrecy
for the session-key K, as the subsequent deletion of 4, b and K at both parties, does
not allow for any previous communication to be reconstructed, even when
compromising A and B. Consequently, DH is considered secure against
eavesdroppers if G, p and g are properly selected. Deriving K from given g“mod p

and g’modp is currently considered difficult, as there is no known efficient

algorithm available for solving the discrete logarithm problem [Adl79]. However,
since DH by itself does not authenticate messages, it is vulnerable to man-in-the-
middle-attacks (see Section 2.4.3). Hence, DH is commonly utilized for establishing a
session-key via a secured channel which implies authentication. DH then provides
forward secrecy for a secured and authenticated session-key [BKPOO].

2.4.3 Protocol Vulnerabilities

Communication protocols should not end up in deadlocks or livelocks due to
misbehaving nodes, message losses or incorrect messages caused by bit failures in
transit. Nevertheless, security protocols are facing additional vulnerabilities from
malicious nodes that behave mischievously on purpose. These nodes are referred to
as attackers or intruders that aim to break the protocol for a vast variety of reasons.
Security protocols have to be designed to deal with attacks that are more or less
present and are dependent on the considered environment and the given
assumptions.

32



The IDKE Protocol Chapter 2 Fundamentals & Related Work

&

A ___protocol Secure Channel

Y

wired communication

/
&
w oy}

A < < Protocol ™ Intruder / MIM < Protocol v

wireless communication

A U protocol U B
Passive Attack

Active Attack U -Eavesdropping

-Inserting data I ntrud er -Data Analysis

Figure 4: Intruders in different Environments

Figure 4 illustrates three different attacking environments. The first scenario (1)
shows a secured channel between A and B without any intruder. This can either be a

physically secured channel or one achieved by encryption. A secured channel is the
actually desired state that a security protocol should accomplish. Attacks can have
several forms depending on the action the intruder takes. It is considered a passive

attack when data is read in transit, whereas active attacks involve messages having to
be sent by the intruder. Furthermore, combinations of both forms are also possible.

Passive attacks depict the intruder as a probe that is inserted somewhere in
the network and has the capability to capture data in transit. The aim of a
passive attack is to obtain information from sniffed data, especially that of a
confidential nature. Passive attacks are extremely difficult if not impossible to
detect since both sender and receiver may never realize that others have had
access to the sent messages. Thus, whenever networks are considered as
physically insecure or a public network such as the Internet is used,
prevention is the only way to confront passive attacks. This is commonly
achieved by encrypting messages in order to hide their confidential content. It
should be mentioned here that the fact that A sends messages to B sometimes
is sufficient information for an intruder even when the actual data is
encrypted. As an example of this one might imagine two companies A and B;
the simple fact that these companies exchange messages, could mean that the
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amount of data, frequency, time and date of messages could provide more
information to a third party C than the actual content.

e Active attacks refer to all attacks where the intruder inserts messages into the
network. This can be accomplished for various reasons. Messages do not
necessarily have to be generated by the intruder, as he can also use the
original captured data. In contrast to passive attacks where prevention is the
strategy of defense, active attacks are difficult to perceive. As in wireless
environments, active attacks are impossible to prevent and the chosen strategy
here is detection. Detection is determined by the circumstances the
classification in which a message has or not been sent by the claimed entity.
Therefore, this is the realm of authentication and digital signatures [Alk83].

The assumption that can be made on the intruder depends on the environment. Once
an intruder compromises an intermediate router, he is able to perform active, passive
or any combined means of attack. Figure 4(2) illustrates a scenario where the attacker
acts as mediator between A and B. Here, the intruder can read, store, modify, drop
and delay all messages in transit. He is also able to insert messages based on
previous information he has extracted as well as redirecting messages to other
participants. The variety of possible attacks for such an intruder is endless. One
common attack, referred to as Man in the Middle (MIM), describes the situation where
the intruder claims to be A for B and to be B for A. Figure 4(3) illustrates the wireless
scenario which entails slightly different conditions for both the intruder and other
principals. Capturing and inserting data is easy for an intruder, whereas delaying,
dropping and redirecting messages are more difficult for intruders when a shared
wireless medium is used.

An attacker is aware of the fact that he has a vast variety of possibilities to attack
protocols. The most common methods are explained hereunder:

Eavesdropping relates to sniffing and the probability of storing messages in transit.
This is the most fundamental form of attack and being of a passive nature, needs to
be prevented by means of encryption. Eavesdropping is often employed as a basic
component of more complex attacks.

Modification involves altering parts of or the entire message in transit. When parts
are non-redundant, captured messages can be split, reassembled and inserted in
order to break protocols, even when all of individual messages-fields have been
encrypted. Data origin authentication and integrity protection for the entire message
is pervasive in order to protect authentication and session establishment protocols.

Replay-attacks cover all situations where attackers interfere with a protocol run by
inserting messages or parts of messages originally belonging to any previous
protocol run. Replay-attacks are also one of the basic protocol breaking tools. These
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are prevented by timestamps and nonces to guarantee message freshness [Gon93].
Replay protection is essential for session-keys, as such attacks aim to separate keys
between the different sessions [Aur97]. A replay-attack counters this command by
inserting a previous message in a current protocol run when a timestamp or nonce is
not used. For instance, consider a message sent from A to B transferring a session-key
K. A has signed the key by encrypting it with its own private key and encrypted it by
B’s public key to provide secrecy:

UK o f

An intruder who captures this message can send this message to B and so B believes
he has a session-key with A. This attack says nothing about the capability of the
intruder to read messages. However, the intruder can establish the session-key K
without him knowing any secret key of A or B.

Reflection- & Interleave-attacks refer to a more complex attack based on a replay-
attack. This attack involves two parallel protocol runs or simultaneous sessions. The
attacker acts as both the sender and the responder in a challenge response protocol
for authentication. An example run is outlined below:

(1) A sends a message to Intruder I claiming to be B. A sends a challenge na that B
should be capable of responding to, since B has knowledge of the secret shared key S.

Challenge nonce na
A > Intruder

A—>1:na

(2) While A waits for the response from I, I sends (reflects) the challenge na to A as B
would normally do in order to authenticate A.

(3). A computes the response ra = F(na,S) and sends it back to L.

Challenge na

' 4

Intruder A

7y

Response ra

I - A:na
A—1:ra
(4). Upon receiving the response, I again reflects the response to A. A still expects a

response from the first protocol run and happily accepts the response from I and
thereby authenticates him. Consequently, the protocol is broken.

A

A B Response ra Intruder

A—1I:ra
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In this attack, step 1 and 4 belong to the first (outer) protocol run, while step 2 and 3
belong to the second (inner) protocol run.

In the interleave-attack, Intruder I initiates two simultaneous protocol runs in
different instances. When the first instance has reached a defined state, the intruder
initiates a new second session using information obtained from the first run.

A’s viewpoint is that two protocol runs were successfully completed and thus no
irregularity occurred which would give him any reason to be suspicious. Interleave-
attacks are extremely dangerous as they are very difficult to predict in more complex
protocols. The intruder can run protocols multiple times by playing different roles in
the attempt to obtain information that would be usable in the main session.

One might not discover interleave-attacks when designing a protocol in which
security is only considered by causal deductions. In the example shown above, the
causal chain can be formed from the end to the start of the protocol run as follows:
(1) A finally received a valid response ra from somebody. (2) hence, this entity
needed to send the response according to the nonce na and the secret key S. (3) the
nonce na had recently been sent out and the secret key K is only known by trusted
parties. The sender must have computed ra based on the nonce na and the key K,
thereby indicating that the sender must have knowledge of K. (4) Consequently, the
sender of ra must be a trusted party and is thus authenticated. The authentication is
also fresh due to the short lifetime of na.

As the interleave-attack illustrates in the example protocol, the authentication
actually failed, demonstrating that casual chains are incapable of proofing security.
Therefore, this study analyzes protocols that will counter interleave-attacks by means
of model checking. Details on formal methods and model checking are given in
Chapter 4.

2.5 Protocols for Internet Security

A vast variety of protocols deal with the securing of Internet traffic. The Internet
Protocol Security Suite (IPsec) [KA98] consists of a number of protocols that perform
such tasks as distributing keys, data encryption and authentication.

2.5.1 Oakley and ISAKMP

The Oakley protocol [Orm98] uses a hybrid Diffie-Hellman [DH76] technique in order
to establish session-keys on Internet hosts and routers. Oakley can either be used
independently or when additional attribute negotiation is required, in conjunction
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with the Internet Security Association and Key Management Protocol (ISAKMP) -
RFC2408 [Mau98]. ISAKMP is a framework for supporting the negotiation of security
attributes, but does not itself provide session-key establishment. However, ISAKMP
can utilize a vast range of session-key establishment protocols such as Oakley, in
order to provide a solution for complete Internet key management. ISKMP and
Oakley, have both been integrated into a hybrid protocol and thus form the basis of
the Internet Key Exchange protocol (IKE) - RFC 2409 [HC98] introduced in Section 2.5.3.
This conjunction offers full security association attribute negotiation and
authentication methods that provide both repudiation and non-repudiation.
Implementations in the Internet can be used for establishing secure tunnels and
connections for securing communications as well as for establishing remote network
access. The rules between hosts or security gateways in the Internet are based on a
Security Parameter Index (SPI).

Maintained in databases, SPIs cover the following parameters:

e The authentication mechanism can either be based on secret or public key
cipher or certificates.

e The encryption mechanism, designates the utilized algorithm, the mode of
operation, the key length and the optionally initialisation vector.

e The hash algorithm
e The actual key values and lifetimes.
e The renewal period required for re-establishing the SA.

SPIs are the basis for transferring data securely in the Internet. Thus, they are utilized
in order to provide authentication and encryption. SPIs can be established either
manually or with the aid of an exchange mechanism. The complete functional facility
is covered by the Internet Security Protocol.

2.5.2 Internet Security Protocol (IPsec)

The TCP/IP stack was initially used mainly in academic environments, where
designers were not particularly concerned about security issues. Nevertheless, the
significant growth of the Internet, driven by e-commerce demanded the creation of
new services that incorporated sound security provisions. Hence, the Internet
Engineering Task Force (IETF) established a working group whose objective was to
develop an IP security protocol suite. This was named IPsec [KA98]. The function of
IPsec is to secure Internet communication at the network layer. IPsec supports both
IPv4 and IPv6 [DH98] with a set of extensively configurable security services. IPsec is
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an obligatory component of IPv6 that succeeded the IPv4. However, the use of IPsec
is optional within IPv4.

The tasks of IPsec cover data confidentiality, data integrity, access control, data
origin authentication and anti-replay protection.

Due to the fact that IPsec is method-independent, it can be implemented by using a
wide range of different cryptographic algorithms.

2.5.2.1 Overview

IPsec is a set of cryptographic protocols for securing packet flows and key exchanges.
Two of these packet flow protocols, namely the Encapsulating Security Payload (ESP)
[KA98a] provides authentication, data confidentiality and message integrity, whereas
the Authentication Header (AH) [KA98b] provides authentication and message
integrity, but does not offer confidentiality. The AH was originally only used for
integrity while the ESP was only used for encryption. The function of authentication
was subsequently added to the ESP header.

Key establishment and management are crucial tasks for the architecture and are
performed by the Internet Key Exchange (IKE) [HC98] protocol as introduced in
Section 2.5.3.

Standards produced by the IETF are referred to as Request For Comments (RFCs). The
connections between IPsec related RFCs are depicted in Figure 5.

IPsec
RFC 2401
\

ISAKMP Oakley
RFC 2408 RFC 2412
\ [

N
IKE
RFC 2409
IPsec DOI
RFC 2407
\

N N2
AH ESP
RFC 2402 RFC 2406

Figure 5: IPsec Related RFCs
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2.5.2.2 Modes of Operation

Depending on the type of node, IPsec is intended to operate in two different modes:
Transport Mode and Tunnel Mode. The former simply attaches IPsec extension headers
and is commonly used for host to host communication, whereas the latter provides a
secure tunnel between two gateways. The tunnel mode can be used to implement
portal-to-portal communication security between intermediate nodes. Security is
provided for several machines or even to a whole sub-network by a single gateway
node that is typically a firewall or router. Traffic destined for a final host, traverses
the security gateway. The gateway encapsulates the traffic and forwards it to a
second gateway via tunneling. Similar to IP-in-IP encapsulation, the IPsec tunnel
involves two IP headers: An inner header containing the original sender and receiver
and an outer header where the tunnel endpoints act as sender and receiver. Figure 6
illustrates IP datagrams in transport and tunnel mode. (1) represents a standard non
IPsec datagram which is extended by inserting AH in order to authenticate the entire
datagram in (2). In (3) a new outer header is attached for transferring the message in
tunnel mode. This header authenticates both inner and outer headers; (4) represents
the ESP usage in transport mode. The payload and trailer are encrypted and
optionally authenticated by the ESP authentication extension; (5) shows ESP in
tunnel mode with a new outer header attached. The inner header is encrypted and
thus is invisible in transit within the tunnel. (6) Illustrates the case when both AH
and ESP are utilized in order to provide authentication for the IP header in transport
mode.
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Figure 6: IPsec Modes of Operation

The inner IP header is encrypted and not visible on traverse. A security gateway can
be installed on an end point of the connection in order to provide security for
network access. When both gateways are on an intermediate node, the tunnel is
completely transparent to the endpoints and can thus be used to achieve a Virtual
Private Network (VPN) [BKWO05]. Hence, transport mode in this case is inadequate.
Tunnel mode can also be applied for host-to-host communications, but it is especially
useful when at least one of the endpoints is a security gateway.
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2.5.2.3 Technical Details

IPsec involves two extension headers: The Authentication Header (AH) and the
Encapsulated Security Payload (ESP). One of them or both can be attached to an IP
packet in order to provide security properties.

Authentication Header

The AH is intended to guarantee connectionless integrity and data origin
authentication of IP datagrams. It also includes an optional anti replay protection by
using the sliding window technique and discarding old packets. AH protects all fields
of an IP datagram by attaching an AH extension header to the IP packet as illustrated
in Figure 7. Fields that change during transfer have been excluded.

N
N
N
w

000000000011 |11 111 1/ 1/1/2/2/2/2/2 22
0123 4567 8/9/0(1/2/3/4/5/6/7/8/9/0/1/2/3/4/ 5678901

Next Header Payload Length RESERVED

Security Parameter Index (SPI)

Sequence Number

Authentication Data

Figure 7: AH Packet Format
The fields of the AH have the following definitions:
e Next Header: Identifies the protocol of the transferred data (e.g. TCP or UDP)
e Payload Length: The overall size of the AH packet.
e RESERVED: Reserved for future use (all zero until used).

o Security Parameters Index (SPI): Identifies the security parameters in
combination with the IP address.

e Sequence Number: A monotonically increasing number for the sliding window
in order to prevent replay-attacks.

o Authentication Data: Is an Integrity Check Value (ICV) for authenticating the
entire IP datagram and is computed by either symmetric or asymmetric
encryption algorithms. A hash [MIS95, Rob94] or HMAC [KBC97, MG9S,
MG98a] as presented in 2.3.6 is commonly used for that purpose.

In order to verify a received datagram, the receiver computes the ICV over all the
appropriate fields, filling the mutable IP header field with zeros and using the
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specified authentication algorithm. When the value attached to the packet coincides
with the ICV, then the datagram is verified as having been sent by the claimed
sender.

The AH protection in transport mode covers the entire payload, including the upper
layer protocol data and all those fields of the IP header which have not been
modified in transit. In contrast, the AH in tunnel mode, encapsulates the IP datagram
with a new IP header in order to enable the protection to extend to the payload and
the whole header.

Encapsulated Security Payload

The ESP extension header, as illustrated in Figure 8, also provides data origin
authentication and confidentiality.

0/0({0/0|0[00[0O(O|O[T[T| T[T 1|11 1 |T1[{1|2]|2(2/2(2(2|2|2|2|2|3]|3
0({1/2/3/4|5/6/7(8[9|/0(1(2|3/4|5|6|7[8[9|0(1[2|3|4[5|6|7(8[9|0/|1
Security Parameter Index (SPI)
ESP-Header
Sequence Number
Payload
Padding (0-255 bytes)
ESP-Trailer
Pad Length Next Header
ESP-
Authentication Data Authentication
(optional)

Figure 8: ESP Packet Format
The ESP fields are defined as follows:

o Security Parameters Index (SPI): Identifies the security parameters in
combination with the IP address.

e Sequence Number: A monotonically increasing number, used to prevent
replay-attacks.

e Payload Data: The actual data to be transferred which has been either
authenticated, encrypted, or both.

e Padding: Used with some block ciphers in order to fit the data into the full
length of a block.
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e Pad Length: Size of padding in bits.
e Next Header: Identifies the protocol of the transferred data.
e Authentication Data: Contains the data used to authenticate the packet.

In contrast to AH, ESP does not authenticate any IP header field when used in
transport mode. However, in tunnel mode, ESP covers the whole IP datagram.
Confidentiality is achieved by encrypting the payload plus padding and by inserting
the resulting cyphertext in the datagram. Thus, replacing the original plaintext.

Security Databases

The protection of IPsec is based on a set of requirements defined in two databases.
The Security Policy Database (SPD) and the Security Association Database (SAD). The
former specifies general policies and is applied to all IP traffic inbound or outbound
from a host or security gateway. The latter is more specific and contains parameters
associated with an individual connection.

The SPD specifies which security services are on offer to IP datagrams and the
method in which they are applied. The database has to be consulted for all inbound
and outbound traffic, including that of non-IPsec traffic. The purpose of this is to
distinguish between packets that need IPsec processing, those that are allowed to
bypass it and packets that should be dropped. This filter acts according to the source
and destination address as well as to the corresponding ports.

When an IP datagram is required to be protected by IPsec, a query is made to the
SAD. The SAD specifies details on the services that should be provided, as well as
the protocols and algorithms to be used. The following entries are required to form a
security association (SA). This is referred to as a simplex connection between nodes:

e Authentication mechanism for AH
¢ Encryption mechanism for ESP
e Authentication mechanisms for ESP

e Lifetime of the SA (Time in seconds and maximum amount of traffic in
Kbytes)

e Replay protection (only in conjunction with IKE)
e Encapsulation mode (Tunnel or Transport)

Securing a bidirectional data stream between two hosts always involves the
establishment of at least two SAs, one in each direction. IPsec SAs are security
policies defined for communication between two or more entities; the relationship
between the entities is represented by a key.
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2.5.3 Key Distribution in IPsec

The Internet Key Exchange (IKE) [HC98] protocol is a mechanism for dynamically
establishing SAs between nodes.

IKE as a hybrid protocol, has integrated two earlier security protocols namely
OAKLEY [Orm98] and SKEME within an ISAKMP [Mau98] (see Section 2.2.1)
TCP/IP-based framework. ISAKMP specifies the framework for key exchange and
authentication. The Oakley protocol details a sequence of key exchanges and
describes their services (such as identity protection and authentication), whereas the
SKEME describes the actual method of key exchange. Although the IKE is not
required for IPsec configuration, it offers a number of benefits which include
automatic negotiation and authentication, anti-replay protection, certification authority
(CA) support and the ability to change encryption keys during an IPsec session.

Hence, IKE provides authentication and key agreement during IKE Phase I and the
IPsec SAs are negotiated in IKE Phase II (Quick Mode). IKE in main mode requires six
messages, whereas in aggressive mode only three messages are involved.. Diffie-
Hellman (see Section 2.4.2.2) is mandatory for providing forward secrecy. The IKE
Phase II requires two messages and offers an optional Diffie-Hellman exchange.

A number of authentication modes have been proposed for IKE: authentication with
pre-shared secrets, authentication with public key encryption, a revised mode of
public key encryption and a signature based authentication. These each have
different security properties and computational requirements.
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Chapter 3

The Inter-Domain Key Exchange
Protocol Approach

This chapter introduces the Inter-Domain Key Exchange Protocol which provides key
establishment at the access networks, especially in intra-domain scenarios. It discusses the
main assumptions on security associations and trust relationships as well as the requirements
for the key establishment at the access network. A detailed view on how the protocol functions
is also given.

3.1 Overview

Mobility in wireless networks is based on Access Routers (ARs) providing a service
of attaching Mobile Nodes (MN) to such ARs. When an MN leaves an AR cell, a
handover is required (see Section 2.1.2), which ideally is completely seamless and is
not recognizable by the MN due to the MobilelP extensions (see Section 2.2.2). Each
AR is connected to a Local Authentication, Authorization and Accounting (LAAA) server.
Protocols that are widely used request the LAAA to authorize the MN when both
ARs are connected to the same LAAA. When the two ARs are working in different
domains, the Home AAA (HAAA) server is contacted to authenticate and/or
authorize the MN. The time required for performing this HAAA contact may
increase the domain handover delay. In order to enhance seamless mobility support,
the Inter-Domain Key Exchange protocol (IDKE) performs the authentication and
session-key establishment locally. The IDKE also aims to reduce the amount of
message exchanges on the wireless link and to the Home Network.
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Figure 9: IDKE Key Forwarding Scenario

The basic concept is to transfer all of the required authorization and accounting data
from the pAR to the nAR as depicted in Figure 9. In order to achieve this, the nAR
needs to be authenticated, authorized and verified trustworthy by the pAR. The pAR
and nAR will establish a secure tunnel through which all credentials (e.g. session-
key) can be transferred. The pAR also authenticates the nAR to the MN, which
enables a session-key to be established between nAR and MN.

IDKE combines well known mechanisms that when separately considered are
incapable of providing credential forwarding. Thus, IDKE defines:

e The combination of a token mechanism for initial authentication and trust
establishment,

e The IKE (see Section 2.5.3)and IPsec (see Section 2.5.2) for the establishment of
a secure tunnel within the ARs and

e The CxTP (see Section 2.2.2.3) for forwarding the credential via the secure
tunnel.

3.1.1 Objectives

The purpose of the IDKE protocol is to transfer credentials from pAR to nAR.
Credentials refer to confidential data such as cryptographic settings, QoS parameters
(see Section 2.1.1) and the session-keys. A huge variety of data can be transferred via
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the secure tunnel. This document focuses on the symmetric shared session-key which
will be referred to as the Key Session Master Secret (Ksms). Ksus This is a mandatory
credential which is transferred by the IDKE protocol.

When the IDKE key transfer has successfully taken place, the Ksus is then also
recognized by the nAR. Hence, the nAR can use Ksus for encryption, authentication
and access control for the MN. The Ksus also acts as a shared secret between pAR,
nAR and MN. Therefore, it establishes a trust relationship between all three nodes.
Prior to the key transfer, it needs to achieve an initial trust with the ARs. This is
carried out by the IDKE authentication mechanism. The mechanism consists of an
IDKE authentication token which is sent by the MN and combined with AAA server
authentication at the ARs.
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Figure 10: An Overview of Related Trust Relationships and Shared Keys

The nAR’s public key is verified by the pAR by requesting its local AAA server. A
token is sent by the MN via the nAR to the pAR. This is attached to the initial request
message. The token contains an encrypted handover-request to the nAR. If the public
key is verified and the token is valid, the nAR is then considered as authenticated.
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A major restriction for the MN is the incapability to authenticate the nAR due to low
computation power and the missing access to an AAA infrastructure. The ARs also
have problems in judging whether an MN actually desires to perform a handover
resulting from a claimed request. The IDKE authentication mechanism solves this
incapability by combining the MN token for proving actual access to the nAR and the
PAR’s AAA infrastructure for verifying public keys.

Apart from the establishment of the session-key, the IDKE protocol provides
confidence in the knowledge of each other’s public keys. This is the basis for
generating a fresh session-key (see Section 2.4.1.2) between the MN and the access
network based on a Diffie-Hellman like approach (see Section 2.4.2.2). This new fresh
session-key Knew provided by the IDKE protocol is necessary for access control,
accounting and electronic payment on the wireless link. Knew is also used for
encryption (see Section 2.3 ) on the wireless shared link in order to provide
confidentiality. The IDKE protocol does not restrict the usage of the key to any
protocol or layer. The Ksus can for example, be used as a shared key required by the
IPsec extensions. Any data between the MN and the AR is encrypted/authenticated
and sent in tunnel or transport mode.

In line with the network topology referred to in Figure 9, the static and dynamic
shared keys as well as the secure tunnels are presented in Figure 10. Dynamic keys,
commonly referred to as session-keys, are temporarily valid and established only
when required. Static keys are assumed to exist prior to the protocol run. The IDKE
protocol assumes that symmetric static keys are shared between the ARs and their
corresponding AAA servers. The MN (the terminal) and the User both share secrets
with the Home Network/HA respectively and the HAAA server, as illustrated in
Figure 10.

3.1.2 Protocol Framework

The IDKE protocol framework consists of 11 basic and 3 optional messages. Figure 11
illustrates how these 14 messages are separated into five sections. The first message is
a router advertisement offering the MN to perform an IDKE based handover. This
message is a modified router advertisement that is regularly sent out and thus is not
considered to belong to the IDKE protocol.

The first part of the IDKE protocol covers the trust establishment between the ARs
based on an authentication token. The second part aims to establish a shared key
between the ARs. A Diffie-Hellman like approach as used in IKE is used to provide
forward secrecy. Part 3 refers to the key forwarding procedure via a secure tunnel.
Part 4 describes the key acknowledgment by means of a handshake between the MN
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and the nAR. In the optional part 5 the MN performs a binding procedure by
sending a binding update to its home network.
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Figure 11: Parts of the IDKE Protocol

New messages introduced by the IDKE protocol are grouped into the following
sections:

Router Advertisement: Message 1 refers to the router advertisement offering the MN
to perform a handover based on the IDKE protocol.

Part1: The MN creates a token to confirm the nAR’s advertisement. This token is sent
via the nAR to the pAR in order to authorize the key forwarding.

Part2: A shared key is required to be established between the two ARs. This key
should be based on a Diffie-Hellman like approach for providing forward secrecy.
The purpose of this key is to provide encryption on a secure tunnel between the ARs.
This refers to the combination of IKE and IPsec.

Part3: After successfully establishing the secure tunnel, the session-key Ksums is
requested and transferred as suggested by CxTP.

Part4: The nAR has retrieved the Ksus, and thus the nAR is considered trustworthy
by the pAR. The nAR then sends an acknowledgement to the MN. Finally, the MN
responds to the acknowledgement. Both messages contain parts encrypted by the
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Ksus in order to prove to each other their knowledge of the session-key. This
handshake may optionally contain a new session-key negotiation procedure.

Part5: The final part is the optional home authentication procedure. This includes the
integration of other authentication mechanisms should the key forwarding fail. This
option is selected when a higher level of authentication is required.

5.1.3 Preconditions and Postconditions

In order to provide key establishment based on the IDKE protocol, some
preconditions need to be fulfilled. The IDKE protocol will otherwise terminate and
no key can be exchanged. These preconditions are necessary in order to guarantee
the claimed security properties that are referred to as postconditions for the protocol.
Thus, the IDKE protocol can be considered as a function

IDKE(MN, nAR, pAR) - (MN',nAR',pAR")

where MN, nAR and pAR fulfill the assumptions (preconditions) and MN’, nAR’,
PAR’ will cover all the properties for the postconditions.

3.1.3.1 Preconditions

It is assumed prior to using the IDKE protocol that all entities possess a
public/private key pair. However, public keys are not known to all entities. The MN
in particular does not have any knowledge of the nAR’s public key and vice versa.
Thus, initially the MN and the nAR are unable to exchange signed and/or encrypted
messages based on public/private keys. They do not share any key at all and the MN
is not even aware of the nAR, prior to receiving the router advertisement from the
nAR.

The MN and pAR share the fresh session-key Ksus and they know each others public
key. Ksus is used for encryption and mutual authentication between the MN and the
pAR.

The pAR possesses public keys of all potential nARs or at least should be able to
obtain this information by means of an AAA infrastructure. This contains the
bundling of identity and corresponding public keys. It is important to mention here
that this does not imply that such a potential nAR actually does provide services for
the MN. This would only be valid in the case of an intra-domain scenario in which
both of the ARs initially trust each other.
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3.1.3.2 Postconditions

The MN and the nAR, subsequent to the protocol run, must have established a fresh
session-key. This new key is referred to as Knew and should be known only by the
MN and the nAR. Knew must not have been used prior to the initial message.
Furthermore, the MN and the nAR must know each other’s public key.

Trust is established between the two ARs and a secured (encrypted and
authenticated) tunnel is established. Thus, the pAR and the nAR share and agree on
symmetric session-keys for tunneling purposes. The keys are referred to as Krunnec
and KrunneL pH.

It should be mentioned that the nAR’s posterior knowledge has to be the same as the
pAR’s prior knowledge, since the nAR of protocol run 7 is the pAR of protocol run
n+l.

3.2 Protocol Specification

The IDKE framework divides the message flow into five parts: Trust establishment
between the ARs, the transfer-key negotiation required for a secure channel
establishment, the transfer of Ksus between the ARs and the acknowledgement of the
MN as well as the two optional messages for home authentication. In contrast to the
IDKE framework in Figure 11, in the protocol specification message 7 and 8 are
combined in a single message. Furthermore, the home authentication process is not
included. The detailed message exchange is illustrated in Figure 12. The protocol
specification of the final version in the standard cryptographic notation is shown in
Protocol 1. This classical cryptographic notation is used for all messages as depicted
in Section 2.3.2 and 2.3.3 is given in Table 2 that also introduces the Casper protocol
notation.
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Classical Casper Description

notation notation

{XYZ}, {XYZ}K} XYZ is encrypted by the symmetric shared key K
[X] - X is optional

X/Y] - Y can be optionally used instead of X

PK(X) PK(X) asymmetric public key of X

SK(X) SK(X) asymmetric secret key of X; the inverse key to PK(X)
X} ok {XHPK(Y)} X encrypted by Y’s public key

{X}SK(Y) {X}{SK(Y)} X signed by Y’s secret key

{.}* - Encryption/signature is optional

X—-I1D X unique identifier of X

na Na nonce a4, a random number for freshness as

introduced in Section 2.4.1.2

Table 2: Cryptographic Notation

The messages of the final IDKE protocol-specification (see Protocol 1) are explained
in more detail below:

(1) It is assumed that the MN receives an advertisement, called beacon, from the nAR
as well as its public key PK(nAR). This beacon is sent out at regular periods, but it
can also be requested by the MN. It also has a domain identifier which enables the
MN to judge as to whether a new domain has been offered or not. The MN desires
for some reason to re-attach itself to the nAR. There are a number of possible reasons
for this. It could for example, be due to the MN’s movement or it could have been
caused by a connection loss to the pAR.

(2) The MN sends a handover request message to the nAR. The aim of this message is
to transfer an authentication token to the nAR. As an authentication token, a part of
the message is encrypted by the Ksmus and thus cannot be read by the nAR. The
purpose of this token is for forwarding it to the nAR in order to authenticate the nAR
for the receipt of the session-key Ksus. The authentication token contains the nAR’s
public key and the identifiers pertaining to the nAR and the MN. Therefore, it only
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authenticates the key forwarding to this specific nAR and the purpose is limited to
being used only with the initiating MN. The message also includes an encrypted
nonce referred to as nonce na. The purpose of na is to guarantee the freshness and
authentication of the key forwarding session. As an alternative to nonce na a
timestamp can be used. This timestamp remains the same during the entire protocol
run and is thus denoted as TS1.

nAR - MN :nAR-ID,PK(nAR)
. MN - nAR :pAR-ID, {na/[TS1],PK(nAR),nAR - ID,MN -ID}

SMS

. NAR - pAR :nAR-ID, {na/[TS1],PK(nAR),nAR -ID,MN -ID},
. PAR = nAR :pAR-1ID, {na/[TS1], K yyne , PAR - 1D, nAR - ID}
. nNAR - pAR :{na/[TS1],nAR -ID}
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SMS PK(MN)

SK(nAR)
10. MN - nAR : {na/[TS1], MN-ID, nAR-ID},

*optional

Knew ]

Protocol 1: IDKE Protocol

(3) The nAR forwards the token to the pAR. The pAR checks the token by decrypting
the content because pAR initially possesses Ksus. The pAR, based on the token
content, is able to judge as to whether a key transfer has been authorized or not. The
token validity check includes validating all identifiers in order to bind the protocol
run to these entities. The pAR verifies whether the MN actually has knowledge of the
session-key Ksums. Verification of the timestamp respectively the nonce na is
performed in order to guarantee the freshness of the protocol run. If the pAR
considers the nAR is untrustworthy, it will cancel the protocol run. The token
combines the nAR’s identity, the MN’s desire to handover and freshness of this
request.

(4) According to the validity of the token, the pAR responds to the nAR. This
message authorizes the nAR to start the secure tunnel establishment between the
nAR and the pAR. The entire message is encrypted by the verified nAR’s public key
obtained from the encrypted token. The message includes a key referred to as
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Krunnee. This is a temporal key used for establishing a secure tunnel between the ARs
without providing any forward secrecy.

(5) The nAR sends a message back to the pAR, encrypted by Krunner, confirming that
it is willing to establish a secure tunnel.

(6) The pAR then starts the tunnel establishment based on Krunner. In order to
provide forward secrecy for tunnel encryption, the tunnel is established by utilizing
an authenticated Diffie-Hellman Key Exchange (DH). Thus, the pAR computes the
first so called half-key and sends it to the nAR.

(7) The nAR replies by sending the corresponding second half key encrypted by
Krunner which also acts as a key request message for Ksus. Both, pAR and nAR, are
now able to compute a session-key based on DH. This fresh shared key is used for
the forwarding tunnel between pAR and nAR is referred to as KrunneL_p.

(8) Finally, the pAR forwards the Ksus, the nAR’s identifier and the MN’s public key
to the nAR via the secure tunnel.

(9) The nAR sends a message to the MN for the purpose of authentication which
contains the initial nonce na or timestamp for freshness. The message is encrypted by
Ksus in order to prove that the key was actually obtained from the pAR. The message
is signed by the nAR and encrypted using the nAR’s private key. It is then encrypted
by the MN'’s public key in order to make the message only readable to the MN. This
is organized as follows:

{{{na/[T51], K ew, NARID} } }

5 ) SKAR) | i aan
This message also contains a new session-key Knew which provides session-key
freshness. Due to the encryption of the session-key, it is only known to the MN and
the nAR. Knew is fresh according to na; and therefore it must have been created by
nAR because of the digital signature.

(10) The MN authenticates itself to the nAR, acknowledges the connection
establishment and confirms the reception of Knew by sending back a message. This in

turn is encrypted by Knew and contains the nonce na or timestamp, as well as the
nAR’s and MN’s identifiers.
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Figure 12: IDKE Protocol Message Flow
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3.2.7 Authentication Properties

A number of authentications take place during the protocol run. The final objective is
to achieve mutual authentication between all three entities. None of the entities need
to authenticate themselves. There are six cases (two for each entity) which still
remain to be considered. An exception is that the pAR is not authenticated for the
nAR due to the design of the IDKE protocol. It endeavors to forward keys, but cannot
provide any initial key establishment. In order to implement an initial key
establishment, this is performed with the aid of the home network which is
considered as trustworthy. In comparison with inductive proof, the initial key
establishment provides trust establishment at hop 1, whereas IDKE provides trust for
hop n+1 by adopting the assumption that n is already trustworthy. This concept is
referred to as a chain of trust along the path.

The other five authentications need to be provided during the protocol run.
Authentication takes place in the following order: MN to pAR, nAR to pAR, nAR to
MN, pAR to nAR and MN to nAR. In Figure 12 messages are highlighted by colors
that have the following significance:

Authentication of MN to pAR by decrypting the token using Kswus.

