
Digital Object Identifier (DOI) 10.1007/s00205-005-0385-2
Arch. Rational Mech. Anal. 179 (2006) 303–352

The Interaction between
Quasilinear Elastodynamics and the

Navier-Stokes Equations

Daniel Coutand & Steve Shkoller

Communicated by V. Šverák

Abstract

The interaction between a viscous fluid and an elastic solid is modeled by a
system of parabolic and hyperbolic equations, coupled to one another along the
moving material interface through the continuity of the velocity and traction vec-
tors. We prove the existence and uniqueness (locally in time) of strong solutions
in Sobolev spaces for quasilinear elastodynamics coupled to the incompressible
Navier-Stokes equations. Unlike our approach in [5] for the case of linear elasto-
dynamics, we cannot employ a fixed-point argument on the nonlinear system itself,
and are instead forced to regularize it by a particular parabolic artificial viscosity
term. We proceed to show that with this specific regularization, we obtain a time
interval of existence which is independent of the artificial viscosity; together with
a priori estimates, we identify the global solution (in both phases), as well as the
interface motion, as a weak limit in strong norms of our sequence of regularized
problems.

1. Introduction

We establish the existence and uniqueness in Sobolev spaces of strong solu-
tions of the unsteady fluid-structure interaction problem consisting of a nonlinear
large-displacement elastic solid coupled to a viscous incompressible Newtonian
fluid. The fluid motion is governed by the incompressible Navier-Stokes equations,
while the solid, which can be either compressible or incompressible, is modeled by
the celebrated St. Venant-Kirchhoff constitutive law (although our method can be
applied to more general quasilinear hyperelastic models as those described in [3]).

The first fluid-solid interaction problems solved were for the case of a rigid
body inside of a viscous flow in a bounded domain (see [7, 12, 4, 13]), and the case
of a rigid body inside of a viscous flow in an infinite domain ([22, 20, 15]). Later,
the elastic body was modeled with the restriction of either a finite number of modes
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([8]) or a hyperviscous type law for the solid ([2, 10]), essentially by the same
type of Eulerian global variational methods developed in [7]. For the steady-state
problem, which is elliptic in both phases, [11] solved the case of a solid modeled
as a St. Venant-Kirchhoff material. In [18], an Eulerian approach was used for the
case in which the solid is a visco-hyperelastic material, which is a regularization
of a hyperbolic model of solid deformation.

With the exception of our recent well-posedness result for the case of a linear
elastic solid in [5], there are no known existence results for fluid-structure inter-
action when the solid is modeled by a standard second-order hyperbolic equation.
This may be attributed to the difficulties associated with coupling a parabolic PDE
for the fluid with a hyperbolic PDE for the solid through the continuity of the veloc-
ity and traction vectors across the moving material interface. As we explained in
[5], an iteration scheme between fluid and solid phases fails to converge due to a
regularity loss induced by the hyperbolic phase (this divergent behavior has been
computationally noted as well in [14]), and so we developed a method comprised
of the following new ideas: first, a functional framework which scales in a hyper-
bolic fashion for both the fluid and solid phases. This scaling leads to additional
compatibility conditions in the fluid phase (when compared to the use of the classi-
cal parabolic framework), and is absolutely crucial for obtaining consistent energy
estimates. Second, we developed a regularity theory founded upon central trace
estimates for the velocity vector restricted to the interface, rather than traditional
interior regularity arguments which do not work for our problem. Third, we were
forced to bypass the use of the frozen (or constant) coefficient basic linear problem,
which requires estimates on one more time derivative of the pressure function than
the initial data allows, and created a new method wherein the solution was found as
a limit of a sequence of penalized problems set in the Lagrangian framework.
The penalization scheme approximates the divergence-free constraint, whereas
the Lagrangian framework alleviates the difficulties associated with the lack of
a priori estimates in the solid phase for the frozen coefficient problem; this method
indeed differs significantly from the classical methods used in fluid-fluid interface
problems (see for instance [21, 1]).

