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This study examines the influence of angle of attack of a square section cylinder
on the cylinder’s flow-induced vibration, where the direction of the vibration is
transverse to the oncoming flow. Our experiments, which traversed the velocity–angle
of attack parameter space in considerable breadth and depth, show that a low-mass
ratio body can undergo combinations of both vortex-induced vibration and galloping.
When the body has an angle of attack that makes it symmetric to the flow, such
as when it assumes the square or diamond orientation, the two mechanisms remain
independent. However, when symmetry is lost we find a mixed mode response with
a new branch of vortex-induced oscillations that exceeds the amplitudes resulting
from the two phenomena independently. The oscillations of this higher branch have
amplitudes larger than the ‘upper branch’ of vortex-induced vibrations and at half
the frequency. For velocities above this resonant region, the frequency splits into
two diverging branches. Analysis of the amplitude response reveals that the transition
between galloping and vortex-induced vibrations occurs over a narrow range of angle
of incidence. Despite the rich set of states found in the parameter space the vortex
shedding modes remain very similar to those found previously in vortex-induced
vibration.

Key words: vortex shedding, wakes, wake–structure interactions

1. Introduction

Flow-induced vibration (FIV) of bluff bodies has received considerable attention
in the last four decades. Its prevalence and importance in practical engineering
applications has motivated investigations that aim to enable us to predict, model
and shed light on these fluid–structure interactions. This has led to a large body of
work, well covered in collections by Blevins (1990) and Naudascher & Rockwell
(1994). Two body-oscillator phenomena in particular, vortex-induced vibration (VIV)
and galloping, have been researched extensively for their ubiquity in nature and their
serious implications in wind and ocean engineering.

† Email address for correspondence: andras.nemes@monash.edu



VIV has been the subject of many applied and fundamental studies. The focus
in the field has been on bodies with circular cross-sections, a canonical bluff body
with an axial symmetry that removes any parametric consideration relating to the flow
orientation, that serves as an ideal basis for fundamental research. This symmetry
also allows VIV to be studied in isolation from other FIV, such as galloping, that
arise from aerodynamically unstable cross-sections (Blevins 1990). From an applied
standpoint, VIV of the circular cross-section receives considerable attention as a
critical phenomena in ocean engineering, where ocean currents can induce vibrations
in ocean risers, cables and off-shore platforms. This requires prediction and accounting
for the resulting cyclic loading and maximal displacements induced in structures.

VIV can occur when an elastic or elastically mounted bluff body immersed in a
moving fluid sheds vortices. These vortices create a fluctuating pressure distribution on
the body that may induce a vibrational response at certain velocities. Here we focus on
the VIV response of a single degree of freedom system with oscillations transverse to
the direction of the fluid flow.

The dynamics of this response are defined by the equation

mÿ + cẏ + ky = Fy(t), (1.1)

where m is the mass of the system, c is the structural damping, k is the spring
constant, y is the cylinder transverse displacement and Fy(t) is the forcing imposed
on the cylinder by the fluid. This leads to the key non-dimensional parameters of the
system: the mass ratio, m∗ = m/md, where md is the mass of the fluid displaced by the
body; and the damping ratio of the system in water,

ζ = c/(2
√

k(m + mA)), (1.2)

in which mA is the added mass. The displaced fluid mass is defined as md = ρCL,
where ρ is the fluid density, C is the geometry’s cross-sectional area, and L is the
length of the body immersed in the fluid. A pioneering wind tunnel experiment by
Feng (1968) characterized the vibrations of a high mass ratio circular cylinders by
the oscillation amplitude and frequency response of the body over a range of reduced
velocities, U∗ = U/fND, where U is the free stream velocity, fN is the natural frequency
of the freely oscillating body within the quiescent fluid and D is the cylinder diameter.
Feng showed that a resonance condition can exist when the frequency of shedding, fS,
and that of the body oscillation, f , are locked and close to fN . The maximum amplitude
response, A∗

max = max(A/D), occurs in this lock-in region of fS ≈ f ≈ fN , i.e. after the
reduced velocity increases above, U∗ = 1/St , where St = fSD/U is the fixed cylinder’s
dimensionless shedding frequency.

The amplitude envelope found by Feng (1968) was a two-branch response with a
hysteretic transition and a maximum amplitude of just over half the body diameter,
A∗
max = 0.5. Since Feng (1968), a great deal of work has been done on VIV,

with experimental and numerical studies that have covered the large number of
parameters involved. To understand, model and predict the complex coupling of
the fluid–structure interaction, researchers have characterized the response of circular
cylinders undergoing free and forced vibrations with multiple degrees of freedom and
over a large range of parameters. The state of the art has been well documented and
covered in reviews by Sarpkaya (1979, 2004), Bearman (1984), Parkinson (1989) and
Williamson & Govardhan (2004).

Khalak & Williamson (1996, 1997a,b, 1999) conducted a series of one-degree-
of-freedom circular cylinder experiments in a water channel. They showed a larger



vibrational amplitude response than Feng’s (1968) could result when the mass-damping
values, m∗ζ , were very low. They also found that this extended the synchronization
region to higher U∗ values and that within this extended region f ∗ = f /fN could take
values above unity. These studies, and subsequent low mass-damping experiments
(Govardhan & Williamson 2000, 2004), revealed that three distinct branches of
maximum amplitude can occur within the resonance region. As the flow velocity is
increased from low values the body oscillates at low amplitude, coined the ‘initial
branch’. At U∗ = 1/St there is a hysteretic jump to an ‘upper branch’ of high-
amplitude oscillations, which can exceed A∗

max = 1. Govardhan & Williamson (2006)
found the magnitude of the peak amplitude is influenced not just by mass-damping but
also by Reynolds number, Re = UD/ν, where ν is the kinematic viscosity of the fluid.

With a further increase in U∗ there is a drop in amplitude to a ‘lower branch’
of highly periodic oscillations, with the transition between the ‘upper’ and ‘lower’
branches being found to be intermittent (Khalak & Williamson 1997a). Throughout
the velocity range of the lower branch the body motion and lift remain locked to
a constant f ∗ value, above unity and inversely proportional to m∗ (Govardhan &
Williamson 2004). Near the end of the lower branch, the frequencies desynchronize
and the oscillations of the body drop to a low amplitude. This drop was also shown to
be a hysteretic transition by Klamo, Leonard & Roshko (2006). They showed that the
existence of the three-branch response depends on having both high Reynolds numbers
and low mass-damping.

There has been little research into pure VIV of square cross-section cylinders,
probably because the circular cylinder serves as an ideal geometry isolated from other
FIV phenomena. Obasaju, Ermshaus & Naudascher (1990) studied flow over square
section cylinders at different angles of incidence while freely oscillating in the stream-
wise direction, reporting on amplitude-dependent vortex shedding modes and multiple
FIV sources of excitation. Wang & Zhou (2005) located the resonance modes of an
elastic square cylinder with fixed supports over an extensive velocity range. Recently,
there has been a renewed interest in studying the flow around stationary square
sections at angles of incidence experimentally (see Dutta, Panigrahi & Muralidhar
2008; van Oudheusden et al. 2008) and numerically (see Luo, Tong & Khoo 2007;
Tong, Luo & Khoo 2008; Sheard, Fitzgerald & Ryan 2009; Yoon, Yang & Choi
2010). These studies have focused on the fluid forces, reattachment and wake modes,
furthering the early work of Vickery (1966), Okajima (1982) and Norberg (1993).
The consideration of wind direction over buildings, bridges and other rectangular
structures is particularly important in civil engineering, as it leads to variation in the
structure’s angle of attack. This may result in shear layer reattachment and uneven
pressure distributions that can lead to unpredictable loading patterns. This has led to a
recognized need to better understand the FIV of such structures at varying angles of
incidence.

The second mode of FIV, galloping, is an aerodynamic instability experienced by
bodies with non-axisymmetric cross-sections that has been extensively studied since
Den Hartog (1932) first proposed his criterion for galloping of ice-covered cables. It
is characterized by low-frequency oscillations that increase in amplitude unbounded
with fluid velocity. The galloping is driven by the instantaneous angle of attack
between the body and the flow, β = tan−1(ẏ/U∞), producing an asymmetric pressure
distribution. Any asymmetric slender body in a cross-flow is susceptible to galloping
at certain angles, however flow over square section cylinders has been studied most
frequently due in part to the loss of only one degree of symmetry compared with
the circular cylinder and the simplest geometry that can gallop. Parkinson & Smith



(1964) provided the foundations for the current state of the art with a model for

the galloping response of a square section at zero angle of incidence using a quasi-

steady formulation of stationary cylinder lift force measurements. Quasi-steady theory

accurately predicts the amplitude response of a square section, including the critical

velocity required for the onset of galloping and a velocity dependent hysteresis in the

amplitude response.