Authentication of nAR to pAR by verifying the correctness of the relation
between nAR and the claimed public key. This is done at the pAR by
requesting the LAAA server. The connection between ARs and AAA
servers is assumed to be secure. This is not explicitly considered by the
IDKE protocol.

Authentication of nAR to MN by nAR’s use of Ksus encrypting PK(nAR),
nAR-ID and na.

Authentication of pAR to nAR by MN responding to nAR’s message and
therefore, accepting Ksms as a valid key.

Authentication of MN to nAR by acknowledging message 3 by pAR.
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5.2.2 Home Authentication & Initial Key Setup

IDKE is a localized approach for key transfer. However, involving the MN home
network in the registration procedure is possible by using an IDKE protocol
extension called IDKE_home. This home authentication procedure describes the
communication between the MN and the home network. The purpose is to establish
the Ksus between the MN and the home network and to authenticate the binding of
nAR and MN for the home network. Home authentication is an optional feature of
the IDKE. It can be performed when the key forwarding fails or for the initial key
establishment. Initial key establishment refers to cases when a pAR does not exist
and the session is just being enrolled.

The IDKE_home extension involves the messages (A), (B) and (C) as illustrated in
Figure 13. It is important to mention here that the home registration process is not
considered in the text on security verification described in Chapter 4. Therefore, the
message flow in Figure 12 also does not illustrate any message for the home network
and nor does any other message contain data required for the home authentication
procedure. The concept is introduced below. The performance evaluations in
Chapter 6 analyze the delay caused by this home registration process.

Message (A) is sent from the nAR to the MN’s home network and consists of two
formulae:

MHAT = ({nAR-ID, PK(nAR), Kgys /[Kypw ], TS2} )

MS

[ ART = ({{nAR -ID, MN - ID,[...]}SK(nAm}KSMS /[KNEW]H

The first formula relates to Mobile Home Authentication Token (MHAT). This is
encrypted by a permanent pre-shared key between the MN and the HAAA server
and is referred to as Master Secret (MS). The MHAT is computed by the MN
according to the router advertisement message. When the MN desires a home
authentication, it attaches MHAT to the handover request message. The router
advertisement and handover request message are represented by messages (1) and
(2) in Figure 13. Hence, the MHAT is forwarded by the nAR, but can never be
understood by it. The MHAT includes the nAR’s identifier and public key as well as
the session-key that is either Ksus or Knew. The message (A) can also contain a second
formula with the title AR Registration Token (ART) and which is generated by the
nAR. It contains the nAR’s and the MN'’s identifier and may also contain additional
data for future purposes such as domain identifier, service identifiers and accounting
parameters. The nAR signs the message by its private key and encrypts it by Ksus or

57



The IDKE Protocol Chapter 3 The Inter-Domain Key Exchange Approach

optionally Knew. The HAAA server sends back an acknowledgement to the nAR from
where it is encrypted by the nAR’s public key and the current session-key:

{{AckData,...}

PK(IIAR) }KSMS /[KNEW]

When the home authentication is used for an initial key setup, the nAR does not have
any knowledge of the Ksus or Knew. Thus, the ART is left blank.

The HAAA server can update the new key Knew for communication between the
home network and the MN’s access network. When (A) is used for an initial key
setup and nAR does not know any session-key, then a new key is setup. The HAAA
server generates a random number ran and utilizes a function that generates a
session based on a random number and MS:

Initial _K,,s = funct(MS, ran)

The HAAA server sends back a different message (B) to the nAR which contains the
initial session master secret Initial_Ksus encrypted by the nAR’s public key and ran as
a challenge (C) for the MN:

{7’ an, Initial _ Kgyq }PK(nAR)

As the MN knows MS, it is able to compute Initial_Ksus on its own. If both nAR and
MN finally know Initial_Ksws, they will be considered as mutually authenticated.
Further authentication can then be performed by the IDKE protocol.
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Ksws, MS Ksvs Ksws, MS
MN @ nAR pAR Home

(2) {MHATHKsps/[ Knewl}

< secure tunnel established (based on shared secret) >

(8) s
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@{MHAT}{MS}, KARTHKsms/[Knewl}] o

Initial_Kgsms:=funct(MS,ran )u

@ _ {ran, Initial_Ksms{PK(nAR)}

ran i

Initial_Ksws:=funct(MS,ran)

Figure 13: Home Authentication Procedure
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Chapter 4

Security Verification

This chapter introduces formal security verification methods such as theorem proving and
model checking. Firstly, an overview on several approaches is given and their appropriateness
for analyzing the IDKE protocol is examined. The chosen approach, a model checker titled
Failure Divergence Refinement (FDR) is introduced as well as its underlying algebra,
Communicating Sequential Processes (CSP). Secondly, the IDKE protocol is improved by
successively analyzing several versions of the IDKE protocol. Finally, the final light weight
and secure version of the IDKE protocol is achieved.

4.1 Introduction

4.1.1 Overview

Communication protocols used in distributed systems such as computer networks
need to fulfill requirements that guarantee the correct behavior of a protocol.
Correctness can be interpreted from a vast variety of viewpoints, for instance
considering robustness against unexpected inputs and messages, guaranteeing the
absence of any livelock or deadlock, or analyzing interoperability aspects. Whenever
verifying the correctness one must be clear on: the objectives of the protocol the
provided properties, the considered assumptions, the given environment and the
afforded pre- and post-conditions of the protocol. When focusing on security
verification, the specification covers authentication or agreements and the secrecy of
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confidential data. The security protocols can then be verified by formal methods
[Gol00] that can be divided into two major categories: model checking and theorem
proving. The former explores a huge, but finite space of states in order to find a
sequence of transactions in reaching an undesired state. Undesired states refer to all
states that do not conform to the protocol objectives. An intruder in such a state
knows a secret or he has been authenticated. Once an undesired state has been
reached the protocol is broken, whereas the sequence to reach this state is referred to
as an attack. Hence, model checkers are able to discover attacks in given
environments. The latter approach of theorem proving, is more mathematical since it
is based on deduction rules. Theorem proving approaches claim to allow for the
checking of a protocol by considering all possible states and thereby formally
proving the correctness. However, the assumptions applying to theorem proving
methods are sometimes difficult to fulfill. Therefore, protocols that have been stated
as being correct have later been discovered to be vulnerable to an attack. Both
methods require computer assistance in order to carry out the analyses. Model
checking approaches are commonly based on a general purpose model checker and a
transformation toolset for handling the dedicated inputs of the security protocols.

This chapter describes the most common approaches and verifies the IDKE protocol
by means of model checking. Several versions of the IDKE protocol are actually
analyzed for two reasons: Firstly, the reason why the protocol specification was
selected. This was discussed in Chapter 3. The final version is selected by presenting
attacks on the IDKE protocol modifications that do not fulfill the desired protocol
properties. Secondly, apart from the security aspect, the performance decreases due
to the increasing number of encrypted or authenticated messages and their size. In
order to obtain a lightweight protocol, each message and operation needs to be
carefully considered as to whether it is actually required to fulfill the requirements.

A brief overview of related works will initially be given followed by this study’s
application of the Communicating Sequential Processes (CSP) as a basis for the Failure
Divergence Refinement (FDR). The model checker FDR as well as a CSP-compiler
named Casper will be presented in Section 4.2.2 and ultimately, the Casper/FDR tool
chain used for security protocol analyses will be introduced.

4.1.2 Tools

Security protocol development increased the demands on verification methods as
even small protocols caused problems when being analyzed. Security protocols
turned out to be too complex for analyzing without any computer aid [AN95, Boy93,
GNY90, Gol99, Gol03]. Thus, a vast variety of formal approaches for security

62



The IDKE Protocol Chapter 4 Security Verification

protocol verification such as Spi-Calculus [AG99] and Murg [MMS97] were
developed.

Some of these formal methods are described herein. The aim of this section is to
determine which approach is the most appropriate one for the IDKE protocol
verification. It also shows how the IDKE protocol can be verified by a theorem
proving approach termed the BAN logic. However, the limitations of the BAN logic
as well as the limitations of other approaches has been the incentive for the section
that deals with the subject of the FDR model checker.

4.1.2.1 BAN Logic

The logic of Burrows, Abadi and Needham (BAN) [BANS89, BAN90, BANO91] was
developed in 1989 and is one of the first formal protocol verification approaches. This
theorem proving method is used for the reasoning out of authentication and key
establishment protocols. Its main advantage is that proofs in BAN logic are simple,
short and can be obtained manually.

BAN Expr. Interpretation of the expression

Pl=X P belives X; P belives that X is true.

P<X P sees X; P has received a message from which X can be read.
Pl~X P once said X; P has sent a message containing X.

Pl=X P has jurisdiction over X; P is trusted on the truth of X.

#(X) X is fresh; X has not been sent previous to the current protocol run.

K

P<«——Q P and Q share key K; K is confidential.

Ii P P has K as public key; the matching secrect key is K™
{X}x Xisencrypted by K.

p== Q Formula X is known only to P and Q.

<X >Y X combined with formula Y; Y is assumend to be secret.

Table 3: BAN Logic Expressions

The basic concept is to determine how the belief of agents in other agents evolves
whenever new information is received. An idealization process creates formulae
containing the initial and the end knowledge of all agents. Furthermore, these
formulae contain the assumptions prior to the protocol run and at all stages of a
protocol run. The most important factor of the BAN logic is its limitation on
authentication. This means that there are no secrecy statements which are expressible.
It is important to consider the BAN-analysis-results carefully. The interpretation is
difficult since BAN explicitly assumes that all participants are honest and are
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therefore trustworthy. Having these two assumptions in mind, it is not surprising
that the BAN logic proved the Needham Schroeder Public Key Protocol (NSPK) [NS78] as
secure, while Lowe outlines an attack [Low96]. Nevertheless, BAN logic is a powerful
tool to prove equivalences of protocols or parts of protocols and can be used to
optimize over-engineered security protocols to their minimal version.

The syntax of BAN covers three primitive objects that are principals, keys and
nonces. Protocol messages are expressed as formulae ranging over X and Y, where P
and Q stand for principals and K range over keys. The formal notation for shared key
protocols is illustrated in Table 3.

Proves are based on deduction rules read as “if formulae Xj,...,X:» hold than
consequently Y holds”, written more concisely as:

X0 X,
Y

The BAN logic introduced five interference rules which are:
(1) Message-meaning rule for shared keys:

P=P<«%5Q,P<{X},
PEQl-X

P believes that it shares a key K with Q and sees a message X encrypted by K. Thus, P
believes that Q had sent message X.

(2) Message meaning rule for public/private keys:

K
‘I)|E|_>Q’]J4 {X}K*I

PEQl-X
(3) Freshness rule:
P=#(X)
P=#(X,Y)

If P believes that X is fresh than P believes that X, in conjunction with Y is also fresh.

(4) Nonce-verification rule:
PlE#X),PEQI- X
PEQEX

If P believes that a nonce X is fresh and P belies that Q had once said X than P also
believes that Q believes in nonce X. This indicates that Q had previously said X and
was previously alive.

(5) Jurisdiction rule:
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PEQI= X,PEQEEX
P=X

In order to analyze the protocol messages, they need to be converted into BAN
formulae. Idealizations that need to be performed prior to analyzing the IDKE
protocol are illustrated in Table 4. BAN logic instances are represented by a single
character, so that the pAR is denoted as P, the nAR as N and the MN as M. The BAN
approach then deduces the protocols goals from the following preconditions (called
assumptions in BAN logic):

IDKE Assumptions:

PK(P)  PK(N)

M|=(M«E= 5P, P> N)

PK(M)

Pl=(M <525 P> M)

A simplified IDKE Protocol in standard notation Idealized BAN formulae

1.nAR - MN :PK(nAR),nAR-ID

PK(N)
2.MN - nAR :pAR-ID, {na,PK(nAR),nAR-ID,MN-ID, pAR-ID} {na, > N}

Ksus

PK(N)
3.nAR — pAR :nAR-1ID, {na, PK(nAR),nAR-ID,MN - ID, pAR - ID} {na, - N}
Ksus

~

4.pAR - nAR:pAR-ID, {pAR -ID,nAR-ID, K 1yaner }PK(HAR) {Krunner }PK(N)

5.nAR - pAR:{nAR-ID}, N

6. pAR — nAR: { }KT‘UNNEL {Hl}KTUNNFI

7.nAR - pAR {HZ}KTUNNEL {HZ}KTUN\FI

8.PAR - nAR : {Kgys, PK(MN), nAR-ID} { K5 PK (M)} Krynnrr o
9.nAR > MN : { na, KNEW Ksms SK(nAR) }pK(MN) { { e KNEW Kous }PKW)'I }PK(M)

Table 4: IDKE Message Idealizations of BAN Logic

The IDKE protocol has many goals to achieve. A very simple one will act as an
example, illustrating that under the assumption that M believes in the public key of
the N, then the goal that P believes in the public key of N is fulfilled. This goal is
expressed as

IDKE Protocol Goal 1:
PK(N)
P —» N

The goal is reached by the deduction illustrated by the following proof:
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Proof of IDKE Goal 1:
Starting with message 3 (see protocol)

PK(N)
P <{na, — N}Ksms
using the assumption
Pl=Mc&E=5p

applying the message - meaning rule for shared keys (1)
PK(N)

Pl=M<«E= 5P P <{na, — N}Ksms
PK(N)

Pl=M|~ (na, — N)
based on the jurisdiction rule (5)

PK(N) PK(N)
PEM|= (na, —» N),P|l=M|=(na, —» N)
PR(N)
P|=(na, —» N)
then follows
PK(N) PK(N)
Plz(na, —» N)=Pl= —» N&P|zna

O

It should be mentioned that the IDKE Goal 1 is somewhat obvious and can simply be
verified by the BAN logic. However, other proofs are more complex and the details
of each of these cover several pages.

A number of protocols have been verified by the BAN logic, such as the Needham-
Schroeder public key protocol which is the basis for the Kerberos [Gam03, Tun99]
authentication protocol. The main drawback of the BAN logic is that these protocols
have later been discovered to be insecure. In conclusion, the BAN logic is
inappropriate for use in the formal verification of the IDKE protocol, even if it does
present a convenient method. However, the BAN-logic does provide a simple toolset
that enables one to analyze protocols instantly in order to obtain an initial impression
[BM94, Nes90, HRM+03].

4.1.2.2 NRL Protocol Analyzer

This is a hybrid approach based on both model checking and theorem proving. It
was devised by the US Naval Research Laboratory (NRL) [Mea96] and is referred to as
the NRL Protocol Analyzer (NPA). As a result of a long term project, the NPA is a tool
for verifying the security properties of cryptographic protocols [Mea99]. This
immense program consisting of several hundred thousands lines of Prolog-code,
performs checks based on graphical searches. Starting with insecure states, the tool
endeavors to reach the initial state and thereby locate any attack.
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All stages of the protocol are represented as conditional rewriting rules that
correspond to the data types used. The specialty of this approach is to check secrecy
policies. It can check whether the intruder is able to deduce a secret from the rules
and its knowledge. The NRL uses a ploy for any authentication or agreements. The
participant’s belief in the protocol is stored in local variables in order to check as to
whether an attacker is able to obtain possession of these variables.

NPA requires user expertise in order to construct the correct word-processing-rules
from the protocol specification. Specification errors will obviously result in false
assumptions on the secrecy of variables. Automation has been increased to enable the
tool to be more user friendly. However, the general public will not profit directly
from this research into the NPA due to governmental restrictions on its use.

4.1.2.3 The Inductive Model

The inductive model [Pau98] was introduced in 1998 for use as a formal security
protocol verification-method. The concept of this theorem proving approach is based
on the use of induction for proving the results of all infinite possible protocol states
without having to explicitly examine all of them. The first tool devised by Paulson
[Pau98] is named Isabelle and is based on a formalism referred to as the Higher Order
Logic (HOL) [GM93].

Induction is a well known approach that proves the correctness of a formula F(x) to
be true for each integer x. This is formulated on the basis that F(0) is to be established
along with a general result of F(n)— F(n+1). The inductive proof then concludes

that F(x) is true for any positive integer x.

All desirable properties are extracted for protocol verification and it is shown that
they are preserved under all possible extensions. Thus, this approach is capable of
stating whether protocols are insecure. However, it does not explicitly show an
attack. This drawback makes the inductive approach impracticable for improving
protocols in cases where they are stated as being insecure.

4.2 The Casper/FDR Approach

A model checking approach is selected for analyzing the IDKE protocol which
utilizes a tool chain consisting of a compiler for security protocols named Casper, a
general purposes model checker called Failure Divergence Refinement (FDR) and the
graphical front-end CasperFDR. FDR is based on an algebra termed Communication
Sequential Processes (CSP) which is described in the following section. The FDR and
Casper are presented in later sections.
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4.2.17 Communicating Sequential Processes

The Communicating Sequential Processes (CSP) algebra [RS01, Sch99] developed by
Hoare [Hoa85, Hoa9%6] is a mathematical framework representing systems that
consist of entities (processes). These only communicate via the interchange of
messages. Therefore, CSP is perfectly appropriate for the simulation of security
protocols in that it describes the exchange of messages between the different agents.

4.2.1.1 The CSP Algebra

All communicating entities in CSP are modeled as processes interacting via elements
of a set of all visible events or actions X . In contrast to visible events, the internal
action is conventionally written 7. The differentiation between visible and invisible
events is very important. It is a requirement of the underlying mathematical model of
the CSP that equivalence is defined as: “The fact that two different programs produce
patterns of actions that cannot be distinguished by an observer.”

The minimal program merely contains the Stop process that simply does nothing.
This process is required in order to symbolize the total end of a chain of actions. By
using the prefixing operator ”—" actions can be assigned to processes, e.g.,, a— P
reads as “the process performs a and then behaves like P”. Based on these
fundamentals, a first chain of actions (event in, event out, event Stop) can be
constructed:

hy, fer e £
hy — fer — Stop

By using these rules, more complex structures such as recursive assignments can
easily be built:
A=hy—>B

Simple: P =hy — fer > P Pair of processes: B for —hy— A

Instead of exactly specifying the possible action, a set A <X of visible actions may be
given. The expression ?x: A — P(x) offers the environment the means of selecting

one action x from the set A. After processing x the program behaves like P(x). It is

very important to recognize that the environment selects the action from the set,
whereas the process itself does not have any direct influence. Hence, x can be
thought of as a parameter of P. The following example machine has an internal state
s and keys LU{off} where L is the alphabet of individual characters. Machinel

illustrates how parameters can be introduced by direct input:
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Machinel(s)=?x: LU{off} - Machinel'(s,x)
Machinel'(s,off ) = Stop

Machinel'(s,x) = crypt(s,x) — Machinel(nextstate (s, x))
(xelL)

Machinel processes action x, which leads to one of the two different states. If x is off,
the machine is turned off and thus process stop is reached, otherwise Machinel goes
to a next state s resulting in a function of mnextstate(s,x). Presumably,

"nextstate(s,x)" ¢ L is employed in order to avoid confusing the input and the output

of the machine. CSP allows for the adding of channels in and out to the machine to
enable it to handle in- and outputs. The “?” models input while “!”
output. The machine presented above without the stop-function will look as follows:

represents the

Machine2(s) =in?x — outlcrypt(s,x) — Machine2(nextstate(s, x))

Machine? is more natural than Machinel, but it lacks the stop function. Thus, an
additional important operator is the choice operator “n”. By adding the operation, the
Machine would then appear as follows:

Machine3(s)=in?x — out!crypt(s,x) — Machine3(nextstate (s, x))
o off — Stop

While all previous assignments were deterministic, the choice operator enables
nondeterministic behavior to be added to the system. However, the developer of the
system is unable to predict the actual behavior. The system is allowed to make
internal decisions that affect the external view of it - the visible events. For instance,
nondeterminism is given by

(a—a— Stop)a(a—b—> Stop)

After the action g, the implantations are able to either select a or b as the following
action. This behavior is unpredictable since the sequence of visible events can either
be a,a or a,b. In order to express nondeterminism explicitly, the nondeterministic choice
operator “T'"" is used. PI'1Q and PoQ act like P or like Q and have the same set of traces
that are in all sequences of visible communication. Hence, they can perform
(PoQ ) = trace(P) U trace(Q) . The difference between both is that in the case of PoQ,
the implementer of a system does not have any influence on which option another
user will take. However, in the case of the nondeterministic choice PI'lQ, even the
user does not have any control over which behavior is actually selected as this
function is carried out by the system itself. Another important difference between O
and [Mis that relating to the deadlock behavior:

(a— P)MStop is not the same as (a — P)aStop
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The two processes differ since the first one can choose to stop immediately
(deadlock), whereas the second behaves like (a— P). This is because it offers the

environment the choice between (a— P)’s actions. However, it does not offer any

other possibilities e.g. (Stop). The result is in fact the same as merely offering
(a—>P)’s.

It can be shown that all CSP operators comply with the distributive law, resulting in
the equivalence of

a— (b — Stopoc — Stop) and (a — b — Stop)o(a — ¢ — Stop).

It is often useful to have generalized versions of the choice operators, e.g. oS offers
the choice of all processes in S, whereas ['lS can choose to act like any member of S.
Therefore, it is necessary that S is unequal to the empty set, S# .

An essential concept embracing nondeterminism is refinement. Refinement refers to
cases where a process P has at least the same set of choices as Q. This implies the
equivalence of P and Pr'1Q. It is said “Q refines P” written as P £ Q. The main strength
of the model checker FDR (see Section 4.2.2) lies in the decision on refinement.

The state of the entire system is composed of one state for each component. This fact
exponentially increases the state space within the size of the network. However the
components’ states are not independent of each other. The state of a sender for
example is somehow related to the state of the receiver. In order to provide a
handshaken communication, it is necessary to synchronize the processes. Therefore
parallel operators provide synchronization for multiple processes on dedicated events.
This concept is important in providing a handshaken communication between
processes. The operator P||Q forces all visible actions of P and Q to be synchronized.
Thus, P||Q is only able to perform a€ZX, if both P and Q can. It is also only possible

to restrict the synchronization on a subset X cX by using the interfaced parallel
operator P||Q. One can perform unsynchronized actions for all other events that do
X

not include X, Q and P. The following example illustrates the parallel operator used
for synchronizing a sending AR with a receiving AR:

L e AR mid AR2 - right

AR1=left?x - mid!x - AR1
AR2 =mid?x — right!x - AR2

This formula shows the input choice prefix “?” which denotes the reception of a

II'/I

message, whereas the output choice prefix
synchronizing interface between these processes ARI and AR2 is the channel mid.

denotes the sending of a message. The
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Thus, it can be denoted by the interfaced parallel operator as AR3=AR1 || AR2.

{mid)
ART1 accepts a value x of the channel left, which in turn is transferred via the channel
mid to AR2. This is then outputted to channel right by right!x. The combination of
multiple processes using the interfaced parallel operator increases the complexity of the
interface definition and is a potential source of implementation errors. The CSP for
this reason provides the concept of alphabets. An alphabet is a set of events which are
controlled by the process. The interface between two processes is merely the
intersection of their alphabets. An action of a chain of interfaced processes can only
be processed when all processes agree to whom owns the alphabet set of events. The
binary interface operator is written as Py, Q withX =alphabetof P,

Y = alphabet of Q. The general form of this operator is
”z'n:l (R ’ Az’ )
defined via induction for n > 2 by:

|Ln=§1 (Pi/Ai) :(”zn=1 (Pi’Ai))A; ”Am (R1+1/A11+1)’ A; :U?=1Ai

If the intersection of alphabets is &, concurrency can be expressed by the usage of
the interleaving operator ||| which is an abbreviation for || . The general version of the
%]

interleaving operator is |||S and this can be used to simplify the interfacing of
disjointed sets.

The expansion of networks with an infinite state space can be created by using the
parallel operator:

P=a—(P| P)
There is one additional process P in the system for each event a performed.

It is sometimes necessary to hide events from the user. In order to achieve this in CSP
events of X, they are changed into the invisible element named 7. This operation is
performed by the hiding operator P\ X. The process P\ X behaves in the same way as P
with the exception that all events from X are substituted by the invisible element 7.
The updated example of the ARs is then expressed as follows:

AR1=left?x - mid!x - AR1

AR2 =mid?x — right!x - AR2

AR3=AR1 || AR2

{mid}

ARS\{mid} only leaves the external communication visible and hides the transfers
of values x from AR1 to AR2.
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When a system is viewed externally, there are a vast variety of reasons why a process
ceases to communicate with the environment. It can be caused by reaching the Stop
state, deadlocking or by being in a certain race condition. It is important to know
whether a process has terminated successfully or not, as well as being able to
recognize whether a process has reached the Stop state. A successful termination is
thus denoted by the symbol”V”. This represents a special event that has been
introduced via the process Skip.

a— b — Skip
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Symbol Description
Stop the process that does nothing
a—>P event prefix
?x:A—>P event prefix choice
c?x:A—>P input prefix choice
clx:A—>P output prefix choice
PoQ choice between two processes
oS general choice
P10 nondeterministic choice
rs general nondeterministic choice
Pl O lockstep parallel
P, O synchronized parallel
PllQ interface parallel

X
Il S general interleaving
P\X event hiding
P[R] process relational renaming
Skip successful termination
P;0 sequential composition
P=F(P) recursive definition
up-F(p) recursive process

Table 5: CSP Operator Overview
The example above is a process that successfully terminates after the events 4 and b
have been performed. The use of the parallel operator P||Skip results in a behavior

just like P, because the right-hand process terminates immediately and waits for P to
do so too. The basic operators of CSP are summarized in Table 5. This table has
mostly been imported from [RS01].
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4.2.1.2 Process Behavior

In order to be able to understand the CSP process behavior, it is important to have
knowledge of the concept of traces. As mentioned earlier, the traces of a process P are
sequences of visible communications which they can perform. Traces of Stop for
example are given by:

traces(Stop) ={( )}

where < > is the empty sequence. However, the most interesting concern those traces

of a process which perform actions where st is the concatenation of s and ¢ while s"
is the concatenation of n copies of s.

traces( uP.a — Pob — Skip) = {<a>" Aa)" ~(b),(a)" ~ <b,\/>|n € N}

CSP represents each process P by its own set of traces that are:
e nonempty, as the empty trace can be performed by any process
e prefix-closed, that if st is a trace then so is s.
All traces span over a finite set of sequences of T that may also include V.

All words (constructs) of the CSP language are deduced from a basic set of rules used
for calculating traces(P) for all P=CSP-terms. The following rules illustrate the trace

deductions. A complete overview is shown: [RS01] pp. 63, 64.
o traces(Stop)={( )}, the empty trace.

traces(a — P)={( )}U {<a> Aslse tmces(P)} , there are two possible behaviors

for this process: Either it does nothing or its first event is a followed by a trace
of P.

o traces(PoQ) = traces(P)Utraces(Q) , this process offers the traces of P and Q as
is described by the operator o.

o traces(0S) =U{traces(P)|P € S}, all traces for any nonempty set P of S.

o traces(P||Q)=traces(P)Ntraces(Q), because of the need for synchronization of

each event, every trace of the combination has to be a trace of both P and Q.

. tmces(P | Q) = U{S | t|s e traces(P) At e tmces(Q)}, where s||t is the set of traces
X X X

that can result from P and Q respectively performing s and t. Details on the
calculation are shown on [Ros97] or [Sch99].

traces(P\ X) = {s\X|s € tmces(P)}, where s\ X = s‘(zV \X).
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When all traces of P satisfy a logical property S(tr) then these traces can be written
as Psat S(tr) which is equivalent to Vtr e traces(P)eS(tr). Three direct consequences

result from this definition:

e Psattrue(tr) for any process P. This expresses that every process meets the

weakest specification that does not disallow any behavior.

o (PsatS(tr)APsatT(tr))= (PsatS(tr)AT(tr)), which allows the separate

establishment of conjuncts in a specification with a number of conjunctions.

. (Psat S(tr)A(S(tr)= T(tr))) = Psat T (tr). If P satisfies a specification S, then

P satisfies any weaker specification T.

4.2.1.3 Discrete Time

Many protocols require a timing-construct in order to provide timestamps that are
necessary in avoiding deadlocks or preventing replay-attacks. There are two
approaches for including time into the CSP process algebra. The first approach is
Timed CSP [Sch99] which attaches a nonnegative real number to each event in the set
of traces. Therefore, it is possible to record the moment at which an event occurs. The
problem with this approach is that it requires a lot of unpredictable changes in the
theory of concurrent systems. The second approach is due to this, used in the
construction of network protocols by employing CSP (detailed information in
[Ros97]): By adopting this method, the alphabet X is extended by an extra event time
in which it is assumed that it occurs at regular intervals. This event is usually termed
tock. Timing is now possible in the form that any event which takes place between
the third and the fourth tock is referred to as occurring between time unit three and
four. These time units can be adapted to the system. The following example illustrates
a possible usage of the tock event. While a occurs every time unit in 7, ,7, allows a

nondeterministic choice to wait.
T, =a—tock > T,
T, =(a — tock —> T, )o(tock > T, )
The process states can generally be categorized into three groups:
e Andle state allows the choice to wait without changing its internal state.

e An evolving state allows the choice to wait, but changes its internal state, e.g., a
counter.

An urgent state is one in which no tock is possible. The process is waiting for a further
event to occur.
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4.2.1.4 Modeling a Security Protocol in CSP

The process behavior for security process modeling needs to be defined and specified
in the CSP. Due to the fact that all communication is realized by visible events, the
protocol can be modeled as follows: The first step is to obtain a detailed description
of the protocol and to extrapolate any agent’s view of the message exchange. All
inputs and outputs take the form of receive.a.b.m and send.a.b.m. In each case, a and b
are the participating agents and m the message. One should not assume that the
agents always handshake on such events in the same manner as CSP’s parallel
operator || does. In fact it is better to imagine that the messages posted into the
environment are similar to throwing a message in a bottle into the sea. Thus, the
simplified protocol description (M for MN-ID, N for nAR-ID and P for pAR-ID) for
the first three messages of the IDKE protocol looks like this:

N’s view (as initiator)

N,PK(N)

Message 1l: N sends to M:

P,({PK(N),N,M}, )—MN _Token

Message 2: N gets from ‘M’: Kous
Message 3: N sends to P: ALAAPJ—Tbken
M’s view (as receiver)
N,PK(N
Message 1l: M gets from ‘N’: / ( )
P,({PK(N),N, M}, )
Message 2: M sends to N : SMS
P’s view (as server)
N,MN _Token

Message 3: P gets from 'N’:

The quotes ‘X’ are to emphasize that the agent can neither be certain of the identity of
its partner nor as to whether the messages in fact successfully arrive.

The next step in modeling the protocol, is the transformation of the description into
the CSP processes that support the two basic functions send and receive. However,
before transmitting messages, agents have to calculate all of the necessary
information, e.g., nonces, hash- or encryption functions etc. In practice (in the real
world), nonces are chosen by pseudo-random-number-generators. Due to the large
key size respectively long nonces, both are assumed to be unique. However, CSP
systems only provide short lengths for keys and nonces and consequently
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uniqueness is actually not provided. Therefore, another approach must be applied in
order to guarantee this. There are two possible solutions to this problem:

e Every process is equipped with a list of all variables.

e An additional process manages key/nonce-creation and thereby ensures
uniqueness.

The latter solution is well-suited for the CSP process algebra.

The application of encryption and decryption in the protocol requires processes for
encrypting or decrypting messages. There are two different means for an agent to be
able to receive encrypted information: One is if the key is in the agent’s knowledge,
then decryption is possible. The other is when the agent does not have any possibility
in deciding whether this message belongs to the protocol or it is in fact just garbage.
Therefore, it is not necessary to implement any mathematical encryption/decryption
functions into the CSP, but merely to accept or discard received messages by means
of an external choice for all acceptable messages. This is based on an agent’s
knowledge.

Ok ckey receive.P.N.({P.KNEW}KSMS Anaj, ) — P(N,P,nb,Kyzy )

The statement above illustrates a message acceptance of the form

P—>N:{PKy}, -{na} k., - 1he addressee N is able to decrypt the message and

Ksys

the key Ky, is included as an input into the following process. N has decrypted the
message by K., (which must have had prior knowledge) and has consequently
gathered the key K,;,. In order to avoid deadlocks, the above statement can

alternatively be implemented as follows:

O cker receive.P.N.({P.KNEW}KSMS {na}, ) — P(N,P,nb,Kyp, )
oAbortRun(N)

If acceptance is impossible, the AbortRun action will be performed, thus avoiding a
deadlock. By using these rules, a complete set of processes can be implemented
representing Initiator, Responder and Server. A possible process implementation can
for instance be:

Initiator (N, na) =
env? P: Agent — send.N.P.N.na
O
Ky € Key receive. M.N.{nb}, .m—

nb € Nonce send.N.P.m.{nb}, ——> Session(N, P, K5 na, nb)
meT
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T is the set of all objects that N can accept as messages. The initial communication
env? P: Agent is a representation of how the process’s local environment might

inform it to open up a session with agent P. Nothing prevents N e Agents from

communicating with itself. This is not superfluous, because of the possibility of an
identity having a number of active processes. If this is undesired, the CSP
programmer is free to modify env?P: Agent to env?P: Agent\{N} which explicitly

excludes the agent.

The most usual behavior an agent can perform is the ability to start the protocol in
multiple instances by running it in both the role of sender- and receiver. This can be

specified using the generalized interleave operator |||._, P, with each single protocol

iel

run as one of the P.

4.2.1.5 Modeling an Intruder

There are two possibilities for implementing the intruder: Lazy spy or perfect spy. The
former refers to an attacker that is absolutely passive and by means of capturing data
he endeavors to obtain certain secret information. However, the perfect spy does
everything in combining passive and active attacks in order to discover any
vulnerability (see Section 2.4.3). Thus, when aiming to verify protocol security, the
more appropriate approach is to model an intruder as a perfect spy.

One approach is to implement the intruder as an additional CSP process. However,
an implementation could be difficult and although the set of attacks might be
reduced, it would only be possible to detect attacks following routes that are
anticipated by the intruder’s definition. Hence, the real solution is both elegant and
simple: The intruder is modeled as the environment, which was initially assumed to
behave in a nondeterministic manner and not being goal-oriented. A number of
“intruder instances” are assumed to be joined to one single intruder who is able to
perform an action that is cryptographically justifiable:

e He can overhear and/or block messages from any agent.

e He can generate any message that can be built on the basis of the intruder’s
knowledge including garbage messages (without any information).

e He can act as any agent other than those that are explicitly built into the
network.

At the CSP level this implementation leads to:

Intruder (X) = learn? m : messages —> Intruder(close(X U {m}))

osay ?m : X (\ messages — Intruder (X)

This implementation is illustrated by the diagram in Figure 14.

78



The IDKE Protocol Chapter 4 Security Verification
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Envirnoment

learn

Intruder

Figure 14: All Network Communication Routed through the Intruder

4.2.1.6 Expressing Protocol Goals

Once the protocol is modeled in the CSP, the final step is to specify all of the goals to
be achieved by the protocol or within the protocol run. As introduced in Section
2.4.1.1, the two primary security properties are secrecy and authentication. It is
generally helpful to add signaling channels in the model of the system. These
channels do not reflect the agent’s behavior, but enable the expression of properties
to identify the specific points in the protocol run. These points refer to prior specified
properties. Signaling messages consist of a claim, a sequence of users and a fact such
as a key, a nonce etc. Claims correspond to states of the signaling agent, users
correspond to the agents the signaling is associated with and finally, Facts contain the
actual information of a claim.