The fundamental difficulty in extending our result to the case of nonlinear elas-
ticity is the absence of any method of analysis for quasilinear elastodynamics which
is compatible with the general scheme of [5], involving a global Lagrangian var-
iational formulation and the use of difference quotients to track the regularity of
interface data. We remind the reader that unlike the analysis of elastostatic motion,
direct inverse function theorem arguments cannot be applied directly to the case of
quasilinear elastodynamics due to the fact that the perturbation term arising from the
nonlinear operator is not an element of the appropriate function space for optimal
regularity. Alternatively, it is possible to attempt a fixed-point approach, wherein a
portion of the nonlinear elasticity operator is viewed as a forcing function coming
from a given velocity v, and then try to solve a linear problem for an unknown w.
The difficulty in this approach stems from the fact that we need to find exact time
derivatives of elastic energies for the forcing term associated with the elasticity
operator, which is complicated by the inner-product of a term involving

∫ t
0 v and

a term involving w. This difficulty is overcome in [6], by a clever and essential
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use of the Dirichlet boundary condition in order to reformulate the problem in a
non-standard way. As it turns out, the various known methods that have been used
in the well-studied area of quasilinear elasticity, such as those in [6] and [17] for
the Dirichlet boundary condition, or those in [19] and [9] for the Neumann bound-
ary condition, require a priori knowledge of the boundary data regularity, and are
hence intrinsically incompatible with fluid-structure interaction analysis (in fact,
the methods devised for Dirichlet conditions do not work for Neumann conditions
and vice versa). Indeed, of these various methodologies, only [6] and [17] use a
variational approach; the others employ either semi-group techniques as in the early
work of [16] in the full space, or technical paradifferential calculus as in [19] for
the two-dimensional Neumann case.

In this paper, we develop a new method for quasilinear elastodynamics, vari-
ational in nature, which is compatible with our method in [5]. We proceed in two
steps. First, we add a specific artificial viscosity to the solid phase which regularizes
the system, thus converting our hyperbolic PDE into a parabolic one and transform-
ing the fluid-structure interaction into a fluid-fluid interface-type problem for which
existence and uniqueness of solutions is already known on a time interval that a
priori shrinks to zero as the artificial viscosity κ tends to zero. Second, and this is
where the primary difficulty rests, we prove that our specific choice of parabolic
smoothing renders the time interval (on which a unique solution exists) indepen-
dent of κ; furthermore, our a priori estimates allow us to construct a solution by
weak convergence in strong norms. We note that the use of higher-order operators
in the artificial viscosity term, while providing the necessary a priori control of
the regularity of the moving interface, would not yield the κ-independent estimates
which are essential here. Also, as our parabolic regularization method is not spe-
cialized to any particular boundary condition, it thus provides a unified approach to
the classical problem of quasilinear elastodynamics when the solid is not coupled
to a fluid.

We now proceed to the formulation of our problem. Let � ⊂ R
3 denote an

open, bounded, connected and smooth domain with smooth boundary ∂� which
represents the fluid container in which both the solid and fluid move. Let�s(t) ⊂ �

denote the closure of an open and bounded subset representing the solid body at
each instant of time t ∈ [0, T ] with �f (t) := �/�s(t) denoting the fluid domain
at each t ∈ [0, T ]. Note that in our analysis �s(t) is not necessarily connected,
which allows us to handle the case of several elastic bodies moving in the fluid.

Remark 1. If a function u is defined on all of �, we will denote uf = u 1
�
f
0

and

us = u 1
�
s
0
. This allows us to indicate from which phase the traces on

�(0) := �f (0) ∩�s(0)
of various discontinuous terms arise, and also to specify functions that are associ-
ated with the fluid and solid phases.