Irrespective of their orientation, square cross-section cylinders have fixed separation

points and a region of the body immersed in the separated wake, the afterbody,

making the geometry susceptible to both VIV and galloping. Parkinson & Wawzonek

(1981) showed that the onset of galloping of rectangular cross-sections can lie in the

range of velocities at which a body can also experience VIV, with the possibility

that the two phenomena could occur simultaneously. This raises the question whether

the combination of the two phenomena produces larger vibrations than produced

by either model independently. Bokaian & Geoola (1984) observed experimentally

a combination of galloping and VIV, leading to a modified quasi-steady theory to

account for the combined effects. Further experiments by Bearman et al. (1987) on

the mixed mode of galloping and VIV of a square cross-section revealed surface

pressure frequencies at both the stationary shedding frequency and the oscillation

frequency. For low damping values they concluded that the complex interaction could

not be explained by the individual models. Corless & Parkinson (1988, 1993) used

the Hartlin–Currie VIV wake-oscillator model and the quasi-steady theory to model

the combined effects with multiple time scales, the results agreed reasonably well with

the experiments of Bearman et al. (1987). All of these studies were on oscillating

square cylinders with α = 0◦, the square orientation. Naudascher & Wang (1993) have

reviewed the effect of angle of incidence on flow over prismatic structures but this

was not extended to the study of the transition between VIV and galloping or their

combined effect. Deniz & Staubli (1997) performed forced experiments on octagonal

(length/width = 3.33) and rectangular cross-sections (length/width = 2) at two angles

of attack (α = 0 and 10◦) and studied the interaction effects of VIV and galloping at

high Reynolds numbers (Re > 64 000).

The present study investigates the influence of the angle of attack of a freely

vibrating square cylinder and the response modes that result. The cylinder used has

a low-mass-damping ratio, this being chosen because it produces a high-amplitude

response. The angle of attack was varied in small increments from 0 to 45◦, i.e. the

square to diamond configurations. In this range we would expect to see both galloping

and VIV; our focus here is on the regions in which each dominates, the transition

between them and modes arising from their combination.

The experimental method, apparatus and acquisition procedures are detailed in the

following section. Section 3 provides a brief validation of the experimental apparatus

and method, followed by a discussion of the results of the free oscillations in §§ 4 and

5 in the limiting case of the diamond and square configuration respectively. Section 6

presents the body’s response over a parameter map of reduced velocity and angle of

attack. Here there is a focus on a new higher-amplitude branch of oscillation found

within a mixed mode region of parameter space that is highly dependent on both

velocity and angle of attack. This parameter map is proposed as a good basis for

validation of numerical studies, and complemented by discussion on the amplitude and

frequency response with varying angle of incidence.



2. Experimental method

2.1. Experimental apparatus

The experiments were conducted in the free-surface recirculating water channel of
FLAIR in the Department of Mechanical and Aerospace Engineering at Monash
University. The water channel facility has a test section of 4000 mm in length,
600 mm in width and 800 mm in depth.

Two bluff body models were used in the present study: a square cross-section rigid
cylinder model made from aluminium tubing with a side width of W = 25 mm and
wall thickness of 1.6 mm; and a carbon fibre circular cylinder of diameter D = 25 mm
and wall thickness of 1.5 mm. Both cylinders contained a 10 mm long Perspex cross-
section 200 mm from the end to allow optical access. The models had an immersed
length of 778 mm, both with an aspect ratio of AR = 31 (for the square cylinder
this was calculated based on side length) leaving a 2 mm gap between the floor of
the channel and the cylinders to minimize end effects. Choice and influence of this
end condition are discussed in § 3. The cylinders were vertically supported via a
sting by a pair of carbon fibre shafts mounted on air bearing bushings (Porous Air
Bushings S302502, New Way Air Bearings, USA), and elastically constrained by a
pair of extension springs (LE014B13S, Lee Spring), allowing the cylinder one degree
of freedom in the transverse direction to the oncoming flow. The system had a total
stroke length of 160 mm. The total mass of the system undergoing motion for the
square cross-section cylinder was m = 1065 g and the mass of the displaced water was
md = 483 g, resulting in a mass ratio close to m∗ = 2.2. The circular cylinder total
mass was m = 836 g, which resulted in the same mass ratio. The natural frequency in
water, fN , was measured with free decay tests taken in quiescent water. The natural
frequency in air, fNa, was measured from air free decay tests, along with the structural
damping, c. The damping in water, ζ , was then calculated from (1.2). This was done
with the cylinders removed and their equivalent weights added to the air bearing rig,
which removed the effect of the fluid–structure interaction of the air and cylinder. The
damping ratio of the system was ζ = 2.95 × 10−3, giving a mass-damping ratio of
m∗ζ = 6.49 × 10−3.

2.2. Measurements

Particle image velocimetry (PIV) was used to determine the vortex structures that
arise from FIV in the near wake of the cylinders. The flow was seeded with hollow
microspheres (Sphericel 110P8, Potters Industries Inc.) with a nominal diameter of
13 µm and a specific weight of 1.1 g cm−3. Two miniature Nd:YAG pulsed lasers
(Minilite II Q-Switched lasers, Continuum) produced a 2 mm thick horizontal planar
sheet, illuminating the particles in the plane of the body cross-section. A CCD camera
of 2048 × 2048 pixels (PCO 2000, PCO AG), equipped with a 50 mm lens (Nikkor,
Nikon Corporation), captured the PIV image pairs. The data were analysed with
in-house PIV software (Fouras, Lo Jacono & Hourigan 2008), using 32 × 32 pixels
interrogation windows in a grid with 50 % window overlap. The laser’s TTL trigger
signal and the position and force measurements were sampled at 100 Hz by a data
acquisition system (BNC-2110 Connector Block attached to NI PCI-6221 DAQ Board)
allowing the captured velocity and vorticity fields to be phase-averaged based on the
cylinder position. At least 1000 image pairs were taken at each velocity represented,
resulting in over 100 image pairs averaged at each of the eight phases of the
oscillation cycle.

A non-contact magnetostrictive linear variable differential transformer (SE
750–10 000, Macro Sensors) accurately measured the displacement of the cylinder to
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FIGURE 1. Schematic of the experimental rig showing the square cylinder with variable
angle of attack, α, and projected length, H, freely oscillating in the transverse direction, y, to
the oncoming flow, U∞ in the stream-wise direction x. The body is mounted and elastically
constrained to provide k, the system spring constant, and c, the structural damping.

within ±0.01 % of the 250 mm linear range available, for a displacement precision
of 0.001H. The lift and drag forces acting on the cylinder were recorded with
two-component force and moment strain gauges in Wheatstone bridge configurations
mounted on a sting above the cylinder. Forces were calculated from the moment strain
gauges, having larger signal-to-noise ratio (SNR) in the voltage measurements. For the
lift force calculation, the inertial force of the bodies’ motions were taken into account
to recover the instantaneous fluid force, F(t), acting on a body. To obtain a reference
the zero position of the cylinder was measured for each angle in a quiescent fluid. The
force balance gauges were calibrated in the same way.

Experimental results were recorded over a 20 min period for each parameter
combination of velocity and angle of attack. This provided accurate representation
of the phenomena for a minimum of 800 oscillations and was found to be long enough
to successfully capture the intermittent behaviour in the transitional regimes discussed
in § 6.4.

Frequencies for the periodic position and lift time histories were extracted using
fast-Fourier transforms (FFTs) and continuous wavelet transforms (CWTs). Morlet
wavelets were used as the mother wavelet in the CWTs over a time-bandwidth
spanning the entire run duration and a frequency range of 0.0128–4 Hz. This range
encompassed the relevant frequencies of interest encountered in both the stationary and
freely vibrating cylinder experiments. Frequency peaks for acquisition periods were
determined using temporally averaged power spectra from the CWTs and confirmed
by the FFTs. Peak detection with thresholding was used to extract the frequencies of
the maxima of the averaged power spectra from the wavelet analysis. The phase, φt,
between body position and lift force was determined using cross-wavelet transforms
(XWTs). This provided the temporal instantaneous phase between the signals and the
shared spectral power over the entire frequency-time bandwidth. The instantaneous
phase relationship at the frequency of the dominant oscillation was sorted by phase
angle and the mode of the distribution, the angle with the most samples, was used as
the total phase, φt, at each flow velocity and angle combination.



3. Vortex-induced vibration of a circular cylinder

Prior to discussing the response of the diamond cylinder, it is useful to first validate

our apparatus and experimental approach using the well-studied geometry of a circular

cylinder.

We conducted a series of validation experiments using circular cylinders with

three different end-conditions to ascertain their influence on the amplitude response.

Morse, Govardhan & Williamson (2008) investigated the effect of end-condition in

depth, showing that the use of the channel floor as an end-condition removes the

intermittency in the upper and lower branch transition of VIV. They concluded that

this is likely due to boundary layer effects of the water channel.

