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ABSTRACT

This paper presents a general model for coupled solute and
water flow through plant roots based on the thermodynamics
of irreversible processes. The model explains in a straight-
forward manner such experimentally observed phenomena as

changes in root resistance, increased solute flux, and apparent
negative resistance, which have been reported for root systems
under the influence of a hydrostatic pressure gradient. These
apparent anomalies are explained on the basis of the inter-
action between the osmotic and hydrostatic driving forces and
the well known "sweeping away" or dilution effect. We show
that with a constant hydraulic conductivity the only features
necessary to explain these phenomena are some type of mem-
brane or membranelike structure and a mechanism for actively
accumulating solutes.

A recurring problem in plant-water relations research in recent

years has been the apparent change in resistance to water flow
through root systems with changes in transpiration rate or ap-
plied hydrostatic pressure. These changes are not observed by all
workers nor do they appear to occur in all species studied (2).
Also, most of the apparent changes were observed at relatively
low rates of transpiration.
Most of the early work was aimed at elucidating the influence

of water flow on the rates of salt uptake and transport to the
shoot. Russell and Barbar (12), Brouwer (1), and Kramer (8)
all review the early literature on this subject. In this paper, we

will confine ourselves to consideration of the interaction of
solute and water transport in detached root systems and the
consequent nonlinear relationship between water flow and driv-
ing force. As far as we are aware, only two laboratories have
produced sufficient relevant data that bear directly on this ques-
tion and for this reason we will draw heavily from the experi-
ments of Lopushinsky (9, 10) and Mees and Weatherley (11).
They both demonstrated clearly that under the influence of an

applied hydrostatic pressure gradient the resistance to water flow
in detopped tomato root systems did change. The relationship
between applied pressure and flow rate was nonlinear to the ex-

tent that there were changes of from 5- to 20-fold in the slope of
the force-flux curve over a pressure range of only 2 bars.
Thus far, no adequate explanation has been advanced to

account for these changes in root resistance. This paper, using a

simple membrane system, demonstrates changes in water con-
ductivity with increasing hydrostatic pressure without any actual
change in the hydraulic conductivity coefficient. It is proposed
that a similar system, if operating in a root, would produce many
of the effects which have been observed.

MATERIALS AND METHODS

Consider, in Figure 1, a simple semipermeable membrane of
unit area separating two compartments. The outside compart-
ment (superscript o) is very large and well stirred throughout,
while the inside compartment (superscript i) is also well stirred
but limited in size. Although limited in size, the inside compart-
ment is open-ended so that water flow through the membrane is
unconstrained by any back pressure. The membrane is assumed
to be rigid, capable of moving solutes against a potential gradi-
ent, and for the present, totally impermeable to solutes (reflection
coefficient a = 1, and solute permeability w = 0). The actual
mechanism of solute accumulation is unimportant for our pur-
poses, but we do assume throughout that it operates at a constant
rate and is unaffected by volume flow, applied pressure, or in-
ternal or external solute concentrations. We further specify that
there is only one solute species present, and since we do not in-
clude electrical forces, it is assumed to be a nonelectrolyte.

In the absence of a hydrostatic pressure gradient (PI = pi),
such a system will develop a steady state concentration difference
between the inside and outside compartments and water will flow
across the membrane in response to this gradient. Assuming
ideality of the solutions, the osmotic pressure on the inside will be

1ri = RTCi (1)
where R is the gas constant in ml atm deg-' mole-', T is the
absolute temperature, and Ci is the internal concentration in
mole cm-'. At the steady state it is clear that Ci is dependent on
the ratio of the entry rates of the solutes and water, and we may
write

ci = Js/J. (2)
where J, and JU. are the solute and water fluxes, respectively.
Since the membrane is ideal, the only solute flux will be active
and we may replace Js with an active uptake term JS* in mole
cm-2 sec-'. We may also assume that the water flow J,, is equal
to the totol flow of volume J, in cm sec- l. Thus we have

C = Js*/Jv (3)

The volume flow in our system, when subjected to both osmotic
and hydrostatic pressure gradients, is

'This work was supported by National Science Foundation Grant
GB-36643.

Jr = Lp(AP - Ar) (4)

Again, assuming ideal solutions and substituting from equation
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FIG. 1. The model system. A semipermeable membrane (spm)
containing an active solute uptake mechanism capable of moving
solutes against a potential gradient.