In order to realize the secrecy statement, a Claim _ secret message is inserted at the
end of the protocol-description stating that the intruder is unable to obtain the secret
m in the protocol run. The secrecy claim is announced after a full protocol run has
taken place. This is illustrated in Figure 15.
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Figure 15: Secrecy Claim

The realization utilizes the CSP description of each agent’s role combined with the
secret claim. An agent’s run is in the form of:

Initiator (N, na) =
env? P: Agent — send.N.P.N.na

= receive. M.N.{nb}, .m—
Ksys € Key .

send.N.P.m.{nb},  —> signal.Claim _Secret.N.P.nb
nb € Nonce M

meT - Session(N, P,KSMS,na,nb)

These agents interact with the intruder as:
Intruder (X) = learn? m : messages — Intruder (close (X U{m}))

osay ?m : X (Y messages — Intruder (X)

Therefore, a protocol can be described as a combination of all participating users as

m:

protocol = Agent, ||| Agent, ||| Agent,,
while the resulting system looks like:
System = protocol || Intruder

The properties of the security protocol can now be expressed using the trace
specifications S (sr). The protocol specification is correct with respect to the intruder

and the specification if

protocol || Intruder sat S(tr)

80



The IDKE Protocol Chapter 4 Security Verification

If the modeled system given in Figure 14 is expanded by an additional leak channel,
as shown in Figure 16, the secrecy statement can be expressed by:

Secrety, , (tr) = Vm e signal Claim _Secret.N.P.m
in tr AN € Honest _ Agents A P € Honest _ Agents

= —|(leak.m n tr)

& |t
ot

receive send receive send receive

wv
D
>
o
00
2]
000
5

Envirnoment

leak

learn say

Intruder

Figure 16: System Including an Additional Leak Channel

The second important property of cryptographic protocols is Entity Authentication.
This property is also realized by additional signals. The signal Commit.P.N event will
be implemented into the description of N’s run of the protocol in order to mark the
point where authentication between P and N has to be achieved. The occurrence of
this event is read as:

“Agent N has completed a protocol run apparently with P.”
A second signal event Running.P.N is read as:
“Agent P is following a protocol run apparently with N.”

The Running event must always occur before the Commit signal is sent (see Figure
17). If the protocol consisted of two nonces and one key, the Commit signal would be
specified as Commit.P.N .na.nb.K ;,;, which can be read as:
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“Agent P has completed a protocol run apparently with N and with
nonces na and nb and with the key Ksws.”

N P
message transfer———»
.Running
.Commit

Figure 17: Authentication Events in CSP

Each party will introduce a Commit signal (usually) at the end of a protocol run and a
Running signal to correspond with the other party’s Commit signal. The signals for
the  defined roles of Initintor and  Responder  will read as
signal. Commit _Initiator.P.N.nanb.K,,,; and analog for Responder. The trace

specification is relatively simple: The requirement that an event e should precede
another event d is expressed as

tr"\<d>Str:>e in tr'

If tr <d> is a prefix of the trace tr, then e should appear in #r'. This can be

abbreviated using:
e precedes d, din tr = ein tr
and in the case of Running and Commit:

Running precedes Commit

4.2.2 Failure Divergence Refinement

Failure Divergence Refinement (FDR) [FDR99] is a commercial model checker
distributed by Formal Systems. This is based on the CSP process algebra. The FDR is
capable of checking whether a security model (e.g. a network protocol) satisfies
certain security properties such as secrecy, agreements, etcetera, by proving that an
implementation is a refinement of a corresponding security specification. FDR provides
trace refinements, failure refinements and failure divergence refinements, by which it
is able to detect deadlocks and livelocks. The trace refinement is used for security
verification due to the fact that the behavior of a process can be expressed as a trace.
This enables the complete reconstruction of the evolution history of a state. In fact the
FDR is able to extract attacks and also show an example of the event trace. Therefore,
even combinations of attacks such as eavesdropping, interleave, reflection, man-in-
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the-middle (MIM), etc., as discussed in Section 2.4.3, can be discovered in a single
trace. The refinement check is realized by compiling a CSP description of a system
into a Labeled Transition System (LTS) [Ros82]. The corresponding graph is analyzed
in order to prove as to whether a trace exists that has reached a nonconfirming state.
All states that are nonconfirming to the specified security properties are referred to
as insecure. As a result of this graph-analysis, the expected run time increases
exponentially similar to the graph isomorphism problem. This leads to the
expectation that the FDR is only capable of handling small protocols with a couple of
messages and the implementation of only a few instances. This is expected to be one
of the major shortcomings in comparison with other approaches that are described in
[CM04]. However, the range of FDR-capability has been increased by using a
stringent graph simplification algorithm prior to beginning the actual evaluation.

4.2.2.1 The Casper/FDR Approach

As a result of the complexity of the CSP process algebra definitions and the highly
automated process of constructing a CSP code from a security protocol specification
(SPL), the easy-to-use SPL-to-CSP-compiler Casper was developed by Gavin Lowe
[Low97, Low98]. Casper reads .spl input-files containing a detailed protocol
description and a specification the protocol is verified against. Casper subsequently
creates a full CSP process description as a .csp output-file which can be verified by
the model checker FDR. The structure of the test setup is illustrated in Figure 18.
CasperFDR* is a Java based graphical frontend that allows easy selection of the files
and provides interpretations of the results obtained by the FDR in plaintext.

4 In the further study, the terms are separated so that Casper can denote the compiler and the script-
language of the corresponding input file. The term CasperFDR is used for the graphical frontend and
the attack interpretation at a higher level, while the term FDR refers to the model checker and attack
traces at the system level. These are actual examples of attacks. The expression Casper/FDR denotes
the approaches in general.

83



The IDKE Protocol

Chapter 4 Security Verification

Input Protocol
Specification

o e e e ——— — — — — —

Output
Attack-Trace

Java

CasperFDR v. 1.8
Graphical Frontend

GUI and interpreter of the FDR output
trace
In plain text.

Commands are sent
to the compiler

Haskell

Casperv. 1.8
Compiler

Compiles *.spl files to CSP *.csp files

csp file is sentto
FDR2

FDR v. 2.81
Model Checker

Checks *.csp files

Output is forwared to
the graphical
frontend

Linux/ Unix Operating System

Figure 18: Casper/FDR System Environment

4.2.3 The Casper Compiler

Casper simplifies CSP-code production by reducing the necessary input to a detailed
specification of the protocol. The Casper notation is similar to that which appears in
academic literature. In order to express for example, that the pAR sends the nonce na
to the nAR and na is encrypted by the nAR’s public key, one classically writes:

PAR — nAR :{na}

PK(nAR)

As Casper expects ASCII-text as an input, the message above is expressed so:

P -> N : {na}{PK(N)}

The protocol described in standard notation is considered as a template,
parameterized by the free variables in it. These free variables correspond to the
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abstract specification of the protocol without determining the actual values. Thus,
these variables are instantiated with actual variables in the protocol run. The actual
variables are dependent on the actual scenario under which the protocol is examined.
Each scenario describes an environment that consists of real nodes and these can
vary from a couple of nodes to a potentially unlimited amount of them. However,
normally only a few nodes are examined without leaking generality of the
consideration. Nevertheless, nodes can adopt several roles within the same scenario
enabling the actual variables to instantiate free variables a number of times. This
especially occurs in cases of concurrent protocol runs. Hence, the Casper input file
requires a specification combining both the abstract protocol and the actual scenario
(also referred to as system). Therefore, the Casper input-file has two components:

e A definition of the way in which the protocol operates. The protocol description
section is combined with a free variables section. These both describe messages
and the means in which they are exchanged by the different types of agents.
They also set out the initial knowledge of all agents, the specification of what
the protocol should achieve and a definition of the algebraic equivalences.

e A definition of the actual system that is to be checked. It defines the actual
variables and instances of agents taking part in an actual system.

In order to sum up, it can be said that the first part defines the protocol and the
second part can be thought of as an image of the protocol function by instantiating
the parameters.

4.2.4 Protocol Definition for Casper

The protocol definition employed by Casper, is presented below. It is described in
various sections by providing examples from further IDKE analyses, where P stands
for the pAR, N for the nAR and M for the MN.

Protocol Description

The protocol is started by an initial message from the environment to an agent, e.g.
-> N : M, which notifies N of M’s identity in order to enable N to start a protocol run
with M. Thus, a protocol description can appear as :

#Protocol description

0. -> N : M

1. N ->M : N, pkn

2. M ->N : P
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Free Variables

The section on free variables contains all of the parameters in the protocol, e.g. the
agents, nonces, keys etc. An example of simple free variables can be expressed as:
#Free variables

M, N, P : Agents

na : Nonce

PK : Agent —-> PublicKey

SK : Agent —> SecretKey

The last two items define the functions of PK and SK. These functions when applied
to an agent, deliver the corresponding public key (Publickey) or secret key
(secretkey). The information also provided in this section covers the definition of
inverses

InverseKeys = (PK, SK) describes this mathematical property.

Processes

Each running agent in the system is modeled as a CSP process. Therefore, the
processes have titles designated to them. These represent the role of the agents as
follows:

#Processes

INITIATOR (M, na) knows PK, SK(M)

RESPONDER (N) knows PK, SK(N)

These titles are defined in the CSP processes by capital letters, whereas the starting
knowledge of the corresponding agent is given in brackets. The functional
knowledge is added after the keyword knows. Hence, the first line reads as:

“The process INITIATOR knows M and na and is able to compute PK on any agent, but it
can only compute SK of M.”

Specification

In the section on specifications, the security properties are stated:
#Specification

Secret (M, knew, [N])

Agreement (M, N, [na])

Agreement (P, N, [ksms])

“secret” specifies the secrecy property and reads as:
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“M believes that Knew is only known to him and optionally to N.”

This specification will fail, if A can complete a run, where the intruder does not
legitimately take the role of N, but the intruder leans the value of A gives to s.

Therefore, the intruder must be prevented from obtaining the possession of the
variable representing Knew.

Agreement (P, N, [ksms])readsas:

“If P completes a run of the protocol, apparently with N, then N has been running the
protocol, apparently with P. The two agents have also agreed upon the roles that each other
have taken and also upon the value of the session-key Ksws. This creates a one-to-one
relationship between the runs of P and those of N.”

The above assertion is the combination of the CSP's Running and Commit events as
described in Section 4.2.1.6.

4.2.4.1 System Definition

The actual system is specified in the second part of the Casper script file. This also
contains a number of sections:

Actual Variables

This section specifies all of the actual variables in a scenario (or system) that is
intended to be examined. The notation is as follows:

#Actual variables

NewAR, PrevAR, MobileNode, Mallory : Agent

Na : Nonce

The agents are all implemented as a CSP code and with an additional agent named
Mallory (the intruder) this has to be instantiated. The remainder of the section is
similar to that of the free variables section due to the necessity of instantiating
protocol parameters.

Functions

The section on functions defines their behavior:
#Functions

symbolic PK, SK

By using the keyword symbolic Casper produces its own value in order to represent
the result of functions. Here, for example, the functions are described that generate
public keys (pk) and secret keys (sk).
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System

The system definition corresponds to the process definition of the protocol
description.

#System

INITIATOR (M, na)

RESPONDER (N)

4.2.4.2 The Intruder

One of the luxuries of Casper is the simplified implementation of the intruder within
a separate section. Thus, to enable one to fully describe this most interesting
character of the analysis, only two lines are required in order to specify the intruder’s
knowledge:

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {NewAR, PrevAR, MobileNode, Mallory, PK, SK(Mallory)}

The Intruder = Mallory line simply gives the intruder a name and the second line
specifies the knowledge of the intruder. The inclusion of PK means that the intruder
has knowledge of all of the agents’ public keys, whereas sk (Mallory) limits the
knowledge of the secret keys to its own key.

4.2.4.5 Forwarding Messages

It is often necessary to implement the function of forwarding parts of messages to the
next agent, e.g. because of the inability to decrypt some information. This can be
carried out by Casper using the % operator:

#Protocol description

0. ->M: N

1. M -=> N : {N, na}{ksms} % var

2. N ->P : var % {N, na}{ksms}

This example describes the process of sending an encrypted message from M to P via
N. N might be unable to decrypt the message because it lacks the key Ksus, but the

message can be stored in the variable var. The stored content can be forwarded to P.
However, P must be able to decrypt it.
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4.3 IDKE Modeled in Casper

Modeling a vast security protocol such as the IDKE protocol, requires a systematic
approach to version development. Due to the complexity of the IDKE protocol, it is
reasonable to abandon the idea of starting to implement the full IDKE specification,
even if the FDR would be able to compute such versions. Apart from the lengthy
computation time and the protocol fault diagnostics, message optimization would be
tedious. It is recommended instead to initially evaluate a basic version of the IDKE
protocol which does not demand all of the required properties. This will allow for
fast computation and verification by the refinement checker. The developer is thus
able to familiarize himself with the effects (e.g. attacks) of marginal protocol
modifications such as the removal or adding of some protocol elements. The
continuous minimization prior to implementing new properties to the protocol
description, assures optimal usage of computation resources and the avoidance of
protocol redundancies. This steady approach to making progress is applied and
illustrated in this analysis. However, all of the versions illustrated here consider the
same system in that they describe a single instance of each node (MN, pAR and
nAR). However, the intruder is allowed to instantiate several nodes in order to break
the protocol.

4.3.1 The Basic Version

In order to deduce a minimal, but secure version of the IDKE protocol it is advisable
to start with the simplest specification by waiving some of the main features of the
IDKE protocol. This will enable one to obtain the basic version and allow for any
further development.

The task of this version is to act as a first approach without using DH (see Section
2.4.2.2) for the establishment of a secure tunnel between pAR and nAR. This version
also does not aim to provide any freshness guarantee, either on the established key
or on the authentication as shown in Protocol 2. The IDKE protocol aims to provide
the possibility for a pAR to obtain a new session-key called Knew. However, this is not
the intention in this basic version. Nevertheless, the version should be secure. The
basic version appears as follows:
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Protocol 2: The Basic Version (Version 1)

1. nAR >MN : nAR-ID, PK(nAR)

2. MN - nAR

3. nAR - pAR :

4. pAR 5> nAR : {Kq, pAR-ID, MN-ID}
5. nAR >MN : {Kyyy, nAR-ID},

6. MN > nAR : {nAR-ID},

PAR-ID, {PK(nAR), nAR-ID, MN-ID, pAR-ID}
nAR-ID, {PK(nAR), nAR-ID, MN-ID, pAR-ID}_

nAR)

SMS

SMS

The corresponding Casper implementation of Protocol 2 is made by applying the

following code:

#Free variables

M, N, P : Agent

pkn, pkp, pkmallory : PublicKey

skn, skp, skmallory : SecretKey

ksms : SessionKey
knew : SessionKey

InverseKeys =
(pkmallory,

(pkn, skn), (ksms,

skmallory)

#Protocol description

0. -> N : M

1. N -> M : N, pkn

2. M >N : P, {pkn,N, M, P}{ksms} %
3. N ->P : N, token % {pkn,

4, P > N : {ksms, P, M} {pkn}

5. N —> M : {knew, N}{ksms}

6. M —> N : {N}{knew}
#Processes

INITIATOR (N, pkn, skn, knew)
RESPONDER (M, ksms, P)

SERVER (P, ksms, M, pkp, skp, pkn)

#Actual wvariables

MobileNode, NewAR, PrevAR, Mallory

ksms), (pkp,

token

N, M, P}{ksms}

: Agent
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PKN, PKP, PKMALLORY : PublicKey
SKN, SKP, SKMALLORY : SecretKey
KSMS, KNEW : SessionKey

InverseKeys = (KSMS, KSMS), (PKN, SKN), (PKP, SKP), (KNEW, KNEW),
(PKMALLORY, SKMALLORY)

#Specification
Secret (M, knew, [N])
Secret (N, ksms, [N, P])
Agreement (P, N, [ksms])

Agreement (M, N, [knew])

#System
INITIATOR (NewAR, PKN, SKN, KNEW)
RESPONDER (MobileNode, KSMS, PrevAR)

SERVER (PrevAR, KSMS, MobileNode, PKP, SKP, PKN)

#Intruder Information
Intruder = Mallory

IntruderKnowledge = {MobileNode, NewAR, Mallory, PKN, PKP, PKMALLORY,
SKMALLORY, PrevAR}

As can be seen, the protocol uses the concept of forwarding the token, transmitting
Ksus and establishing a new key Knew between nAR and MN. The authentication of
the nAR to the MN is given by the pAR through transmitting Ksms. This is encrypted
with the public key of the nAR, PK(nAR) and is only used when the nAR is known to
the pAR. In this version, PK(nAR) is in the initial knowledge of the pAR which is
expressed by SERVER (P, ksms, M, pkp, skp, pkn). The FDR output shows that the
four specifications hold.

e The intruder is unable to get in possession of Knew.

e The intruder is unable to get in possession of Ksus.

e MN and nAR are authenticated to each other and agree on Ksuws.
e pAR and nAR are authenticated to each other and agree on Knew.

It is important to mention that the pAR is able to know Knew in this version.
Subsequent to testing approximately ten different configurations and removing
information from different messages, this appears to be the minimal version. The
following section illustrates an attack resulting from a modification to the protocol.
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4.3.2 Finding an Attack with Casper/FDR

The basic IDKE protocol has only been minimally modified by removing a single
identifier from one message, as shown below:

1. nAR >MN : nAR-ID, PK(nAR)
. MN -5 nAR : pAR-ID, {PK(nAR), nAR-ID, MN-ID, pAR-ID}

SMS

2

3. nAR - pAR : nAR-ID, {PK(nAR), nAR-ID, MN-ID, pAR-ID}
4. pAR 5> nAR : {Kgys, pAR-ID, MN-IR(}
5
6

SMS

PK(nAR)

. NAR 5>MN : {K,uy, nAR-ID}
. MN - nAR : {na, nAR-ID}

KSMS

K NEW

Protocol 3: Basic Version with removed MN-ID (Insecure)

The corresponding Casper implementation of Protocol 3 is described as:

#Protocol description

-> N : M
: N, pkn
: P, {pkn,N, M, P}{ksms} % token
: N, token % {pkn, N, M, P}{ksms}
: {ksms, P} {pkn}

: {knew, N} {ksms}

o U W N P O
2 =2 9oz X =2

| |

\ \
z2 2z 9 o=z R

: {na, N}{knew}

Only line 4 has been modified from p -> N : {ksms, P, M}{pkn} toO
P -> N : {ksms, P}{pkn}. However, the protocol is insecure as the FDR has found
a trace of an attack. The attack is interpreted by CasperFDR as stated in Figure 19.
The system level trace of the attack discovers the actual vulnerability of the protocol.
Casper attaches an “1” to indicate that an intruder claims to be a different instance.

Initialising; please wait.... Ready.

Casper version 1.8
Parsing...

Type checking...
Consistency checking...

Compiling...
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Writing output...
Output written to /home/IDKE_vl.llh.csp

Done

Starting FDR
Checking /home/IDKE_vl.llh.csp

Checking assertion SECRET_M::SECRET_SPEC [T= SECRET_M::SYSTEM S

No attack found

Checking assertion SECRET_M: :SEQ_SECRET_SPEC [T= SECRET_M: :SYSTEM_S_SEQ
No attack found

Checking assertion AUTH1_M: :AuthenticateRESPONDERTOINITIATORAgreement_na
[T= AUTH1_M::SYSTEM 1

Attack found:
Top level trace:

MobileNode believes (s)he is running the protocol, taking role RESPONDER,
with NewAR, using data items Na

NewAR believes (s)he has completed a run of the protocol, taking role
INITIATOR, with PrevAR, using data items Na

System level:

0. -> NewAR : PrevAR

1. I_NewAR —-> MobileNode : NewAR, PKN

1. NewAR —> TI_PrevAR : NewAR, PKN

2. MobileNode —> I_NewAR : PrevAR, {PKN, NewAR, MobileNode,
PrevAR} {KSMS}

2. I_PrevAR —> NewAR : PrevAR, {PKN, NewAR, MobileNode,
PrevAR} {KSMS}

3. I_NewAR —> PrevAR : NewAR, {PKN, NewAR, MobileNode, PrevAR}{KSMS}
4 PrevAR —-> TI_NewAR : {KSMS, PrevAR} {PKN}

3 NewAR -> I_PrevAR : NewAR, {PKN, NewAR, MobileNode, PrevAR} {KSMS}
4 I_PrevAR —> NewAR : {KSMS, PrevAR} {PKN}

5. NewAR —> TI_PrevAR : {KNEW, NewAR} {KSMS}

5 I_NewAR —-> MobileNode : {KNEW, NewAR} {KSMS}

6. MobileNode —> I_NewAR : {Na, NewAR} {KNEW}

6 I_PrevAR —> NewAR : {Na, NewAR} {KNEW}

Checking assertion AUTH2_M::AuthenticateSERVERTOINITIATORAgreement_ksms [T=
AUTH2_M: : SYSTEM_2
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No attack found

Done

Figure 19: CasperFDR Output — Attack on Minimized Version

When leaving out the MN-identifier in line 4, the intruder can break the protocol by
combining interleave- and man-in-the-middle-attacks.

The attack is illustrated at a high-level that describes what property has been broken
and which undesired state has been finally reached:

MobileNode believes (s)he is running the protocol, taking role RESPONDER,
with NewAR, using data items Na

NewAR believes (s)he has completed a run of the protocol, taking role
INITIATOR, with PrevAR, using data items Na
The MN runs the protocol acting as REsPONDER, which is an instance of MobileNode.
The nAR acts as InNITIATOR, which is an instance of Newar. Casper only gives
information on the role of the failed run of the protocol. In the following example, the
runs that are needed to break the protocol are marked in different colors. In the runs
between the main run the assignments could switch.

In the first two stages of the main run, the intruder takes the role of an “nAR”,
I_NewAR and contacts the MN by sending message 1. It is also assumed that the
intruder is aware of the IDKE protocol and has realized that the nAR is offering a
service to the MN. This fact has been modeled by the intruder as he possesses the
knowledge that an AR exists called Nnewar with a public key pxn (as part of the
IntruderKnowledge specification in the Casper file).

0. -> NewAR : PrevAR

1. I_NewAR —-> MobileNode : NewAR, PKN

In the second run, the Intruder Mallory pretends to be the pAR (I_prevar).
Meanwhile, the first protocol run continues and the intruder receives message 1
claiming to be the pAR:

1. NewAR —> I _PrevAR : NewAR, PKN

The MN has no reason to be suspicious and answers in accordance with the protocol
(message 2). The Intruder, Mallory, now possesses a token (the content that
authenticates the MN which was sent via the nAR to the pAR) and can continue the
second run by sending message 2:

2. MobileNode -> 1I_NewAR : PrevAR, {PKN, NewAR, MobileNode,

PrevAR} {KSMS}

2. I _PrevAR —> NewAR : PrevAR, {PKN, NewAR, MobileNode,

PrevAR} {KSMS}
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Actually, the token has simply been redirected to NewaR by the intruder.

Mallory, also pretending to be a nAR “I-NewarR”, forwards the token to prevar, in
order to receive an answer from PrevAR.
3. I_NewAR —> PrevAR : NewAR, {PKN, NewAR, MobileNode, PrevAR} {KSMS}

4. PrevAR -> TI_NewAR : {KSMS, PrevAR} {PKN}

Mallory uses the information received from prevar since he played this role in the
second protocol run. Hence, once he has received message 3 of the second protocol
run, he knows the correct answer and can respond appropriately by sending message
4.

Incidentally, this behavior cannot only be attained by starting different runs of the
protocol, but by also reflecting and interleaving messages.
3. NewAR —> I _PrevAR : NewAR, {PKN, NewAR, MobileNode, PrevAR} {KSMS}

4. I _PrevAR —> NewAR : {KSMS, PrevAR}{PKN}

Finally, Mallory stores the content of message 5 that he has received in the role of
PAR and then forwards it by taking on the role of nAR to MobileNode (message 5).
5. ©NewAR  -> I_PrevAR : {KNEW, NewAR}{KSMS}

5. I_NewAR —> MobileNode : {KNEW, NewAR} {KSMS}

The response of MobileNode (message 6) is also then forwarded to NewaR.
6. MobileNode -> I_NewAR : {Na, NewAR}{KNEW}

6. I _PrevAR —> NewAR : {Na, NewAR}{KNEW}

Hence, the communication continues with Mallory taking on both the roles of,
I_prevAR and the I_Newar by simply forwarding the messages gathered in the
different protocol runs, Mallory can derange the authentication between MN and
nAR. This is possible since MN and nAR are unable to detect that they were both
communicating with Mallory. Thus, the protocol property of authentication has been
broken. However, this attack does not discover any secret, but it could lead to
massive security holes, if further communications are based on the trust in the
identity of the corresponding parties.

The use of the Casper/FDR approach in order to reduce the possibility of over-
engineered protocols, assists in understanding why certain information is necessary.
In the case of line4, p -> N : {ksms, P, M}{pkn}, NewaAR would be able to detect the
above mentioned attack since the identifier of the MN is confirmed by the prevar.
The nAR in line 0 is instructed to obtain the key from the pAR and thus, is also able
to detect the attack.
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4.3.3 Minimization of the Basic Version

By successively removing message-components from the initial version and
continuously verifying each protocol-modification with FDR, this creates a reduction
process which will lead to a minimal version. This process in fact allows for the
exclusion of some components. Hence, the identifier of pAR in message 2, message 3
and message 4 and the identifier of nAR in message 5 can be dispensed with. The
resulting basic version then looks as follows:

1. nAR > MN : nAR-ID, PK(nAR)
2. MN - nAR : pAR-ID, {PK(nAR),nAR-ID, MN-ID, pXRIE|

KSMS

3. nAR - pAR : nAR-ID, {PK(nAR),nAR-ID, MN-ID, gXR-JK }

KSMS

4. pAR 5>nAR : {Kqys BARIE, MN-ID}

5. NAR 5>MN : {Kypy, AR}
6. MN - nAR : {na nAR-ID}

PK(nAR)

Ksms

KNEW

Protocol 4: Basic Version Light (Secure)

The corresponding Casper protocol description of Protocol 4 is given as.
#Protocol description
> N : M
: N, pkn
: P, {pkn,N, M}{ksms} % token
: N, token % {pkn, N, M} {ksms}
: {ksms, M}{pkn}

: {knew} {ksms}

o U W N R O
2 2 9 2 2 =

|

\%

I
\
zZ R 2 9w =z =

: {na, N} {knew}

Detailed information on the analyses and the corresponding CSP files for all Casper
input files can be found in the Technical Report [ST05].

4.3.4 Secure Tunnel Implementation

Apart from a secure key transfer between the ARs, it is desirable to have a secure
tunnel for this transfer. This tunnel implementation is an intermediate step required
for providing forward secrecy. Subsequently, the forward secrecy is only dependent
on the used tunnel key. The security of the tunnel should be initially established,
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while the forward secrecy and freshness requirements are added at a further
development stage. These versions are based on a minimized former IDKE version.

In the first version, the tunnel key is not required to provide forward secrecy and
thus, is not established with Diffie-Hellman. It is transferred from pAR to nAR based
on public keys. The protocol then appears so:

nAR - MN : nAR-ID, PK(nAR)
. MN 5 nAR : pAR-ID, {PK(nAR), nAR-ID, MN-ID}

SMS

1.
2
3. nAR - pAR : nAR-ID, {PK(nAR), nAR-ID, MN-ID}
4. pAR -5 nAR : pAR-ID, {K e, Na, nAR-ID, MN-ID}
5
6

KSMS

PK(nAR)

. NAR = pAR : {pAR-ID, nAR-ID, MN-ID, na}K

TUNNEL

. PAR 5 nAR : {na, Ky, pAR-ID, nAR-ID, MN-ID, PK (MN)}

KTUNNEL

7. nAR 5> MN : {{Kye b ou, - MN-ID, nAR-ID}PK(MN)

Protocol 5: Tunnel Version
Protocol 5 implemented in Casper looks as follows:
#Free variables
M, N, P : Agent
pkn, pkp, pkm, pkmallory : PublicKey
skn, skp, skm, skmallory : SecretKey
ksms : SessionKey
ktunnel : SessionKey
knew : SessionKey
na, nb : Nonce
InverseKeys = (pkn, skn), (ksms, ksms), (pkp, skp), (knew, knew), (ktunnel,

ktunnel), (pkm, skm), (pkmallory, skmallory)

#Protocol description

0. -> N : M

1. N ->M : N, pkn

2. M ->N : P, {pkn,N, M}{ksms} % token

3. N -> P : N, token % {pkn, N, M} {ksms}

4, P > N : P, {ktunnel, na, N, M} {pkn}

5. N —> P {P, N, M, na}{ktunnel}

6. P —> N {na, ksms, P, N, M, pkm}{ktunnel}
7. N —> M {{knew} {skn}, M, N} {pkm}
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#Processes
INITIATOR (N, pkn, skn, knew)
RESPONDER (M, ksms, P, pkm, skm)

SERVER (P, ksms, M, pkp, skp, pkn, na, ktunnel, pkm)

#Actual variables

MobileNode, NewAR, PrevAR, Mallory : Agent
PKN, PKP, PKM, PKMALLORY : PublicKey

SKN, SKP, SKM, SKMALLORY : SecretKey

KSMS, KNEW, KTUNNEL : SessionKey

Na : Nonce

InverseKeys = (KSMS, KSMS), (PKN, SKN), (PKP, SKP), (KNEW, KNEW), (KTUNNEL,
KTUNNEL) , (PKM, SKM), (PKMALLORY, SKMALLORY)
#Specification

Secret (P, ktunnel, [N])
Secret (N, knew, [M])
Secret (M, ksms, [N])
Secret (P, na, [N])
Agreement (P, N, [ktunnel])

Agreement (N, M, [knew])

#System
INITIATOR (NewAR, PKN, SKN, KNEW)
RESPONDER (MobileNode, KSMS, PrevAR, PKM, SKM)

SERVER (PrevAR, KSMS, MobileNode, PKP, SKP, PKN, Na, KTUNNEL, PKM)

#Intruder Information
Intruder = Mallory

IntruderKnowledge = {MobileNode, NewAR, Mallory, PKN, PKP, PrevAR,
PKMALLORY, SKMALLORY}

The FDR output has stated that this protocol is secure. However, this protocol
version contains some over-engineered lines. This is a safeguard which is adopted as
a means of security. Minimization is subsequently carried out in Section 4.3.6.
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4.3.5 Tunnel Freshness Removal

It is important to be aware of the fact that the Casper/FDR approach is unable to
check “real” freshness attacks. Therefore, the freshness property cannot be validated,
but needs to be carefully considered when implementing the protocol. Hence, session
identifiers or timestamps will be required to be attached to each message. In the
following, the freshness guaranteeing elements have been removed for performance
reasons.

The implementation is based on the version introduced in Section 4.3.4 where
message 4, 5 and 6 did not contain the nonce, but where message 7 was given an
additional authentication by means of the encryption with Ksus. The protocol
description is as follows:

. nAR 5>MN : nAR-ID, PK(nAR)
. MN 5 nAR : pAR-ID, {PK(nAR), nAR-ID, MN-ID}

SMS

1
2
3. nAR - pAR : nAR-ID, {PK(nAR), nAR-ID, MN-ID}
4. pAR 5> nAR : pAR-ID, {K;yne, NAR-ID, MN-ID}
5
6

KSMS

PK(nAR)

. NAR - pAR : {pAR—ID, nAR-ID, MN-ID}

TUNNEL

. PAR 5 nAR : {Kgys, pAR-ID, nAR-ID, MN-ID, PK (MN)}

KTUNNEL

7. nAR - MN : {{KNEW}SK(HAR),MN-ID, {nAR-ID}KSMS}

PK(MN)
Protocol 6: Tunnel Version without Nonces (Secure)

The Casper script file of Protocol 6 contains the following protocol description:

#Protocol description

0. -> N : M

[N!=M]

1. N ->M : N, pkn

2. M ->N : P, {pkn,N, M}{ksms} % token

3. N -> P : N, token % {pkn, N, M} {ksms}

4., P -—> N : P, {ktunnel, N, M} {pkn}

5. N > P : {P, N, M}{ktunnel}

6. P -—> N : {ksms, P, N, M, pkm}{ktunnel}

7. N > M : {{knew}{skn}, M, {N}{ksms}} {pkm}

The expression [N!=M] is also employed for performance reason and advises Casper
to skip all cases in which the MN adopts the role of the nAR. Such cases are
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meaningless, since the MN already has knowledge of the session-key Ksus and thus,
would not perform such a request.

The verification by FDR could not discover any attack so that CasperFDR stated this
version also as secure by the output “No attack found” for all specified properties.

4.3.6 Complexity Reduction by Tunnel Minimization

It was also necessary to reduce the complexity of the protocol since the limit of FDR
would be exceeded by adding more messages of encryption to the protocol. The aim
is to reduce the complexity of the tunnel by deleting some tunneled elements.
However, nonces are still included in this version. The resulting minimized version
is still based on Protocol 6. Any changes are depicted by the following colors (red
represents what has been removed and blue those that have been modified):

nAR - MN : nAR-ID, PK(nAR)
. MN 5 nAR : pAR-ID, {PK(nAR), nAR-ID, MN-ID}

SMS

. NAR - pAR : nAR-ID, {PK(nAR), nAR-ID, MN-ID}

KSMS

1.
2
3
4. pAR 5 nAR : pAR-ID, {Kye, na, nAR-ID, MN-ID}
5
6

PK(nAR)

. NAR = pAR : {pAR-ID, nAR-ID, MN-ID, na}K

TUNNEL

. PAR 5 nAR : {na, Kgys, pAR-ID, ®XRAK, MN-ID, PK(MN)}

7. nAR 5> MN : {{K b oay - MO, nAR-ID)

TUNNEL

PK(MN)
Protocol 7: Tunnel Minimal Version (Secure)

The corresponding Casper script file of Protocol 7 contains the following;:

#Protocol description

0 -> N : M

1. N -> M : N, pkn

2. M ->N : P, {pkn,N, M}{ksms} % token

3. N -> P : N, token % {pkn, N, M} {ksms}
4, P > N : P, {ktunnel, na, N, M} {pkn}

5. N ->P : {P, N, M, na}{ktunnel}

6. P -—> N : {na, ksms, P, M, pkm}{ktunnel}
7. N > M : {{knew}{skn}, N} {pkm}
#Specification
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Secret (P, ktunnel, [N])
Secret (N, knew, [M])
Secret (M, ksms, [N])
Secret (P, na, [N])
Agreement (P, N, [ktunnel])
Agreement (N, M, [knew])

According to the specification, FDR has stated that this version is secure. The fulfilled
properties are the secrecy of Krunner and the nonce na (corresponding to any further
confidential data) between pAR and nAR. The authentication is achieved by the
agreement of Krunner between pAR and nAR and Knew between nAR and MN.

4.3.7 Forward Secrecy by Diffie-Hellman

This version is the first approach to establishing Krunner_pn, which is a session-key
between nAR and pAR, utilizing the Diffie-Hellman Key Exchange (DH). The first
version used DH for both the establishment of Krunner and of Knew and this proved to
be too large for the FDR to handle. The system produced more than 2.000.000 states
and the memory resources were inefficient. It is not possible to have a maximal run
time of an NP-complete graph algorithm with 2.000.000 states. A termination within
an appropriate amount of time cannot be guaranteed and it is most unlikely that this
can be achieved. Therefore, the approach was modified in order to only support
Krunner_ph as a basis for further minimization.