The three conditions tested were: the circular cylinder placed within 0.1D of the

channel floor, the cylinder raised off of the channel floor and outside of the influence

of the boundary layer with no end-plate attached, and the same configuration but with

an attached end-plate. All of these end-conditions promote parallel vortex shedding

from the cylinder. All other experimental apparatus remained the same for the runs,

with the air-bearing rig raised to lift the cylinder up off of the channel floor.

The results of these tests are shown in figure 2 and allow comparison of the

amplitude response between the three end-conditions and the results of Khalak &

Williamson (1997a) and Assi et al. (2006). Khalak & Williamson (1997a) used a static

end-plate raised off the channel floor to within 0.04D of the oscillating cylinder’s end

(as discussed in Khalak & Williamson (1996)), while Assi et al. (2006) placed their

cylinder at 0.06D of the channel floor.

The mass ratio of our cylinder placed close to the channel floor is m∗ = 2.2,

comparable with both Khalak & Williamson (1997a) (m∗ = 2.4) and Assi et al.

(2006) (m∗ = 1.9), while the mass-damping parameters were m∗ζ = 6.49 × 10−3,

0.0108 and 0.013, respectively. The damping was determined using (1.2) for both

Khalak & Williamson (1997a) and the present study, however Assi et al. (2006)

employed the ‘structural’ damping without consideration of added mass. The Reynolds

number range was similar for all tests, with the current work undertaken over the

range Re = 2500–12 500. The effect of Re on VIV has been discussed previously by

Govardhan & Williamson (2006) and Klamo et al. (2006). For our tests with the

cylinder raised, the mass ratio increased to m∗ = 3 causing lower maximum amplitudes

and shorter synchronization regions (Sarpkaya 2004).

All present measurements were taken with the velocity increasing between tests, and

the hysteresis phenomena between the initial and upper branch (revealed in Khalak &

Williamson 1997a) was not investigated in this study.

For both of the raised cases tested, the time histories show the recovery of the

intermittency of the upper and lower branches as seen in the discontinuous amplitude

branch transition found by Khalak & Williamson (1997a), although with varying time

scales of intermittency. A second result of our tests and that of Khalak & Williamson

(1997a) is that the amplitude of the lower branch correlates not with mass ratio but

with whether or not an end-plate is used. The A∗
max envelope of the attached end-plate

has the same amplitude lower branch, A∗
max = 0.6, as that of Khalak & Williamson

(1997a). Without end-plates there is a higher amplitude of A∗
max = 0.7. These results

agree with those of Morse et al. (2008), and highlight how strongly the end-conditions

affect VIV. Assi et al. (2006) found no distinctive lower branch in their results, which

retained the monotonic decrease from the upper branch through to desynchronization.

This is likely to be due to the difference in their definition of damping ratio.
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FIGURE 2. (Colour online) (a) Comparison of A∗
max against reduced velocity, U∗, for various

end-conditions. Filled circles denote circular cylinder placed near channel floor (m∗ = 2.2),
filled triangles denote circular cylinder (m∗ = 3) raised off of the channel floor, open triangles
denote raised circular cylinder with end-plate attached (m∗ = 3), open circles denote Khalak
& Williamson (1997a) (m∗ = 2.4) and crosses denote Assi et al. (2006) (m∗ = 1.9). Time
histories of cylinders at the end of the upper branch (highlighted symbols in the amplitude
response, shown in red in the online version) for (b) channel floor, (c) raised and (d) raised
with attached end-plate configurations.

These results provide one explanation for the large variations in reported amplitude
responses across different experimental studies. For the remainder of the present study
the water channel floor was taken as the end-condition to permit parallel shedding.

4. Vortex-induced vibration of a square cylinder at α = 45◦

The FIVs of the square cylinder are first investigated for the limiting cases of
α = 45◦ (referred to as the diamond) and α = 0◦ (referred to as the square). The
diamond response behaviour and wake vortex shedding modes are compared against
the well-known response of the VIV of a circular cylinder. The corners of the diamond
shape enforce symmetric separation points located at the vertical centreline of the body
resulting in a considerable afterbody. These features are comparable with those of the
circular cylinder and produce a similar wake morphology.

4.1. Amplitude response

In the previous section the A∗
max scalar was used primarily because it provided a basis

to validate the results against those of other studies. To improve our comparison of the
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FIGURE 3. (Colour online) (a) Comparison of reduced amplitude response against reduced
velocity, U∗. Circles represent a circular cylinder (m∗ = 2.2), diamonds represent a square
cylinder at α = 45◦ (m∗ = 2.2), with filled (hollow) symbols denoting A∗

max (A∗
10) value. Time

histories of (b) circular cylinder and (c) diamond cylinder displacement illustrate the loss of
periodicity in the oscillations with increasing U∗.

amplitude response between geometries, a new scalar for the amplitude response, A∗
10,

is introduced. It is defined as the mean of the top 10 % of the peaks, as used by Hover,
Techet & Triantafyllou (1998) and Morse et al. (2008). This scalar provides a more
appropriate and statistically robust measure for comparison of different, independent
studies and across different geometries. The A∗

max gives an extremum measure that
is the value of a single sample. It can denote an outlier that is not necessarily
representative of the average of a larger sample and hence the behaviour of the
amplitude response. The two scalars are both valuable for engineering applications,
where the A∗

max is primarily of importance to determine design conditions for the
deflection of structures and supports, while A∗

10 can provide a more meaningful value
for assessing the typical amplitudes to consider in determining cyclic loading fatigue.

The A∗
10 amplitude response is shown in figure 3(a) along with the A∗

max for
reference. The freely oscillating diamond exhibits an amplitude response pattern that
initially compares well with the circular cylinder undergoing VIV. Starting from a



very low amplitude of oscillations, A∗
10 = 0.1 at low velocities, the diamond response

increases to a resonant upper branch similar to that of the circular cylinder, without
a clear distinction between initial and upper branches. The upper branch begins at
U∗ = 1/St for both geometries. The value of the A∗

10 peak of the diamond is A∗ = 0.75,
lower than for the circular cylinder used in the current study. However, it must
be remembered that the amplitudes are normalized by the characteristic length, H,
complicating direct comparisons between the amplitudes of the two geometries. Both
bodies follow the same gradual decrease from the upper branch with no intermittent
behaviour, due to the influence of the end conditions. At velocities above U∗ = 8 the
maximum amplitude remains in the range A∗

max = 0.5–0.6 until the end of the velocity
range, diverging from the circular cylinder behaviour, which experiences a drop in
amplitude to small oscillations when the vibrations and vortex shedding desynchronize.

The lower branch A∗
10 levels out and maintains a constant value of A∗

10 = 0.4 over
the remaining velocity range. There is a slight amplitude drop noticeable at U∗ = 12,
close to the U∗ of the desynchronization of the circular cylinder but this appears to be
coincidental. The time histories in figure 3(b–c) indicate that the diamond cylinder’s
motion gradually loses its periodicity as the reduced velocity moves away from the
resonance region. There is no clear boundary of synchronization, as seen for a circular
cylinder.

The diamond orientation clearly undergoes a VIV response. The current results
suggest that, compared with the classical three-branch response of the circular cylinder,
the diamond’s amplitude increases to the upper branch more gradually with no
independent initial branch for the same m∗. Furthermore, the lower branch does not
exhibit the highly periodic oscillations of the circular cylinder up to a velocity at
which it desynchronizes, with a consequent amplitude drop. Instead, the oscillations
show a gradual loss of periodicity while the body maintains the lower branch
amplitude and extends it to the highest velocities tested in the current study.

4.2. Frequency and phase response

The diamond and circular cylinder’s reduced frequency and phase response to
increasing reduced velocity are shown in figure 4.

Comparing the response of the circular cylinder from the present study (filled
circles) with that of Khalak & Williamson (1997a) (open circles), we see both exhibit
identical classical VIV frequency behaviour for low mass-damping. At low U∗, the
circular cylinder’s motion initially locks to a constant velocity–frequency gradient,
which by definition is the non-dimensional oscillation frequency of the cylinder, f ∗/U∗.
For VIV this is equal to the shedding frequency of the cylinder, St ≈ 0.207 for
circular cylinders over the Reynolds number range of these experiments. A secondary
component in the oscillation frequency also exists close to that of the body’s natural
frequency (seen in the inset of figure 4). At the start of the VIV upper branch the
two oscillation modes merge into a single mode with a frequency peak just under
f ∗ = 1 at U∗ = 4.25. This is the U∗ at which the vortex phase also jumps (Govardhan
& Williamson 2000). The reduced frequency remains close to unity as the amplitude
response reaches its maximum value in the upper branch, just after U∗ = 5. When
the oscillation amplitude starts to decrease from the upper branch peak, it is matched
by a linear increase in the reduced frequency of constant gradient, St, that is slightly
below that of the stationary cylinder’s shedding frequency. For the circular cylinder
in the current study, the frequency diverges from the constant St line and locks
instead to a constant frequency of oscillations at U∗ = 8, coinciding with the start of
the constant amplitude response of the lower branch. The reduced frequency remains
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FIGURE 4. (Colour online) (a) Comparison of reduced frequency response, f ∗, against
reduced velocity, U∗. Open circles represent the circular cylinder of Khalak & Williamson
(1997a) (m∗ = 2.4), filled circles represent the circular cylinder of the present study
(m∗ = 2.2) and filled diamonds represent the square cylinder of the present study at α = 45◦

(m∗ = 2.2). The guideline, St = 0.167, is the shedding frequency of the stationary diamond
shape. (b) Response of the total phase angle, φt, between the dominant frequencies of the
transverse force and the body displacement.

locked to f ∗ = 1.3 throughout the lower branch of oscillations. This compares well
with the work of Khalak & Williamson (1997a), who found that the frequency locked
to a value of f ∗ = 1.4. The difference in lock-in frequency is likely to be a result of
the different end-conditions.