For each t ∈ (0, T ], we wish to find the location of these domains inside �,
the divergence-free velocity field uf (t, ·) of the fluid, the fluid pressure function
p(t, ·) on �f (t), the fluid Lagrangian volume-preserving configuration ηf (t, ·) :
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�f (0) = �
f
0 → �f (t), and the elastic Lagrangian configuration field ηs(t, ·) :

�s(0) = �s0 → �s(t) such that � = ηs(t, �s0) ∪ ηf (t,�f0 ), where ηft (t, x) =
uf (t, ηf (t, x)), uf solves the Navier-Stokes equations in �f (t):

u
f
t + (uf · ∇)uf = div T f + ff ,

div uf = 0 ,

with

T f = ν Def uf − p I , (1)

and ηs solves the elasticity equations on �s(0)

η̈s = div T s + fs,

with T s = λ
2 Tr((∇ηs)T∇ηs − I ) I + µ ((∇ηs)T∇ηs − I ) , and where the

equations are coupled together by the continuity of the normal component of stress
along the material interface �(t) := �s(t) ∩ �f (t) expressed in the Lagrangian
representation on �0 := �(0) as

T sN =
[
T f ◦ ηf

] [
(∇ηf )−1N

]
,

and the continuity of particle displacement fields along �0

ηf = ηs ,

together with the initial conditions u(0, x) = u0(x), η(0, x) = x and the Dirichlet
(no-slip) condition on the boundary ∂� of the container uf = 0, where ν > 0 is
the kinematic viscosity of the fluid, λ > 0 and µ > 0 denote the Lamé constants
of the elastic material, N is the outward unit normal to �0 and Def u is twice the
rate of the deformation tensor of u, given in coordinates by ui,j +uj ,i . Note that
Latin indices run through 1, 2, 3, the Einstein summation convention is employed,
and indices after commas denote partial derivatives.

We now briefly outline the proof. As the solid and fluid phases are naturally
expressed in the Lagrangian and Eulerian framework, respectively, we begin by
transforming the fluid phase into Lagrangian coordinates, which leads us to the
system of equations (4) and, as in [5], we work in an hyperbolic framework in
order to accomodate the dual nature of the problem (parabolic in the fluid and
hyperbolic in the solid).

In order to solve (4), in Section 7, we first add a particular form of artificial
viscosity to the quasilinear hyperbolic equation in the solid, transforming the hyper-
bolic phase into a parabolic one; specifically, we add the term −κL(ηt ), where L
denotes the linearized (about the identity) elasticity operator and ηt is the mate-
rial velocity. We hence obtain an interface problem that is parabolic in nature in
both phases, and can be thought of as a fluid-fluid parabolic interface problem for
which well-posedness is classical (note that both phases are required to scale in an
hyperbolic fashion). The time interval of existence [0, Tκ ] for this parabolic system
a priori shrinks to zero as κ → 0.
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In Section 8, we establish κ-independent estimates on the solutions vκ of the
regularized parabolic problem on the time interval [0, Tκ ] by identifying exact time
derivatives of elastic energies, and establish regularity of the interface. A direct
fixed-point approach for (4) does not appear to yield these exact time derivatives
for the elastic energy, whereas the regularized problem (14) does indeed lead to
them. An essential key for obtaining estimates independent of κ inside the solid
is Lemma 1. Whereas the trace estimates could be carried with other choices of
artificial viscosity, we absolutely need the special choice made in our analysis in
order to recover the regularity inside the solid independently of κ . In particular, a
different choice of a regularizing operator either of the same order such as −�ηt
or of higher order such asL2η orL2ηt would not provide κ-independent estimates.

In Section 9, we then explain how our estimates allow the construction of solu-
tions vκ on a time interval independent of κ , still with energy estimates independent
of κ . The existence of a solution of (4) then follows by weak convergence as κ → 0.

Uniqueness is established in Section 11 in the same functional framework used
for existence.

As our method seemingly requires more regularity on the initial data in the
solid than it should, due to the artificial viscosity in the compatibility conditions,
we explain in Section 12 how this extra regularity can be removed, thus leading to
the result with optimal regularity.

Section 13 is dedicated to the case where the incompressibility constraint is
added to the solid. The additional difficulty with respect to the compressible case
comes from the fact that we control the velocity uniformly in κ in function spaces
which possess less regularity than in the fluid, whereas the pressure is controlled
uniformly in the same regularity spaces in both phases. Also, we cannot use Lemma
1 in the most optimal form for the regularity of the pressure in the solid phase.