3 for Ci, we get

J, = L, P - RT (Co - ji)] (5)

which may be multiplied by J, and rearranged to the standard
quadratic form

Jt2 + JLI,(7r - AP) - L,RTJ,* = 0 (6)

which is easily solved for J,. by the quadratic formula.
For much of our discussion, however, it will be more con-

venient to use equation 5 solved for AP. That is

AP= + RT (Co- (7)

This form is more convenient because the apparent resistance to
hydrostatic pressure flow is simply the slope of the force-flux
curve when the relevant force is given as the dependent variable.
The apparent resistance is therefore the first derivative of AP
with respect to Jr.

dAP 1 RTJS*
R =

P
= I- + _T

dJ/, LI) J02
(8)

ent resistance is made up of two components. The first part,
which depends only on the hydraulic conductivity coefficient,
remains constant with flow, while the second part decreases with
the inverse square of the flow rate. The over-all effect is shown
in Figure 2, where the effect of the variable term in equation 8 is
clarified. As J, increases, the variable term tends to disappear
and the apparent resistance approaches the limiting value of
1 /Lp. At relatively high flow rates, the apparent resistance ap-
proaches a value consistent with the irreversible thermodynamic
relationship between straight and inverse coefficients in a system
consisting of only one flow and its conjugate force (i.e., Ri =
1/Li).
The inset in Figure 2 is redrawn from Lopushinsky (9) and

clearly illustrates the similarities between his experimental data
and our theoretical curves. Flow and concentration units are not
specified in the inset because the original units were not given in
terms of absorbing area and are not directly comparable in mag-
nitude. However, there are a number of very interesting points of
comparison.

Both curves indicate a positive flow rate at AZP = 0. This is,
of course, the well known phenomenon of root pressure exuda-
tion. When external pressure is applied to the system, we see that
in both cases the apparent resistance is initially high but that it
gradually decreases to what appears to be a nearly constant
value. If our theory is correct, or nearly so, we can expect the
limiting slopes of these lines to have the value 1 /Lp.
Comparison of the concentration curves is also interesting in

that in both cases the internal concentration, or osmotic pressure,
is above ambient at AP = 0. Increased flow through the applica-
tion of pressure brings about a decrease of Ci below ambient
concentrations and appears to approach some limiting value.
In the case of our simple system that limiting value would be
zero at infinite pressure. It is possible, although unlikely, that
Lopushinsky's curve approaches that same limit. In any case, C'
in his experiments dropped to approximately 10%c of Co at a
pressure of 2 atm, whereas our curve drops to 10', at about 2.5
atm AP. Also, Mees and Weatherley (11) reported that the con-
centration of the pressure exudate from their tomtato root sys-
tems often fell to a small fraction of the external medium. The
actual numerical values are unimportant for our purposes, and

Table I. Ransge of Parameters Used foir Gener-atinig Ciur-ves in Figuri-es

Parameter Range Increment

where Ra is the apparent resistance. We use the term apparent
resistance to avoid confusing this term with any of the thermo-
dynamic inverse coefficients (see Kirkwood [6] for a discussion
of inverse coefficients). We shall see later that the apparent re-

sistance, under certain circumstances, approaches very closely
the thermodynamic hydraulic resistance term. For lack of a better
term, we will use apparent resistance even though what we are

describing is a true resistance.
To explore the influence of the parameters in equation 5 on

the shape of the force-flux curve, we solved equation 6 for J,
then equation 8 for Ra over a range of values for Lp, J,*, 7r°, and
AP. The ranges of the variables used were determined by values
found in or estimated from the literature. The ranges used are in
Table I. The calculations were done with a FORTRAN program
on an IBM 370 165 computer.

RESULTS AND DISCUSSION

Equation 6 clearly shows that in the system under consideration
volume flow is nonlinear with respect to AP. However, of much
greater interest is equation 8 which shows the dependence of the
apparent resistance on the flow rate. Here we see that the appar-

L,, (cm sec-' atm-')
J,* (mole cm-2 sec-)
7ro (atm)
AP (atm)

1 (10-8) to 5 (10-a)
1 (10-",) to 5(10-10)
I to 10
I to 5

ITr (atm)
0.5

1, 2, 5

1, 2,5
0.25 atm
0.5 atm

FIG. 2. Relationship between applied pressure, volume flow rate,
and internal osmotic pressure for the model system. L* = 0.1(10-11)
mole cm-2sec-'; Lp = 0.1(10-6) cm sec-atm-'; 7r' 1 atm. The inset
is redrawn from Lopushinsky (9).
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NONLINEAR WATER FLOW IN ROOTS

it is sufficient to observe that flow increases in a nonlinear man-
ner and that Ci > Co at low J, and Ci << Co at high J,.