1. nAR > MN : nAR-ID, PK(nAR)
. MN - nAR : pAR-ID, {PK(nAR), nAR-ID, MN-ID, na}_

SMS

SMS

2
3. nAR - pAR : nAR-ID, {PK(nAR), nAR-ID, MN-ID, na}K
4. pAR > nAR : pAR-ID, {HK, := Exp(Gen,x), na, MN-ID, PK(pAR )|

PK(nAR)

Q1

. nAR - pAR : {na, {HK; = Exp(Gen, y)|

SK(nAR) }PK(pAR)

(Kruswer = Exp(HK,, x) = Exp(HK,, )
6. pAR > nAR : {na, Ky, PK(MN)}

KTUNNEL

7. nAR >MN {{KNEW’na}SK(nAR)’ {nAR-ID}KSMS}

PK(MN)

Protocol 8: Tunnel Version with DH (Insecure)
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The implementation of a version incorporating DH is much more complex than the
previous protocols. In Protocol 8 the messages 4 and 5 represent DH. The
corresponding Casper script file will be explained in more detail later:

#Free variables

datatype Field = Gen | Exp (Field,Num) unwinding 2

halfkeyA, halfkeyB, ktunnel : Field

X, y : Num

M, N, P : Agent
pkn, pkp, pkm, pkmallory : PublicKey

skn, skp, skm, skmallory : SecretKey

ksms, knew : SessionKey
na : Nonce
InverseKeys = (pkn, skn), (ksms, ksms), (pkp, skp), (knew, knew), (ktunnel,

ktunnel), (pkm, skm), (pkmallory, skmallory), (Exp, Exp), (Gen, Gen)

As can be seen, the first three lines define the DH operation. The exponential
function expects a value of type rField (a half-key or Krunner) and produces another
Field by calculating DH.

#Protocol description

0. -> N : M

1. N -> M : N, pkn

[N!=M]

2. M ->N : P, {pkn,N, M, nal{ksms} % token
3. N ->P : N, token % {pkn, N, M, na}{ksms}

4, P > N : P, {Exp(Gen,x) % halfkeyA, na, M, pkp}{pkn}

[P!=M]

< ktunnel := Exp (halfkeya, y) >

5. N > P : {na, {Exp(Gen,y) % halfkeyB}{skn}}{pkp}
[N!=P]

< ktunnel := Exp(halfkeyB, x) >

6. P -> N : {na, ksms, pkm}{ktunnel}
[P!=N]

7. N > M : {{knew, na}{skn}, {N}{ksms}}{pkm}
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In order to save the computation resources, all of the protocol stages have been
modified to only being able to continue when the sender is unequal to the receiver.
The session-key has been calculated as < ktunnel := Exp(halfkeyd, y) >. Thisis
then known to the receiver of the above message.

#fEquivalences

forall x, y : Num . Exp ( Exp(Gen,x), y ) = Exp( Exp(Gen,y), x )

By using this equivalence-specification, the properties of DH are adapted to the CSP
environment. It is most important to have the abstract function instead of an exact
mathematical formalism. It is essential to recognize this as it detaches the IDKE from
the DH. The abstracted version can in any case only be realized by mathematical
formalism.

#Processes

INITIATOR (N, pkn, skn, knew, y)

RESPONDER (M, ksms, P, pkm, skm, na)

SERVER (P, ksms, M, pkp, skp, pkn, pkm, x)

#Actual variables

MobileNode, NewAR, PrevAR, Mallory : Agent
PKN, PKP, PKM, PKMALLORY : PublicKey

SKN, SKP, SKM, SKMALLORY : SecretKey

KSMS, KNEW : SessionKey

X, Y, Z : Num

Na : Nonce

InverseKeys = (KSMS, KSMS), (PKN, SKN), (PKP, SKP), (PKM, SKM), (PKMALLORY,
SKMALLORY), (KNEW, KNEW)

#Specification

Secret (P, ktunnel, [N])
Secret (N, ktunnel, [P])
Secret (N, knew, [M])
Secret (M, knew, [N])
Secret (M, ksms, [N])
Secret (N, ksms, [M])
Agreement (P, N, [ktunnel])
Agreement (N, M, [knew])

Agreement (P, N, [ksms])
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#System

INITIATOR (NewAR, PKN, SKN, KNEW, Y)

RESPONDER (MobileNode, KSMS, PrevAR, PKM, SKM, Na)

SERVER (PrevAR, KSMS, MobileNode, PKP, SKP, PKN, PKM, X)
#Intruder Information

Intruder = Mallory

IntruderKnowledge = {MobileNode, NewAR, Mallory, PKN,
PKMALLORY, SKMALLORY, Z}

PKP,

PrevAR,

The remaining implementation is self- explanatory. The specifications are as general
as possible. The FDR is able to verify this huge protocol by being run on a fast
workstation with 6GB RAM and is capable of completing the computation in about 5
hours. However, FDR stated that the protocol was insecure. The verification showed
that both of the agreements on Knew between nAR and MN had failed. The
CasperFDR output containing the FDR attack trace is illustrated in Figure 20 and

Figure 21.

NewAR believes (s)he has completed a run of the protocol,
INITIATOR, with PrevAR, using data items Exp__ , (Exp__, (Gen__,
0 —> NewAR MobileNode
1 NewAR —> I_MobileNode NewAR, PKN
1. I_Mallory —-> MobileNode Mallory, PKN
2 MobileNode > I_Mallory PrevAR, {PKN, Mallory,
Na} {KSMS}

2. I_MobileNode -> NewAR PrevAR, {PKN, Mallory,
Na} {KSMS}

3. I_Mallory —> PrevAR Mallory, {PKN, Mallory,
Na} {KSMS}

4. PrevAR -> I_Mallory PrevAR, {Exp(Gen, X), Na,
PKP} {PKN}

3. NewAR —-> I_PrevAR NewAR, {PKN, Mallory,
Na} {KSMS}

4. I_PrevAR —> NewAR PrevAR, {Exp(Gen, X), Na,
PKP} {PKN}

5. NewAR -> I_PrevAR {Na, {Exp(Gen, Y)}{SKN}}{PKP}
5 I_Mallory -> PrevAR {Na, {Exp(Gen, Y)}{SKN}}{PKP}
6. PrevAR -> I_Mallory {Na, KSMS, PKM} {Exp (Exp (Gen,
6 I_PrevAR —> NewAR {Na, KSMS, PKM} {Exp (Exp (Gen,
7 NewAR -> I_MobileNode {{KNEW, Na} {SKN},

X),
X)

taking role
Y), X)

MobileNode,

MobileNode,

MobileNode,

MobileNode,

MobileNode,

MobileNode,

Y)}
Y)}

{NewAR} {KSMS} } {PKM}

Figure 20: CasperFDR Output — Attack 1 on Tunnel Version (Protocol 8)
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NewAR believes (s)he has completed a run of the protocol, taking role
INITIATOR, with PrevAR, using data items KSMS

0 —> NewAR : MobileNode

1 NewAR —> I_MobileNode : NewAR, PKN

1. I_Mallory —-> MobileNode : Mallory, PKN

2 MobileNode > I_Mallory : PrevAR, {PKN, Mallory, MobileNode,
Na} {KSMS}

2. I_MobileNode -—> NewAR : PrevAR, {PKN, Mallory, MobileNode,
Na} {KSMS}

3. I_Mallory -> PrevAR : Mallory, {PKN, Mallory, MobileNode,
Na} {KSMS}

4. PrevAR —> I_Mallory : PrevAR, {Exp(Gen, X), Na, MobileNode,
PKP} {PKN}

3. NewAR —> I PrevAR : NewAR, {PKN, Mallory, MobileNode,
Na} {KSMS}

4. I_PrevAR > NewAR : PrevAR, {Exp(Gen, X), Na, MobileNode,
PKP} {PKN}

5. NewAR -> I_PrevAR : {Na, {Exp(Gen, Y)}{SKN}}{PKP}

5 I_Mallory -> PrevAR : {Na, {Exp(Gen, Y)}{SKN}}{PKP}

6. PrevAR -> I_Mallory : {Na, KSMS, PKM}{Exp (Exp(Gen, X), Y)}

6 I_PrevAR —> NewAR : {Na, KSMS, PKM} {Exp (Exp(Gen, X), Y)}

7 NewAR —> I _MobileNode : {{KNEW, Na}{SKN}, {NewAR}{KSMS}} {PKM}

Figure 21: CasperFDR Output — Attack 2 on Tunnel Version (Protocol 8)

By analyzing the attack in more detail it reveals the discovery of a complex
interleave-attack. An interpretation of the attack is given inline:

NewAR believes (s)he has completed a run of the protocol, taking role
INITIATOR, with PrevAR, using data items Exp_ , (Exp__, (Gen__, Y), X)

The run consists of two interleaved protocols that are distinguished here in colored
lettering.

0. —> NewAR : MobileNode

1. NewAR —> I_MobileNode : NewAR, PKN

The intruder claiming to be the MN (I_mMobileNode) captures message 1 in order to
establish a connection to the nAR. Then, the intruder changes the MN’s identifier and
inserts its own before sending message 1 to the MN. Therefore, the MN replies by
sending message 2 directly to the intruder.

1. I_Mallory -> MobileNode : Mallory, PKN
2. MobileNode > I_Mallory : PrevAR, {PKN, Mallory, MobileNode,
Na} {KSMS}
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The intruder acts as the man in the middle and forwards the content of message 2 to
the nAR by sending message 2 from a different protocol run.

2. I_MobileNode —> NewAR : PrevAR, {PKN, Mallory, MobileNode,
Na} {KSMS}

The intruder also utilizes the same content and sends it in message 3 to the pAR
claiming to be the nAR. It should be mentioned that the content of message 2 and
message 3 is exactly the same and contains in both cases the intruder’s identity:
Mallory.

3. I_Mallory > PrevAR : Mallory, ({PKN, Mallory, MobileNode,
Na} {KSMS}

The pAR responds to the intruder by message 4:

4. PrevAR > I_Mallory : PrevAR, {Exp(Gen, X), Na, MobileNode,
PKP } {PKN}

Once Mallory has received message 4, he waits for the nAR to send message 3 and
then answers by sending message 4, the content of which he has gained from

message 4.
3. NewAR > I_PrevAR : NewAR, {PKN, Mallory, MobileNode,
Na} {KSMS}
4. I_PrevAR —-> NewAR : PrevAR, {Exp(Gen, X), Na, MobileNode,
PKP} {PKN}

As the answer is correct, the nAR will respond by sending message 5 to the intruder:
5. NewAR —> I_PrevAR : {Na, {Exp(Gen, Y)}{SKN}}{PKP}

The intruder then uses the content of message 5 to send its own message 5 to the
pAR:

5. I_Mallory —> PrevAR : {Na, {Exp(Gen, Y)}{SKN}}{PKP}

The pAR also sends message 6 back to the intruder:

6. PrevAR -> I_Mallory : {Na, KSMS, PKM}{Exp (Exp(Gen, X), Y)}

Mallory then forwards the content of message 6 to the nAR by sending message 6 in
order to receive message 7 and hence it is authenticated as MN.
6. I_PrevAR —> NewAR : {Na, KSMS, PKM}{Exp (Exp(Gen, X), Y)}

7. NewAR —> I_MobileNode : {{KNEW, Na}{SKN}, {NewAR}{KSMS}}{PKM}

This attack is similar to that described in Section 4.3.1. It discovers the major
vulnerability of the IDKE protocol. Therefore, the authentication has to be improved
between the pAR and nAR..
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4.3.8 Attack Solution and Final Version

The aim of the “final version” is to withstand attacks, especially those that have been
discovered previously. Therefore, the authentication will be improved by a version

which can correspond to a combination of the versions presented in Section 4.3.6 and
4.3.7.

This leads to the concept of securing the tunnel establishment by using a session-key
sent from pAR to nAR in order to authenticate the two ARs with each other. The
tunnel is also used to transfer the DH half-keys between both of the ARs. Thus,
enabling the forward secrecy to be provided for the secure key establishment as
illustrated in Protocol 9.

1. nAR 5>MN : nAR-ID, PK(nAR)
. MN 5 nAR : pAR-ID, {PK(nAR), nAR-ID, MN-ID}

SMS

2

3. nAR - pAR : nAR-ID, {PK(nAR), nAR-ID, MN-ID}_
4. pAR > nAR : pAR-ID, {K e, PAR-ID, nAR-ID}
5
6
7

SMS

PK(nAR)

. NAR - pAR : {nAR-ID}
. pPAR > nAR : {HK, := Exp(Gen,x)}

KTUNNEL

TUNNEL

. NAR - pAR : {HK, := Exp(Gen,y)}

KTUNNEL

(Kruner_pn = Exp (HK;, x) = Exp(HK ,, )
8. pPAR > nAR : {Kg, nAR-ID}
9. nAR >MN : {na, nAR-ID, MN-ID}KSMS
10.MN - nAR : {na, MN-ID, nAR-ID},_

KTUNNELiDH

Protocol 9: IDKE Final Version

The corresponding Casper implementation of Protocol 9 is as follows (the purposes
of individual messages and some design choices are explained inline):

#Free variables
datatype Field = Gen | Exp (Field,Num) unwinding 2
halfkeyA, halfkeyB, ktunnelDH : Field

M, N, P : Agent

pkn, pkp : PublicKey

skn, skp : SecretKey

ksms, ktunnel : SessionKey

na : Nonce
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X, Yy : Num

InverseKeys = (pkn, skn), (ksms, ksms), (pkp, skp), (ktunnel, ktunnel),
(Exp, Exp), (Gen, Gen), (ktunnelDH, ktunnelDH)

As in prior protocol versions, the protocol parameters referred to as free variables,
are used to prepare the roles of MN, nAR and pAR as well as their public/private key
pairs. The analysis has shown that all of the specifications can be validated without
transferring the MN’s public key. Therefore, this has been omitted in order to reduce
protocol complexity.

#Protocol description
0. -> N : M

1. N->M : N, pkn

2. M ->N : P, {pkn,N, M}{ksms} % token
3. N -> P : N, token % {pkn, N, M} {ksms}
4. P -—> N : P, {ktunnel, P, N} {pkn}

5. N —> P : {N}{ktunnel}

At this point, nAR and pAR have agreed on Krunner and continue to use it in order to
establish forward secrecy for tunnel key Krunner_ph.

6. P —> N : {Exp(Gen,x) % halfkeyA}{ktunnel}
[P!=N]

< ktunnelDH := Exp (halfkeydA, y) >

7. N -> P : {Exp(Gen,y) % halfkeyB}{ktunnel}
[N!=P]

< ktunnelDH := Exp (halfkeyB, x) >

After exchanging the DH-half-keys, both ARs agree on the computed DH-tunnel-key

KTunNEL_DH.
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8. P —> N : {ksms, N}{ktunnelDH}
[P!=N]

9. N -—> M : {na, N, M}{ksms}
[N!=M]

10. M => N : {na, M, N}{ksms}

In the analyzed protocol run, it does not compute any fresh Knew, but uses Kswms
directly. The reason for this is to reduce the problem of the FDR state space
exceeding its memory. One of the FDR subprocesses, namely state 2, is limited to 3.1
GB of RAM.

#{Equivalences

forall x, y : Num . Exp ( Exp(Gen,x), y ) = Exp( Exp(Gen,y), x )

As previously deduced, the equivalences describe the detachment of the IDKE
protocol from DH. Thus, it is sufficient to realize this abstracted expression by a
mathematical formalism.

#Processes
INITIATOR (N, pkn, skn, y, pkp, na)
RESPONDER (M, ksms, P)

SERVER (P, ksms, M, pkp, skp, pkn, ktunnel, x)

#Actual variables

MobileNode, NewAR, PrevAR, Mallory : Agent
PKN, PKP, PKMALLORY : PublicKey

SKN, SKP, SKMALLORY : SecretKey

KSMS, KTUNNEL : SessionKey

X, Y, Z : Num

Na, NInt : Nonce

InverseKeys = (KSMS, KSMS), (PKN, SKN), (PKP, SKP), (KTUNNEL, KTUNNEL),
(PKMALLORY, SKMALLORY)

The actual variables instantiate the free variables and realize the presence of the
intruder. The intruder is equipped with its own nonces and numeric values in order
to interfere with the DH.
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#Specification
Secret (P, ktunnelDH, [N])
Secret (N, ktunnelDH, [P])
Secret (P, ktunnel, [N])
Secret (N, ktunnel, [P])
Secret (M, ksms, [N])
Secret (N, ksms, [M])
Secret (M, na, [N])

Secret (N, na, [M])
Agreement (M, , [na]l)
Agreement (N,

; [ksms])

Agreement (P,

N

M
Agreement (P, N, [ktunnel])

N, [ksms])

N

Agreement (P, , [ktunnelDH])

The specification describes the properties to be verified by the FDR.
#System

INITIATOR (NewAR, PKN, SKN, Y, PKP, Na)

RESPONDER (MobileNode, KSMS, PrevAR)

SERVER (PrevAR, KSMS, MobileNode, PKP, SKP, PKN, KTUNNEL, X)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {MobileNode, NewAR, Mallory, PKN, PKP, PrevAR,
PKMALLORY, SKMALLORY, Z, NInt}

CasperFDR states that the above description is secure against the specification as
FDR has not found any attack trace. Thus, the analyses have shown that all
properties can be verified successfully. The FDR analyses verified:

e The secrecy of Krunner, Ksvs, Krunner_on and even the secrecy of the nonce na.
e MN and nAR agree on Ksus and na.
e The two ARs agree on Krunner, Ksus and Krunner_p.

Therefore, the aim of a secure key transfer and forward secrecy has been
accomplished. However, due to the complexity, the generation of Knew has been
reduced in message 9 and 10. As MN and nAR have been authenticated with each
other, a second DH key exchange is possible in order to provide a new session-key
between MN and nAR as well as a forward secrecy for the new session-key.
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4.4 Summary, Discussion & Outlook

4.4.1 Summary

This chapter has analyzed the security of the IDKE protocol. The main tasks for
verification are:

e Evaluation of the tools for formal security verification.

e Identification of potential attacks on the IDKE protocol and improvements for
countering the attacks that are discovered.

e Optimization of the protocol by removing unnecessary parts.
e Verification that all of the requirements have been fulfilled in the final version.

e Determine the limitations on the formal security verification of the chosen
model checking approach.

The objective of this analysis is to formally prove that the IDKE protocol is able to
tulfill its security properties. However, it is generally difficult to show protocol or
program correctness. This is one of the undecidable questions in computer science
[AHU74].

4.4.7 Discussion

4.4.2.1 Tool Evaluation

Theorem proving approaches aim to provide such formal proof. Initially, it was
decided to verify the IDKE protocol’s correctness by either using the BAN logic (see
Section 4.1.2.1) or Isabelle (see Section 4.1.2.3). However, both have serious
drawbacks in discovering actual attacks since they e.g. do not show any attack trace.
Hence, once a protocol cannot be verified, one does not have the possibility of
rectifying the problem when the vulnerability is not obvious. BAN logic also has
serious disadvantages due to its unrealistically simplified assumptions on
authentication. In fact protocols that have been stated as secure by the BAN logic
have been discovered to be vulnerable to attacks that break the authentication
capabilities.

Therefore, the active search for attacks becomes an essential part of the security
verification. As the NPA (see Section 4.1.2.2), which is a hybrid approach for model
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checking and theorem proving is not publicly available; the Casper/FDR approach
was selected. This is currently the most promising approach, especially for
identifying attacks on protocols, but it is limited in its capability of verifying huge
protocols. The IDKE protocol is in fact immense in size and exceeds the state space of
the FDR when one examines the entire protocol without applying any modifications.
This results in two conflicting goals: Firstly, of reducing the state space in order to
make the FDR capable of analyzing the IDKE protocol; and secondly to have the
most general scenario for ensuring that all potential attacks are discovered. Thus,
instead of analyzing the protocol in one-piece, the IDKE protocol is successively
assembled in versions, verified, minimized and consecutively improved.

4.4.2.2 The Deployment Process

The protocol was successfully improved by beginning with a basic version which
aimed to provide only a subset of the desired properties. This version focuses on
providing a simple key forwarding and does not guarantee any key forward secrecy
or offer any secure tunnel between the ARs. However, under the specified security
properties, this version is stated as secure. Nevertheless, the version was not minimal
since it contained some unnecessary non-essential parts, such as some IDs. In order
to reduce complexity, a number of identifiers within some of the messages were
removed. Further analyses demonstrated that some of the identifiers were not
required, while others were relevant. Moreover, a complex attack was unexpectedly
discovered when removing the MN’s identifier in message 4. This attack illustrated
that the protocol could be broken by initially interleaving several protocol runs and
also by acting as man in the middle. As a result of this, the intruder was able to
produce an invalid authentication. However, authentication is also an obligatory
property of the IDKE protocol, even if no secret information is discovered.

In order to achieve a minimal basic version, the protocol was subsequently trimmed
down by exclusively removing unessential parts. This process resulted in a minimal
and secure basic version. This version later acted as the basis for producing a final
version that contains all of the desired properties.

A secure tunnel was also established and added between the ARs and the resulting
version was successfully verified as being secure. Nevertheless, a desired
improvement was to add forward secrecy to the tunnel key. Therefore, the version
was modified to include a Diffie-Hellman key negotiation mechanism.

However, the integrated DH tunnel was stated as being insecure. The FDR again
discovered a complex interleave-attack which resulted in a failed authentication,
despite the fact that the key affords forward secrecy. This circumstance led to the
concept of adding interleaved tunnels in order to confront the attack. The first secure
stated tunnel acts as an auxiliary tunnel for setting up the DH tunnel key. Thus, the
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final version implements an authenticated tunnel which provides forward secrecy
between the ARs.

4.4.2.3 The Final Version

The FDR trace refinement check of the final CSP input script indicates that this
version of the IDKE protocol is secure as an attack has not been discovered.
However, the Casper/FDR approach is limited in its capabilities of model checking.
Depending on the approach chosen, the security analyses will still reveal attacks and
if used improperly, the results are unreliable and almost worthless. One main
problem is the mapping of reality into the checking environment. The environment
in the CSP and the intruder can be modeled to map actual attacks. This means that
the modeling of the environment in this way can map such attacks as those on the
modifying of messages, the reflecting of messages and so on. Therefore, the CSP-code
producer has a direct control over whether, for example, a message can be delayed or
not (cable vs. wireless environment). However, major problems arise with attacks on
the decryption of electromagnetic radiation, etc. Such attacks are difficult to carry out
and are not really advisable for implementation in the formal analysis due to the
resulting complexity. Furthermore, it is a profound mistake to assume the security of
an implemented protocol purely by its formal analysis. One should always take into
account under what assumptions the protocol was actually stated as being secure.
The disregard of initial formal assumptions can result in implementation failures that
could destroy the protocol’s security. Thus, the absence of attacks needs to be
carefully considered as the verified implementation only represents a subset of an
infinite space of states.

Nevertheless, the verified implementation (#System, #Actual variables) covers the
majority of the specification (#Processes, #Free variables).Due to this considerable
coverage a potential attack can most probably be discovered. The Casper/FDR
approach is currently the best available technology and thus, the most promising
method for security protocol analyses.

However, the Casper/FDR approach is not capable of explicitly analyzing the secrecy
of the session-key renewal due to its limited state space. This is the main drawback of
this model checking approach. Normally, only very small protocols are analyzed by
Casper/FDR, such as the Needham Schroeder Shared Key Protocol. The analysis of
such small protocols requires less than 30 seconds whereas the IDKE protocol needs
up to 38 hours to complete the task.

Cremers and Mauw [CMO04] stated that Casper/FDR is incapable of handling larger
protocols due to the complexity of the graph analysis. The observations made during
this work showed that the maximum memory which the FDR “state2” subprocess is
able to allocate is approximately 3.1 Gigabyte. If only a 1GB space is required for the
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state space, then approximately three million graph transitions can be performed
before an FDR memory allocation failure occurs. This indicates that larger protocols
can be analyzed when careful design and minimized supplementing is taken into
consideration.

Nevertheless, the final version realizes a secure key transfer from the pAR to the nAR
using a fresh tunnel key which provides forward secrecy. The protocol was verified
in order to guarantee the authentication between the MN and the next AR, as well as
between the nAR and the pAR. The secrecy of all keys and nonces was also
validated. Therefore, the final specification of the IDKE is precise, optimized and
security validated

4.4.3 QOutlook

The IDKE protocol should also provide forward secrecy and key freshness for the
new session-key between the nAR and the MN (Knew). This has not been explicitly
verified by the analysis due to the exponential state exploration. Nevertheless,
authentication has been provided between the nAR and the MN and a nonce has
been transferred securely. The deduction as to how Knew can be established under
these circumstances is as follows:

The nonce can be interpreted as some potential key between the nAR and the MN.
Furthermore, this key can be used for establishing a secure tunnel on which the new
session-key establishment can be based and thus providing secure transfer. This also
makes it impossible for a man-in-the-middle-attack since both entities have already
been successfully authenticated. When the tunnel is supporting DH, this enables
Knew to be established between the nAR and the MN, as well as providing forward
secrecy and freshness. However, even if this approach is secure, it would involve
more messages. Therefore, an optional IDKE protocol step is proposed.

Different tunnel keys
- fresh
- forward secrecy providing

ART AR? AR3 AR4 AR3
@ @ For further
tion Ksps i
I Secure tunnel based on K1 I I Secure tunnel based on K2 I I Secure tunnel based on K3 I Comnli;‘\zacelznbysz;;
- - ! Ksnas
Kss _— Ksms _— Ksnas _— 1

Ksms Ksws Ksus

Key renewal:
DH to
establish
Kngw

Same session key

movement

Figure 22: Session-Key Renewal
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As the session-key Kswms is transferred via a secure tunnel which already provides
forward secrecy, this option needs only to be considered when a key renewal is
desired. This might be the case when a chain of ARs has become too extended. The
session-key should then be renewed as illustrated in Figure 22.

The freshness of the new session-key Knew is based on the fact that both the MN and
the nAR are authenticated by agreeing on the fresh nonce na and the secrecy of Kswus.
Timestamps are not considered in the verification. It is assumed that instead of using
na a timestamp would provide the same function, but this would cause time
synchronization problems.
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Chapter 5

Concurrency of IDKE Protocol
Runs

In order to improve the protocol performance, this chapter deals with a protocol extension for
the participating ARs. This extension aims at handling concurrent protocol runs caused by
fast moving MNs. A formal description of the improvement, in particular on the AR’s
behavior is given by using the specification and description language (SDL). The aim of this
extension is to enable an AR to deal with competing protocol runs. Thus, ARs are given the
robustness of not reaching an undefined state even when multiple requests occur. This is
verified by generalizing all possible cases and by simulating them with the aid of message
sequence charts (MSC). This extension is compatible to the specification produced in Chapter
4. Although in this case the security properties and the robustness to counter DoS attacks
have not been considered.

5.7 Introduction

Communication protocols such as the IDKE protocol involve interactions in
distributed systems by interchanging messages between participating nodes. The
nodes from the viewpoint of a communication protocol may act as a sender or a
receiver. According to their function, these nodes can have a complex internal
behavior which is described by complicated state machines, functions and local
variables. Communication protocols can be examined with the aid of formal
languages in order to specity, verify and validate the specified conduct. Chapter 3
introduced the IDKE protocol, while Chapter 4 showed that the entire security
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properties of the protocol can be fulfilled. This contemplated the participating nodes
as having fixed roles (pAR as sender and nAR as receiver) by mainly focusing on a
single valid protocol run. This assumed that by having just a single valid protocol
run, it would also be appropriate for verifying the security properties of the protocol.
However, this does not apply in the case where an MN moves so fast that a protocol
run cannot be completed. Due to this circumstance, concurrent [Mil89] valid protocol
runs could arise which then cause unexpected behaviors on the ARs. Thus, in the
same instance, it might be considered as the nAR of protocol run n and as the pAR of
protocol run n+1. Figure 23 visualizes this scenario in which the current instance of an
AR (cAR) is considered as both a “pAR” and a “nAR”. The theme of this chapter is to
examine as to how an AR should behave in the event of several competing protocol
runs. The major task is to provide a solution that preserves the robustness of the AR
against all possible incoming messages. Robustness in this case, refers to the
capability of handling even the most unexpected combinations of messages without
losing the capability of performing the primary desired actions for the main protocol
run. This implies that deadlocks should not occur that have an effect on any possible
combination of messages for an AR. Any solution for robustness has also got to be
considered from the aspects of security and performance. Therefore, this chapter
concentrates on formally describing, simulating and verifying the AR's behavior with
the aid of formal languages.

Figure 23: Fast Moving MN

5.2 Specification Languages

High-level description languages such as Message Sequence Charts (MSC) [ITU96] and
the Specification and Description Language (SDL) [EHS97, ITU92, ITU99] are used to
specify and to verify telecommunication systems [Kne92]. MSC and SDL have many
properties in common which would suggest a possible combined use. Both mainly
focus on the description of distributed systems whose components communicate by
asynchronous message passing. An introduction on the main concepts of MSC and
SDL is given below.
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5.2.1 Message Sequence Charts

The Message Sequence Chart is a graphical specification language standardized by
the ITU-T as Recommendation Z.120 [ITU96]. MSCs are used for describing the
communication behavior among system components and their environment. The
main concept of MSCs are instances and messages. Instances represent system
components that interact with each other by exchanging messages. Instances and
messages are identified by a name, while messages can optionally have parameters.
Typically, each message involves two events: sending (output) and receiving (input).
These events are either triggered by instances or triggered by the environment.

MSC HelloWorld

process HelloWorld

Environment HelloWorld

Hello

Y

World

happy X

Figure 24: Hello World MSC

Figure 24 shows an example of MSCs with the instances Environment and HelloWorld
displayed as vertical lines with an additional rectangle for the instance header. The
horizontal bar denotes that the instance ends, whereas the cross represents the
termination of the process. The MSC describes the scenario of an instance
Environment sending a message Hello to the instance HelloWorld and receiving a
message World. Messages are represented by annotated arrows pointing from one
instance axis to another. While receiving World, the instance Environment changes its
internal state to happy, which is expressed as a hexagon. MSCs define an absolute
order along each separate instance axis. Each instance has to be interpreted from top
to bottom. Any events on different instances are only partially ordered by message
exchanges, which means that a message has to be sent before it can be received. Due
to this, it is semantically irrelevant as to whether a message arrow points upwards or
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downwards even though the latter representation is more intuitive. Therefore this
representation is always used within this thesis. The MSCs provide an additional
function for internal actions that are represented as a rectangular box on the instance
axis. These boxes may either contain a formal expression or an informal text.

5.2.2 Specification and Description Language

The Specification and Description Language (SDL) [ITU 92, ITU99] is a graphical
language for the modeling of distributed systems. It provides the specification for the
functional behavior and the structure of a system [Hog89, EHS97]. Basically, the SDL
specifications can be considered as a set of Communicating Extended Finite State
Machines (CEFSMs) which are executed in parallel, primarily performing their actions
independently. The CEFSMs communicate via asynchronous messages. These are
transferred via channels which connect the sender and the receiver. Channels are
fundamentally unidirectional connections so that the bidirectional connections can be
modeled by two channels. Each CEFSM stores variables locally. A SDL specification
consists of a number of diagrams whose combination describes the hierarchical
structure of a distributed system. At the top level, the SDL specifies a system which
usually consists of a number of agents. These can either be blocks or processes. The
two types of agents can contain further agents until the desired degree of detail is
reached. Both blocks and processes include state machines, but these differ in the
degree of concurrency. In blocks, the state machine of the agent is executed in
parallel with its embedded agents whereas in processes the state machines are
executed in an alternating manner. Transactions are interpreted atomically and
sequentially.

The dynamic behavior of SDL is described by Exceeded Finite State Machines (EFSMs)
and depends on the received messages from other EFSMs. Any incoming signals are
stored in a First In First Out (FIFO) queue. When two signals arrive concurrently, they
are stored in an arbitrary order. The queued signals are processed separately while
each causes a state transition. Various actions are executed during a transition which
change the internal variables. The signals are sent out throughout a transition until
the next state is finally reached. Figure 25 shows a component of a SDL state
machine. When in the idle state, an incoming signal called hoReq would involve a
transition. Furthermore, it requires a task that sets a local variable and which sends
out a TOKENTeq signal. Finally, the transition evolves into a new state of waitTokPar.
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Many extensions have been made to improve the capability of SDL. The FIFO
concept for queuing as an example, is interrupted when the state cannot handle the
next signal as input. In this case, the inapplicable signal can either be dropped or
stored separately and be executed at some later date. Other conceptions can extend
the SDL by, for instance, adding timers or object orientation concepts. As these
extensions are irrelevant for the evaluation carried out in this thesis they are not
described further. Any reader requiring more detail can refer to [ITU99].

5.3 IDKE Node Specification

Figure 25: SDL Example

The IDKE protocol involves two ARs: one as sender and another as receiver.
However, an IDKE-aware AR might adopt both roles consecutively when there is a
traversing MN and thus, a former receiver becomes a future sender. It is an actuality
that each IDKE-aware AR must be able to act both parts. However, most of the
challenges that ARs face are in situations where several requests occur in parallel.
The following scenarios are considered possible:

1. An AR receives a request from an “nAR” before having retrieved the key. In
this case, an nAR is considered as a “pAR” in any further protocol run. This
scenario occurs whenever an MN moves faster than the completion of a
protocol run and is thus referred to as fast moving.
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2. An MN returns to the previous AR before completing the protocol run; this is
called fast toggling.

3. An MN double-requests the key at the same time as an AR. Although this
could be a double request, the MN might also have been connected to a third
AR and has as a result returned to its previous domain. This is referred to as
fast cycling.

As examples in all three scenarios, one might imagine three ARs (AR1, AR2, AR3)
where the MN is initially attached to the AR1 and performs a sequence of handovers.
These handovers are assumed to take place in such a fast manner that the first one is
still pending at the time the last one has been initiated. Taking the viewpoint of AR?2,
example sequences for all three scenarios are: “AR1, AR2, AR3” as sequence for a fast
moving MN; “AR1, AR2, AR1” for a toggling MN as well as “AR1, AR2, AR3, AR1
AR?2” for a cycling MN. Given the assumption that messages contain timestamps, the
current session-key holder upon receiving several requests is always able to judge
which request is the most recent one. Accordingly, the AR exclusively accepts the
most recent one and cancels all others.

A difficult situation occurs whenever an AR receives a request without having the
corresponding session-key. In this case, the AR is not even capable of judging as to
whether the request is valid or not. It is even more challenging when an AR is
waiting for a key, but instead receives a further request. The AR has three
possibilities to deal with this situation:

e Drop the new request

¢ Queue the request

e Forward the request to the AR from which it is itself expecting to obtain the
key.

The first possibility is inadequate since it would end in a key forwarding chain and
would involve a second request by the MN. The second possibility is impracticable
for two reasons:

e The queuing of potentially invalid requests from malicious senders would
make the ARs vulnerable against DoS-attacks [GopO1].

e Treating all requests in the order of their arrival would lower the performance.
The cycling scenario would specifically involve a cycling session-key transfer
and would thus involve an additional delay.

Therefore, the forwarding of requests is the only possibility that corresponds with
the requirements of the IDKE protocol. The design decision is accordingly made to
realize the request-forwarding function as an optional part of the IDKE-AR
extension.
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5.3.1 IDKE AR Specification

Chapter 3 introduces and specifies all messages relating to the IDKE protocol. The
major part of the protocol involves two ARs where the key is transferred between
them. The pAR acts as the sender while the nAR performs the part of the receiver.
According to the role an AR adopts, it performs dedicated actions within the protocol
run. The tasks of the nAR are:

e to forward the MN-token,

e to establish a key for tunneling between the ARs (also called SA),
e torequest the MN’s session-key and

e tosend an acknowledgment to the MN.