The vibrating circular cylinder of the present study loses both synchronization and
its natural frequency lock-in at a reduced velocity of U∗ = 10, coinciding with the end
of the lower branch and a consequential drop to smaller oscillations (A∗

max < 0.2D).
For velocities above this value the frequency increases nonlinearly with velocity, and
the response has no clear relationship to either the shedding or natural frequency of
the body. For the two circular sections the timing and length of the frequency lock-in
compare well, as expected for similar mass ratios (Govardhan & Williamson 2004).

The corresponding total phase, φt, between the dominant transverse force and the
displacement remains in-phase, just above φt = 0◦, throughout the initial and upper
branch before jumping sharply out of phase to φt = 180◦ after U∗ = 7. This is linked
to the upper-to-lower-branch transition and occurs at the point where the frequency



passes through the natural frequency of the body in air, f = fNa (Govardhan &
Williamson 2000). In the present study the circular cylinder’s oscillation frequency
is equal to the measured natural frequency in air, fNa/fN = f /fN = 1.17, over the same
reduced velocity range as this phase jump (see figure 3).

The frequency response of the diamond cylinder does not lock on to a constant
f ∗ in the lower branch as evidenced by the time histories in figure 3(c) and in
the frequency response. Between U∗ = 2.5–8 the frequency of the diamond section
responds in a similar way to that of the circular cylinder. At the lowest velocity,
U∗ = 2.5, the diamond experiences two frequencies in the oscillations: one at the
natural frequency and a second lying on the shedding frequency slope of the diamond
at this Reynolds number range, f ∗/U∗ = St = 0.167. For all other velocities the
oscillations are dominated by a single frequency. The response up to U∗ = 5 is clearly
influenced by the natural frequency, fN , with values fluctuating about f ∗ = 0.8–1.2 and
coinciding with the transition to the upper branch on the amplitude plot. The next
region is an St line of slightly decreasing gradient, shared with the circular cylinder
response, and matched by the amplitude decrease from the peak to the lower branch.
The similarity in frequency response between the two geometries end here. While
the circular cylinder locks to a constant frequency in the lower branch, the diamond
oscillations are dominated by the vortex shedding Kármán frequency enforced by the
fixed separation points and locked to the slope, St = 0.167.

The phase relationship for the diamond shows the same φt = 180◦ jump as the
circular cylinder. This occurs at the velocity where the oscillation frequency locks
to the Strouhal curve and assumes the characteristics of the lower-amplitude branch
over a very narrow reduced velocity range of U∗ = 7.5–7.75, after which it dips to
φt = 150◦ before fluctuating around φt = 170◦. The frequency and phase responses of
the diamond are clearly driven by VIV. However, the geometry weakens the coupling
of the body’s oscillation to its natural frequency and the oscillations remain fixed to
the timing of the vortex shedding throughout the lower branch. The most striking
result is that, compared with the circular cylinder, the diamond geometry promotes a
near-constant amplitude of oscillations driven at the shedding frequency. This occurs
for all velocities above the resonant upper branch region.

4.3. Wake modes

Recent investigations into oscillating circular cylinders have studied the vortex
structure in the wake, resulting in maps and classifications of vortex modes for forced
(Carberry et al. 2004; Leontini et al. 2006) and freely vibrating cases (Govardhan
& Williamson 2000). In the low-damping freely vibrating cases, as investigated here,
the vortex formation for a circular cylinder changes from two single vortices shed
over a cycle to two vortex pairs, a switch from a 2S to a 2P wake mode using the
classification of Williamson & Roshko (1988). This switch is located at the point of
transition from the initial to the upper branch in the amplitude response. The exact
nature of the switching between the vortex modes and its relationship to dynamics of
the system is currently unresolved.

Vorticity contours of the wake mode of the diamond cylinder are shown alongside
those of the circular cylinder in figure 5 for a reduced velocity of U∗ = 8. The
sequence of phase-averaged sets of vorticity contours (see (i)–(iv) in figure 5a)
recovers the known 2P vortex shedding mode for the circular cylinder, as captured
originally by Govardhan & Williamson (2000), for the low-mass-damping lower
branch response. The figure shows one oscillation cycle at four phases, with dashed
isolines representing negative, clockwise (CW) vorticity and solid isolines representing
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FIGURE 5. Vorticity plots of the lower branch 2P shedding modes of (a) the circular cylinder
and (b) the diamond cylinder at U∗ = 8, denoted by the highlighted symbols in the amplitude
and frequency responses in figures 3 and 4, respectively (shown in red in the online version).
Four phases are shown over one oscillation cycle, from top to bottom, locations shown
on the left. The dashed isolines represent clockwise (negative) vorticity, solid isolines are
counterclockwise (positive) vorticity.

positive, counterclockwise (CCW) vorticity. At the beginning of the oscillation cycle,
(see (i) in figure 5a), the cylinder is moving up and crosses the centreline in the
positive direction, shedding a CCW vortex of from the bottom shear layer. CW
vorticity attached to the top shear layer is drawn across the centreline of the wake.
As the body reaches the top of the oscillation cycle in (ii) the top shear layer sheds
a weak vortex that is advected downstream in the wake and pairs with the stronger
vortex of opposite sign (shed in (i)) forming a counter-rotating vortex pair. The process



is mirrored about the centreline in (iii)–(iv) as the negative sign shear layer moves

back across the centreline and sheds a strong CW vortex (iii), separating as the

positive vorticity moves upwards into the shear layer. This is paired by a weaker CCW

vortex (iv) as the body finishes one oscillation cycle. This final pair is observable

in the far wake of the first phase of the next cycle (shown in (i)). The secondary

weak vortex in these pairs is shed due to the stretching of the shear layer across the

centreline as the body changes direction. The stronger vortices are separated from the

shear layers in the high strain field where large vorticity of opposite signs interact

behind the body.

The diamond cylinder reveals the same 2P shedding mode (see (i)–(iv) in figure 5b)

as the circular cylinder, albeit with different features. The corners of the diamond fix

the location of the shear layer separation and so determine where the vortex roll up

begins, while the sharp afterbody creates a high strain field behind the trailing edge.

This results in more concentrated vortex cores that separate from the shear layers

closer to the body than for the circular cylinder. This earlier spatial evolution of the

vortex splitting also leads to a different organization of vortices in the far wake. The

same vortex shedding phases are used as above with respect to the circular cylinder.

In the first phase (i) the negative vorticity around the body crosses the centreline and

splits in the high strain field at the trailing edge. It then advects downstream (ii) near

the centreline with only a streamwise component of motion. The CCW vortex closest

to the body is advected with a transverse velocity component and moves outward from

the centreline, expanding with the wake. As for the circular cylinder, this is mirrored

along the centreline in (iii)–(iv) with vortices of the opposite sign. The first vortex

shed from the shear layers in each phase cycle is weaker than the second vortex.

However, in the diamond’s wake they do not pair with vortices of the opposite sign,

forming instead a four row vortex arrangement over the first 5H of the wake length. In

this region the wake is characterized by strong vortices that expand out into the wake

and have vorticity of the same sign as the shear layer on that side of the wake. Weaker

vortices advect downstream in a path that remains close to the centreline, in a line of

alternating sign.

The phase-averaged plots show that the vortices from the diamond cylinder are more

compact than those seen in the wake of a circular cylinder. This, at least in part, can

be attributed to two factors: the vortices have smaller cores because of how they are

generated, and because there is less variation in the position of the vortices across the

individual PIV snapshots. Both factors arise from the body’s geometry and its fixed

separation points. The difference in vortex spacing between the two bodies can also

be attributed to differences in the characteristic length, H, which appears in both the

length scale and the reduced velocity, U∗. Additional wake visualizations (not shown)

revealed that the wake transition from a 2S mode to 2P occurred over the range

U∗ = 3.75–4.25 for both body geometries.

5. Square cylinder at α = 0◦

The FIVs discussed above are for one limiting case, the diamond orientation, and

revealed a VIV response that compared well with the VIV of a circular cylinder. The

second limiting case for the square cross-section is at α = 0◦, the square orientation.