It is clear from Figure 2 and equation 5 that the cause of the
nonlinear response of water flow with respect to pressure is due
simply to the decrease of one driving force (tAir) with increases
in the other (AP). This point is further illustrated in Figure 3.
Here we show the total inwardly directed driving force acting on
the membrane as a function of the applied external pressure.
This relationship is shown at two levels of external osmotic pres-
sure and three levels of hydraulic conductivity. The dashed line
is drawn where the total force is equal to the applied pressure
(i.e. where Air = 0).
We can easily see that at low pressures, hence low flow rates,

the osmotic component dominates. At moderate pressures Air
tends toward zero then goes positive as Ci falls below Co. At
high pressures when the slope of the curve approaches the slope
of the dashed line, the curve is offset from the dashed line by an

amount very close to ir0. Extrapolation of these lines backward to
the abscissa shows an intercept equal to iro. This result is true
only for the ideal membrane presently under discussion.
The degree of nonlinearity as shown by Figure 3 is influenced

to a great extent by 7r0 as well as Lp and J8*. In order to clarify
this relationship, we calculated the parameter R0/R1 for com-

parison at different levels of Lp, J8*, and 7r0. This parameter is
the ratio of Ra when AP -k 0, to the limiting value 1 /Lp. This
ratio gives an indication of the degree of nonlinearity to be ex-

pected under a given set of conditions. Figures 4 and 5 show the

AP (atm)

FIG. 3. Total inwardly directed driving force as a function of ap-

plied pressure. The dashed line is the equipotential line (where the
total force is equal to the applied pressure, A7r = 0). Lettering on

figure as follows: 7r": a = 1 atm, b = 0.5 atm; L4: 1 = 0.5(10-5),
2 = 0.5(10-'), 3 = 0.5(10-7) cm sec-latm-1.

-12 dI 10

log Active Uptake Rate

(mole c"dreec')

FIG. 4. Degree of curvature of the force-flux curves as influ-

enced by J.* and 7r°. L4 = 0.5(10-8) cm sec-'atm-1. Lettering on fig-
ure as follows: 7r°: a = 0.25, b = 0.5, c = 0.75, d = 1.0 atm.

!12 'II -1o
log Active Uptake Rate
(mole cm- sec-')

FIG. 5. Influence of J.* and L4 on the degree of curvature of the
force-flux curves. 7ro = 0.5 atm. L,: A = 0.5(10-6), B = 0.5(10-5),
C = 0.5(10-') cm sec-'atm-1.

FIG. 6. Effect of increasing external osmotic pressure, 7r°, on J,
according to equation 4. J.* = 0.1(10-') mole cm-2sec-1. Lettering
on figure indicates L4: a = 0.1(10-5), b = 0.1(10'1), c = 0.1(10-7) cm
sec-latm-1.

results of this type of comparison. It is evident that the degree of
nonlinearity, as indicated by R,/R1 increases with (a) increasing
Lp, (b) increasing 7r0 and (c) decreasing J8*. The apparent changes
in resistance then can be quite dramatic under the appropriate
conditions.
Another interesting feature of our system is shown in Figure 6

where we see the effects of 7r° on 7ri and J, in the absence of a
hydrostatic pressure gradient. Here again it is important to note
that JJ8* is assumed constant. In this case, the constraint is reason-
able, since we can use a relatively nonpermeant agent as an os-
moticum and keep the external concentration of the actively ac-
cumulated species constant. The result is predictable, that is, as
the flow rate was decreased by the external osmoticum, the in-
ternal concentration increased and flow was maintained at a
positive level. Clearly, with a membrane capable of actively ac-
cumulating solutes against a potential gradient, it would be im-
possible to completely stop steady state flow merely by adding
external osmotica. This effect was noted by Klepper (7), but she
used permeant solutes to raise 7r0 so the results are not readily
compared. M- - K
One further interesting point should be made concerning the

ideal system. Since the flux equation is nonlinear, the effect of
changing Lp is not as clear as it would appear from equation 3
even when AP = 0. The relationship between flow rate and hy-
draulic conductivity is seen to be highly nonlinear (Fig. 7). In
addition, the flow rate of our system is very insensitive to

Plant Physiol. Vol. 55, 1975 919
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Plant Physiol. Vol. 55, 1975

sure where moderate flow rates may bring about a reversal of the
osmotic gradient, that is, where 7rO > 7r'.