The pAR’s tasks are:

e to check the MN'’s token in order to guarantee the MN'’s identity and the
freshness of the request,

e torespond to the tunnel key establishment (SA request) and

e to forward the session-key.

The capability for request-forwarding and a mechanism for cancelling key transfers
have to be established at each AR in addition to providing the functions for both the
PAR and the nAR.

An example scenario involving request-forwarding is given in Figure 26. The
scenario shows an MN fast moving among an AR-chain from ARI1 to AR4. Initially,
the MN was attached to AR1 and sequentially has sent handover requests to AR2,
AR3 and AR4. Figure 26 shows that the key has been successfully transferred from
ARI1 to AR2. The tunnel establishment between AR2 and ARS3 is in progress when a
key-request from AR4 reaches AR3. As AR3 is unable to judge whether the request is
valid or not, it forwards the request (also called token) to AR2. AR2 is in possession
of the session-key and is thus able to interpret the received token as a valid request.
Thus, AR2 has two tasks: Firstly, to cancel the tunnel establishment between AR2
and AR3; and secondly, to start the tunnel establishment procedure with AR4. The
session-key can then be directly transferred from AR2 to AR4.
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Figure 26: Example - Fast Moving MN

5.3.2 IDKE AR Extension

The fundamental concept of the extended AR specification is to initially consider
both roles of sender and receiver as separate state machines. The next step is to
combine them into a single state machine by first connecting the end states of one
state machine with the initial state of the other. Secondly, for all states all possible
incoming messages have to be checked in order to verify if they create a shortcut or
not. The result is an extended IDKE-AR that is able to handle all potential IDKE
messages as the sender and the receiver. It forwards request messages from other
ARs and interrupts protocol runs by sending cancel messages. It is also able to

accept cancel messages from other ARs. Figure 27 illustrates a schema of an
extended IDKE-AR.

The block in the centre represents an IDKE-AR consisting of two parts: The part of
the receiver and that of the sender. Initially, the AR is in the state which is referred to
as idle. In this state, the AR has neither key nor SA. The idle state belongs to the
receiving part of the AR. Once the MN sends an HO-Request, the AR starts the key
obtaining procedure with the pAR according to the request made by the MN. After
the key transfer has been performed successfully, the AR switches its state to KEY
established. If the AR receives a token before it has obtained the key, it will
forward the request to its pAR. When the token has already been forwarded, the AR
sends a cancel message to the token forwarder. The AR likewise continues the
communication and key obtaining procedure in case the token is invalid. The pAR
either proves the correctness of the token and forwards a cancel message or it
forwards the token in the same way and answers with a cancel message. This
message resets the AR to the idle state.
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The retrieving of the key enables the AR to enter the state of KEY established.
This is the initial state of the sender. An acknowledgement is sent to the MN when
the AR enters the state KEY established. The AR in this state is thus able to
decide if a received token is valid and fresh. It should be mentioned here that until it
receives the session-key, the AR is unable to make such a judgment. The AR now
takes on the role of the “pAR” and waits for a valid key request. When such a request
is received, it starts the SA-establishment and the key-transfer procedure with the
nAR-ID contained in the message. One should note that the nAR-ID is not
necessarily the sender of the request message since the sender could have simply
forwarded the request message. In such a case, the AR sends a cancel message to
the sender in order to interrupt the transfer.

The design choice introduced above has been selected in order to allow the internal
behavior of the MN to be as simple as possible. It simply sends a request message to
the current AR while the entire responsibility for the directing of messages is located
at the ARs. Hence, the MN’s internal behavior is very straightforward and does not
require any queuing of history on the connected nodes. It merely stores the ID of the
previous AR it sent a ho request for requesting a handover.

TOKEN (nAR via cAR)

KEY
established
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V SA/KEY to nAR W CANCEL to cAR ?

RECEIVER PART SENDER PART

Forward TOKEN to pAR
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IDKE AR
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Figure 27: IDKE aware AR Overview
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5.4 SDL Specification

A formal specification of the IDKE-AR as illustrated in Figure 27 utilizing the formal
language SDL. The IDKE-AR consists of both a sender and a receiver which are
integrated into a SDL block-type. The function of both and their interoperation are
subsequently explained in more detail. A system acting as a simulation environment
has also been introduced which consists of three IDKE-AR block types. All further
illustrations are directly obtained by the simulation and verification environment
Telelogic Tau [Tel01].

5.4.1.1 The Receiver Part

The SDL model for the receiver part is illustrated in Figure 28. Each session involves
a unique state machine that initially inhabits the id1le state of the receiver part. Each
MN is generally involved in a single session and therefore the transfer of a single
session-key per MN is required. An AR in the idle state expects handover request
(hoReq) messages from the MNs that desire to have a session-key transferred to it.
The hoReq message corresponds to message 2 of the IDKE protocol and contains two
parameters, namely the pAR-ID and a timestamp. The pAR-ID determines which AR
has previously received a hoReq from the MN. The second parameter of the hoReq
message is the MN timestamp and is denoted as being the optional timestamp1. This
was introduced in Section 3.2 .

The SDL model shows that the current timestamp is stored at a variable cTS. This
timestamp is also contained in the outgoing TokENreq message (message 3 of the
IDKE protocol). The AR waits for the pAR to verify the token and expects either a
ToKENok (IDKE protocol message 4) or a cancel message. The former indicates that
the token is valid and this allows for a secure tunnel establishment. The AR sends an
sareq message which corresponds to message 5 of the IDKE protocol and it
accordingly expects to receive message 6. This is referred to as saest. Finally, the key
is requested and transferred according to the IDKE protocol messages 7 and 8, herein
dedicated as kEYreq and kKEvdata. At this point in the procedure, the communication
with the pAR is teminated and the MN is notified of a successful key transfer by the
HOoack message (IDKE message 9).

This key establishment procedure includes the following intermediated states:
waitTokPar, waitSAPar and waitKeyPar. A cancel message is able to reset the key
establishment procedure during all of these states. This occurs when a cancel
message arrives which has a newer timestamp than the timestamp of the current
session-key establishment procedure.
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The arrival of further horeq messages from other ARs also needs to be considered. As
the key is not established prior to reaching the state keyset, the request is forwarded
in all intermediate states (waitTokPar, waitSAPar and waitKeyPar). As can be seen
from the SDL model, the key establishment procedure continues even if a newer
request is forwarded. cancel messages are the only means of explicitly terminating
this procedure. Simulations brought out that otherwise deadlocks are possible.

While establishing a session-key, it may also be possible for the MN to again send
out a horeq message. When the desired pAR remains identical then only the
timestamp is updated. This is in order to prevent from expired incoming TOKENreq Or
cancel messages from being executed. These are old messages that might have been
sent out by other ARs. TokENreq messages arrive whenever another AR considers this
other AR as being the pAR. However, this other AR does not necessarily have
possession of the session-key and consequently forwards the request. In this case, the
AR modifies the destination-field that indicates where the token is to be directed.
This is credible since the security verifications in Section 4.3.1 showed that the pAR-
ID is not an essential part of the token. This fact allows for the receiver-ID to be
placed in the non-encrypted part of the message. Therefore, this ID can be changed in
transit should it be necessary to forward the request. It can be seen from the packet
format (see Appendix B) that the timestamp is twice included in the message: once in
plaintext and once encrypted within the authentication-token. The former timestamp
acts as an identifier for determining the order in which the horeq messages have
arrived. Thus, the plaintext timestamp provides an order over any incoming
messages even if the AR is unable to decrypt the token content. An AR can decide in
accordance with this order as to which request is the most recent one. Hence, it is
capable of performing the appropriate actions in exclusively dealing with the most
recent one. However, the purpose of the encrypted timestamp is to enable the pAR to
judge as to whether the claimed timestamp is actually valid. This is done by
comparing both timestamps in order to ensure that they are equal. The timestamp in
the SDL model is also represented by a session number that is simply incremented by
the MN before sending a request. This simplification is practical since the purpose of
the timestamp is limited to the re-sequencing of multiple requests.
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Figure 28: SDL Process Model of the IDKE-AR Receiver Part

As previously mentioned, the AR should forward all token requests to the pAR since
it cannot decide as to whether the timestamp and token are valid or not. An
exception is made here when the last request is stored in parallel prior to forwarding
it. Simulations have been carried out that discovered cases in which the key has been
sent from the pAR to the cAR parallel to the token being forwarded from the cAR to
the pAR. In order to prevent the loss of this request, the cAR stores and forwards the
request. Immediately after the retrieval of the key, the cAR will start the SA
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establishment with the nAR, if the token is valid. This trigger in the SDL model is
initiated by the Boolean variable newrequest as illustrated in Figure 29.

5.4.1.2 Sender Part

Figure 29 shows the sender part of the AR. The keyest state is the initial state when
the key has been successfully established and consequently the AR takes over the
role of sender. TOKENreq messages are no longer forwarded, but are directly
responded to. The token verification has not been modeled since any attacks are not
within the scope of this particular model. Whenever an AR possesses the session-key
and verifies any incoming authentication tokens, they are assumed to be valid. This
means that only the freshness of the timestamp actually has to be checked.

The sender part consists of the corresponding states within the key forwarding
procedure (keyest, waitSa, waitKeyReq). It switches back to the idle state after the key
has been transferred. A new TOKENreq can be received during this sequential
procedure run. When the request carries a newer timestamp, the forwarding
procedure is interrupted and a cancel message is sent to the sender. In such cases,
the sequential process is re-started for the new request and a tokenok message is sent
out.

All messages are queued in this SDL model. A message is not dropped in case of a
parallel arrival. This is the reason why the sareq and the KEYreq messages are
explicitly dropped when the sender is in keyest. It is illustrated in Figure 29. The
hoReq messages sent by the MN are immediately answered with a hoack message in
case an MN has send out a double request.
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Figure 29: SDL Process Model of the IDKE-AR Sender Part

5.4.1.3 Mobile Node

The MN specification is illustrated in Figure 30. As one can see, it has been kept as
simple as possible. Subsequent to the initialization procedure, the MN sends out the
hoReq messages by means of an external trigger. The external trigger is used for
testing purposes and is initiated during the simulation process. In this particular SDL
model, the trigger is not specified in more detail as the handover decision has not
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been included in the IDKE protocol. Hence, a horeq message is sent to the nAR. This
message contains two variables, namely the pAR-ID and the timestamp. It was
decided in its design to handle all the forwarding logic at the ARs and the MN is
simply used for storing the last AR it has sent a horReq to. The timestamp is
implemented as a session ID counter which is incremented prior to performing the
next handover. The MN also receives hoack messages and stores the sender as the
current AR. It should be mentioned here, that the current AR-ID is needed for future
purposes. Due to an external trigger, it is also possible that the MN wants to
handover to the AR it is currently connected to. Such cases need to be handled by the
logic implemented at the ARs.

process MNprocess del AR pid:

{ ............. ]\ del AR2 pid;
| B dcl AR3 pid;

dcl nAR pid;
dcl pAR pid;
dcl cAR pid;

( , ] dcl TS natural :=1;
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Figure 30: SDL Process Model of the IDKE-MN
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5.4.2 Scenario-based Simulation

The IDKE system is illustrated in Figure 31. The figure illustrates the IDKE-AR
modeled within an SDL block type. Furthermore, it shows the three instances of this
block type as AR1, AR2 and AR3. The creation of new scenarios is simplified, as the
block type can be reused for any new instance of an IDKE-AR. In utilizing the block
type thus, it improves the scalability for creating more complex scenarios.

All ARs are connected with each other. The signals contained within the arRsignals
list can be exchanged, as the example scenario shows in Figure 31. The MN merely
sends horeq messages to the AR and expects a hoack back from the AR. Initially, the
key is set at AR1 by sending a setkey from the MN. This is applied for testing
purposes.

system IDKE 1(1)
i In [SIGNAL TOKENoK(Pid), SAest, KEYdata, cancel(natural), setKey,
: i |hoReq(pid, natural), hoAck, init, TOKENreq(pid, natural), SAreq, KEYreq;
N R ' | SIGNALLIST ARsignals = TOKEMok, SAest, KEYdata, cancel, init, TOKENreq, SAreq, KEYreq;
ariar3
/[(ARsignaIs}J [(ARsignaIs}l
arlar2 h ar2ar3 | rg
g g rg
AR1T:AR rg ARZ2:AR AR3:AR
g
wg wg wg
[(A igna|s)1(ARsignals)J [(ARsignals}:[(ARsignals)] [hoReq:|
oReq, setKey:| [hoReq]
mnar1 mnar3
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Figure 31: IDKE SDL System

This simple scenario demonstrates the possibility of creating a considerable number
of different uses cases. Apart from the simple sequential handover, the following
special cases have been examined:
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e Fast movement: the MN sends very fast consecutive requests.

e Cycling: the MN moves fast between the ARs: for instance from ARI to
AR2 and AR3. It then returns back to AR1. The request either cycles behind
the key or can even overtake the key.

e Double request: The MN sends several requests to one AR. As for example
in the following sequence: AR1, AR2, AR2 and AR3.

e Toggling MN: In this case the MN fast switches between two ARs, as for
instance in: AR1, AR2, AR1, AR2 and ARI.

e Combinations: The MN may produce several parallel requests, including
toggling, fast movement and double requests.

5.4.2.1 Fast Movement

The task of the first simulation is to analyze a fast moving mobile MN. The MN
performs two handovers in such a fast manner that the first has not finished, when
the second handover is initiated. The objective of the simulation is to verify the
specification against any deadlocks and livelocks. The MSC resulting from the
simulation is presented in Figure 32. It shows an MN that was initially connected to
AR1 and which performed overlapping handovers to AR2 and AR3. This MSC also
shows the intermediated states of all instances. Figure 32(a) illustrates how the AR2
obtained a TokENreq from AR3 and how the request is forwarded to AR1. Subsequent
to forwarding the token, the AR2 continues to communicate with AR1 (see
Figure 32 (b)). This is because the saest message from AR1 arrives after the ToKENreq
message from AR3. Consequently, theAR2 sends a kEvreq message to AR1. However,
after receiving the token from AR3, the ARI sends a cancel message (see
Figure 32 (c)) to AR2 and so the AR2 returns to the idie state without deadlocking.
Finally, the key is directly transferred from the AR1 to AR3 (see Figure 32 (d)) and in
doing so the AR3 reaches the keyset state while all other ARs are in the idle state.
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Figure 32: MSC - Handover from AR1 to AR2, AR3
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5.4.2.2 Cycling Movement

A more complex handover scenario is when the cycling MN arrives at some AR for
the second time round even before this AR is able to finish the first protocol run. This
scenario is illustrated as block trace and for the sake of clarity, the states have been
removed in Figure 33. Here, an MN performs a handover among AR1, AR2, ARS3,
AR1, AR2 and finally reaches AR3. This scenario shows a double loop over all three
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ARs. The loop is so fast that the key has not been transferred between any AR by the
time the MN has finished the loop.

When the MN finishes the first loop and sends a horeq to AR1, the AR1 immediately
responds with a hoack as in Figure 33(a). The AR1 also receives a request from AR3
(forwarded by AR2). As the timestamp of the request is older than the current run at
AR1, it sends a cancel message cancel (2) to the AR3 as presented in Figure 33(b).
The number in brackets represents the timestamp and thus cancel (x) belongs to the
protocol initiated at time x.

When the cancel(2) arrives at AR3, it has already sent out a further TokENreq
message as illustrated in Figure 33(c). Due to the timestamp in the cancel message,
the AR3 ignores the cancel message as it belongs to a previous run. It continues the
key establishment procedure with AR1 in order to finally obtain the key from AR1 as
presented in Figure 33(d).

During the key request of AR2 from AR1, a horeq from AR3 addressed to the AR1
arrives at AR2 and is forwarded to AR1. Nevertheless, the AR2 continues the transfer
process and ignores the cancel (3) message from ARI (illustrated in Figure 33(e)).
This is because the cancel results from a previous request from AR3 and thus the
AR2 continues the request with timestamp 4. When the newer cancel message
cancel (5) arrives at the AR2, it ceases to communicate with AR1.

Due to race conditions during the transfer of cancel(5), two SA requests arrive at
AR1. However, an answer is only given to the second request originating from ARS3.
Finally, the AR3 is in the keyest state (not illustrated in the figure) and all other ARs
are in the idle state.

5.4.2.3 Toggling Movement

This scenario does not involve the AR3 at all, as the MN toggles between the AR1
and the AR2. The scenario is similar to the cycling scenario and hence it can be
considered as a cycle between two ARs. The difference is that from the viewpoint of
an AR, all messages are exclusively exchanged with only one other AR.

In Figure 34, a toggling handover is shown in which the MN that was initially
connected to the AR1 is fast toggling to AR2, AR1, AR2, AR1 and finally to AR2. As
illustrated in the MSC, the second nhoreq sent back to AR1 causes the AR1 to send a
hoack to the MN (see Figure 34(a)). The AR1 also sends a cancel (2) message to AR2
after the AR2 has sent a kEyreq message to AR1 (see Figure 34(b)). According to the
timestamp in the cancel message, the AR2 terminates the key establishment
procedure. The ARI1 is successfully in the state keyest while all other ARs are in the
idle state (not illustrated in the figure).
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The MN now toggles faster so that the hoReq messages are sent with less delay than
previously. The MN sends requests to AR2, AR1 and AR2 as fast as possible (see
Figure 34(c)). Thus, the cancel (3) message relating to the first request arrives even
before the TokENok message of the fifth protocol run. Consequently, the AR2 ignores
cancel (3) and successfully completes the key establishment procedure with ARI1.

Finally, the AR2 inhabits the keyest state while all other ARs are in the idle state.

Therefore, despite the toggling speed, the ARs are able to correctly handle handover
requests and it is possible for the session-key to be sent to the AR which made the

most recent request.
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Figure 34: MSC - Handover from AR1 to AR2, AR1, AR2, AR1, AR2
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5.5 Summary, Discussion & Outlook

This chapter specified IDKE aware ARs utilizing SDL. The topology to simulate fast
moving, cycling and toggling MNs consists of three ARs. By using Telelogic Tau, it
was possible to verify that this extended specification of the IDKE protocol is robust
against deadlocks and livelocks as well as against message race conditions. The AR is
modeled as an SDL block type. This makes scalability an easy task if changes to the
topology are required.

The IDKE protocol was extended in order to handle concurrent protocol runs. The
solution of forwarding messages reduces the latency and thus provides a higher
performance. The overlapping of protocol runs were distinguished by timestamps
that denoted the moment when the MN had initiated the protocol run. The results
ascertained by the simulation are as follows:

e Roles are separated from instances, as an IDKE-AR is represented as a single
SDL block type. The analysis is even more realistic since an IDKE-AR can
adopt both the roles of “pAR” and “nAR”. Concurrent protocol runs require
an IDKE-AR to inhabit both roles simultaneously.

e Scalability is supported as the SDL block type can simplify the creation of new
scenarios. The scenario portrayal of three ARs can simply be expanded by
inserting new ARs derived from the block type.

e Simulations indicated that the analyzed SDL model is robust against
deadlocks. Many previous versions resulted in undesired states.

e The system consisting of three nodes was discovered to be apt in handling a
vast variety of possible scenarios. The analyses proved that a fast moving,
cycling, or toggling MN can be simulated.

e Cancel messages extended the IDKE protocol. These messages turned out to
be necessary for cancelling previous protocol runs.

e Timestamps were shown to be required instead of nonces. Simulations
showed that timestamps are mandatory for distinguishing the protocol runs.
Simulations illustrated that cancel messages can arrive delayed. The carrying
timestamps add the capability for the AR to decide as to whether these
messages can be neglected or not. Thus, timestamps make a major
contribution to providing robustness in cases of race conditions due to the
overlapping of handovers.

Therefore, the extended IDKE protocol is capable of handling concurrent protocol
runs. The IDKE protocol ensures that no SA is established and no key is transferred
when the nAR holds an invalid token.
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One major drawback to the simulation is that the token verification is not part of the
SDL model. It is assumed that the token verification is performed at the sender side
of the AR's model in parallel for verifying the timestamp. The protocol is robust
against DoS-attacks that attempt to establish unnecessary SAs between the ARs and

against any unnecessary states at the AR. Thus, ARs are robust against DoS attacks.
However, a disadvantage is that any DoS attacks against the MN have not been
considered in this study. Protection does not exist for the prevention of unauthorized
protocol termination. A concept of authenticating cancel messages does not exist at
the present time.

Subsequent work could further improve the SDL model, such as:

Including the key computation function in the SDL model.

Adding the possibility of reusing SAs in the SDL model.

Including the home network in the model. Thus, providing an additional key
establishment from a fully trusted instance.

Including a retransmission mechanism for enabling the protocol to be robust
against package loss.

Utilizing the UML security (UMLSec) [Jue04] approach which is also based on
CSP and FDR model checking.
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Chapter 6

Performance Simulations with
OPNET

This chapter analyzes the performance of the IDKE protocol by comparing it to other
protocols. The aim is to evaluate the conditions under which the protocol provides the best
results. Therefore, the IDKE protocol has been compared with a traditional challenge-response
mechanism such as in GSM. The performance of an EAP and AAA-architecture based
approached has also been considered. Here, the wireless shared key exchange protocol
(W-SKE) is a key exchange protocol which is especially designed for wireless nodes, is also
used for comparison with the IDKE protocol. The evaluation focuses on the performance of the
protocols and in particular on the overall handover delay. These analyses act as a proof of
concept in order to stress the circumstances under which the IDKE protocol is the most
promising approach. Therefore, these studies have been separated from security-analyses and
scalability-aspects. Thus, they do not consider any authentication-token computation,
encryption or decryption, nor any prevention from Denial- of-Service-attacks.

6.1 Introduction

Mobile participants desire seamless connectivity while moving. Handovers become
necessary and cause connection reestablishments. Delays are caused due to
reauthentication procedures. This process is particularly time-consuming when
located far from the home network in terms of hops so that which causes a long
delay for transferred traffic. Thus, locally performed authentication runs are
expected to provide better performance. The IDKE protocol on the whole exchanges
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messages for reauthentication locally. Other protocols that are widely used and
highly involve the home network are for example, the GSM [Hei98] and the W-SKE
[SBG+03]. Intuitively, the IDKE protocol should be faster when utilized far from the
home network.

However, simulations are required to predict the conditions under which the IDKE
protocol is faster than other approaches. Thus, the discrete event simulator OPNET
Modeler [Opn05] has been utilized for this purpose. The task is to calculate the
performance of the protocol in relation to other approaches. The leading question is
in which environments the IDKE protocol can provide better quality than others.
Quality refers to a short overall handover delay.

An inter-domain handover has been modeled as a reference scenario. Protocols have
been simplified and all performance irrelevant parts have been neglected. The
purpose of the analyses is to work out the following;:

e The expected overall handover latency. Analyses are dependent on the
performance of intermediate links. Considered links are: a wireless
connection, a core network, an access network and a link to the home
network.

e The performance of other widely used protocols. The analyses study the
GSM challenge response mechanism and the EAP based wireless shared
key exchange protocol (W-SKE).

e The simulation results by comparing all of the tree approaches. The
purpose is to identify the conditions under which each protocol can
provide the best quality.

The simulation tool OPNET Modeler provides both, already existing models and the
capability of implementing one’s own protocols. The existing models provide a set of
links and nodes which makes it convenient for creating a topology. However, when
one produces one’s own implementations this requires a finite state machine
description, a link and packet format definition as well as c-code implementation.
Therefore, producing one’s own implementations is the only practical selection for
carrying out the performance evaluation of the IDKE protocol. All protocols
approaches have been reengineered for a number of reasons:

e Models do not exist for the IDKE protocol.

e The same infrastructure has to be used in order to compare all protocols. Thus,
the same nodes and links are used for all protocols.

e The function should be kept as simple as possible.

All irrelevant aspects have been removed for the performance simulation. An
encryption or decryption for example, causes a delay which is modeled within the
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nodes, because a real cryptographic algorithm is not implemented at the node. The
messages are sent unencrypted since the actual content does not have any influence
on the transit-performance. All session identifiers, nonces and keys are actually not
created for the packets. Random numbers are utilized to fill packets. Hence, the
protocol implementation becomes less complex, but at the expense of the scalability
of the simulation scenario. This is a reasonable design choice since the focus is on a
handover delay without any modeling package loss and retransmission capabilities.
The simulation of such protocol robustness as that of resistance against denial-of-
service-attacks has not been included in the evaluation and thus, it has been assumed
that the nodes will provide this desired service. Therefore, the simulation
environment provides an optimal basis and similar conditions for all protocols. The
overall performance of the protocols only depends on changing the link quality
during the simulation run.

The following four protocols have been examined in the evaluation: the GSM, the W-
SKE and two versions of the IDKE protocol. While one IDKE version performs key
exchange locally, the other includes the home authentication procedure.

Further in this chapter, the whole range of mechanisms is introduced prior to
describing the topology. It explains the changes made to the protocols in order to
adapt them to the simulation environment. Some additional details are also given on
topology as well as presenting information on the simulation runs. Finally, the
simulation results are summarized and comparisons are made on the weaknesses
and strengths of all of the protocols.

6.2 Related Work

The evolution of mobile phones has also had an influence on security properties as
well as their strengths. This applies to the first versions on the market right up to the
fourth generation (4G)[BriO1]. The first generation (1G) were analog cell phones without
any encryption. GSM as an instance of the second generation (2G), was originally
designed with a moderate level of security. Security tasks are user authentication by
utilizing shared-secret cryptography, which is also used for encrypting the
communications between the mobile terminal and the base station. Furthermore, the
deployment of the third generation mobile phones (3G) [Kor01, PMKO00], adopted the
Universal Mobile Telecommunications System (UMTS) [Mah98, BA02] and introduced
an optional Universal Subscriber Identity Module (USIM.) This uses a longer
authentication key for improving security and mutually authenticating both the
network and the user, whereas GSM only authenticates users to the network.
However, although the security model offers data confidentiality and authentication,
it is limited in its authorization capabilities and does not offer any non-repudiation.
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GSM incorporates a suite of cryptographic algorithms in order to provide security.
Algorithms referred to as A5/1 and A5/2 [XHW94] are stream ciphers that are
employed for ensuring over-the-air voice privacy. The A5/1 is a stronger algorithm
used within Europe, whereas the A5/2 is a weaker version used in other countries.
However, serious weaknesses have been found in both algorithms. It is possible to
break the A5/2 in real-time, even when only the cyphertext is known (cyphertext only
attack). However, GSM is a very simple approach that is supposed to provide high
performance. The same is true of the W-SKE approach which aims to limit message
exchanges between the access network and the home network. Thus, the GSM, the
W-SKE and the IDKE protocol are suitable candidates for being used as comparisons
under performance aspects. Both the GSM key establishment and the W-SKE are
very different from the IDKE protocol and thus are explained in detail in the next
section.

6.2.1 Global System for Mobile Communications (GSM)

The Global System for Mobile Communication (GSM) was developed in the second
generation (2G) of mobile phones and has become a well-known example of mobile
communication protocols. The GSM protocol includes an authentication and key
exchange mechanism for distributing a session-key between the MN and the access
network. When an inter-domain handover takes place, the GSM protocol performs a
total reauthentication based on a challenge response mechanism. As the GSM
protocol uses one very simple mechanism, it is assumed that it can provide high
performance. Due to the small number of messages, it is supposed to quickly
establish a session-key. However, the GSM protocol does not provide mutual
authentication. Hence, for security reason it is unacceptable as an authentication
protocol for IP networks. Nevertheless, in view of its performance aspects the GSM
protocol is an interesting candidate for presumably providing a fast key
establishment.

In GSM the home network is represented by the Home Location Register (HLR). The
HLR is equivalent to the HA in MobilelP. In contrast to other approaches, the GSM
key establishment is not initiated by the MN. The home network triggers handovers
and message exchanges. The HLR is always aware of the MN'’s point of attachment
prior to the initiation of the key establishment.

The GSM protocol and MobilelP establish the session-key for different purposes.
MobilelP desires authentication of the binding-update-messages. Hence, the session-
key is used for the digitally signing of the authentication-header-extensions. The
GSM protocol utilizes session-keys for encrypting the communication.
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The IDKE and the GSM protocol both establish a key between the MN, the access
network and the home network. The GSM session-key Kc corresponds to the IDKE’s
Ksus. This is derived from a Master Secret Key Ki and the generation of a random
number by means of a mathematical function. The protocol for exchanging this key
between the MN and the network is illustrated in Figure 35. The message flow is as
follows:

e (1,2, 3) The HLR generates a random number and sends it to the MN. This
random number acts as a challenge for the MN.

e (4,5 6) The MN must be aware of Ki and can thus create the session-key
Kc. Based on Kc the MN is able to compute a response according to the
received challenge. This response is sent back to HLR.

e (7,8) The HLR validates the response and sends an acknowledgment and
keys to the Base Transceiver Station (BTS). The access network allows the
MN to access the network and to establish a connection.

HLR W
Home
Network

moving

Figure 35: GSM Re-Authentication Message Exchange
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6.2.2 Wireless-Shared Key Exchange (W-SKE)

The W-SKE protocol was especially developed for providing authentication and
session-key establishment for MNs. The W-SKE protocol assumes an existing AAA
infrastructure to set keys. It utilizes such widely used protocols as the Extensible
Authentication Protocol (EAP) [ABV+04], RADIUS [RWO00] and Diameter [CLO3] for
message transfers.

The W-SKE protocol minimizes the number of messages exchanged between the
access network and the home network. The assumption is that the home network
could be located faraway in terms of hops and delay. The W-SKE protocol only
requires two messages between the access network and the home network. However,
many messages are exchanged by means of a wireless link which could also prove to
be a bottleneck.

In order to implement the IP based W-SKE protocol in the OPNET Modeler, some
simplifications are necessary. The W-SKE requires protocols to be on top of the IP
layer. The communication between the MN and the AR is encapsulated into an EAP
over LAN message (EAPOL) [SHO04]. EAPOL is a method of the Extensible
Authentication Protocol (EAP) and was initially designed for LAN connections. The
communication between the AR and the AAA servers utilizes the RADIUS protocol
for exchanging messages. The performance simulation requires the focus to be on the
message exchange, the packet size and the necessary computation time for
authentication and key generation. The message flow is illustrated in Figure 36 and
this functions as follows:

e (1) The MN sends a start message to the AR. This message contains the AR
identifier. The start-message does not belong to the EAP protocol. EAP is
always initiated by the core network. The start-message is used when
clients need to initiate the message exchange.

e (2) The AR sends an EAP request message to the MN requesting the MN’s
identity.

e (3) The MN sends an EAP reply message to the AR containing the MN’s
User Identifier (UID) and the Session Identifier (SID).

¢ (4) The AR forwards the message to the local Foreign AAA (FAAA) server.
This server could be a RADIUS authentication server. The corresponding
message is then a RADIUS authentication-request-message encapsulated
into an EAP message.

e (5) The FAAA generates a random number N1 for each session and sends
N1 back to the AR.

146



The IDKE Protocol Chapter 6 Performance Simulations with OPNET

e (6) The AR forwards the message containing N1 to the MN.

e (7) The MN treats N1 as a challenge and creates an appropriate response
for authentication purposes which is referred to as AUTH1. The MN also
generates a random number N2. The MN sends a message to the AR. This
message contains both N2 and AUTH1. AUTH1 is a message
authentication code (MAC) and covers all the relevant data that is
computed as AUTH1 = MAC KuvnHaaa (N1IN2[UIDISID [ [ASID]). This is a
keyed MAC based on the shared secret Kunuaaa between the MN and the
HAAA server.

e (8) The AR forwards AUTHI1 to the FAAA server.

e (9) The FAAA server uses UID and SID to verify whether the MN has
actually been attached to the AR. The FAAA sends a message to the
HAAA of the MN. The connection between the FAAA and the HAAA
server is assumed as being secure. Secure tunnels commonly exist between
all AAA servers and AAA brokers.

e (10) The HAAA server validates the authenticity of the MN, based on the
received UID. The HAAA computes an AUTH1" based on the shared secret
between the MN and the HAAA server which is similar to that of the MN.
An AUTHI and AUTH1" should show the same value and therefore prove
the MN'’s authenticity. The HAAA server generates a second
authentication MAC termed AUTH2. The value is computed as AUTH2 =
MAC Kmnuaaa (N2INTIUIDISIDI[ASID]). All single values are equal to
AUTHI1 but N1 and N2 occur in the reverse order. AUTH2 is designed to
prove the authenticity of the HAAA server for the MN. The shared
session-key, referred to as Session Master Secret (Ksws) is generated by the
HAAA server based on AUTH2 and a Pseudo Random Function (PRF). The
session master secret is denoted as Ksvs = PRF Kmnuaaa (AUTH2). The
HAAA server sends an AAA message to the FAAA server that contains
AUTH2 and Kasws.

e (11) The FAAA forwards the message to the AR.

e (12) The AR extracts the key Ksvs and AUTH2 from the AAA message and
forwards AUTH2 to the MN, but not Ksws. The MN itself computes the
Ksws based on the PRF, N1 and N2. Note that the key Ksws is never sent via
the wireless link.

The W-SKE protocol is based on two challenge response mechanisms. One is
between the MN and the FAAA server, while the other is between the MN and the
HAAA server. Hence, the W-SKE claims to provide mutual authentication for the
MN and the access network.
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Figure 36: W-SKE Authentication Message Exchange

6.2.3 Simulator Implementation of the IDKE Protocol

The IDKE protocol specification has been described in detail in Chapter 3. Here, the
IDKE protocol is modified in order to fit for the performance analyses. Two versions
have been implemented: one with home network authentication and another
without. The former is referred to as “IDKE with home authentication”, whereas the
latter refers to “IDKE with temporary key establishment”.
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@%

Home
Network

Figure 37: IDKE Re-Authentication Message Exchange

Both of these versions cover messages 1 - 10 as illustrated in Figure 37. The Message
A and B are only used in the home authentication version. In contrast to the IDKE
specification in Chapter 3, the first message is sent from the MN to the nAR. The
reason for this is that the router advertisement is not considered in the performance
analyses. It is assumed that prior to the desire for a handover, an advertisement has
already been received. The MN’s handover request-message identifies the starting
point of the handover procedure. The last message is removed that is, for
authentication purpose, sent by the MN to the nAR. Thus, the nAR finally sends two
messages to the MN, one to acknowledge the temporary key which confirms the key
forwarding and another message for a successful home authentication. Therefore, the
modified message flow works as follows:

e (1) Token request message to initiate both the key transfer and the home
authentication.

® (2, 3) The IDKE token forwarding and acknowledgement.

e (4, 5 6) A Diffie-Hellman [BM99] based key exchange, such as the IKE
[Bor00] in aggressive mode.
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e (7, 8) Context Transfer Protocol (CxTP) [LNP+05] utilization for the request
for and the transfer of data, as well as that of the session-key.

* (9) Notification of the MN that the key has been transferred successfully.
e (A, B) Home authentication procedure.

e (10) Notification that the home authentication has been successfully
performed.

6.5 Simulator Setup

The discrete event simulator OPNET Modeler is used for evaluating the performance
of all protocols. The topology is implemented as a general scenario that describes an
MN performing a handover between two ARs. The protocols are specified in the
simulator’s language and include the probes for estimating any delays. In order to
find an optimal environment for each protocol, all of the protocols have been
simulated under a variety of different conditions.