This configuration shares the same symmetries as the diamond case, but has been

shown to be susceptible to galloping at a similar reduced velocity range for low-

mass-damping configurations (Bearman et al. 1987). Galloping of square cylinders is



0

0.6

1.2

1.8

0.1 0.2 0.3 0.4 0.5 0.6

 

 

  

(a)

(b)

(c)

2 4 6 8  10  12  14  16  18

  

2 4 6 8  10  12  14  16  18

0.4

0.6

0.8

1.0

1.2

0

0.1

0.2

0.3

FIGURE 6. (Colour online) (a) Reduced maximum amplitude response, A∗
max , and (b) reduced

frequency response, f ∗, for the square cylinder at α = 0◦ against reduced velocity, U∗. The
highlighted symbols (shown in red in the online version) are locations where the wake
structures were captured. (c) Validation of the current response (filled squares) renormalized
and compared with galloping data from Parkinson (1989). Circles represent m∗ = 15.1,
triangles represent m∗ = 9.6, inverted triangles represent m∗ = 5.3 by Bouclin (1977), crosses
represent m∗ = 5.1 by Santosham (unpublished work used in Parkinson 1989) and open
squares represent m∗ = 8.2 by Bokaian & Geoola (1983).

briefly reviewed here using the present experimental facility, primarily to validate and
to contrast it with the VIV seen in the diamond case.

5.1. Amplitude and frequency response

The classical galloping response of FIVs of the square is shown in figure 6, with the
amplitude response recovering the expected linear response predicted by quasi-steady
theory of Parkinson & Smith (1964).

Figure 6(c) is a plot of the amplitude response from reported experimental
galloping studies. To account for varying mass ratios the amplitude is renormalized
as A′ = A/2m∗, and the renormalized velocity becomes U′ = U/2m∗, similar to
the method used by Parkinson (1989). The results from the present results (filled
squares) agree well with the prior work, which covers a higher range of mass
ratios, m∗ = 5–15. The variation of amplitudes across the studies is attributable to
the different experimental conditions (Parkinson 1989) and turbulence intensities of the
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FIGURE 7. Vorticity plots of shedding modes of (a) the circular cylinder in the lower branch
2P shedding modes and (b) the square cylinder with 2S mode at the same reduced velocity
U∗ = 8.

experiments. A noticeable deviation from the trend occurs around U′ = 0.55, where the
amplitude deviates from the linear growth: this will be addressed later in this section.

The amplitude response of the square cylinder has a monotonic increase with
velocity and, unlike VIV, there is no self-limiting amplitude. Hence, for a reduced
velocity above U∗ = 9 the A∗

10 amplitudes for galloping are in excess of those achieved
in the VIV upper branch, with an amplitude in excess of A∗

10 = 1.5D at the maximum
investigated velocity of U∗ = 18. At U∗ > 14 there is a slight deviation in the
amplitude trend, a ‘kink’ also observed by Bearman et al. (1987) in low-damping
wind tunnel experiments, not predicted by quasisteady theory. Bearman et al. (1987)
correlated it with a transverse force component occurring at three times the body
oscillation frequency, a result also found in the present study’s force measurements.
They attributed it to complex vortex formation caused by the high strain imposed by
the sharp afterbody corners on the shear layers.

The oscillatory response shows that the initial movement of the square cylinder
occurs at frequencies above the natural frequency of the body, f ∗ > 1. At U∗ = 4 the
oscillation frequency drops to f ∗ ≈ 0.4, lower than the vortex shedding frequency and
constant with a galloping oscillation. When started from rest, the square cylinder
begins to oscillate due to imposed lift on the body from the vortex shedding,
prescribing the oscillation frequency for U∗ < 4. The classical galloping response
of the unstable cross-section becomes the driving flow-induced motion at higher
velocities. At low U∗ the frequency increases until it reaches a value of f ∗ = 0.6
at U∗ = 8, it then remains constant over U∗ = 9–11 and then increases again to almost
f ∗ = 0.8 at U∗ = 15. This is the peak in the frequency response, after which there is a
switch in reduced frequency to f ∗ = 0.6. This change in response occurs just after the
‘kink’ in amplitude response.

5.2. Wake modes

The vortex wake mode of the square cylinder is compared with the circular cylinder
in figure 7 at the same reduced velocity, U∗ = 8. The wake structure of a galloping
body has vortices shed at both the body’s shedding frequency and the body’s vibration
frequency, with the two vortex system coexisting (Blevins 1990). As a result, the
oscillations are not synchronized with the shedding. Separation from the square body
occurs at the leading corners, with a shear layer visibly extending to the rear of the
body. The square body can be seen to shed large vortices of similar initial size to



the circular cylinder, which remain attached to the shear layer up to 1.5D downstream
from the afterbody. These vortices diffuse rapidly downstream.

The nature of the wake modes for galloping has received little interest in the
literature, unsurprising given that it is not the driving cause of the vibrations. It would
be interesting, however, to obtain better insight into the vortex formation in the region
of the amplitude ‘kink’ where the lift force shows a third harmonic. However, the
current visualization of position-based phase-averaged vorticity could not capture the
cause of the third harmonic in the lift force shedding.

6. Vibrational response with angle of attack variation

The previous sections have shown that square cylinders are susceptible to two types
of FIVs at symmetric orientations of the body: VIV dominates the oscillations of the
diamond and galloping is the vibration mode of the square orientation. This section
reports on the effect of angle of incidence on the response of the freely vibrating
cylinder, with a particular focus on the transition from VIV to galloping.

Figure 8 provides a map of how square cylinders respond as a function their
angle of attack, α, and reduced velocity, U∗. The parameter map highlights three
types of FIV modes and regions where they occur. VIV (light region) exhibits
frequency responses similar to that of the diamond; galloping (dark region) with
frequency and amplitude behaviour associated with that of the square, and a region
of VIV response that is referred to as the higher branch (bound by thick line).
Angle–velocity combinations where force and position measurements were recorded
are denoted by symbols associated with the dominant FIV behaviours (circle, VIV;
square, galloping/low frequency; triangle, higher branch). The relative size of the
symbols represent the relative normalized CWT power of the oscillation frequency
peak associated with the FIV response. Where two symbols are overlaid there exist
two modes in the frequency response, with their symbol size representing their relative
power contribution to the oscillation response.

6.1. Amplitude response

Consistent with the approach used in §§ 4 and 5, the free vibration’s dynamics will
be characterized using the response of the amplitude to the angle of attack and
reduced velocity. The use of amplitude and frequency as the response variables also
makes the results particularly relevant for assessing the likely impact on cyclic fatigue.
The A∗

10 response to reduced velocity is shown in figure 9 with varying angle of
attack. The reduced amplitude–velocity plots are stacked at increments of α = 2.5◦,
and the A∗

10 amplitude shown is of the dominant frequency of the oscillations at each
recorded value. This scalar reveals the influence of the dominant vibrations of the
body, not its absolute position. In fact, the angle of attack generates a net mean lift
in asymmetric configurations with a resulting non-zero mean in the body oscillation,
shown in figure 10.

The A∗
10 response to velocity and angle of attack in figure 9(a) reveals the three

distinct responses of the square section: (i) from α = 45◦ down to α = 25◦ the
amplitude response follows that of the diamond orientation, with both upper and
lower branches present with the peak A∗

10 ridge of the VIV upper branch highlighted
with a grey line (red in the online version); (ii) between α = 0 and 7.5◦, the body’s
oscillations follow a trend of increasing amplitude with velocity, as seen in galloping
of the square section. This response has a distinct boundary at α = 7.5◦; (iii) a third
region lies between the VIV and galloping dominated regimes. It has a high-amplitude
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FIGURE 8. (Colour online) Map of FIV response of a square cylinder with variation in the
angle of attack, α, and reduced velocity, U∗. Regions are labelled according to response
type. The shaded light grey region contains (UB) upper amplitude branch of VIV bounded
by solid line and (V) VIV-dominated frequency response; region bound by thick solid
line: higher branch (HB) frequency response; dark grey region: galloping response (G)
with low-frequency galloping and low-frequency-dominated response with other frequency
contributions. (S) signifies part of the parameter space where the HB frequency splits into
diverging frequencies. The striped region bounded by dashed borders represents a body
oscillation response undergoing intermittency. Parameter space locations where force and
position measurements were taken are represented by symbols signifying the dominant
frequency of the cylinder motion: shedding frequency (circles); higher branch frequency
(triangles); and lower frequencies (squares). The relative size of the symbols denote the
relative energy of the dominant frequencies in the system. Filled symbols mark the parameter
space where PIV measurements of the near wake were taken.

resonant branch not seen in galloping, and separate to the upper and lower branch

documented in VIV studies. This higher branch (HB) reaches a maximum amplitude

close to α = 20◦, U∗ = 8. The peak ridge of this branch is highlighted with a black

line in figure 9(a). To highlight the three distinct amplitude responses, discussion will

relate the amplitude as a function of reduced velocity for varying angles of attack.