For the purpose of further analysis, we therefore write for the
total solute flux in mole cm-2 sec-'

J, = C(I - a')J, + J.*

To cast equation 10 in a more useful form, we need to consider
further the average concentration C, which is defined as

AC,_
A In C,

FIG. 7. Effect of changing Lp on the flow rate at AP = 0. Js*
0.1(10-o") mole cm-2sec'1. 7r' = 0.5 atm.

changes in Lp since, as we can see, an increase of Lp over four
orders of magnitude results in only a 4-fold increase in the flow
rate under these conditions.
Thus far we have been dealing with ideally semipermeable

membranes. Although we can account for the nonlinearity of the

force-flux relationship frequently observed in root systems by
what is commonly referred to as the "sweeping away" or dilution
effect, our system is still linear with respect to the total inwardly
directed driving force (,AP - Ar). This result leaves unanswered
the problem observed by Mees and Weatherley (11) in their
early work, where they observed the occurrence not only of a

nonlinear flow with respect to pressure, but also with respect to
the total inwardly directed driving force. They suggested that
part of this effect may have been due to the differences between
the osmotic and hydrostatic permeabilities to water and that a

given gradient of osmotic pressure might not be as effective in

moving water as an equal gradient of hydrostatic pressure. This
is essentially the effect produced by membranes that are less than
ideally semipermeable and is presently described by the reflection
coefficient o'. Obviously, our ideal system is inadequate to explain
these observations, so it was necessary to modify our initial equa-

tions to account for the nonideal behavior.
When the membrane is less than ideal, equation 3 is no longer

precise. In addition to the active component of uptake Jr*, the
total flux consists of two additional terms, a diffusive and a drag
component. For such a system, we may write after Katchalsky
and Curran (4) for the total solute flux

Js = C,(l - )J + Cwor + Js* (9)

where C, is the "average concentration" on both sides of the
membrane, o- is the reflection coefficient having values 0 < a' < 1,
w is the coefficient of solute permeability, and the other terms

are as before. The first term on the right represents the solute
flux caused by the solvent drag or entrainment effect where solute
molecules or ions are carried along with the flow of water. The
second term is purely diffusive in nature, and the third term is
dependent on metabolic energy. Considering an actively exuding
root system in the absence of applied pressure, at the steady state

we usually find that the concentration of the xylem exudate is

significantly higher than the external medium. In this case, it is

clear that the diffusive term will tend to drive solutes through the
membrane toward the outside, and it is also clear that the in-

wardly directed solute fluxes predominate. A full discussion of
the influence of the diffusive term on the total solute flux is beyond
the scope of this paper, but the appropriate equations are pre-

sented in the appendix. Our calculations (unpublished) indicate
that for values of w for some electrolytes of interest in plant
membranes (see values collected by Tyree [13]) the diffusive term

may be regarded as small compared to the active and drag com-

ponents without affecting the basic sense of the following dis-
cussion. We will then simply ignore the diffusive term. We will
return later to consider briefly the situation under applied pres-

Within limits, we can approximate this term by use of a logarith-
mic series (cf., Katchalsky and Curran 14] page 118) and pro-

vided Co, C' is near to unity we may write

C_ +2C,ll-
2

(12)

The greater the deviation of C", C' from unity the larger will

be the error in the approximation. We have determined that for
0.3 < Co C' < 3, the approximating error does not exceed 106-C
in the direction that the approximation is larger than the actual

value of C,. Accepting this approximation as adequate, we may

insert equation 10 into equation 2 and solve for C'

(13)ci = Co(1 o)J,_+ 2J,*
J0(1 + a')

which may be substituted into a modified form of equcation 4
containing af [i.e., J., = LJ,(S P - aA7r)] and

J = Lp (AP_2- + RJ

I + a/ J,(1 + a)
(14)

which is again quadratic in J. and has the property that when
a' = 1 it reduces to equation 5.