Therefore, the MN always performs the same handover, whereas the conditions are
permanently changing. The delay on each link is changed separately in order to
identify the influence on the protocol performance. A summary of the results is
presented in a graph. The complete protocol results have been merged, thus enabling
the protocols to be compared under different conditions. The simulation deployment
process is introduced at first, followed by the conclusions gained from the results.
The necessary design choices are also explained.

6.3.1 Packet Formats

Packet formats are designed for any messages pertaining to protocols. All packets are
somewhat smaller than in real implementations. The size of all identifier fields is set
to 16 bits. However, in conforming to IPv4 or IPv6 implementations, the address-
fields have to be 32 bits, respectively 128 bits in size. The IPv4-conform packet
formats are presented in Appendix B. The following additional simplifications have
been made in order to produce proof of concept:

e Fields for tokens, keys and encrypted data are initialized by random
values.

e Timestamps and nonces are set to fixed values.

e Session identifiers are set to a fixed value.
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These simplifications have been introduced in order that the protocol
implementation remains uncomplicated. The simulations evaluate a single MN by
considering a single session under an immense variety of conditions. Malicious
nodes have not been considered within the performance evaluation. All
cryptographic operations such as token generation, encryption, decryption, hash
computation and key generation have been modeled as processes that cause a delay
prior to setting any values to the messages. The message size also has an influence on
the performance. The following messages have been defined for the IDKE protocol:

o idke_initiation: A 180 bits message to be sent from the MN to the nAR in
order to initiate the key transfer.

o idke_forward: The message includes the entire content of the idke_initiation
message. This 212-bit message is sent from the nAR to the pAR.

o idke_acknowledge: This is a 180-bit message that is sent back from the pAR
to the nAR.

o idke_ike: This message is sent 3 times between the nAR and the pAR. The
purpose is to establish the shared key for tunneling. The message size is
212 bits.

o idke_ctp_request: This 260-bit message is sent from the nAR to the pAR for
the request of the session-key.

o idke_ctp_reply: This message carries the key from the pAR to the nAR and
it corresponds to the CxTP data message. Due to certain fields which have
been reserved for later purposes, the size is set at 404 bits.

Messages that do not carry any specific data have been set at 212 bits. These standard
messages are: idke_tmp_key_established, idke_home_request, idke_home_reply and
idke_accomplished.

The following messages have been designed for the GSM and the W-SKE protocol:

o gsm_packet, wske_packet: This message is used for the GSM and the W-
SKE protocol to transport challenges and responses. The size is set at 244
bits. These packets are used for the GSM and W-SKE messages that do not
transfer any key material.

o gsm_packet_key, wske_packet_key: This message is used whenever a key
is transferred. The size of this message is 372 bits.

Examples of how messages appear in the packet format editor are given in Figure 38
and Figure 39. The former represents the idke_forward message, while the latter
illustrates the idke_ctp_reply message.
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meszage. by dest address pk_iriittime ‘ghate
[4 bitz] [1E bits] [15 hitz] [16 bits]
IAN_address p&R_address n&R_ address H& addresz
[15 hitz] [15 hitz). [16 bits] [16 hits]
zession id kM timestamp hdll_token
[16 bitz] [16 bitz) [32 bitz)
nsRtoken
[32 bitsz]
Figure 38: The idke_forward Packet in the OPNET Packet Modeler
message_ty dest address ph_inittirme ztate
[4 bitz] [1E bitz) [15 bitz] [1E bitz]
MM_address néH_addiess paR_address He_ address
[15 hitg] [16 bitz] [16 hitz) [15 bitg]
sessian id MM timestamp _signiature
[16 bitz] [16 bitz] [32 bitz]
ME_takien F._ran
[32 bitz) [32 bitz)
R taken
[32 bits)
by
[1282 bitz]

Figure 39: The idke_ctp_reply Packet in the OPNET Packet Modeler

6.3.2 Nodes and Links

A network consists of nodes and links. Nodes are for instance routers, hosts and
servers. Links interconnect nodes and provide communication channels. They can
either be wired or wireless.

Node models describe the internal structure of nodes. This structure usually consists
of one or more protocols and streams. Streams act as interfaces to links which are
outside the node model. Protocols are either directly connected to streams or to other
protocols.

Three new node models are specified in each protocol for the purpose of evaluating
performance:

e MN node model: The MN includes the protocol and two network interfaces
as illustrated in Figure 40. The network interface is represented by two
streams; one for incoming and one for outgoing traffic.

e nAR node model: The nAR requires two network interfaces for routing
purposes. The node model is illustrated in Figure 41. The two network
interfaces are represented by four streams.
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e pAR and HA node model: The same network model is used for pAR and
HA since both act as responders to the key request. If the pAR is a router,
it's node model is similar to that of the MN’s. Neither the HA nor the pAR
need to provide a routing function in this simple scenario.

Protocols within a node model are represented by a “grey box” in order to conceal
internal actions.

xmk

Figure 40: Node Model for pAR, HA and MN

Figure 41: Node Model for nAR

6.3.5 Processes

Each protocol is considered as a process. The OPNET Modeler provides a tool for the
specifying of processes as a finite state machine. Thus, a process model specifies and
defines the handling of requests, challenges and the key-forwarding. The process
model also simulates delays according to the key computation and encryption.

Process models are created for each protocol in order to evaluate the performance.
The IDKE protocol for example, has process models that depend on a node:
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e The MN, presented in Figure 42, initiates the key request and waits for a
response. A probe captures the time and stores the delay for further analyses.

e ARs provide a more complex function. The nAR for example, shown in Figure
43, includes a state for a key negotiation in order to cause delays.

Objects within a process model are referred to as states that are interconnected by
links. Each link corresponds to a procedure. This procedure is executed when leaving
a state via this link.

Nine new process models are involved in the performance simulation. There are
three new models for each protocol where the HA and the pAR use the same state
machine. The new state machines and their purposes are summarized in Table 6.

IDKE GSM W-SKE

HA, pAR (responder) HLR (responder) HAAA (responder)
nAR (forwarder) nAR (forwarder) nAR (forwarder)
MN (initiator) MN (initiator) MN (initiator)

Table 6: New OPNET Process Models

[defaulf)

(RCV_IDEE_ARRMLIreyw _idke_pki()

Figure 42: The IDKE MN Process Model
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(default)

(RCY_1_IDKE_ARRWUrev _idke_pki1)

(RCM_IDKE_ARRYLlircy_idke _pkid)

Figure 43: The IDKE nAR Process Model

6.4 Simulation Scenario

The network topology consists of one MN, two ARs and one HA as illustrated in
Figure 44. The ARs and the HA are directly connected to the core network
represented by an IP cloud. The MN is attached to the nAR via a wireless link. The
focus is on calculating the overall handover delay. Therefore, several paths and
corresponding delays have been defined. The paths between the nodes are
represented by X, Y, Z and a. The definitions are as follows:

e « is the path that connects the nAR to the core network. When the nAR
sends packets, the initial part of the path is the same independent of
whether the packets are sent to the pAR or to the HA. This common path is
referred to as a. This path delay covers latencies caused by intermediate
routers.

e X represents the wireless link between the MN and the nAR. X covers the
whole transmission latency that occurs on the wireless link.

e Y is the path between the pAR and the core network. This is where the
path of a ends. Both @ and Y together, describe the path between the pAR
and the nAR. However, any delays caused by the core network in transit
between the domain A and B, belong to the path Y.

Z is the connection for the MN’s Home Network up to the matching point of Y and a.
It is possible that the home network is located at a distance in regard to hops and
thus the delay could be somewhat higher.
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Home Network

(&

Internet

Local Core Network

PAR nAR

LR

Domain Al Domain B

Figure 44: Network Topology

The assumption in terms of delay is that all paths have equal return paths. The paths
a, Y and Z are assumed to share one endpoint. This assumption is reasonable, owing
to the fact that no data is sent from the pAR to the home network during the
handover procedure. The common link « is assumed to provide anything but fixed
quality, whereas the other paths vary during the simulation process. In order to
reduce the amount of influencing parameters, a can model any path delay which is
fixed in quality during one simulation run. Hence, a is a parameter which belongs to
the environment and can either provide low or high latencies, whereas X, Y and Z
are dependent on the network conditions. Therefore, X, Y and Z are variables that
change during the simulations. The aim is to find a method for estimating the
influence of the path delays of X, Y and Z on the overall performance of each
protocol.
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6.5 Simulation Results

The simulation results are dependent on the path quality. Therefore, variations of X,
Y and Z have an impact on the protocol performance. In order to discover any
quality dependences, each variable is evaluated separately. Other variables have also
been fixed and these describe the setting. This setting can either describe a high
quality (HQ) environment where delays are reasonably low on other links; or the
setting describes a low quality (LQ) environment where the delays are respectively
high. Consequently, this requires six test cases where there are two settings for each
variable. The protocols are evaluated parallely in every test case. The network
architecture for the OPNET Modeler is illustrated in Figure 45.

IDKE
G3M

Ji -

@ 0c3 £ 0c3

pAFR_3 ot =
IF_Cloud 3 ARLB S VLR

5 MBi ts/sl

e - J

MN_2 MN_3

IP_Cloud_2 A2/ Fass
‘ 5 MEits,

IDKE W-SKE G5M

Figure 45: Topology in the OPNET Modeler

6.5.17 Home Link Analyses

The MN performs a handover between two neighboring ARs. However, the MN’s
Home network can be located anywhere in the network. The home network can
either be one of the domains which the MN roams in between or be located faraway.
The delay to reach the home network ranged between 0 and 250 ms during the
course of the simulation. The core network and the wireless link permanently
provide low latencies in this evaluation. The overall protocol handover delays have
been measured and are depicted as a graph in Figure 46. The x-axis represents the
delay to the home network, whereas the y-axis shows the corresponding handover
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delay which can be up to one second. Protocols are illustrated in different colors in
the graph.

(The wireless link delay is 10 ms; the core network delay is 5 ms.)
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Figure 46: Handover Delay — Link to the Home Network Variable — Core and Wireless HQ

Figure 46 shows that the GSM protocol is the fastest approach when the home
network delay is less than 20 ms. The IDKE temp is the fastest protocol in cases
where the home network delay is higher than 20 ms. The graph illustrates the
IDKE_temp as a constant value since it is entirely independent of the home link.
However, the IDKE_home is faster than the GSM protocol when the home link delay
is higher than 70 ms. The W-SKE protocol is constantly slower than both of the IDKE
approaches in this scenario. Nevertheless, the W-SKE is faster than the GSM protocol
when the home link delay is over 190 ms.

These considerations assume low quality (LQ) on the wireless link (delay of 30 ms).
This is due to retransmission and package loss as well as in the core network (which
also has a delay of 30 ms). Figure 47 shows a graph for the LQ-scenario. If the delay
on the home link is at the most 85 ms, the GSM approach provides the fastest
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handover. When the delay to the home network is higher than 85 ms then the
IDKE_temp is faster than the GSM.

The W-SKE and the IDKE_home show equivalent dependencies under these
conditions.

B IDKE temp Key Exchange

M IDKE home Key Exchangs

B GSM Key Exchange
WSKE Kep Erchange

time (5]

o 25 &l 75 100 125 160 175 200 225 250 275
time [ms]

Figure 47: Handover Delay — Link to Home Network Variable — Core and Wireless LQ

6.5.2 Wireless Link Analyses

The delay on the wireless link may vary due to some congestion caused by a high
amount of participants, packet loss and retransmissions. In this setup, the delay on
the wireless link varies between 0 ms and 50 ms.

The first setup assumes high quality in the core network (5 ms delay) and for the
home link (30 ms delay). Figure 48 illustrates the results for these protocols. This
setup depicts an environment that is similar to that of an intra-domain handover. The
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home network is very close in terms of the delay and there is also a fast
communication between the AR.

W DKE temp Key Exchange

B DKE home Kep Exchange

B GSM Key Exchange
WSKE Key Exchange

0 125 25 375 50 E25 75 &5 100

Figure 48: Handover Delay — Wireless Link Variable — Core and Home Link HQ

Figure 48 shows that the IDKE_temp is faster than the GSM protocol. However, the
IDKE_ home is slower than the GSM protocol. The GSM protocol and both of the
IDKE protocols, are less dependent on the wireless link than the W-SKE protocol.
The graph shows that the W-SKE protocol increases faster than any other protocol.
This is due to the high amount of messages exchanged over the wireless link. Thus,
this test run shows that both of the IDKE protocols provide a high performance even
when performing intra-domain handovers.

A setup of low quality in the core network and on the home link is examined in the
LQ-scenario. The core network delay is 30 ms while the home link delay is 100 ms.
Figure 49 shows that the IDKE_temp is faster than the GSM protocol. However, the
IDKE_ home is slower than the GSM protocol. The GSM protocol and both of the
IDKE protocols, are less dependent on the wireless link than the W-SKE protocol.
The graph shows that the W-SKE protocol increases faster than any other protocol.
This is due to the high amount of messages exchanged over the wireless link. Thus,
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this test run shows that both of the IDKE protocols provide a high performance even
when performing intra-domain handovers.

A setup of low quality in the core network and on the home link is examined in the
LQ-scenario. The core network delay is 30 ms while the home link delay is 100 ms.
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Figure 49: Handover Delay — Wireless Link Variable — Core and Home Link LQ

6.5.3 Core Network Analyses

The MN performs the handover between two topologically closely located domains.
However, it is possible that the performance in the core network may not be
constant. Thus, the influence on the quality caused by the path between the ARs has
been examined in two further scenarios. In the first setup, the wireless link provides
a high performance (delay of 10 ms) and there is a high performance on the home
link (delay of 50 ms).
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The results are presented in Figure 50. This graph shows when the core network
delay is less than 8 ms, the IDKE_temp is faster than the GSM protocol. If the core
network has a delay of more than 8 ms, then the GSM protocol is the quickest
protocol means.

The IDKE_home is faster than the W-SKE when the core network delay is less than
20 ms. The IDKE_temp is even swifter in cases where there is a core network delay of
less than 28 ms. Hence, the GSM protocol is the fastest protocol. However, if the core
network delay is around 40% or 60% of the home link delay, then one of the IDKE
protocols is quicker than the W-SKE.
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Figure 50: Handover Delay — Core Network Delay Variable — Wireless and Home Link HQ

It has been assumed in the following that there is low quality on the wireless link
(delay of 30 ms) and on the home link (100 ms) as well as that the core network delay
varies between 0 ms and 50 ms.

The results are presented in Figure 51. When one compares the HQ- and LQ-
scenario, it can be seen that the two lines of the IDKE protocols run in parallel at both
scenarios, but that there is a higher margin in the LQ-scenario. The GSM and the W-
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SKE protocol are represented as constants in both scenarios as both are independent
of the inter AR communication. In Figure 51, tthe intersection occurs later than in the
first scenario. This illustrates that the delay in the IDKE protocols is much lower than
the delay in the other protocol. The IDKE_home is faster than the W-SKE protocol, if
the core network delay is less than 32 ms. It is even faster than the GSM protocol
when the core network delay is less than 9 ms. The IDKE_temp is always quicker
than the W-SKE protocol, if the core network delay is less than 50 ms. It is also
swifter than the GSM protocol in cases where the core network delay is less than 34
ms.
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Figure 51: Handover Delay — Core Network Delay Variable — Wireless and Home Link LQ

6.6 Summary, Discussion & Outlook

Several protocols have all been simulated in a variety of different conditions.
Therefore, the simulation results imply that the conditions under which each
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protocol has been subjected to, should provide the best performance. Simulations
have been performed on the GSM, the W-SKE and the IDKE protocol with a
temporary key establishment as well as the IDKE protocol with a home
authentication procedure. The dependence has been analyzed for all four of the
protocols taking into consideration the quality of the wireless link, the home link and

the core network quality. The results are summarized in Table 7.

Quality GSM W-SKE IDKE temp key IDKE home key
core network independent independent highly dependent highly dependent
LQ > 34 ms fastest > 20 ms faster than < 34 fastest <9 ms faster than
IDKE home key W-SKE, GSM
< 32 faster than W-
SKE
HQ > 8 ms fastest > 30 ms faster than < 8 ms fastest <20 ms fast, faster
IDKE temp Key <28 ms faster than than W-SKE
W-SKE >32 slowest
home link dependent dependent independent dependent
LQ < 85 ms fastest > 10 ms slowest > 85 ms fastest slow
equal to W-SKE
HQ <20 ms fastest <190 ms slowest > 20 ms fastest > 70 ms faster than
W-SKE, GSM
wireless link slightly dependent highly dependent slightly dependent slightly dependent
LQ Fast slowest (extremely fastest fast
slow)
HQ equal to slowest always faster than fast equal to GSM

IDKE_home_key GSM

Table 7: Dependency on the Link Quality

Obviously, the IDKE with a home authentication will always be slower than the
IDKE protocol with a temporary key establishment as the home authentication
implies a temporary key transfer as the former implies the latter. Table 7 shows that
the IDKE protocol is highly dependent on the core network quality. The IDKE is the
fastest protocol when the core network delay is at the most 8 ms. If the home link or
the wireless connection provide low quality, then the IDKE offers the best quality for
all protocols if the core network delay is at least less than 34 ms. This will most likely
be the case in the core network. The IDKE with a home authentication is the fastest
protocol, if the core network delay is less than 9 ms.

GSM is a fast protocol that provides a quick key exchange when the home network
and wireless connection provide HQ. This can be seen in the last two lines of Table 7.
The GSM protocol is the fastest protocol in the HQ-scenario, assuming that the core
network provides relatively low quality. It is always the quickest, if the home link is
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also fast < 85 ms (LQ); < 20 ms (HQ). This fact also implies that the GSM protocol is
the fastest when the MN is near to the home network. Thus, whenever entering or
leaving the home domain the GSM is expected to be the fastest protocol.

The IDKE with a temporary key establishment is entirely independent of the home
link delay and is therefore robust against a broken link.

The analyses on the dependency of a wireless link showed that the GSM and the
IDKE protocol are not strongly dependent on the quality of a wireless link. In
contrast, the W-SKE protocol is highly dependent on it. Thus, it can be seen that the
W-SKE protocol has been developed for a high quality wireless link and for
functioning at long distances from the home network.

In conclusion, it has been shown that all protocols have their strengths under various
conditions and it is most likely that all of them will be able to coexist. The best
approach might be to merge them together and run them in parallel to each other in
order to provide a maximum quality for all circumstances. Running evaluations on
this merged protocol might be interesting for future studies. Further investigations
could be done in integrating the IDKE protocol in a MobileIP environment in order
to test the performance. Simulations on a huger amount of moving MN is also a
potential candidate for further studies on order to evaluate the scalability of the
IDKE protocol.

165



The IDKE Protocol Chapter 6 Performance Simulations with OPNET

166



The IDKE Protocol Chapter 7 Conclusions

Chapter 7/

Conclusions

This thesis has introduced, specified and verified the Inter-Domain Key Exchange
Protocol (IDKE) under various aspects relating to security, robustness and
performance. The task of the protocol is to establish a session-key at the new point of
attachment, especially after an MN has performed an intra-domain handover.
Consideration has been given to existing mechanisms and other current approaches.
Formal analysis and simulations have been performed and the results were used to
extend the protocol specification in order to successively improve the capabilities of
the protocol.

Security verifications have been performed for the purpose of proving that the IDKE
protocol fulfills secrecy and authentication properties. Supplementary analyses were
used to remove unnecessary components of the protocol in order to obtain a
lightweight protocol that can be processed at speed. The utilized model checking
approach named Casper/FDR proved to be capable of this task. Details on security,
the evaluation and subsequent work on security verification can be found in the
summary in Section 4.4.

The robustness analyses focused on specifying and extending the IDKE-AR by using
the SDL and simulating the behavior of a number of ARs by means of MSCs. The
extended IDKE protocol specification proved to be capable of handling concurrent
protocol runs. The extension covers cancel messages and the necessity of timestamps
carried by some messages. Details on the extension, its capabilities and future work
in this area are given in the summary in Section 5.5.

The third section of this thesis describes the performance evaluations that act as a
proof of concept on the IDKE protocol. The aim of this study was to investigate as to
whether the IDKE protocol is able to provide better performance than other
approaches. By using the discrete event simulator OPNET Modeler, the IDKE
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protocol was compared with the GSM and the W-SKE. It could be shown that under
certain circumstances, especially when running under inter-domain-handover
conditions, the IDKE protocol is expected to be faster then the other approaches.
More details containing the performance evaluation and a table summarizing all
information can be found in the summary in Section 6.6.

In conclusion, it can be stated that by providing localized inter-domain handover
function the IDKE protocol provides a possible solution for an open issue of the
CxTP. The combination of the CxTP and the IDKE protocol can be used to re-
establish session-keys, but is not limited to being used in 802.11 Wireless Local Area
Networks (WLANSs). The IDKE protocols can also improve the handover capabilities in
future mobile environments based on the 802.20 Mobile Broadband Wireless Access
(MBWA) or the 802.16 Worldwide Interoperability for Microwave Access (WiMAX).

It can be further stated that the methodology of combining security, robustness and
performances evaluations by means of formal methods has improved the IDKE
protocol. This methodology may be useful for other security protocols that are also
required to provide a high performance. Thus, this combination of formal
verification tools has formed the basis for ultimately obtaining a fast and robust
protocol that can also fulfill all the desired security properties. However, the main
drawback of this methodology is that it involves many different tools. Thus, the
particular protocol under evaluation will always need to be specified from the outset
as all of the tools and mechanisms require different representations, specifications, or
implementations. This prompts the desire for an integrated general evaluation
environment capable of verifying a vast variety of protocols from a single
specification.
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Abbreviations

2G

3G

4G
AAA
AAAF
AAAH
AAAL
AES
AH
AKA
AKE
AP
AR
AVP
BS
BSS
BU
CA
cAR
CBC
CBS
CC
CEFSM
CHAP
CK
CN
CoA

Second Generation of mobile phones

Third Generation of mobile phones (,e.g., GSM)
Fourth Generation of mobile phones (also called beyond 3G)
Authentication Authorization and Accounting
AAA-Server of Foreign Domain

AAA-Server of Home Domain

AAA-Server of the (local) access network
Advanced Encryption Standard
Authentication Header

Authentication and Key Agreement
Asymmetric Key Exchange

Access Point

Access Router

Attribute-Value-Pair

Base Station

Base Station Subsystem

Binding Update

Certification Authority

current Access Router

Cipher-Block Chaining (Mode)

Cell Broadcast Service

Client Challenge

Communicating Extended Finite State Machine
Challenge Handshake Authentication Protocol
Cipher Key

Correspondent Node

Care-of Address
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CRC Cyclic Redundancy Check

CRL Certificate Revocation List

CSsp Communication Sequential Processes

CTP Context Transfer Protocol, also called CxTP
CxTP Context Transfer Protocol (former CTP)
DES Data Encryption Standard

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol
DiffServ Differentiated Services

DoS Denial of Service

DSS Digital Signature Standard

EAP Extensible Authentication Protocol

EFSM Exceeded Finite State Machine

ESP Encapsulating Security Payload

FA Foreign Agent

FDR Failure Divergence Refinement

FIFO tirst in first out

GSM Global System for Mobile Communications
HA Home Agent

HLR Home Location Register

HMAC Keyed-Hash Message Authentication Code
HOA Home Agent Answer

HOR Home Agent Request

HQ high quality

HSS Home Subscriber Server

ICV Integrity Check Value

IDKE Inter-Domain Key Exchange Protocol

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IP Internet Protocol
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IPsec Internet Protocol Security
IPv4 IP version 4
IPv6 IP version 6

ISAKMP Internet Security Association and Key Management Protocol

Isp Internet Service Provider

v Initialization Vector

KDC Key Distribution Centre
Ksms Session Master Secret - A session-key
LAN Local Area Network

LQ low quality

MAC Medium Access Control
MAC Message Authentication Code
MAP Mobile Application Part

MD2 Message Digest #2

MD3 Message Digest #3

MD4 Message Digest #4

MD5 Message Digest #5

ME Mobile Equipment

MIP Mobile IP

MIPv4Mobile IP version 4
MIPv6Mobile IP version 6

MIM Man-in-the-Middle Attack

MN Mobile Node

MPLS Multi-Protocol Label Switching
MSC Message Sequence Charts
MSC Mobile Switching Centre

NAI Network Access Identifier
NAP Network Access Point

ND Neighbor Discovery

OTP One-Time Password
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PFS
PKCS
PPP
PRF
QoS
RADIUS
RFC
RSA
SA
SAD
SAP
SDL
SKE
SLA
SPD
SPEKE
SPI
UMTS
USIM
VLR
VolIP
VPN
WEP
WLAN
W-SKE

Perfect Forward Secrecy

Public Key Cryptography Standards
Point-to-Point Protocol

Pseudo Random Function

Quality of Service

Remote Authentication Dial In User Service
Request For Comments (denotes IETF standards)
Rivest Shamir Adleman - an asymmetric cipher
Security Association

Security Association Database

Service Access Point

Specification and Description Language
Shared Key Exchange

Service Level Agreement

Security Policy Database

Simple Password-authenticated Exponential Key Exchange
Security Parameter Index

Universal Mobile Telecommunications System
UMTS Subscriber Identity Module

Visited Location Register

Voice over IP

Virtual Private Network

Wired Equivalent Privacy

Wireless Local Area Networks, IEEE 802.11x
Wireless Shared Key Exchange Protocol
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Appendix A: Common Security
Protocol Syntax

The common syntax for protocol messages is defined by the following context free
grammar, where (exp)* denotes 0 or more times exp, (exp)+ denotes 1 or more times
exp, (exp)? denotes 0 or 1 time exp:

messages  :=(message (action)? )+
message :=label'." id '->'id":' tuple
label =id
id :=non-empty sequence of alphanumeric characters, or -, '
tuple :=atom (',' atom)*
atom := cipher

| clearterm
clearterm  :=id

| apply

|'(" (tuple)? ')’
cipher = { tuple }clearterm
apply =id'('tuple’)’
action := arbitrary text

The identifiers (n.t. id) are protocol variables of a primitive types or functions, like
one-way (hash) functions or functions which associate keys to principal names for
instance. A primitive is proposed for encryption, with the usual notation using
brackets. However, special identifier can also be used for encryption, when more
details are needed.

The identifiers can be declared before the protocol messages. The form of the type
declaration of primitive or functional identifiers is free. In particular, in case of public
key cryptography, a particular notation can be used to associate the public and
private of a keypair.

Note that tuples can be written with or without parentheses. We assume by default
that a tuple a0, a1, ..., an written without parentheses is left-associated.
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Appendix B: Packet Formats of
IDKE Messages

Packet formats of IDKE messages:

Message 1: from nAR to MN

0/0/0/0(0/OI0O|0O|O0|O|1]1]1 2 3
0/1/2(3(4/5(6/7/8(9/0(1|2/3(4/5|/6|7/8|9|0(1(2/3/4/5/6|7|8|9|0|1

-
-
-
-
—_
—_
-
N
N
N
N
N
N
N
N
N
w

IDKE Protocol Identifier | Version=1 Type=1 Length RESERVED

Sender ID = nAR-ID

Receiver ID = MN-1D unencrypted

PK(nAR)

IDKE Message No. 1

Message 2: from MN to nAR

-
-
-
—_
-
-
-
N

0/{0/0|0(0/0|0|0O|O(O|1|1|1 212|12(2|2(2|2]|2
0({1/2|/3(4/5/6/7,8(9|0/1/2/3(4|5/6|7|8/9(0/1(2(3/4|/5/6|7|8

© N
o
-

A
IDKE Protocol Identifier | Version=1 Type=2 Length Enf:. RESERVED
Algorithm

Sender ID = MN-ID

Receiver ID = nAR-ID unencrypted

Session ID

pAR-ID

Timestamp

Home Agent- ID

na / [Timestamp] A

Key Seize

PK(nAR)

encrypted by
Ksms

nAR-ID

MN-ID

IDKE Message No. 2
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Message 3: from nAR to pAR

0[O0 |11 ][1|1[1]|1 2|12122|2|2|3|3
8/9(0(1(2/3/4|5 4/5(67(8|9|0|1
- L _ Enc. A
IDKE Protocol Identifier | Version=1 Type=3 Length . RESERVED
Algorithm

Sender ID (may not be nAR-ID when message is forwarded)

Receiver ID = pAR-ID unencrypted

Session ID

nAR-ID

Timestamp

A
encrypted by
Ksws

\/

IDKE Message No. 3

Message 4: from pAR to nAR

O[O T|1 1111 21212|12(2(2|3|3
8(9/0(1/2|3/4|5 4(5/6(7|8/9(0|1

- Lo _ Enc.
IDKE Protocol Identifier | Version=1 | Type=4 Length Algorithm RESERVED

Sender ID = pAR-ID

Receiver ID = nAR-ID unencrypted

Session ID

encrypted by
PK(nAR)

IDKE Message No. 4
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Message 5: from nAR to pAR

—_
—_
—_
—_
—_
N

0/0/0({0/0|0(0|O(O|O(T[1|1|1]|1 21212(2(2(2|2(2|2|3
0/{1/2(3/4|5(6/7/8/9/0(1{2/3|4/5/6/7|/8/9|0(1|2]|3

i Lo _ Enc.
IDKE Protocol Identifier | Version=1 Type=5 Length Algorithm RESERVED

Sender ID = nAR-ID

Receiver ID = pAR-ID unencrypted

Session ID

na / [Timestamp] encrypted by

KrunneL
nAR-ID
IDKE Message No. 5
Message 6: from pAR to nAR
0({0/0|0(0|0|0|0O|O(O (1|11 11|11 |1|1]1[2/2|2[2/2|2|2|2|2|2|3|3
0/1/2|/3|4/5/6/7(8/9|0(1/2{3/4/5|6|7/8/9/0/1/2/3/4|5|/6/7/8|9|0(1
i L _ Enc.
IDKE Protocol Identifier | Version=1 Type=6 Length Algorithm RESERVED
Sender ID = pAR-ID
Receiver ID = nAR-ID unencrypted
Session ID
na / [Timestamp]
Key Seize encrypted by
K
H1 =DH half-key g* mod m TUNNEL

IDKE Message No. 6
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Message 7: from nAR to pAR

00 1|1 1111 2|121212(2/2(3|3
8/9/0(1/2[3[4|5 4/5/6/7/8/9|0|1

. . _ Enc.
IDKE Protocol Identifier | Version=1 Type=7 Length Algorithm RESERVED

Sender ID = pAR-ID

Receiver ID = nAR-ID unencrypted

Session ID

encrypted by

KrunneL
IDKE Message No. 7
Message 8: from nAR to pAR
0[0|1|1[1[1/1]1 2(2(2|2(2|2|3|3
8/9(0(1(23(4|5 4/5/6(7(8|9(0|1
o o _ Enc. A
IDKE Protocol Identifier | Version=1 Type=8 Length . RESERVED
Algorithm
Sender ID = pAR-ID
unencrypted

Receiver ID = nAR-ID

Session ID

encrypted by
KTUNNEL_DH

IDKE Message No. 8
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Message 9: from nAR to MN

0/0/0|0|0O|0OfO|O|0O|O|1

1111 ]1{1]1|1/1|2|2|2/2|2(2|2|2|2|2|3|3
0/1/2|3/4/5(/6/7|8/9|0|1|/2/3|4/5|/6|7/8[(9/0(1/2|3/4|5/6|/7/8/9|0]1
i L _ Enc.
IDKE Protocol Identifier | Version=1 Type=9 Length Algorithm RESERVED
Sender ID = nAR-ID
unencrypted

Receiver ID = MN-ID

Session ID

[Signature by SK(nAR)]

A
. A
na / [Timestamp]
Key Seize
[Knew] encrypted| | encrypted
by Ksus by
PK(MN)
nAR-ID
MN-ID
\j  /
IDKE Message No. 9
Message 10: from MN to nAR
0o(oj0j0(0[0|0O|O(O(O|1 1|1 |{1|1|1][1|1{1/1[2]2|2|22|2|2|2/2(2|3
0(1/2|3/4/5/6/7(8/9|0/1/2|3|4|5/6/7|8/9(0(1(2|3(4|5|/6/7|8[9|0/1
. N _ Enc.
IDKE Protocol Identifier | Version=1 | Type=10 Length Algorithm RESERVED
Sender ID = MN-ID
Receiver ID = nAR-ID unencrypted
Session ID
na / [Timestamp]
MN-ID encrypted by
Kswms / [Knewl]
nAR-ID
IDKE Message No. 10

Length: Message length in units of octets

RESERVED: Set to zero by the sender, ignored by the receiver
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APPENDIX C: Casper, FDR & CSP

This appendix illustrates the Casper compiler output of the final IDKE protocol
version as presented in Section 4.3.8. The CSP script files of additional versions are
presented in a Technical Report that has been published in cooperation with Florian
Tegeler [STO5].

The entire Casper script file, the FDR output and the corresponding CSP file are
presented below:

Casper script file:

#Free variables
datatype Field = Gen | Exp (Field,Num) unwinding 2
halfkeyA, halfkeyB, ktunnelDH : Field

M, N, P : Agent

pkn, pkp : PublicKey

skn, skp : SecretKey

ksms, ktunnel : SessionKey
na : Nonce

X, y : Num

InverseKeys = (pkn, skn), (ksms, ksms), (pkp, skp), (ktunnel, ktunnel),
(pkmallory, skmallory), (Exp, Exp), (Gen, Gen), (ktunnelDH, ktunnelDH)

#Protocol description

0. -> N : M

1. N -> M : N, pkn

[N!=M]

2. M -> N : P, {pkn,N, M}{ksms} % token
[M!=N]

3. N -> P : N, token % {pkn, N, M} {ksms}
[N!=P]

4. P -> N : P, {ktunnel, P, N} {pkn}

[P!=N]

5. N -—> P : {N}{ktunnel}

[N!=P]

—-— SA Established - Agree on ktunnel -—————-
6. P —> N : {Exp(Gen,x) % halfkeyA}{ktunnel}
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[P!=N]

< ktunnelDH := Exp (halfkeyA, y) >

7. N —> P : {Exp(Gen,y) % halfkeyB}{ktunnel}
[N!=P]

< ktunnelDH := Exp (halfkeyB, x) >

—— SA Established - Agree on ktunnelDH - PFS
8. P —> N : {ksms, N}{ktunnelDH}

[P!=N]

9. N -—> M : {na, N, M}{ksms}

[N!=M]

10. M => N : {na, M, N}{ksms}

#Equivalences

forall x, y : Num . Exp ( Exp(Gen,x), y ) = Exp( Exp(Gen,y), x )

#Processes
INITIATOR (N, pkn, skn, y, pkp, na)
RESPONDER (M, ksms, P)

SERVER (P, ksms, M, pkp, skp, pkn, ktunnel, x)

#Actual variables

MobileNode, NewAR, PrevAR, Mallory : Agent
PKN, PKP, PKMALLORY : PublicKey

SKN, SKP, SKMALLORY : SecretKey

KSMS, KTUNNEL : SessionKey

X, Y, Z : Num

Na, NInt : Nonce

InverseKeys = (KSMS, KSMS), (PKN, SKN), (PKP, SKP), (KTUNNEL, KTUNNEL),
(PKMALLORY, SKMALLORY)

#Specification

Secret (P, ktunnelDH, [N])
Secret (N, ktunnelDH, [P])
Secret (P, ktunnel, [N])
Secret (N, ktunnel, [P])
Secret (M, ksms, [N])

Secret (N, ksms, [M])
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Secret (M, na, [N])

Secret (N, na, [M])

Agreement (M, N, [na])
Agreement (N, M, [ksms])
Agreement (P, N, [ktunnel])
Agreement (P, N, [ksms])
Agreement (P, N, [ktunnelDH])

#System
INITIATOR (NewAR, PKN, SKN, Y, PKP, Na)
RESPONDER (MobileNode, KSMS, PrevAR)

SERVER (PrevAR, KSMS, MobileNode, PKP, SKP, PKN, KTUNNEL, X)

#Intruder Information
Intruder = Mallory

IntruderKnowledge = {MobileNode, NewAR, Mallory, PKN, PKP, PrevAR,
PKMALLORY, SKMALLORY, Z, NInt}
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FDR Qutput

Figure 52 shows the successful verification of the final IDKE protocol version. All
security properties are verified as illustrated by green checkmarks.