The amplitude response is VIV dominated for angles of attack α = 25–45◦ and

resembles that of the diamond. The peak value of the resonant upper branch decreases

from A∗
10 = 0.76 to 0.56 as the angle of attack moves away from the diamond

configuration. The change in angle also reduces the geometry’s shedding frequency

that drives the resonant oscillations, and therefore shifts the peak of the resonant upper

branch from U∗ = 5.5 at α = 45◦ to U∗ = 6.5 at α = 25◦. A consequence of this
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FIGURE 9. (Colour online) (a) Plots of amplitude response, A∗
10, of the dominant oscillation

frequency against reduced velocity, U∗, and angle of attack, α. (b) Amplitude response as a
function of reduced velocity with all angles superimposed, with the diamond, α = 45◦, at the
front. The response curves are in decreasing increments of 2.5◦. The sharp transition from a
galloping to a combined response is seen in the plots between 7.5–10◦. The peak of the VIV
upper branch (UB) occurs at α = 45◦, U∗ = 5.75, and the new amplitude branch (HB) peak
occurs at α = 20◦, U∗ = 8.
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FIGURE 10. (a) Mean amplitude response, y/H, against reduced velocity, U∗, for angles
of attack, α = 0–45◦ at 2.5◦ increments, and (b) superimposed plots of the same response.
Angles of attack of 2.5 and 5◦ show a negative mean amplitude response centred around
U∗ = 13, while the maximum deviation of the mean from the zero position is seen at α = 10◦.
The influence of the upper and higher branch on the mean amplitude is visible in the positive
peaks centred around U∗ = 5 and U∗ = 8.

is the onset of the upper branch occurring at increasingly higher velocities, thereby
revealing an initial branch in the amplitude response. This branch is similar to that
seen in circular cylinder results. The upper-to-lower-branch transition approaches a
linear gradient until there is no clear distinction between the two amplitude branches.



A new amplitude branch is observed in figure 9 over the range of angles
α = 10–22.5◦. Its amplitude is considerably higher than that seen in the upper branch
associated with VIV. The peak amplitude of A∗

10 = 0.9 is at U∗ = 8 and at an angle
of α = 20◦ and, unlike the upper branch of VIV, the extent of the velocity range of
the HB is strongly dependent on the angle of attack. The upper branch and higher
branch are seen to co-exist at α = 20–22.5◦, and the amplitude increases sharply over
a narrow velocity range at the onset of the higher branch, signalling a rapid switch
in oscillation mode. This is confirmed in § 6.2 by wavelet analysis. For velocities
above those where the HB and UB occur, the A∗

10 oscillation amplitudes decrease with
velocity and are consistent in magnitude for the two branches.

Reducing the angle of attack below α = 10◦ causes the oscillation amplitude
response to change dramatically, as the square orientation is approached and the
galloping mode dominates the response. At α = 7.5◦ the oscillations no longer follows
the lower branch trend of VIV but increase in amplitude with increased velocity:
neither the UB nor the HB resonant characteristics are present in the amplitude
response. As the angle of attack approaches the symmetric square orientation, the
amplitude response smooths out to the response seen in classical galloping response.

The distinct boundary seen in the A∗
10 response separating galloping and the new

higher branch regimes only reveals part of the transition. The change in oscillation
amplitudes occurs simultaneously with the body’s average position moving away from
the mean position at rest due to the net mean lift acting on the body (shown in
figure 10). The largest offset in the mean occurs at α = 10◦, corresponding to the
oscillations switching from large-amplitude and low-frequency galloping oscillations to
higher-frequency oscillations with smaller amplitudes.

An observation of the mean body position in figure 10 highlights two important
features of the mean amplitude behaviour. First, the mean position deviates from the
zero position at parameter values matching the VIV upper branch and the higher
branch resonant peaks. In these resonant regions the oscillations are dominated by a
single frequency with varying amplitude, as seen in the upper branch of low-mass-
damping circular cylinders. Second, outside of the peak resonant regions, the deviation
of the mean from the zero position increases as the angle of attack moves away from
the diamond case, due to the square’s pressure distribution generating an increasing
net lift. The growth is gradual in the VIV-dominated region of α = 22.5–45◦, and
then becomes rapid in the HB region reaching the largest deviation at α = 10◦. At
angles of attack below this the mean position recovers as the body approaches the
symmetric square cylinder orientation. Unexpected results observed in figure 10(b) are
the negative values in the mean position of the body at low angles of attack (α < 10◦),
with a deviation from the zero position of up to y/H = −0.1 for selected reduced
velocities in the range 8 < U∗ < 15.

The amplitude response with varying angle of attack clearly reveals the various
FIV modes of the square. The oscillation amplitude and mean position show a clear
transition in the behaviour from α = 7.5 to 10◦, due in part to the location of the
separation points imposed by the corners of the square. As the body is rotated CW in
figure 1, the separation point attached to the top leading corner of the square moves
with the geometry’s corner towards the centreline. As the angle increases, the flow
reattaches to the bottom surface of the square and the bottom separation point shifts
from the leading bottom corner to the trailing corner, which in turn approaches the
centreline as the body rotates further. The jump in location of the bottom separation
point is the probable cause of the transition between the galloping and higher branch
behaviour.
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FIGURE 11. For the caption, see the next page.

6.2. Frequency response

The frequency responses at different angles of attack are shown in figure 11. The
symbols on the plots represent frequency power spectrum peaks and the contours
represent the relative normalized energy of the frequency spectra. Symbols are
associated with the different frequency response regimes classified as follows: filled
circles represent frequencies associated with VIV behaviour, including the body’s
shedding frequency and those close to the body’s natural frequency. The open circles
represent frequencies in the higher-amplitude branch. The open squares are for lower
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FIGURE 11. (Cntd) Cylinder oscillation frequency response, f ∗, to increasing velocity, U∗,
at various angles of attack. Shaded regions are contours of relative normalized intensity
in wavelet energy. Filled circles represent shedding frequencies, open circles represent
frequencies associated with higher branch and open squares represent lower frequencies
including those associated with galloping. The size of the symbols relate the power magnitude
of the peaks. Dashed lines represent the shedding frequency of the stationary body at the
specified α and its first subharmonic.

frequencies associated with galloping oscillations. Symbol size indicates the relative
energy contained by the dominant frequency of oscillation at each reduced velocity, a
useful visualization aid of the rate of transfer of spectral energy between competing
frequency peaks as a function of reduced velocity. The normalized frequency contours
superimposed on the plots also reveal this energy transfer as well as indicating the
periodicity of the signal. In the case of α = 45◦ in figure 11, the contours expand over
an increasingly larger frequency range as U∗ increases, simultaneously the filled circles
shrink in size. This can be interpreted as the energy in the system remaining centred
around the dominant frequency (the shedding frequency here) but distributed over an
increasingly wider band, signalling a loss in the periodicity of the oscillations with
increasing reduced velocity. Such insight into the frequency response of the diamond is



not apparent when inspecting solely the peak frequency values, as shown in figure 4.
The two guidelines in the figures are the stationary shedding frequency of the specified
angle and its first subharmonic.

Inspecting the frequency response in the VIV-dominated regime over the domain
α = 25–45◦ confirms that the body is following the same trend as the diamond
cylinder. At each angle of attack within this region, the frequency response to
increased velocity follows a line of constant gradient outside of the resonant region
of the upper branch. At high reduced velocities the contours reveal low broadband
oscillation frequencies, as the VIV lower branch loses periodicity. This low-frequency
component is a result of mixed mode behaviour due to the body’s susceptibility to
galloping.

For velocities in the resonant region of the VIV upper branch, the response also
changes with angle of attack. For the diamond orientation, α = 45◦, the reduced
frequency remains close to unity at low speeds under U∗ = 5, however, as the
angle is reduced the coupling of the oscillations to the natural frequency weakens
and the motion approaches the shedding frequency slope. This is in contrast to the
circular cylinder, which experiences both oscillation frequencies within this reduced
velocity range (seen in figure 4). Inspecting the other end of the VIV region, at
α = 25◦, the synchronization with the natural frequency is limited to a narrow reduced
velocity region at the onset of the upper branch (U∗ = 4), after which the frequency
monotonically increases at a slope close to the shedding frequency of the body, St.
A subharmonic frequency with relatively little energy content can be observed in the
range of U∗ = 9–15. It will be shown later that this is a result of the mode competition
in the fringe region near the higher branch.