Solving for AP and following our previous procedure for cal-
culating R', we get

dAP 1 2aRTJ,'
Ra = = +

dcJ, L1 (1 + 0)J,2
(15)

which is the same as equation 8 except that it contains a correc-

tion for the solvent drag effect.

To answer our question of whether the reflection coefficient

could account for the apparent anomalous behavior observed by
Mees and Weatherley (11), we generated flow curves using equa-

tions 13 and 14 at various levels of a. The relationship between

flow rate and the total inwardly directed driving force (Fig. 8)
is obviously strongly dependent on the reflection coefficient. We
can see that for ideal membranes (a = 1) the relationship is a

straight line, as before, but as the selectivity decreases the non-

linearity increases, and we eventually arrive at a situation where
the force-flux relationship takes on a negative slope at low flow
rates. This apparent "negative resistance" region is simply the
result of two changing differentially effective driving forces. We
see, therefore, that it is possible to explain the apparent "nega-
tive resistance," effect in a straightforward manner and the data

of Mees and Weatherley (11) are not anomalous after all.

It should also be noted that the horizontal lines in Figure 8

connect points of equal hydrostatic pressure, and it is of interest

that at constant pressure, a change of a has relatively little effect
on flow rate. In fact, a change in a' may result in an increase or

decrease of flow rate.

Another property of our nonideal system that is often noted
in plant root systems is the increase in solute flux with increases
in flow or applied pressure. The results of calculations of solute
flux rates with pressure, using equations 2, 13, and 14 are shown

D
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NONLINEAR WATER FLOW IN ROOTS

in Figure 9. Since we have assumed in these calculations that Lp
and J,* are constant, the increase in solute flux with pressure can

only be the result of the solvent drag effect. This is not to say
that increases in J,* with pressure or flow are not possible, only
that they are not necessary to explain increased solute flux in our

system. Further, examination of the assumptions used in arriving
at equation 10 reveals that we should expect an increase in the
total solute flux J8 on a purely physical basis. This increase in J,
results from the diffusive term w which we ignored in writing
equation 10. The effect of w, as we noted earlier, is that at low
flow rates the osmotic gradient is negative in the direction of
volume flow and tends to reduce J-. However, at higher pressures
where the dilution effect is sufficient to reduce Ci below ambient,
the effect of the diffusive term progresses from loss through zero,
to additive. The net result of this would be to increase solute
flux at moderate and high flow rates somewhat more than our

present calculations would predict. In both the cases of diffusion
induced decreases in J8 at low flow rates, and increases in J.
at higher flow rates, the effect of w should be more pronounced
in relatively coarse less selective membranes because of the rela-
tionship between a- and cw (5).
A brief word concerning the experiments of Jensen et al. (3)

is in order here. They demonstrated in their experiments a

strictly linear force-flux relationship for water flow in tomato and
sunflower roots and stems. Their experimental system was such
that the root system was not provided with a source of solutes
so that J8* was necessarily zero. In this case, equation 15 reduces

to Ra = 1 /Lp = constant, and flow would be expected to be
linear. Their experiments therefore are consistent with our model.

CONCLUSIONS

We have presented in this paper a simple membrane system
incorporating a generalized active solute uptake mechanism. It is
shown that such a system can adequately account for the non-

linear relationship between flow rate and applied pressure in
plant root systems noted by some workers and indeed can, if the
membrane is less than ideal, account for apparent negative re-

sistance characteristics. In this regard, it should be mentioned
that what we have designated in some figures as the total inwardly
directed driving force (/P - sir) is actually the parameter called
the total water potential difference (/As) by plant scientists. Mees
and Weatherley observed experimentally, and we now confirm on

theoretical grounds, that water flow between phases is not neces-

sarily a linear function of the total water potential difference.
Additionally, the system exhibits increased solute flux with
increased pressure or flow rate which has been noted by many
workers. The increased solute flux in the system is due to two

components-the solvent drag effect and enhanced diffusion
brought about by the internal dilution effect.
The values chosen for the various root parameters in our cal-

culations cover wide ranges of conditions. We have attempted to

cover the very wide range of values for these parameters found in
the literature and have not attempted to assign any "most likely
value" status to any of these. The choices of the values used for
the figures were occasionally somewhat arbitrary in order to
accentuate a particular point, but we have tried to stay within
what we considered reasonable bounds in doing so. In this con-
nection, it must be recalled that the nature of the functional
root membrane is not well defined, and it may or may not have
properties similar to a typical plant plasmalemma. Also, these
properties probably vary along the root axis. One would expect
the conductivity in the older portions of the root to decrease
considerably as suberization progresses, but the advent of
secondary growth could alter the functional membrane and make
it quite leaky. In the latter case, a- would drop well below its
value in the younger portions of the root, while Lp would be ex-