" FDR 2.81 <2~ ;ﬁgﬁg
Eile Assert Process Options Interrupt I H:IPI'HB_]S\.-"S’[S]‘I‘IS Help

Refinement l Ceadlock I Livelock I Determinism I Evaluate I

Refinement:
Specification Model Implementation
_rj - _i_l Failures-divergence — .f_i __iJ
Check | Add| Clear |
«" SECEBET_M:iSECRET_ZPEC [T= SECRET_MuSWSTER_S
" SECEET_M:iSEGQ_SECRET _SPEC [T= SECEET_M:SYSTEM_Z_ZEQ
«  AUTHT MiAuthenticateBESPOMDERToIMITIATORAgreement_na [T= AUTH1_kISYETE
W« AUTHZ hzAuthenticatelNITIATORToRESPOMDERAgreement_ksms [T= AUTHZ k:SYET
o AUTHI MiAuthenticateSERYERTolMNITIATORAgreement_ktunnel [T= ALUTH3 k:SYITE
W« AUTH4 MMiAuthenticateSERVERTolMITIATORAgreement ksms [T= AUTHS RGSYITEM |
~J I =
CHADS(-) Al
CIBRECT _M3G
EMY hASG
[NPUT RZGE
OUTPUT M3SG
SYETEM
chase(-)

relational_image

relatinnal inverse imane

FDRZ session: IDKE_v1.21.csp

Figure 52: FDR Screenshot — Output for the Final Version
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CSP file

RS R R R i R i b S b R S b S R e I R e I R e I R e I R I I R i IR R I IR R i IR S IR R S b S IR R S R e I R S R i S SR i b b i i b

—— * Types *

PR AR R I I i b i b S b i b e b S R A R B S b B S B B I R i b R S b S IR S b B 2 e A b i A b S b B b i S b i i

—— Main datatype, representing all possible messages

datatype Encryption =

MobileNode | NewAR | PrevAR | Mallory | PKN | PKP | PKMALLORY | SKN | SKP
|

SKMALLORY | KSMS | KTUNNEL | X | Y | Z | Na | NInt | Garbage | Gen__ |
Exp__.(Field, Num) | Sg.Seq(Encryption) |
Encrypt. (ALL_KEYS, Seqg (Encryption)) | Hash. (HashFunction, Seg(Encryption))

Xor. (Encryption, Encryption)
—— All keys and hashfunctions in the system
ALL_KEYS = Union({SessionKey, Field, PublicKey})

ASYMMETRIC_KEYS = {k_, inverse(k_) | k_ <- ALL_KEYS, k_!=inverse(k_)}

HashFunction = {}
—— All atoms in the system

ATOM = {MobileNode, NewAR, PrevAR, Mallory, PKN, PKP, PKMALLORY, SKN, SKP,

SKMALLORY, KSMS, KTUNNEL, X, Y, Z, Na, NInt, Garbage}

—— Some standard functions

encrypt (m_,k_) = Encrypt.(k_,m)

decrypt (Encrypt. (kl_,m_),k_) = if k_ == inverse(kl_) then m_ else Garbage
decrypt (_,_) = Garbage

decryptable (Encrypt. (kl_,m_),k_) = k_ == inverse(kl_)

decryptable(_,_) = false

nth(ms_,n_) = if n_ == 1 then head(ms_) else nth(tail(ms_), n_ — 1)
nthts(ms_,n_) = if n_ == 1 then head(ms_) else nthts(tail(ms_), n_ — 1)
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—-— add Garbage to a set that contains and encryption,

—— hash function application of Vernam encryption
addGarbage_ (S_) =
if S_=={} then {Garbage}
else Union({S_, {Garbage | Encrypt._ <- S_},
{Garbage | Hash._ <- S_},
{Garbage | Xor._ <- S_}1})
—— Definitions of user supplied functions
Gen = Gen___
Exp(arg_1l_, arg_2_) = Exp__.(arg_l_, arg_2_)

—— Inverses of functions

inverse (KSMS) = KSMS

inverse (PKN) = SKN

inverse (PKP) = SKP

inverse (KTUNNEL) = KTUNNEL
inverse (PKMALLORY) = SKMALLORY
inverse (SKN) = PKN

inverse (SKP) = PKP

inverse (SKMALLORY) = PKMALLORY
inverse (Exp__.arg_) = Exp__.arg_
inverse (Gen__ ) = Gen___

—— Types in system

Agent = {MobileNode, NewAR, PrevAR, Mallory}

PublicKey = {PKN, PKP, PKMALLORY}

SecretKey {SKN, SKP, SKMALLORY}
SessionKey = {KSMS, KTUNNEL}
Num = {X, Y, Z}

Nonce = {Na, NInt}
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Field (n_) =
if n_==0 then {Gen}
else
Union ({

{Gen},

{Exp (arg_1l, arg_2) | arg_1l <- Field_ (n_-1), arg_2 <- Num}

3]
Field = Field__ (2)

AllForegrounds = {}

PR SRR I i R b b S I I I S R S R e S I S S b e b R I b I S I IR S b S R S R S b S S b S b i

- % Messages

*

PR AR R I I i b i b S b e b e S b S R A R B i b B B R B S I R S b R i b e S IR S b B b S S b e A b S S b i S b i S b i g O

—— Message labels

datatype Labels =

Msgl | Msg2 | Msg3 | Msg4 | Msg5 | Msg6 | Msg7 | Msg8 | Msg9 | MsgloO |

Env0

MSG_BODY = {ALGEBRA_M: :applyRenaming (m_)

SYSTEM_M: : INT_MSG_INFO}

—-— Type of principals

ALL_PRINCIPALS = Agent

HONEST = diff (ALL_PRINCIPALS, {Mallory})

—— Channel declarations

INPUT_MSG = SYSTEM M: :INPUT_MSG

OUTPUT_MSG = SYSTEM_M: :OUTPUT_MSG

DIRECT_MSG = SYSTEM_M: :DIRECT_MSG

ENV_MSG = SYSTEM_M: :ENV_MSG

(_r m_,_, _) <-

channel receive: ALL_PRINCIPALS.ALL_PRINCIPALS.INPUT_MSG
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channel send: ALL_PRINCIPALS.ALL_PRINCIPALS.OUTPUT_MSG
channel env : ALL_PRINCIPALS.ENV_MSG

channel error

channel start, close : HONEST.HONEST_ROLE

channel leak : addGarbage_ (ALL_SECRETS_DI)

—— Roles of agents

datatype ROLE = SPY_ | INITIATOR_role RESPONDER_role SERVER_role
HONEST_ROLE = diff (ROLE, {SPY_})

—— Secrets in the protocol

ALL_SECRETS_0 =
Union ({
SessionKey,
SessionKey,
SessionKey,
SessionKey,
Nonce,
Nonce

B
ALL_SECRETS = addGarbage_ (ALGEBRA_M: :applyRenamingToSet (ALL_SECRETS_0))

ALL_SECRETS_DI = ALIL_SECRETS
—— Define type of signals, and declare signal channel

datatype Signal =
Claim_Secret.ALL_PRINCIPALS.ALL_SECRETS.Set (ALL_PRINCIPALS) |
Runningl.HONEST_ _ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce |
Commitl.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce |
RunComl .ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce
Running2.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey |
Commit2.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey |
RunCom2 .ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey.SessionKey ]

Running3.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey |
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Commit3.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey |
RunCom3.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey.SessionKey |
Running4 .HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey |
Commit4.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey ’
RunCom4 .ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey.SessionKey ]
Running5.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Field |
Commit5.HONEST_ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Field |
RunCom5.ALL_PRINCIPALS.ALL_PRINCIPALS.Field.Field

channel signal : Signal

Fact_1 =
Union ({
{Garbage},
Field,
Agent,
PublicKey,
SecretKey,
SessionKey,
Nonce,
Num,
{Encrypt. (ksms, <pkn, N, M>) |
M <- Agent, N <- Agent, ksms <- SessionKey, pkn <- PublicKey},
{Encrypt. (pkn, <ktunnel, P, N>) |
N <- Agent, P <- Agent, ktunnel <- SessionKey, pkn <- PublicKey},
{Encrypt. (ktunnel, <N>) |
N <- Agent, ktunnel <- SessionKey},
{Encrypt. (ktunnel, <halfkeyA>) |
ktunnel <- SessionKey, halfkeyA <- addGarbage_ (Field) },
{Sgq.<Gen, x> |
x <- Num},
{Encrypt. (ktunnel, <Exp (Gen, x)>) |
ktunnel <- SessionKey, x <- Num},
{Encrypt. (ktunnel, <halfkeyB>) |
ktunnel <- SessionKey, halfkeyB <- addGarbage_ (Field) },
{Sqg.<Gen, y> |
y <- Num},

{Encrypt. (ktunnel, <Exp (Gen, y)>) |
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ktunnel <- SessionKey,

{Encrypt. (ktunnelDH, <ksms, N>)

N <- Agent,
{Encrypt. (Gen, <ksms, N>) |

N <- Agent,
{Encrypt. (Exp (Gen, Num_1),
N <- Agent, Num_1 <- Num,
{Encrypt. (Exp (Exp (Gen, Num_2),

N <- Agent, Num_1 <- Num,
{Encrypt. (Exp (Exp (Gen, Num_1),
N <- Agent, Num_1 <- Num,

{Encrypt. (ksms, <na, N, M>) |

M <- Agent, N <- Agent, ksms

{Encrypt. (ksms, <na, M, N>) |

M <- Agent, N <- Agent, ksms
{Sq.<Gen, Num_1> |
Num_1 <- Num},
{Sq.<Exp (Gen, Num_1), Num_2> |
Num_1 <- Num, Num_2 <- Num},
{Sq.<Exp (Gen, Num_2), Num_1> |
Num_1 <- Num, Num_2 <- Num},
{Sqg.<Gen, Num_2> |
Num_2 <— Num}

1)

external relational_inverse_image
external relational_image

transparent chase

_ %

module SYSTEM_M

—— Environmental messages

ENV_INT_MSGO

ksms <- SessionKey,

<ksms,

Num_1),
Num_2 <- Num,
Num_2),

Num_2 <- Num,

y <- Num},

ksms <- SessionKey},

N>) |

<ksms,

<ksms,

<- SessionKey,

<- SessionKey,

Honest Agents
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ktunnelDH <- Field},

ksms <- SessionKey},

N>) |

ksms <- SessionKey},

N>) |

ksms <- SessionKey},

na <- Nonce},

na <- Nonce}l,

R RS S S S S SEE SRS SEE SRS RS REE RS SRS R EEEEREE R R R R R R R R R R R R R RS R R R SR

*

R i b S b e i R S b A R A i b i S i S i S B b B b S b S S S R A b b I dh b S b S b i S b i A b i S
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{ (Env0, M, <>) |

M <- Agent}

ENV_MSGO = {ALGEBRA_M: :rmb (m_) | m_ <- ENV_INT_MSGO}

ENV_INT_MSG = ENV_INT_MSGO

—— information about messages sent and received by agents, including

—-— extras fields for both agents

INT_MSG_INFOl =
{ (Msgl, Sg.<N, pkn>, <>, <>) |
N <- Agent, pkn <- PublicKey}
INT_MSG_INFO2 =
{ (Msg2, Sq.<P, token>, <>, <>) |
P <- Agent,

token <- addGarbage_ ({Encrypt. (ksms, <pkn, N, M>) | M <- Agent, N <-
Agent, ksms <- SessionKey, pkn <- PublicKey})}

INT_MSG_INFO3 =
{ (Msg3, Sq.<N, token>, <>, <>) |
N <- Agent,

token <- addGarbage_ ({Encrypt. (ksms, <pkn, N, M>) | M <- Agent, N <-
Agent, ksms <- SessionKey, pkn <- PublicKey})}

INT_MSG_INFO4 =
{ (Msg4, Sg.<P, Encrypt. (pkn, <ktunnel, P, N>)>, <>, <>) |
N <- Agent, P <- Agent, ktunnel <- SessionKey, pkn <- PublicKey}
INT_MSG_INFO5 =
{ (Msg5, Encrypt.(ktunnel, <N>), <>, <>) |
N <- Agent, ktunnel <- SessionKey}
INT_MSG_INFO6 =
{ (Msg6, Encrypt. (ktunnel, <halfkeyA>), <>, <>) |
ktunnel <- SessionKey, halfkeyA <- addGarbage_ (Field) }
INT_MSG_INFO7 =
{(Msg7, Encrypt. (ktunnel, <halfkeyB>), <>, <>) |
ktunnel <- SessionKey, halfkeyB <- addGarbage_ (Field)}
INT_MSG_INFO8 =

{ (Msg8, Encrypt. (ktunnelDH, <ksms, N>), <ktunnel, ksms, ktunnelDH>, <>)

ktunnel <- SessionKey, ksms <- SessionKey, ktunnelDH <- Field,
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N <- Agent}

INT_MSG_INFO9
{ (Msg9,

ksms <- SessionKey,

INT_MSG_INFO10

{ (Msglo0,
ktunnelDH>) |

na <— Nonce,

ktunnelDH <- Field, M <-

—-— types of messages sent and

Encrypt. (ksms,

Encrypt. (ksms,

<na,

<na, M,

ksms <- SessionKey,

—— considered by those agents

input_proj((l1_,m_,se_,re_))
rmb_input_proj((l_,m_,se_,re_))

output_proj((l_,m_,se_,re_))

INPUT_INT_MSG1
INPUT_INT_MSG2
INPUT_INT_MSG3
INPUT_INT_MSG4
INPUT_INT_MSGS
INPUT_INT_MSG6
INPUT_INT_MSG7
INPUT_INT_MSGS8
INPUT_INT_MSGO

INPUT_INT_MSG1

INPUT_INT_MSG

Union ({

0

input_proj(mt_)
input_proj(mt_)
input_proj(mt_)
input_proj(mt_)
input_proj(mt_)
input_proj(mt_)
input_proj(mt_)
input_proj(mt_)

input_proj(mt_)

{ input_proj (mt_)

N, M>),

M <- Agent,

Agent,

INPUT_INT_MSGI1,
INPUT_INT_MSG2,
INPUT_INT_MSG3,
INPUT_INT_MSG4,
INPUT_INT_MSGS,
INPUT_INT_MSG6,

INPUT_INT_MSG7,

N>),

<ksms>,

N <- Agent,

<na,

(1_,m_,re_)

mt__

mt
mt

mt

mt
mt

|

|

|

|

| mt
|

|

| mt
|

mt__
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| mt_

P <- Agent,

received by agents,

(1_,m_,se_)

<—

<—-

<—

<>) |

na <- Nonce}

ksms>, <na, P, ktunnel, ksms,

ktunnel <- SessionKey,

N <- Agent}

as they are

ALGEBRA M::rmb((1_,m_,re_))

INT_MSG_INFO1l }
INT_MSG_INFO2 }
INT_MSG_INFO3 }
INT_MSG_INFO4 }
INT_MSG_INFOS5 }
INT_MSG_INFO6 }
INT_MSG_INFO7 }
INT_MSG_INFO8 }
INT_MSG_INFO9 }

INT_MSG_INFO1l0 }
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INPUT_INT_MSGS,
INPUT_INT_MSGY,
INPUT_INT_MSG10

b

OUTPUT_INT_MSGI1 { output_proj(mt_) | mt_ <- INT_MSG_INFOl }
OUTPUT_INT_MSG2 { output_proj(mt_) | mt_ <- INT_MSG_INFO2 }
OUTPUT_INT_MSG3 { output_proj(mt_) | mt_ <- INT_MSG_INFO3 }
OUTPUT_INT_MSG4 { output_proj(mt_) | mt_ <- INT_MSG_INFO4 }
OUTPUT_INT_MSG5S { output_proj(mt_) | mt_ <— INT_MSG_INFOS5 }
OUTPUT_INT_MSG6 { output_proj(mt_) | mt_ <- INT_MSG_INFO6 }
OUTPUT_INT_MSG7 { output_proj(mt_) | mt_ <- INT_MSG_INFO7 }
OUTPUT_INT_MSGS8 { output_proj(mt_) | mt_ <- INT_MSG_INFO8 }
OUTPUT_INT_MSG9 { output_proj(mt_) | mt_ <— INT_MSG_INFO9 }
OUTPUT_INT_MSG1l0 = { output_proj(mt_) | mt_ <— INT_MSG_INFO1l0 }

OUTPUT_INT_MSG =

Union ({
OUTPUT_INT_MSG1,
OUTPUT_INT_MSG2,
OUTPUT_INT_MSG3,
OUTPUT_INT_MSG4,
OUTPUT_INT_MSGS5,
OUTPUT_INT_MSG6,
OUTPUT_INT_MSG7,
OUTPUT_INT_MSGS,
OUTPUT_INT_MSG9,
OUTPUT_INT_MSG10

1)

—— INITIATOR

INITIATOR_O (N, pkn, skn, y, pkp, na) =
[1] M Agent @ env_I.N. (Env0, M,<>) —->
output.N.M. (Msgl, Sqg.<N, pkn>,<>) ->

[1 P Agent @
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[1 token : addGarbage_({Encrypt. (ksms, <pkn, N, M>) | M <- Agent, N <-
Agent, ksms <- SessionKey, pkn <- PublicKey}) @

M!=N & input.M.N. (Msg2, Sqg.<P, token>,<>) ->
output.N.P. (Msg3, Sqg.<N, token>,<>) ->
[l ktunnel : SessionKey @ P!=N &

input.P.N. (Msg4, Sg.<P, Encrypt. (inverse(skn), <ktunnel, P, N>)>,<>)

output.N.P. (Msg5, Encrypt. (ktunnel, <N>),<>) ->
[] halfkeyA : addGarbage_(Field) @ P!=N &

true and member ((Msg6, Encrypt. (inverse (ktunnel), <halfkeyA>),<>),
INPUT_INT_MSG6) &

input.P.N. (Msg6, Encrypt. (inverse (ktunnel), <halfkeyA>),<>) ->

INITIATOR_O' (N, pkn, skn, vy, pkp, na, M, P, token, ktunnel, halfkeyA,
Exp (halfkeyA,vy))

INITIATOR_O0' (N, pkn, skn, vy, pkp, na, M, P, token, ktunnel, halfkeyAa,
ktunnelDH) =

true and member ( (Msg7, Encrypt. (ktunnel, <Exp (Gen, y)>),<>),
OUTPUT_INT_MSG7) &

output.N.P. (Msg7, Encrypt. (ktunnel, <Exp(Gen, y)>),<>) —>
[] ksms : SessionKey @ P!=N &

true and member ((Msg8, Encrypt. (inverse(ktunnelDH), <ksms, N>),<>),
INPUT_INT_MSG8) &

input.P.N. (Msg8, Encrypt. (inverse (ktunnelDH), <ksms, N>),<>) ->
output .N.M. (Msg9, Encrypt. (ksms, <na, N, M>),<ksms>) ->

input.M.N. (Msgl0, Encrypt. (inverse (ksms), <na, M, N>),<na, P, ktunnel,
ksms, ktunnelDH>) ->

SKIP

INITIATOR_1(N, pkn, skn, vy, pkp, na) = INITIATOR_O (N, pkn, skn, vy, pkp,
na)

INITIATOR (N, pkn, skn, y, pkp, na) =
INITIATOR_1 (N, pkn, skn, y, pkp, na)

[[input .M.N. (1_,m_,re_) <- receive.M.N.ALGEBRA M::rmb((l_,m_,re_)) |
M <- Agent, (l_,m_,se_,re_) <- INT_MSG_INFO2]]

[[input.P.N. (l_,m_,re_) <- receive.P.N.ALGEBRA_M::rmb((l_,m_,re_)) |
P <- Agent, (l_,m_,se_,re_) <— INT_MSG_INFO4]]

[[input.P.N. (1_,m_,re_) <- receive.P.N.ALGEBRA_M::rmb((l_,m_,re_)) |
P <- Agent, (l_,m_,se_,re_) <— INT_MSG_INFO6]]

[[input.P.N. (1_,m_,re_) <- receive.P.N.ALGEBRA M::rmb((l_,m_,re_)) ]
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P <- Agent, (l_,m_,se_,re_) <— INT_MSG_INFO08]]

[[input .M.N. (1_,m_,re_) <- receive.M.N.ALGEBRA_M::rmb((l_,m_,re_)) |
M <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO010]]

[[output.N.M.(1_,m_,se_) <- send.N.M.ALGEBRA M::rmb((l_,m_,se_)) |
M <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO1l]]

[[output .N.P.(1l_,m_,se_) <- send.N.P.ALGEBRA M::rmb((l_,m_,se_)) |
P <- Agent, (l_,m_,se_,re_) <— INT_MSG_INFO3]]

[[output .N.P.(l1_,m_,se_) <- send.N.P.ALGEBRA M::rmb((l_,m_,se_)) |
P <- Agent, (l1_,m_,se_,re_) <— INT_MSG_INFO5]]

[[output.N.P.(l1_,m_,se_) <- send.N.P.ALGEBRA M::rmb((l_,m_,se_)) |
P <- Agent, (l1_,m_,se_,re_) <— INT_MSG_INFO7]]

[[output .N.M. (1_,m_,se_) <- send.N.M.ALGEBRA_M::rmb((l_,m_,se_)) |
M <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO09]]

[[env_I.N.m_ <- env.N.ALGEBRA_M: :rmb (m_) |

m_ <— ENV_INT_MSGO]]

—— RESPONDER

RESPONDER_O (M, ksms, P) =

[] N : Agent @ [] pkn : PublicKey @ N!=M &

input.N.M. (Msgl, Sqg.<N, pkn>,<>) ->
output.M.N. (Msg2, Sq.<P, Encrypt. (ksms, <pkn, N, M>)>,<>) -—>
[] na : Nonce @ N!=M &

input.N.M. (Msg9, Encrypt. (inverse (ksms), <na, N, M>),<>) —->
output.M.N. (Msgl0, Encrypt. (ksms, <na, M, N>),<na, ksms>) ->
SKIP

RESPONDER_1 (M, ksms, P) = RESPONDER_ 0 (M, ksms, P)

RESPONDER (M, ksms, P) =
RESPONDER_1 (M, ksms, P)

[[input .N.M. (1_,m_,re_) <- receive.N.M.ALGEBRA M::rmb((l_,m_,re_)) |
N <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO1l]]

[[input.N.M. (1l_,m_,re_) <- receive.N.M.ALGEBRA_M::rmb((l_,m_,re_)) |
N <- Agent, (l_,m_,se_,re_) <— INT_MSG_INFO9]]

[ [output.M.N.(1_,m_,se_) <- send.M.N.ALGEBRA _M::rmb((l1_,m_,se_)) |
N <- Agent, (l_,m_,se_,re_) <—- INT_MSG_INFO2]]

[[output.M.N.(l1_,m_,se_ ) <- send.M.N.ALGEBRA M::rmb((l_,m_,se_)) |
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N <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO1l0]]

—— SERVER

SERVER_O0 (P, ksms, M, pkp, skp, pkn, ktunnel, x) =
[] N : Agent @ N!=P &
input.N.P. (Msg3, Sg.<N, Encrypt. (inverse (ksms), <pkn, N, M>)>,<>) ->
output.P.N. (Msg4, Sqg.<P, Encrypt. (pkn, <ktunnel, P, N>)>,<>) ->
N!=P & input.N.P. (Msg5, Encrypt. (inverse (ktunnel), <N>),<>) ->

true and member ( (Msg6, Encrypt. (ktunnel, <Exp (Gen, x)>),<>),
OUTPUT_INT_MSG6) &

output.P.N. (Msg6, Encrypt. (ktunnel, <Exp(Gen, x)>),<>) ->
[] halfkeyB : addGarbage_(Field) @ N!=P &

true and member ((Msg7, Encrypt. (inverse(ktunnel), <halfkeyB>),<>),
INPUT_INT_MSG7) &

input.N.P. (Msg7, Encrypt. (inverse (ktunnel), <halfkeyB>),<>) ->

SERVER_O' (P, ksms, M, pkp, skp, pkn, ktunnel, X, N, halfkeyB,
Exp (halfkeyB, x))

SERVER_O0' (P, ksms, M, pkp, skp, pkn, ktunnel, x, N, halfkeyB, ktunnelDH) =

true and member ((Msg8, Encrypt. (ktunnelDH, <ksms, N>),<ktunnel, ksms,
ktunnelDH>), OUTPUT_INT_MSGS8) &

output.P.N. (Msg8, Encrypt. (ktunnelDH, <ksms, N>) , <ktunnel, ksms,
ktunnelDH>) ->

SKIP

SERVER_1 (P, ksms, M, pkp, skp, pkn, ktunnel, x) = SERVER_O(P, ksms, MV,
pkp, skp, pkn, ktunnel, x)

SERVER (P, ksms, M, pkp, skp, pkn, ktunnel, x) =
SERVER_1 (P, ksms, M, pkp, skp, pkn, ktunnel, x)

[[input .N.P. (l_,m_,re_) <- receive.N.P.ALGEBRA_M::rmb((l_,m_,re_)) |
N <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO3]]

[[input .N.P. (1_,m_,re_) <- receive.N.P.ALGEBRA_M::rmb((l_,m_,re_)) |
N <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO5]]

[[input.N.P. (l_,m_,re_) <- receive.N.P.ALGEBRA M::rmb((l_,m_,re_)) ]
N <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO7]]

[[output.P.N.(1l_,m_,se_) <- send.P.N.ALGEBRA_M::rmb((l_,m_,se_)) |
N <- Agent, (l_,m_,se_,re_) <— INT_MSG_INFO4]]

[[output.P.N.(1_,m_,se_) <- send.P.N.ALGEBRA M::rmb((l_,m_,se_)) |
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N <- Agent, (1_,m_,se_,re_) <- INT_MSG_INFO6]]

[[output.P.N.(1l_,m_,se_) <- send.P.N.ALGEBRA_M::rmb((l_,m_,se_)) |

N <- Agent, (l1_,m_,se_,re_) <- INT_MSG_INFO8]]

—-— Messages as they appear on the network; each messages is renamed

(by rmb) to the representative member of its equivalence class

INPUT_MSG1l = {ALGEBRA_M: :rmb (m_) | m_ <— INPUT_INT_MSG1l}
INPUT_MSG2 = {ALGEBRA_M: :rmb (m_) | m_ <— INPUT_INT_MSG2}
INPUT_MSG3 = {ALGEBRA_M: :rmb (m_) | m_ <— INPUT_INT_MSG3}
INPUT_MSG4 = {ALGEBRA_M: :rmb (m_) | m_ <- INPUT_INT_MSG4}
INPUT_MSGS5 = {ALGEBRA_M: :rmb (m_) | m_ <— INPUT_INT_MSGS5}
INPUT_MSG6 = {ALGEBRA_M: :rmb (m_) | m_ <— INPUT_INT_MSG6}
INPUT_MSG7 = {ALGEBRA_ M: :rmb (m_) | m_ <— INPUT_INT_MSG7}
INPUT_MSG8 = {ALGEBRA_M: :rmb (m_) | m_ <— INPUT_INT_MSGS8}
INPUT_MSGY9 = {ALGEBRA_M: :rmb (m_) | m_ <— INPUT_INT_MSG9}
INPUT_MSG10 = {ALGEBRA_M: :rmb (m_) | m_ <- INPUT_INT_MSG10}
OUTPUT_MSG1 = {ALGEBRA_M: :rmb (m_) | m_ <— OUTPUT_INT_MSG1}
OUTPUT_MSG2 = {ALGEBRA_M: :rmb (m_) | m_ <— OUTPUT_INT_MSG2}
OUTPUT_MSG3 = {ALGEBRA_M: :rmb (m_) | m_ <— OUTPUT_INT_MSG3}
OUTPUT_MSG4 = {ALGEBRA_M: :rmb (m_) | m_ <- OUTPUT_INT_MSG4}
OUTPUT_MSG5 = {ALGEBRA_M: :rmb (m_) | m_ <— OUTPUT_INT_MSGS5}
OUTPUT_MSG6 = {ALGEBRA_M: :rmb (m_) | m_ <— OUTPUT_INT_MSG6}
OUTPUT_MSG7 = {ALGEBRA_M: :rmb (m_) | m_ <- OUTPUT_INT_MSG7}
OUTPUT_MSG8 = {ALGEBRA_M: :rmb (m_) | m_ <— OUTPUT_INT_MSGS8}
OUTPUT_MSGY9 = {ALGEBRA_M: :rmb (m_) | m_ <— OUTPUT_INT_MSG9}
OUTPUT_MSG10 = {ALGEBRA_M: :rmb (m_) | m_ <— OUTPUT_INT_MSG10}
DIRECT_MSGl = {ALGEBRA_M: :rmb4 (m_) | m_ <- INT_MSG_INFO1l}
DIRECT_MSG2 = {ALGEBRA_M: :rmb4 (m_) | m_ <- INT_MSG_INFO2}
DIRECT_MSG3 = {ALGEBRA_M: :rmb4 (m_) | m_ <- INT_MSG_INFO3}
DIRECT_MSG4 = {ALGEBRA_M: :rmb4 (m_) | m_ <— INT_MSG_INFO4}
DIRECT_MSG5 = {ALGEBRA_M: :rmb4 (m_) | m_ <- INT_MSG_INFO5}
DIRECT_MSG6 = {ALGEBRA_M: :rmb4 (m_) | m_ <- INT_MSG_INFO6}
DIRECT_MSG7 = {ALGEBRA_M: :rmb4 (m_) | m_ <— INT_MSG_INFO7}
DIRECT_MSG8 = {ALGEBRA_M: :rmb4 (m_) | m_ <- INT_MSG_INFO8}
DIRECT_MSGY9 = {ALGEBRA_M: :rmb4 (m_) | m_ <— INT_MSG_INFO9}
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DIRECT_MSG10 = {ALGEBRA_M: :rmb4 (m_) | m_ <- INT_MSG_INFO1l0}

—— Process representing MobileNode

Alpha RESPONDER_MobileNode =

Union ({
{|send.MobileNode.A .m_ | A_ <— ALL_PRINCIPALS, m_ <- OUTPUT_MSG2]|},
{|send.MobileNode.A_.m_ | A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG10]|},
{|receive.A_.MobileNode.m_ | A <- ALL_PRINCIPALS, m_ <-—

INPUT_MSG1|},
{|receive.A_.MobileNode.m_ | A_ <- ALL_PRINCIPALS, m_ <- INPUT_MSGY|}
})

RESPONDER_MobileNode = RESPONDER (MobileNode, KSMS, PrevAR)

Alpha_MobileNode =
Union ({
{|env.MobileNode|},
{|send.MobileNode.A_, receive.A_.MobileNode | A_ <- ALL_PRINCIPALS]|}
)

AGENT_MobileNode =

(RESPONDER_MobileNode [Alpha_ RESPONDER_MobileNode || {} 1 STOP)
—— Process representing NewAR

Alpha INITIATOR_NewAR =
Union ({
{|env.NewAR.m_ | m_ <- ENV_MSGO]|},

{|Send.NewAR.A_.m_ A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG1|},

{|send.NewAR.A_.m A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG3|},

{|send.NewAR.A_.m

{|send.NewAR.A_.m_ | A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG5]|},
| A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG7]|},

{|Send.NewAR.A_.m_ A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG9|},

{|receive.A .NewAR.m__

A_ <- ALL_PRINCIPALS, m_ <- INPUT_MSG2|},

|

{|receive.A_.NewAR.m_ | A_ <- ALL_PRINCIPALS, m_ <- INPUT_MSG4|},
{|receive.A_.NewAR.m_ |
|

A_ <- ALL_PRINCIPALS, m_ <- INPUT_MSG6’},

{|receive.A .NewAR.m__

A__ <- ALL_PRINCIPALS, m_ <- INPUT_MSG8|},
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{|receive.A_.NewAR.m_ | A_ <- ALL_PRINCIPALS, m_ <- INPUT_MSG10]|}
})

INITIATOR_NewAR = INITIATOR (NewAR, PKN, SKN, Y, PKP, Na)
Alpha_ NewAR =
Union ({
{|env.NewAR|},

{|send.NewAR.A_, receive.A_.NewAR A <- ALL_PRINCIPALS|}
1)

AGENT_NewAR =

(INITIATOR_NewAR [Alpha INITIATOR_NewAR || {} 1 STOP)

—— Process representing PrevAR

Alpha_SERVER_PrevAR =

Union ({
{|send.PrevAR.A_.m_ | A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG4|},
{|send.PrevAR.A_.m_ | A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG6]|},
{|send.PrevAR.A_.m_ | A_ <- ALL_PRINCIPALS, m_ <- OUTPUT_MSG8]|},
{|receive.A_.PrevAR.m_ | A_ <- ALL_PRINCIPALS, m_ <- INPUT_MSG3]|},
{|receive.A_.PrevAR.m_ | A_ <- ALL_PRINCIPALS, m_ <— INPUT_MSG5]|},
{|receive.A_.PrevAR.m_ | A_ <- ALL_PRINCIPALS, m_ <- INPUT_MSG7]|}

})

SERVER_PrevAR = SERVER(PrevAR, KSMS, MobileNode, PKP, SKP, PKN, KTUNNEL,
X)

Alpha_PrevAR =
Union ({
{|env.PrevAR|},
{|send.PrevAR.A_, receive.A_.PrevAR | A_ <- ALL_PRINCIPALS|}
1)

AGENT_PrevAR =

(SERVER_PrevAR [Alpha SERVER PrevAR || {} ] STOP)
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exports

ENV_MSG = {ALGEBRA_M: :rmb (m_) | m_ <— ENV_INT_MSG}
INT_MSG_INFO =
Union ({
INT_MSG_INFO1,
INT_MSG_INFOZ2,
INT_MSG_INFO3,
INT_MSG_INFO4,
INT_MSG_INFOS5,
INT_MSG_INFO6,
INT_MSG_INFO7,
INT_MSG_INFOS8,
INT_MSG_INFO9,
INT_MSG_INFO10
1)
INPUT_MSG =
Union ({
INPUT_MSG1,
INPUT_MSG2,
INPUT_MSG3,
INPUT_MSG4,
INPUT_MSGS5,
INPUT_MSG6,
INPUT_MSG7,
INPUT_MSGS,
INPUT_MSG9,
INPUT_MSG10
})
OUTPUT_MSG =
Union ({
OUTPUT_MSG1,
OUTPUT_MSG2,
OUTPUT_MSG3,
OUTPUT_MSG4,
OUTPUT_MSGS5,
OUTPUT_MSG6,