At an angle of attack of α = 22.5◦ the cylinder motion maintains the shedding
frequency except in the region U∗ = 7.75–9, where it is dominated by a lower
frequency (open circles). This, unsurprisingly, coincides with the higher branch
amplitude response and is the associated characteristic frequency trend observed over
the range of angles, α = 5–22.5◦. It is characterized by an oscillation frequency below
that of the VIV response, close to the subharmonic on the Strouhal frequency. The
dominant frequency switch from VIV to the higher branch/low-frequency resonance
is also angle of attack dependent. At the largest angle of attack at which the higher
branch occurs, α = 22.5◦, the switch is rapid occurring over a narrow velocity range.
In contrast, at α = 12.5◦ the spectral energy transfer from the VIV to higher branch
is more gradual, occurring over a reduced velocity range, 5.8 6 U∗ 6 8. The contours
show that the majority of the energy is transferred to the lower frequency by U∗ = 6.5.
The relative size of the symbols shows that the VIV-associated oscillation frequency
is gradually damped out as it is absorbed into a harmonic of the dominant lower
frequency. For smaller angles of attack, below α = 10◦, the VIV response is no longer
present, replaced by a harmonic component of the higher branch seen in α = 5, 7.5◦.
This harmonic suggests that the vortex shedding is influenced by the oscillation mode,
and the shedding still influences the body motion but is clearly no longer the dominant
cause of vibration.

For angles of attack α = 15–20◦, the frequency response in figure 11 reveals the
synchronization of multiple modes, resulting in resonance of the higher branch. The
frequency associated with this branch undergoes a split into two frequency peaks
at higher reduced velocities with diverging slopes of constant St. This trend is
clearest at the midpoint of the higher branch region, α = 15–17.5◦, as the reduced
velocity is increased above U∗ > 10. With increasing velocity the power spectrum
broadens rapidly and two energy peaks are found; one that approaches the shedding



frequency of the stationary cylinder, with a second slope at lower frequencies. This
switch is preceded by the shift in the frequency response of the lift force on the
cylinder to the shedding frequency (not shown). For the higher angles of attack,
α = 20–22.5◦, the shedding frequency component dominates at higher velocities, but
the energy shifts to the lower-frequency slope as the angle of incidence is decreased.
No harmonic relationship exists between the two curves, leading to the suggestion that
two independent physical mechanisms are at play. It is hypothesized that two FIV
phenomena are synchronized in the higher branch resonant region, and the splitting of
the frequency is signalling their desynchronization.

At lower angles of attack (α < 15◦) the response contains multiple low-frequency
bands, indicative of complicated fluid–structure interactions. The frequency responses
for velocities above the higher branch contain no trace of the shedding frequency,
confirming the conclusions drawn from the amplitude response in § 4.1: that the FIV
is not driven by VIV at orientations that diverge by only small angles from the square
cylinder orientation. A mixed mode of vibration that is a nonlinear combination of
galloping and VIV is likely however.

For values below α = 10◦ the response contains only low-frequency oscillations as
observed in galloping. The kink seen in the galloping amplitude response in figure 9
(also observed by Bearman et al. (1987)) for the angles of α = 0–10◦ occurs along
with a change in oscillation frequency response. For the square symmetric orientation
and the small angle of attack α = 2.5◦, there are two low-frequency branches: the first
occurs up to U∗ = 15 for the square and up to U∗ = 14 for α = 2.5◦, characterized
by a gradual increase in f ∗ with U∗; the second behaviour is a decrease in frequency
approaching f ∗ = 0.5. These two branches form a continuous trend at α = 0–2.5◦, but
become discontinuous at α = 5◦ (located at U∗ = 15), leading to a sudden jump in the
frequency of oscillations.

6.3. Wake modes

Figure 12 shows four phases of the shedding modes for (a) the VIV upper branch
and (b) the combined FIV higher branch at α = 20◦ over one oscillation period.
Of immediate interest from the perspective of circular cylinder studies is the vortex
formation for the VIV upper branch. At U∗ = 5, the square cylinder is in the centre
of the resonant region in the upper branch of VIV, which we have shown in § 4.3
produces a 2P mode for in the diamond orientation.

At the beginning of the oscillation period (see (i) in figure 12a), the square cylinder
is moving upwards across the centreline of the oscillation cycle, and a CW vortex
forms on the topside of the cylinder, with a CCW vortex already shed is behind the
cylinder. Near the top of the body motion (ii), CCW vorticity from the bottom wraps
around the trailing edge of the body, and the top vorticity sheet splits in the strain
region where the vortices meet near the top-right corner of the cylinder, causing the
shedding of a CW vortex. The positive vorticity around the body increases (iii) as
the body moves back down through the centreline, forcing the top shear layer to shift
further from the body. At the bottom of the motion (iv), the top vortex sheet sheds
another CW vortex, and vorticity of the same sign develops on the rear of the body,
leading to the CCW vortex that is shed in the first phase of the cycle from bottom
corner of the cylinder. Thus, a P + S shedding mode is observed with two vortices
shed from the top side of the cylinder in each cycle. The first vortex shed from the
top side in this phase description of the body motion is significantly weaker than the
other two and diffuses rapidly in the downstream wake. In the third phase (iii), the
CCW vorticity on the topside of the square can be assumed to be separated near the
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FIGURE 12. Vorticity plots of the shedding modes of the cylinder oriented α = 20◦ in (a) the
VIV upper branch at U∗ = 5 with P + S mode and (b) the higher branch at U∗ = 8 with 2P
mode. Four phases are shown over one oscillation cycle for each vortex mode shown from top
to bottom, with their phase location in the oscillation cycle shown on the left.

corner of the square and is then cross-annihilated by its interaction with the top shear
layer by the fourth phase. These P + S near-wake vortex interactions are not revealed
in the VIV lift and oscillation frequency response. This is not unusual, as any energy
contributed to the body from the vortex splitting of the pair would be minimal. The
angle variation is responsible for the location of the square’s corners and therefore a
determining parameter influencing whether the shear layers encounter the high-strain
region located near the corners of the square. The PIV phase images indicate that



the genesis of the vortex splitting is within these high-strain regions, supporting the
observation that the angle of attack defines the wake modes observed. As the square is
rotated CCW from α = 45◦ (decreasing angle of attack), the rear corner and associated
high strain region moves upwards, and less of the bottom shear layer wraps around
the body. Eventually, as the body approaches the square orientation each shear layer
interacts with a symmetry resulting in the symmetric shedding observed in figure 7.

The higher branch vortex mode, shown in figure 12(b) at U∗ = 8◦ and α = 20◦

displays a 2P wake. Comparison of the two resonant regions wake states highlights
the difference in timing of the vortex shedding with respect to the body’s oscillation.
For the higher branch the bottom shear layer in the first phase (see (i) in figure 12b)
extends further into the wake than at the lower velocity, where VIV occurs, and results
in a splitting that leads to the 2P wake structure. The first vortices shed from each
side are close to the centreline and weaker than the second vortices, as seen for the
diamond VIV in figure 5.

6.4. Intermittency

It is informative to examine the intermittent behaviour observed in the oscillation
response’s time series. In the higher branch the square cylinder oscillations undergo
an intermittent phenomenon that is not seen in either the VIV or galloping dominated
regimes. This intermittency is isolated to the fringes of the higher branch regime, at
α = 22.5◦ and at α = 7.5◦ (these are highlighted in the striped region (red online)
on the map in figure 8). Figure 13 shows the CWT of the oscillation measurements
for increasing velocities at α = 7.5◦. As the velocity is increased the oscillations
experience distinct aperiodic bursts with shorter regions of periodic behaviour. The
analysed bandwidth was broader range than shown here but no significant spectral
energy contribution was found. The contours at U∗ = 7.9 show a highly periodic
signal with two distinct frequency bands with peaks at f ∗ = 0.7131 and its harmonic
f ∗ = 1.4262, and occasional loss of periodicity. As the velocity is increased, the loss
of periodicity is more prominent, with no discernible frequency and the cylinder barely
oscillates.

The bursts of aperiodic behaviour observed here are in-line with the characteristics
noted in intermittent transitions (Pomeau & Manneville 1980), although whether it is
mode competition or a route to chaos is unclear. Current existing tools used in analysis
for these transitions are restricted to small degree of freedom dynamical systems, and
inapplicable to the current observations. The identification of this intermittency paths
are here resolved at low resolution, and expressed here as a function of U∗ for a
fixed angle of attack. It is expected that at a higher parameter resolution, clearer
relationships between the intermittency and the system variables could be elucidated.

7. Conclusions

This study investigated a square cylinder freely vibrating transverse to the flow.
Although well known to gallop at zero angle of attack, we have shown that the
diamond configuration exhibits an amplitude and frequency response comparable with
the VIV experienced by circular cylinders. The results also reveal the influence of the
shear layer separation on the fluid driving force experienced by the body, indicated
by the diamond section locking to a Strouhal shedding frequency and maintaining the
lower branch amplitude of oscillations to high velocities, in contrast to the circular
cylinder.
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By varying the angle of attack, we have shown the transition between the two
phenomena to be a complex nonlinear combination of the modes, and uncovered a
new branch of resonance. This previously unreported branch is characterized by an
amplitude of oscillations at a frequency close to the subharmonic of the stationary
shedding frequency and with an oscillation envelope in excess of amplitudes produced
by either VIV or galloping over the reduced velocity range. Current oscillator models
do not account for this new branch of oscillations, nor does quasi-steady theory.
Current models will under predict the maximum amplitude and periodic loading on
square cylinders when the angle of incidence varies.