AP - AlT (atm)

FIG. 8. Effect of reflection coefficient on the total force-flux
curve illustrating the negative resistance region. The straight line is
a- = 1. JJ* = 0.1(10-1), Lp = 0.1(10-6), 7r° = 1. The horizontal lines
connect points of equal hydrostatic pressure. The numbers on the
curves denote the reflection coefficients.

2 3 4

AP (atm )

FIG. 9. Total solute flux as influenced by applied pressure and
reflection coefficient. The numbers on the curves denote the reflec-
tion coefficients. J,* = 0.1(10-1), Lp = 0.1(10-6), 7rO = 1.

pected to become quite large. It was for these reasons that we
included what may appear to be excessively low values for a and
very high values for Lp.
The flow rates which result from the use of this model (Figs.

2 and 6-8) seem somewhat low compared to rates reported in the
literature, both from this laboratory and others. The flow rates
are simply the result of the values used for the parameters in the
various equations, and if J, seems low, it may be only a reflection
of our lack of knowledge concerning the true values of the
parameters Lp, a, and J,*, and more importantly, their distribu-
tion in the root. Therefore, care must be taken in applying the
equations we have developed in this paper to roots or root sys-
tems if only for geometrical considerations. We have dealt with a
flat membrane of uniform properties and not a cylindrical system
where Lp, a-, and J.,* may be expected to vary along the axis.
Such a cylindrical system would more accurately reflect the

Plant Physiol. Vol. 55, 1975 921

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lp

h
y
s
/a

rtic
le

/5
5
/5

/9
1
7
/6

0
7
4
6
0
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Plant Physiol. Vol. 55, 1975

situation in a terminal root segment, but the flat membrane
geometry may be used as an approximation to more complex
root systems, especially if the basal regions are much less conduc-
tive than the apical regions. In this case, the membrane properties
could not be thought of as uniformly distributed across the con-
ductive areas, and measured values of Lp, O', and Js* would
necessarily reflect some type of "average" conditions.
We have dealt only with nonelectrolyte uptake in this paper

and have not tried to simulate a root or root system. It has been
our intent only to demonstrate in general terms a possible cause
of apparent anomalies in the force-flux relationships of some root
systems. This fact is obviously another shortcoming of the model
along with the fact that we have considered JS* insensitive to
external concentrations, which we also know is not accurate,
especially in the range of 7r < 1 atm.

Regardless of these shortcomings, we feel that the model sys-
tem presented is sufficiently based on fact and consistent with
enough experimental data to warrant its further consideration
as a general model for coupled solute and water flow through
plant roots.

APPENDIX

To arrive at an expression containing the effects of all three
solute flux terms-active, drag, and diffusive we may start from
equation 9 of the text. We accept the approximation of C8
(equation 12) and will treat co as a measurable quantity even
though it does contain a buried Cs term. We therefore write
from equation 9

=C + Ci (1 - a)J, +± RT(Co - Ci) + JJ (16)

From the relationship of equation 2 we may divide by J, and
solve for ci to get

= CO(1 o-)J, + 2ror + 2JS* (17)
(I + o)J,, + 2wRT

Insertion of equation 17 into the modified form of equation 4
containing oa yields

[ (I - -) J,, +2aor +2VS*]
Jv, = LpAP - orLpr5 + aTLpRT J,(1 + o) + 2c,RT j(18)

Collecting terms and rearranging to the standard quadratic form
gives

J,2(1 + a-) + J,[2wRT - LpAP(I + a) + 2a2Lp5ro]
- 2LPRT(wAP + a-Js*) = 0

Solving equation 18 for AP and taking the first derivative with
respect to J,,, we find the apparent resistance as

dAP 1 2orRT[2rco7ro + 4*(1 + a)]
R d= =-ldJ,, Lp [J.4(1 + ac) + 2coRT]2

(20)
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