OUTPUT_MSG7,
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OUTPUT_MSGS,
OUTPUT_MSGY,
OUTPUT_MSG10
})
DIRECT_MSG =
Union ({
DIRECT_MSG1,
DIRECT_MSG2,
DIRECT_MSG3,
DIRECT_MSG4,
DIRECT_MSGS5,
DIRECT_MSG6,
DIRECT_MSG7,
DIRECT_MSGS,
DIRECT_MSGY9,
DIRECT_MSG10
})

channel input:ALL_PRINCIPALS.ALL_PRINCIPALS.INPUT_INT_MSG
channel output: ALL_PRINCIPALS.ALL PRINCIPALS.OUTPUT_INT_MSG

channel env_I : ALL PRINCIPALS.ENV_INT_MSG

—— Complete system

SYSTEM_0 =
(AGENT_MobileNode

(AGENT_NewAR

AGENT_PrevAR))

endmodule
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-— % Algebra *
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module ALGEBRA_M
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—— Algebraic laws, defined as a set of pairs

laws =
Union ({
{ (Encrypt. (Exp (Exp (Gen, Num_1), Num_2), <ksms, N>),
Encrypt. (Exp (Exp (Gen, Num_2), Num_1), <ksms, N>)) |
N <- Agent, Num_1 <- Num, Num_2 <- Num, ksms <- SessionKey},
{ (Exp (Exp (Gen, Num_1), Num_2),
Exp (Exp (Gen, Num_2), Num_1)) |
Num_1 <- Num, Num_2 <- Num},
{ (Exp (Exp (Gen, Num_2), Num_1),
Exp (Exp (Gen, Num_1), Num_2)) |
Num_1 <-— Num, Num_2 <- Num}

1)

—— Calculate transitive closure of algebraic laws, and select

—— representative member of each equivalence class
external mtransclose

renaming = mtransclose (laws, Fact_1)

ren = relational_inverse_image (renaming)

—— function that renames non-sequential fact to representative member

applyRenamingO(a_) =

let S_ = ren(a_)
within if card(S_)==0 then a_ else elsing(S_)
elsing ({x_}) = x_
domain = {a_ | (_,a_) <- renaming}
exports

—— function that renames arbitrary fact to representative member

applyRenaming (Sg.ms_) =
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if member (Sg.ms_, Fact_1) then applyRenaming0 (Sg.ms_)

else Sqg.<applyRenamingO (m_) | m_ <-— ms_>
applyRenaming (a_) = applyRenamingO (a_)
—— function that renames (label, fact, extras) triples
rmb((l_,m_,extras_)) =

(1_, applyRenaming(m_), applyRenamingToSeq(extras_))
rmb4 ((1_,m_,s_extras_,r_extras_)) =

(1_, applyRenaming(m_), applyRenamingToSeq(s_extras_),

applyRenamingToSeq (r_extras_))

—— lift renaming to sets and to deductions

applyRenamingToSet (X_) =

union({elsing(ren(a_)) | a_ <- inter (X_,domain)}, diff (X_, domain))

applyRenamingToSeq(X_) = <applyRenaming(e_) | e_ <— X_>

applyRenamingToDeductions (S_) =

{ (applyRenaming0 (f_), applyRenamingToSet (X_)) | (f_,X_) <= S_}

endmodule
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- % The Intruder *
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module INTRUDER_M

Generations = DI_M: :Generations

—— Intruder's initial knowledge

IKO_init = {MobileNode, NewAR, Mallory, PKN, PKP, PrevAR, PKMALLORY,
SKMALLORY, Z, NInt, Gen, Garbage}

IKO = IKO_init
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—— Intruder's deductions

unSqg_ (Sg.ms_) = set (ms_)
unSq_ (m_) = {m_}
unknown_ (S_) = diff(S_, IKO_init)

Base_Deductions =
Union ({SgDeductions,
EncryptionDeductions,
VernEncDeductions,

FnAppDeductions,

SgDeductions =
{(Sq.fs_, unknown_ (set (fs_)))
UnSgDeductions =
{ (£_, unknown_ ({Sg.fs_}))
EncryptionDeductions =

{ (Encrypt. (k_, fs_),

HashDeductions,

| Sg.fs_ <- Fact_1, f_

unknown_ (union ({k_},

UnSgDeductions,
DecryptionDeductions,

VernDecDeductions,

UserDeductions})

| Sq.fs_ <- Fact_1}

<- unknown_ (set (fs_))}

set (fs_)))) |

Encrypt. (k_,fs_) <- Fact_1}

DecryptionDeductions =

{ (f_,
Encrypt. (k_, fs_)

VernEncDeductions =

unknown_ ({Encrypt. (k_, fs_),

<- Fact_1, f_

inverse (k_)})) |

<- unknown_ (set (fs_))}

{(Xor. (ml_,m2_), unknown_ (union (unSg_(ml_), unSqg_(m2_)))) |
Xor. (ml_,m2_) <- Fact_1}
VernDecDeductions =
{(mll_, union (unknown_ (unSg_(m2_)), {Xor.(ml_,m2_)})) |

Xor. (ml_,m2_) <- Fact_1,

HashDeductions = { (Hash. (f_,

ms_),

mll_ <- unSqg_(ml_)}

set (ms_)) | Hash.(f_, ms_) <- Fact_1}
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UserDeductions = {}
FnAppDeductions =
{(Exp__.(arg_1l_, arg_2_), unknown_({arg 1l _, arg_2_})) |
Exp_ _.(arg_1l_, arg_2_) <- Fact_1}

—— close up intruder's initial knowledge under deductions;

—— calculate which facts cannot be learnt

components_ (Sg.ms_) =

if member (Sg.ms_, Fact_1) then {Sg.ms_} else set (ms_)

components_ (m_) = {m_}
Seeable_ =
Union ({unknown_ (components_ (m_)) (_,m_,_,_) <=

SYSTEM_M: : INT_MSG_INFO})

Close_(IK_, ded_, fact_) =

let IK1_ =
union (IK_, {f_ | (f_,fs_) <- ded_, fs_ <= IK_})
dedl_ =
{(f_, fs_) | (f_,fs_) <- ded_, not (member(f_,IK )),
fs_ <= fact_}
factl_ = Union({IK_, {f_ | (f_,fs_) <- ded_}, Seeable_})
within
if card(IK_)==card(IKl_) and card(ded_)==card(dedl_)
and card(fact_)==card(factl_ )
then (IK_, {(f_,diff(fs_,IK_)) | (f_,fs_) <- ded_}, fact_)

else Close_ (IK1l_, dedl_, factl_ )
(IK1l, Deductions, KnowableFact) =
Close_ (ALGEBRA_M: :applyRenamingToSet (IKO),
ALGEBRA_M: :applyRenamingToDeductions (Base_Deductions),
ALGEBRA_M: :applyRenamingToSet (Fact_1))

LearnableFact = diff (KnowableFact, IK1)

Deductions' = —-- Don't you hate hacks like this?
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if Deductions=={} then { (Garbage, {Garbage})} else Deductions

—— The intruder

—— * leak is used to signal that a possible secret has been learnt

—— * hear and say are used to represent hearing or saying a message

—— * infer (f, fs) represent deducing fact f from the set of facts fs

—-— Types of sender and receiver of each message

SenderType (Msgl) = Agent
SenderType (Msg2) = Agent
SenderType (Msg3) = Agent
SenderType (Msg4) = Agent
SenderType (Msgb5) = Agent
SenderType (Msgb6) = Agent
SenderType (Msg7) = Agent
SenderType (Msg8) = Agent
SenderType (Msg9) = Agent
SenderType (MsglO) = Agent
ReceiverType (Msgl) = Agent
ReceiverType (Msg2) = Agent
ReceiverType (Msg3) = Agent
ReceiverType (Msg4) = Agent
ReceiverType (Msgb) = Agent
ReceiverType (Msg6) = Agent
ReceiverType (Msg7) = Agent
ReceiverType (Msg8) = Agent
ReceiverType (Msg9) = Agent
ReceiverType (MsglQO) = Agent

—— Component of intruder for currently unknown fact f_:
—— * ms_ is the set of messages that contain f_ at the top level
—— * fss_ is the set of sets of facts from which f_ can be deduced

—— * ds_ is the set of deductions that use f_

IGNORANT (f_,ms_, fss_,ds_) =
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hear?m_:ms_ —-> KNOWS(f_,ms_,ds_)

[]

([] fs_ : fss_, not (member(f_,fs_)) @
infer. (f_,fs_) —> KNOWS(f_,ms_,ds_))

—— Component of intruder for known fact f_

KNOWS (f_,ms_,ds_) =
hear?m_:ms_ —-> KNOWS(f_,ms_,ds_)
[]
say?m_:ms_ —> KNOWS (f_,ms_,ds_)
[]
([] ded@@(fl1_,fs_) : ds_, fl_ !=f (@ infer.ded -> KNOWS(f_,ms_,ds_))
[]
member (f_,ALL_SECRETS_DI) & leak.f_ —-> KNOWS(f_,ms_,ds_)

—— Alphabet of this component

AlphalL(f_,ms_, fss_,ds_) =

Union({ (if member (f_,ALL_SECRETS_DI) then {leak.f_} else {}),

{hear.m_, say.m_ | m_ <- ms_},
{infer.(f_,fs_) | fs_ <- fss_},
{infer. (f1_, fs_) | (f1_,fs_) <- ds_}
})
—-— Set of all (f_, ms_, fss_, ds_) for which intruder components

-— must be built

f ms_fss_ds_s =

let rid_ = relational_image (Deductions)
msf_ = relational_image ({(f_, m_) | m_ <- MSG_BODY, f <-
unSqg_ (m_) })
xsf_ = relational_image ({ (f_, =x_) | X _QQR(_,fs_) <- Deductions,
f_ <- fs_})
within {(f_, msf_(f_), rid (f_), xsf_(£f_)) | f_ <- LearnableFact}

—— Put components together in parallel
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INTRUDER_00 =
(|| (f_,ms_,fss_,ds_) : f_ms_fss_ ds_s @

[AlphalL(f_,ms_,fss_,ds_)] IGNORANT (f_,ms_,fss_,ds_))

INTRUDER_O = INTRUDER 00 \ {|infer]|}

—-— ... and rename events appropriately

INTRUDER_1 =
(chase (INTRUDER_O)
[[ hear.m_ <- send.A_.B_.(l_,m_,se_ ) |
(1_,m_,se_,re_) <- DIRECT_MSG,
A <- diff (SenderType(l_), {Mallory}), B_ <- ReceiverType(l_) 1]
[|{] hear [}|] sToP)
[[ say.m_ <—- receive.A_.B_.(l_,m_,re_) |
(l1_,m_,se_,re_) <- DIRECT_MSG,

A_ <- SenderType(l_), B_ <- ReceiverType(l_) 1]

—— Add in facts that are known initially

SAY _KNOWN_0 =
(inter (IK1, ALL_SECRETS_DI) != {} & dummy_leak -> SAY_ KNOWN_DO0)
[] dummy_send —-> SAY_KNOWN_DO

[] dummy_receive —-> SAY_KNOWN_O

SAY_KNOWN =
SAY_KNOWN_O

[[ dummy_leak <- leak.f_ | f  <- inter(IK1l, ALL_SECRETS_DI) 1]

[[ dummy_send <- send.A_.B_.(l_,m_,se_) |
(l_,m_,se_,re_) <- DIRECT_MSG, components_ (m_) <= IK1,
A_ <- diff(SenderType(l_), {Mallory}), B_ <- ReceiverType(l_) 1]

[[ dummy_ receive <- receive.A_.B_.(l_,m_,re_ ) |
(l_,m_,se_,re_) <- DIRECT_MSG, components_(m_) <= IK1,

A_ <- SenderType(l_), B_ <- ReceiverType(l_) 1]

STOP_SET = {| send.Mallory |}

exports
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—— Declare channels:
channel hear, say : MSG_BODY
channel infer : Deductions'

channel dummy_leak, dummy_send, dummy_receive

print IK1 —— intruder's initial knowledge
print KnowableFact —-- all facts that might be learnt
print Deductions —— all deductions over KnowableFact

—— Complete intruder

INTRUDER =
(INTRUDER_1 [| STOP_SET |] STOP) ||| SAY_KNOWN
endmodule
IntruderInterface = {| send, receive |}
SYSTEM =
SYSTEM_M: :SYSTEM 0 [| IntruderInterface |] INTRUDER M::INTRUDER

R R R R S R S R R S R e S I I S R S i I I I I I R S S S IR S R S b S I S I S b b S

-— % Specifications and Assertions *
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module SECRET_M

—— Specification for single secret

SECRET_SPEC_0O(s_) =
signal.Claim Secret?A_ !s_7?Bs_ —->
(if member (Mallory, Bs_) then SECRET_SPEC_O0(s_)
else SECRET_SPEC_1(s_))

[]
leak.s_ —> SECRET_SPEC_0 (s_)

SECRET_SPEC_1(s_) =
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signal.Claim Secret?A_!s_7?Bs_ —-> SECRET_SPEC_1(s_)
—— Specification for all secrets

AlphaS(s_) =

Union ({

{|signal.Claim_Secret.A_.s_ | A_ <- ALL_PRINCIPALS|},

{leak.s_}
1)

—— Sequential version; secs_ is secrets that intruder must not learn

SEQ_SECRET_SPEC_O0 (secs_) =
scs?s_!IntIn -> SEQ SECRET_SPEC_O0 (secs_)

[]

card(secs_)<3 & scs?s_!IntNotIn ->

SEQ_SECRET_SPEC_O0 (union (secs_, {s_}))

[]

card(secs_)==3 & scs?s_:secs_!IntNotIn —->
SEQ_SECRET_SPEC_0 (secs_)

[]

leak?s_ diff (ALL_SECRETS, secs_) —> SEQ SECRET_SPEC_O0 (secs_)

isIntIn(S_) = if member (Mallory,S_) then IntIn else IntNotIn
Alpha_SECRETS =

Union ({

{|leak, signal.Claim_Secret.A_ A <- HONEST|}

3]

Alpha_SEQ_SECRETS =
Union ({

{|leak, scs|}

3]

exports

SECRET_SPEC = (|| s_ : ALL_SECRETS @ [AlphaS(s_)] SECRET_SPEC_0 (s_))
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datatype IncInt = IntIn IntNotIn

channel scs : ALL_SECRETS.IncInt

SEQ_SECRET_SPEC = SEQ_SECRET_SPEC_0({})

—— System for secrecy checking

SYSTEM_S =
let Agent_renamed_ = ALGEBRA_M: :applyRenamingToSet (Agent)
SessionKey_renamed_ = ALGEBRA_M: :applyRenamingToSet (SessionKey)
Field_renamed_ = ALGEBRA_M: :applyRenamingToSet (Field)
Nonce_renamed_ = ALGEBRA_M: :applyRenamingToSet (Nonce)
within
SYSTEM

[[send.P.N.ALGEBRA_M: :rmb ( (Msg8, Encrypt. (ktunnelDH, <ksms, N>),
<ktunnel, ksms, ktunnelDH>))

<- signal.Claim_Secret.P.ALGEBRA_M: :applyRenaming (ktunnel) . {N},

receive.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt. (ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>))

<- signal.Claim_Secret.N.ALGEBRA_M: :applyRenaming (ktunnel) . {P},

send.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt.(ksms, <na, M, N>), <na,
ksms>) )

<- signal.Claim_Secret.M.ALGEBRA_M: :applyRenaming (ksms) . {N},

receive .M.N.ALGEBRA M: :rmb ((Msgl0, Encrypt.(ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>))

<- signal.Claim_Secret.N.ALGEBRA_M: :applyRenaming (ksms) . {M},

send.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt.(ksms, <na, M, N>), <na,
ksms>))

<- signal.Claim_Secret.M.ALGEBRA_M: :applyRenaming (na) . {N},

receive.M.N.ALGEBRA M: :rmb ((Msgl0, Encrypt.(ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>))

<- signal.Claim_Secret.N.ALGEBRA_M: :applyRenaming (na) . {M} |
P <- Agent_renamed_, N <- Agent_renamed_,
ktunnel <- SessionKey_renamed_, ksms <- SessionKey_renamed_,
ktunnelDH <- Field_renamed_, M <- Agent_renamed_,
na <- Nonce_renamed_

11 \ diff (Events,Alpha_SECRETS)
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SYSTEM_S_SEQ =
let Agent_renamed_ = ALGEBRA_M: :applyRenamingToSet (Agent)

SessionKey_renamed_ = ALGEBRA_M: :applyRenamingToSet (SessionKey)

Field_renamed_ ALGEBRA_M: :applyRenamingToSet (Field)

Nonce_renamed_ ALGEBRA_M: :applyRenamingToSet (Nonce)
within
SYSTEM

[[send.P.N.ALGEBRA_M: :rmb ( (Msg8, Encrypt. (ktunnelDH, <ksms, N>),
<ktunnel, ksms, ktunnelDH>))

<- scs.ALGEBRA_M: :applyRenaming (ktunnel) .isIntIn({P, N}),

receive.M.N.ALGEBRA M: :rmb ((Msgl0, Encrypt. (ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>))

<- scs.ALGEBRA_M: :applyRenaming (ktunnel) .isIntIn({N, P}),

send.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt.(ksms, <na, M, N>), <na,
ksms>))

<- scs.ALGEBRA_M: :applyRenaming (ksms) .isIntIn ({M, N}),

receive.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt.(ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>))

<- scs.ALGEBRA_M: :applyRenaming (ksms) .isIntIn ({N, M}),

send.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt. (ksms, <na, M, N>), <na,
ksms>))

<- scs.ALGEBRA_M: :applyRenaming (na) .isIntIn ({M, N}),

receive .M.N.ALGEBRA_M: :rmb ( (MsglO, Encrypt. (ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>))

<- scs.ALGEBRA_M: :applyRenaming (na) .isIntIn ({N, M}) |
P <- Agent_renamed_, N <- Agent_renamed_,
ktunnel <- SessionKey_renamed_, ksms <- SessionKey_renamed_,
ktunnelDH <- Field_renamed_, M <- Agent_renamed_,
na <- Nonce_renamed_

1] \ diff (Events,Alpha_SEQ_SECRETS)

endmodule

—— Assertion of secrecy

assert SECRET_M: :SECRET_SPEC [T= SECRET_M::SYSTEM_ S

assert SECRET_M::SEQ_ SECRET_SPEC [T= SECRET_M::SYSTEM_S_SEQ

—— Authentication specifications
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—— Authentication specification number 1
module AUTH1_M
—— Spec parameterized by name of agent being authenticated
AuthenticateRESPONDERTOINITIATORAgreement_na_0 (M) =
signal.Runningl.RESPONDER_role.M?N?na —>
signal.Commitl.INITIATOR_role.N.M.na -> STOP
AlphaAuthenticateRESPONDERTOINITIATORAgreement_na_ 0 (M) =
{|signal.Runningl.RESPONDER_role.M.N,
signal.Commitl.INITIATOR _role.N.M |
N <- inter (Agent, HONEST) |}

—— Specs for particular agents being authenticated

AuthenticateRESPONDERMobileNodeToINITIATORAgreement_na =

AuthenticateRESPONDERTOINITIATORAgreement_na_0 (MobileNode)

AuthenticateRESPONDERNewARTOINITIATORAgreement_na =

STOP

AuthenticateRESPONDERPrevARTOoINITIATORAgreement_na =
STOP

—— alphabet of specification
alphaAuthenticateRESPONDERTOINITIATORAgreement_na =
Union ({
AlphaAuthenticateRESPONDERToINITIATORAgreement_na_0 (MobileNode),
AlphaAuthenticateRESPONDERTOINITIATORAgreement_na_0 (NewAR),

AlphaAuthenticateRESPONDERTOINITIATORAgreement_na_0 (PrevAR)
B

exports

—— Specs for all agents being authenticated
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AuthenticateRESPONDERTOINITIATORAgreement_na =
(AuthenticateRESPONDERMobileNodeToINITIATORAgreement_na

[]
inter (AlphaAuthenticateRESPONDERTOINITIATORAgreement_na_0 (MobileNode),

union (AlphaAuthenticateRESPONDERTOINITIATORAgreement_na_0 (NewAR),
AlphaAuthenticateRESPONDERTOINITIATORAgreement_na_0 (PrevAR))) |]

(AuthenticateRESPONDERNewARTOINITIATORAgreement_na
[| inter (AlphaAuthenticateRESPONDERTOINITIATORAgreement_na_0 (NewAR),

AlphaAuthenticateRESPONDERTOINITIATORAgreement_na_0 (PrevAR))

AuthenticateRESPONDERPrevARTOINITIATORAgreement_na))

—-— System for authentication checking

SYSTEM_1 =
let Agent_renamed_ = ALGEBRA_M: :applyRenamingToSet (Agent)
Nonce_renamed_ = ALGEBRA_M: :applyRenamingToSet (Nonce)
SessionKey_renamed_ = ALGEBRA_M: :applyRenamingToSet (SessionKey)
Field_renamed_ = ALGEBRA_M: :applyRenamingToSet (Field)
within
SYSTEM

[[send.M.N.ALGEBRA_M: :rmb ((Msgl0O, Encrypt.(ksms, <na, M, N>), <na,
ksms>)) <-

signal.Runningl.RESPONDER_role.M.N.na,

receive.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt.(ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>)) <-

signal.Commitl.INITIATOR role.N.M.na |
M <- Agent_renamed_, N <- Agent_renamed_, na <- Nonce_renamed_,
ksms <- SessionKey_renamed_, P <- Agent_renamed_,
ktunnel <- SessionKey_renamed_, ktunnelDH <- Field_renamed_
1]
\ diff (Events, alphaAuthenticateRESPONDERTOINITIATORAgreement_na)

endmodule

assert AUTH1_M::AuthenticateRESPONDERTOINITIATORAgreement_na [T=
AUTH1_M::SYSTEM 1
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—— Authentication specification number 2
module AUTH2_M
—— Spec parameterized by name of agent being authenticated
AuthenticateINITIATORToRESPONDERAgreement_ksms_0 (N) =
signal.Running2.INITIATOR_role.N?M?ksms —->
signal.Commit2.RESPONDER_role.M.N.ksms —-> STOP
AlphaAuthenticateINITIATORTORESPONDERAgreement_ksms_0 (N) =
{|signal.Running2.INITIATOR_role.N.M,
signal.Commit2.RESPONDER_role.M.N |
M <- inter (Agent, HONEST) |}

—— Specs for particular agents being authenticated

AuthenticateINITIATORMobileNodeToRESPONDERAgreement_ksms =
STOP

AuthenticateINITIATORNewARTORESPONDERAgreement_ksms =

AuthenticateINITIATORTORESPONDERAgreement_ksms_0 (NewAR)

AuthenticateINITIATORPrevARToRESPONDERAgreement_ksms =
STOP

—— alphabet of specification
alphaAuthenticateINITIATORToRESPONDERAgreement_ksms =
Union ({
AlphaAuthenticateINITIATORToRESPONDERAgreement_ksms_0 (MobileNode),
AlphaAuthenticateINITIATORTORESPONDERAgreement_ksms_0 (NewAR),

AlphaAuthenticateINITIATORTORESPONDERAgreement_ksms_0 (PrevAR)

3]

exports

—— Specs for all agents being authenticated
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AuthenticateINITIATORToRESPONDERAgreement_ksms =

(AuthenticateINITIATORMobileNodeToRESPONDERAgreement_ksms

[]
inter (AlphaAuthenticateINITIATORToRESPONDERAgreement_ksms_0 (MobileNode),

union (AlphaAuthenticateINITIATORToRESPONDERAgreement_ksms_0 (NewAR),
AlphaAuthenticateINITIATORTORESPONDERAgreement_ksms_0 (PrevAR))) |]

(AuthenticateINITIATORNewARTORESPONDERAgreement_ksms
[| inter (AlphaAuthenticateINITIATORTORESPONDERAgreement_ksms_0 (NewAR),

AlphaAuthenticateINITIATORTORESPONDERAgreement_ksms_0 (PrevAR))

AuthenticateINITIATORPrevARTOoRESPONDERAgreement_ksms) )

—-— System for authentication checking

SYSTEM_2 =
let Agent_renamed_ = ALGEBRA_M: :applyRenamingToSet (Agent)
SessionKey_renamed_ = ALGEBRA_M: :applyRenamingToSet (SessionKey)
Nonce_renamed_ = ALGEBRA_M: :applyRenamingToSet (Nonce)
within
SYSTEM

[[send.N.M.ALGEBRA_M: :rmb ( (Msg9, Encrypt. (ksms, <na, N, M>), <ksms>))

signal.Running2.INITIATOR_role.N.M.ksms,

send.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt.(ksms, <na, M, N>), <na,
ksms>)) <-—-

signal.Commit2.RESPONDER_role.M.N.ksms |
N <- Agent_renamed_, M <- Agent_renamed_,

ksms <- SessionKey_renamed_, na <- Nonce_renamed_
11
\ diff (Events, alphaAuthenticateINITIATORTORESPONDERAgreement_ksms)

endmodule

assert AUTH2_M: :AuthenticateINITIATORTORESPONDERAgreement_ksms [T=

AUTH2_M::SYSTEM_2

—— Authentication specification number 3
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module AUTH3_M

—— Spec parameterized by name of agent being authenticated

AuthenticateSERVERTOINITIATORAgreement_ktunnel 0 (P) =
signal.Running3.SERVER_role.P?N?ktunnel ->
signal.Commit3.INITIATOR_role.N.P.ktunnel -> STOP

AlphaAuthenticateSERVERToINITIATORAgreement_ktunnel 0 (P) =
{|signal.Running3.SERVER_role.P.N,

signal.Commit3.INITIATOR role.N.P |
N <- inter (Agent, HONEST) |}

—— Specs for particular agents being authenticated

AuthenticateSERVERMobileNodeToINITIATORAgreement_ktunnel =

STOP

AuthenticateSERVERNewARTOINITIATORAgreement_ktunnel =
STOP

AuthenticateSERVERPrevARTOoINITIATORAgreement_ktunnel =

AuthenticateSERVERTOINITIATORAgreement_ktunnel_ 0 (PrevAR)
—— alphabet of specification
alphaAuthenticateSERVERTOINITIATORAgreement_ktunnel =
Union ({
AlphaAuthenticateSERVERToINITIATORAgreement_ktunnel_0 (MobileNode),
AlphaAuthenticateSERVERToINITIATORAgreement_ktunnel_0 (NewAR),

AlphaAuthenticateSERVERToINITIATORAgreement_ktunnel_ 0 (PrevAR)
1)

exports

—— Specs for all agents being authenticated

AuthenticateSERVERToOINITIATORAgreement_ktunnel =
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(AuthenticateSERVERMobileNodeToINITIATORAgreement_ktunnel

[
inter (AlphaAuthenticateSERVERToINITIATORAgreement_ktunnel_0 (MobileNode),

union (AlphaAuthenticateSERVERTOINITIATORAgreement_ktunnel_ 0 (NewAR),
AlphaAuthenticateSERVERTOINITIATORAgreement_ktunnel_ 0 (PrevAR))) |]

(AuthenticateSERVERNewARTOINITIATORAgreement_ktunnel
[| inter (AlphaAuthenticateSERVERToINITIATORAgreement_ktunnel_ 0 (NewAR),

AlphaAuthenticateSERVERTOoINITIATORAgreement_ktunnel_ 0 (PrevAR))

AuthenticateSERVERPrevARTOINITIATORAgreement_ktunnel))

—— System for authentication checking

SYSTEM_3 =
let Agent_renamed_ = ALGEBRA_M: :applyRenamingToSet (Agent)
SessionKey_renamed_ = ALGEBRA_M: :applyRenamingToSet (SessionKey)
Field_renamed_ = ALGEBRA_M: :applyRenamingToSet (Field)
Nonce_renamed_ = ALGEBRA_M: :applyRenamingToSet (Nonce)
within
SYSTEM

[[send.P.N.ALGEBRA_M: :rmb ( (Msg8, Encrypt. (ktunnelDH, <ksms, N>),
<ktunnel, ksms, ktunnelDH>)) <-

signal.Running3.SERVER_role.P.N.ktunnel,

receive .M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt. (ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>)) <-

signal.Commit3.INITIATOR_role.N.P.ktunnel |
P <- Agent_renamed_, N <- Agent_renamed_,
ktunnel <- SessionKey_renamed_, ksms <- SessionKey_renamed_,
ktunnelDH <- Field_renamed_, na <- Nonce_renamed_,
M <- Agent_renamed_
11
\ diff (Events, alphaAuthenticateSERVERTOINITIATORAgreement_ktunnel)

endmodule

assert AUTH3_M: :AuthenticateSERVERTOINITIATORAgreement_ktunnel [T=

AUTH3_M::SYSTEM_3

—— Authentication specification number 4
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module AUTH4_M

—— Spec parameterized by name of agent being authenticated

AuthenticateSERVERTOINITIATORAgreement_ksms_0 (P) =
signal.Running4.SERVER_role.P?N?ksms —->

signal.Commit4.INITIATOR_role.N.P.ksms —-> STOP

AlphaAuthenticateSERVERToOINITIATORAgreement_ksms_0 (P) =
{|signal.Running4.SERVER_role.P.N,
signal.Commit4.INITIATOR role.N.P |

N <- inter (Agent, HONEST) |}

—— Specs for particular agents being authenticated

AuthenticateSERVERMobileNodeToINITIATORAgreement_ksms =

STOP

AuthenticateSERVERNewARToINITIATORAgreement_ksms =
STOP

AuthenticateSERVERPrevARTOINITIATORAgreement_ksms =

AuthenticateSERVERTOINITIATORAgreement_ksms_0 (PrevAR)
—— alphabet of specification
alphaAuthenticateSERVERTOINITIATORAgreement_ksms =
Union ({
AlphaAuthenticateSERVERToINITIATORAgreement_ksms_0 (MobileNode),
AlphaAuthenticateSERVERTOINITIATORAgreement_ksms_0 (NewAR),

AlphaAuthenticateSERVERTOINITIATORAgreement_ksms_0 (PrevAR)
B

exports

—— Specs for all agents being authenticated
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AuthenticateSERVERTOINITIATORAgreement_ksms =
(AuthenticateSERVERMobileNodeToINITIATORAgreement_ksms

[
inter (AlphaAuthenticateSERVERTOINITIATORAgreement_ksms_0 (MobileNode),

union (AlphaAuthenticateSERVERTOINITIATORAgreement_ksms_0 (NewAR),
AlphaAuthenticateSERVERToOINITIATORAgreement_ksms_0 (PrevAR))) |]

(AuthenticateSERVERNewARTOINITIATORAgreement_ksms
[| inter (AlphaAuthenticateSERVERTOINITIATORAgreement_ksms_0 (NewAR),
AlphaAuthenticateSERVERTOINITIATORAgreement_ksms_0 (PrevAR)) ]]

AuthenticateSERVERPrevARTOoINITIATORAgreement_ksms) )

—-— System for authentication checking

SYSTEM_4 =
let Agent_renamed_ = ALGEBRA_M: :applyRenamingToSet (Agent)
SessionKey_renamed_ = ALGEBRA_M: :applyRenamingToSet (SessionKey)
Field_renamed_ = ALGEBRA_M: :applyRenamingToSet (Field)

Nonce_renamed_ ALGEBRA_M: :applyRenamingToSet (Nonce)
within
SYSTEM

[[send.P.N.ALGEBRA_M: :rmb ( (Msg8, Encrypt. (ktunnelDH, <ksms, N>),
<ktunnel, ksms, ktunnelDH>)) <-

signal.Running4.SERVER _role.P.N.ksms,

receive.M.N.ALGEBRA_M: :rmb ((Msgl0, Encrypt. (ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>)) <-

signal.Commit4.INITIATOR _role.N.P.ksms |
P <- Agent_renamed_, N <- Agent_renamed_,
ktunnel <- SessionKey_renamed_, ksms <- SessionKey_renamed_,
ktunnelDH <- Field_renamed_, na <- Nonce_renamed_,
M <- Agent_renamed_
11
\ diff (Events, alphaAuthenticateSERVERTOINITIATORAgreement_ksms)

endmodule

assert AUTH4_M: :AuthenticateSERVERTOINITIATORAgreement_ksms [T=

AUTH4_M: :SYSTEM_4

—— Authentication specification number 5
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module AUTHS5_M

—— Spec parameterized by name of agent being authenticated

AuthenticateSERVERTOINITIATORAgreement_ktunnelDH 0 (P) =
signal.Running5.SERVER_role.P?N?ktunnelDH ->

signal.Commit5.INITIATOR_role.N.P.ktunnelDH -> STOP

AlphaAuthenticateSERVERTOINITIATORAgreement_ktunnelDH_0 (P) =
{|signal.RunningS.SERVER_role.P.N,
signal.Commit5.INITIATOR_role.N.P |

N <- inter (Agent, HONEST) |}

—— Specs for particular agents being authenticated

AuthenticateSERVERMobileNodeToINITIATORAgreement_ktunnelDH =

STOP

AuthenticateSERVERNewARToINITIATORAgreement_ktunnelDH =
STOP

AuthenticateSERVERPrevARTOINITIATORAgreement_ktunnelDH =

AuthenticateSERVERTOINITIATORAgreement_ktunnelDH_0 (PrevAR)
—— alphabet of specification
alphaAuthenticateSERVERTOINITIATORAgreement_ktunnelDH =
Union ({
AlphaAuthenticateSERVERToINITIATORAgreement_ktunnelDH_0 (MobileNode),
AlphaAuthenticateSERVERTOINITIATORAgreement_ktunnelDH_O0 (NewAR),

AlphaAuthenticateSERVERTOINITIATORAgreement_ktunnelDH_ 0 (PrevAR)
B

exports

—— Specs for all agents being authenticated
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AuthenticateSERVERTOINITIATORAgreement_ktunnelDH =
(AuthenticateSERVERMobileNodeToINITIATORAgreement_ktunnelDH

[l
inter (AlphaAuthenticateSERVERToINITIATORAgreement_ktunnelDH_ 0 (MobileNode),

union (AlphaAuthenticateSERVERTOINITIATORAgreement_ktunnelDH_O0 (NewAR),
AlphaAuthenticateSERVERToINITIATORAgreement_ktunnelDH_0 (PrevAR))) |]

(AuthenticateSERVERNewARTOINITIATORAgreement_ktunnelDH

[
inter (AlphaAuthenticateSERVERTOINITIATORAgreement_ktunnelDH_0 (NewAR),

AlphaAuthenticateSERVERToINITIATORAgreement_ktunnelDH_0 (PrevAR) ) |]

AuthenticateSERVERPrevARToINITIATORAgreement_ktunnelDH) )

—-— System for authentication checking

SYSTEM_5 =
let Agent_renamed_ = ALGEBRA_M: :applyRenamingToSet (Agent)
SessionKey_renamed_ = ALGEBRA_M: :applyRenamingToSet (SessionKey)

Field_renamed_ ALGEBRA_M: :applyRenamingToSet (Field)

Nonce_renamed_ ALGEBRA_M: :applyRenamingToSet (Nonce)
within
SYSTEM

[[send.P.N.ALGEBRA_M: :rmb ( (Msg8, Encrypt. (ktunnelDH, <ksms, N>),
<ktunnel, ksms, ktunnelDH>)) <-

signal.Running5.SERVER_role.P.N.ktunnelDH,

receive.M.N.ALGEBRA_M: :rmb ( (Msgl0, Encrypt.(ksms, <na, M, N>), <na,
P, ktunnel, ksms, ktunnelDH>)) <-

signal.Commit5.INITIATOR_role.N.P.ktunnelDH |
P <- Agent_renamed_, N <- Agent_renamed_,
ktunnel <- SessionKey_renamed_, ksms <- SessionKey_renamed_,
ktunnelDH <- Field_renamed_, na <- Nonce_renamed_,
M <- Agent_renamed__
11
\ diff (Events, alphaAuthenticateSERVERTOINITIATORAgreement_ktunnelDH)

endmodule

assert AUTHS5_M::AuthenticateSERVERTOINITIATORAgreement_ktunnelDH [T=
AUTHS5_M: :SYSTEM_5
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