Also confirmed is that the characteristic response of the galloping instability
for a square cylinder is limited to angles under α = 10◦ for mass-damping ratio
m∗ζ = 6.49 × 10−3. This has been confirmed over a wide range of reduced velocities.
Outside this region the asymmetric body loading results in smaller oscillations offset
from the centreline.

The results provide an experimental parameter map that can serve as a validation
case for future studies. The work could be extended by investigating the nature of
the geometry’s influence and the universality of current FIV models, with a view to
applying them to a wider range of body geometries, such as elliptic cylinders.



Acknowledgement

This work was supported by the Australian Research Council through ARC

Discovery Project Grant Number DP0774525.

R E F E R E N C E S

ASSI, G. R. S., MENEGHINI, J. R., ARANHA, J. A. P., BEARMAN, P. W. & CASAPRIMA, E.
2006 Experimental investigation of flow-induced vibration interference between two circular
cylinders. J. Fluids Struct. 22, 819–827.

BEARMAN, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16,
195–222.

BEARMAN, P. W., GARTSHORE, I. S., MAULL, D. J. & PARKINSON, G. V. 1987 Experiments on
flow-induced vibration of a square-section cylinder. J. Fluids Struct. 1, 19–34.

BLEVINS, R. D. (Ed.) 1990 Flow-induced Vibration. Von Nostrand Reinhold.

BOKAIAN, A. R. & GEOOLA, F. 1983 On the cross flow response of cylindrical structures. Proc.
Inst. Cir. Engng 75, 397–418.

BOKAIAN, A. R. & GEOOLA, F. 1984 Hydroelastic instabilities of square cylinders. J. Sound Vib.
92, 117–141.

BOUCLIN, D. N. 1977 Hydroelastic oscillations of square cylinders. Master’s thesis, University of
British Columbia, Vancouver, BC, Canada.

CARBERRY, J., GOVARDHAN, R., SHERIDAN, J., ROCKWELL, D. & WILLIAMSON, C. H. K. 2004
Wake states and response branches of forced and freely oscillating cylinders. Eur. J. Mech. 23,
89–97.

CORLESS, R. M. & PARKINSON, G. V. 1988 A model of the combined effects of vortex-induced
oscillation and galloping. J. Fluids Struct. 2, 203–220.

CORLESS, R. M. & PARKINSON, G. V. 1993 Mathematical modelling of the combined effects of
vortex-induced vibration and galloping. Part II. J. Fluids Struct. 7, 825–848.

DEN HARTOG, J. P. 1932 Transmission line vibration due to sleet. Trans. AIEE 51, 1074–1076.

DENIZ, S. & STAUBLI, T. 1997 Oscillating rectangular and octagonal profiles: interaction of leading-
and trailing-edge vortex formation. J. Fluids Struct. 11, 3–32.

DUTTA, S., PANIGRAHI, P. K. & MURALIDHAR, K. 2008 Experimental investigation of flow past a
square cylinder at an angle of incidence. J. Engng Mech. 134, 788–803.

FENG, C. C. 1968 The measurement of vortex-induced effects in flow past stationary and oscillating
circular and D-section cylinders. Master’s thesis, University of British Columbia, Vancouver,
BC, Canada.

FOURAS, A., LO JACONO, D. & HOURIGAN, K. 2008 Target-free stereo PIV: a novel technique
with inherent error estimation and improved accuracy. Exp. Fluids 44, 317–329.

GOVARDHAN, R. & WILLIAMSON, C. H. K. 2000 Modes of vortex formation and frequency
response of a freely vibrating cylinder. J. Fluid Mech. 420, 85–130.

GOVARDHAN, R. & WILLIAMSON, C. H. K. 2004 Critical mass in vortex-induced vibration of a
cylinder. Eur. J. Mech. 23, 17–27.

GOVARDHAN, R. N. & WILLIAMSON, C. H. K. 2006 Defining the ‘modified Griffin plot’ in
vortex-induced vibration: revealing the effect of Reynolds number using controlled damping.
J. Fluid Mech. 561, 147–180.

HOVER, F. S., TECHET, A. H. & TRIANTAFYLLOU, M. S. 1998 Forces on oscillating uniform and
tapered cylinders in cross flow. J. Fluid Mech. 363, 97–114.

KHALAK, A. & WILLIAMSON, C. H. K. 1996 Dynamics of a hydroelastic cylinder with very low
mass and damping. J. Fluids Struct. 10, 455–472.

KHALAK, A. & WILLIAMSON, C. H. K. 1997a Fluid forces and dynamics of a hydroelastic
structure with very low mass and damping. J. Fluids Struct. 11, 973–982.

KHALAK, A. & WILLIAMSON, C. H. K. 1997b Investigation of relative effects of mass and
damping in vortex-induced vibration of a circular cylinder. J. Wind Engng. Ind. Aerodyn.
69–71, 341–350.



KHALAK, A. & WILLIAMSON, C. H. K. 1999 Motions, forces and mode transitions in
vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13, 813–851.

KLAMO, J. T., LEONARD, A. & ROSHKO, A. 2006 The effects of damping on the amplitude and
frequency response of a freely vibrating cylinder in cross-flow. J. Fluids Struct. 22, 845–856.

LEONTINI, J. S., STEWART, B. E., THOMPSON, M. C. & HOURIGAN, K. 2006 Wake state
and energy transitions of an oscillating cylinder at low Reynolds number. Phys. Fluids 18,
067101.

LUO, S. C., TONG, X. H. & KHOO, B. C. 2007 Transition phenomena in the wake of a square
cylinder. J. Fluids Struct. 23, 227–248.

MORSE, T. L., GOVARDHAN, R. N. & WILLIAMSON, C. H. K. 2008 The effect of end conditions
on the vortex-induced vibration of cylinders. J. Fluids Struct. 24, 1227–1239.

NAUDASCHER, E. & ROCKWELL, D. 1994 Flow-induced Vibrations: an Engineering Guide. A. A.
Balkema.

NAUDASCHER, E. & WANG, Y. 1993 Flow-induced vibrations of prismatic bodies and grids of
prisms. J. Fluids Struct. 7, 341–373.

NORBERG, C. 1993 Flow around rectangular cylinders: pressure forces and wake frequencies.
J. Wind Engng. Ind. Aerodyn. 49, 187–196.

OBASAJU, E. D., ERMSHAUS, R. & NAUDASCHER, E. 1990 Vortex-induced streamwise oscillations
of a square-section cylinder in a uniform stream. J. Fluid Mech. 213, 171–189.

OKAJIMA, A. 1982 Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379–398.

PARKINSON, G. 1989 Phenomena and modelling of flow-induced vibrations on bluff bodies. Prog.
Aerosp. Sci. 26, 169–224.

PARKINSON, G. V. & SMITH, J. D. 1964 The square prism as an aeroelastic nonlinear oscillator.
Q. J. Mech. Appl. Maths 17, 225–239.

PARKINSON, G. V. & WAWZONEK, M. A. 1981 Some considerations of combined effects of
galloping and vortex resonance. J. Wind Engng. Ind. Aerodyn. 8, 135–143.

POMEAU, Y. & MANNEVILLE, P. 1980 Intermitten transition to turbulence in dissipative dynamical
systems. Commun. Math. Phys. 74, 189–197.

SARPKAYA, T. 1979 Vortex-induced oscillations: a selective review. J. Appl. Mech. 46, 241–258.

SARPKAYA, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids
Struct. 19, 389–447.

SHEARD, G. J., FITZGERALD, M. J. & RYAN, K. 2009 Cylinders with square cross-section: wake
instabilities with incidence angle variation. J. Fluid Mech. 630, 43–69.

TONG, X. H., LUO, S. C. & KHOO, B. C. 2008 Transition phenomena in the wake of an inclined
square cylinder. J. Fluids Struct. 24, 994–1005.

VAN OUDHEUSDEN, B. W., SCARANO, F., VAN HINSBERG, N. P. & ROOSENBOOM, E. W. M.
2008 Quantitative visualization of the flow around a square-section cylinder at incidence.
J. Wind Engng Ind. Aerodyn. 96, 913–922.

VICKERY, B. J. 1966 Fluctuating lift and drag on a long cylinder of square cross-section in a
smooth and in a turbulent stream. J. Fluid Mech. 25, 481–494.

WANG, Z. J. & ZHOU, Y. 2005 Vortex-induced vibration characteristics of an elastic square cylinder
on fixed supports. J. Fluids Engng 127, 241–249.

WILLIAMSON, C. H. K. & GOVARDHAN, R. N. 2004 Vortex-induced vibrations. Annu. Rev. Fluid
Mech. 36, 413–455.

WILLIAMSON, C. H. K. & ROSHKO, A. 1988 Vortex formation in the wake of an oscillating
cylinder. J. Fluids Struct. 2, 355–381.

YOON, D., YANG, K. & CHOI, C. 2010 Flow past a square cylinder with an angle of incidence.
Phys. Fluids 22, 043603.