2. Notational simplification

Although a fluid with a Neumann (free-slip) boundary condition indeed obeys
the constitutive law (1), we will replace for notational convenience (1) with

T f = ν∇uf − pI; (2)

this amounts to replacing the energy
∫

�
f
0

Def uf : Def v by
∫

�
f
0

∇uf : ∇v, which

is not a problem mathematically due to the well-known Korn inequality. Henceforth,
we shall take (2) as the fluid constitutive law.

3. Lagrangian formulation of the problem

With regards to the forcing functions, we shall use the convention of denoting
both the fluid forcing ff and the solid forcing fs by the same letter f . Since ff
has to be defined in� (because of the composition with η), and fs must be defined
in �s0, we will assume that the forcing f is defined over the entire domain �.
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Let

a(x) = [Cof∇ηf (x)]T , (3)

where (∇ηf (x))ij = ∂(ηf )i/∂xj (x) denotes the matrix of partial derivatives of

ηf . Clearly, the matrix a depends on η and we shall sometimes use the notation
aij (η) to denote formula (3).

Let v = u ◦ η denote the Lagrangian or material velocity field, q = p ◦ η is the
Lagrangian pressure function (in the fluid), and F = f f ◦ ηf is the fluid forcing
function in the material frame. Then, as long as no collisions occur between the
solids (if there are initially more than one) or between a solid and ∂�, the problem
can be reformulated as

ηt = v in (0, T )×�, (4a)

vit − ν(a
j
l a
k
l v
i,k ),j +(aki q),k = F i in (0, T )×�

f
0 , (4b)

aki v
i,k = 0 in (0, T )×�

f
0 , (4c)

vt − cmjkl[(η,m ·η,j −δmj )η,k ],l = f in (0, T )×�s0, (4d)

cmjkl (η,m ·η,j −δmj )ηi,k Nl = ν vi,k a
k
l a
j
l Nj

−qaji Nj on (0, T )× �0, (4e)

v(t, ·) ∈ H 1
0 (�; R

3) a.e. in (0, T ) , (4f)

v = u0 on �× {t = 0}, (4g)

η = Id on �× {t = 0}, (4h)

where N denotes the outward-pointing unit normal to �0 (pointing into the solid
phase), and

cijkl = λδij δkl + µ(δikδjl + δilδjk) .

Throughout the paper, all Greek indices run through 1, 2 and all Latin indices run
through 1, 2, 3. Note that the continuity of the velocity along the interface is sat-
isfied in the sense of traces on �0 by condition (4f), whereas the continuity of the
normal stress along the interface is represented by (4e).

4. Notation and conventions

We begin by specifying our notation for certain vector and matrix operations.

• We write the Euclidean inner-product between two vectors x and y as x · y, so
that x · y = xi yi .

• The transpose of a matrix A will be denoted by AT , i.e., (AT )ij = A
j
i .

• We write the product of a matrix A and a vector b as A b, i.e., (A b)i = Aijb
j .

• The product of two matrices A and S will be denoted by A · S, i.e., (A · S)ij =
Aik S

k
j .
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For T > 0 and k ∈ N, we set

V kf (T ) = {w ∈ L2(0, T ;Hk(�
f
0 ; R

3)) | ∂nt w ∈ L2(0, T ;Hk−n(�f0 ; R
3)),

n = 1, ..., k − 1},

where V ks (T ) is defined with �s0 replacing �f0 .
In order to specify the initial data for the weak formulation, we introduce the

space

L2
div,f = {ψ ∈ L2(�; R

3) | divψ = 0 in �f0 , ψ ·N = 0 on ∂�} ,

which is endowed with the L2(�; R
3) scalar product.

The space of velocities, XT , where the solution of (4) exists, is defined as the
following separable Hilbert space:

XT =
{

v ∈ L2(0, T ;H 1
0 (�; R

3)) |
(

vf ,

∫ ·

0
vs

)

∈ V 4
f (T )× V 4

s (T )

}

, (5)

endowed with its natural Hilbert norm

‖v‖2
XT

= ‖v‖2
L2(0,T ;H 1

0 (�;R3))

+
3∑

n=0

[

‖∂nt v‖2
L2(0,T ;H 4−n(�f0 ;R3))

+
∥
∥
∥∂nt

∫ ·

0
v

∥
∥
∥

2

L2(0,T ;H 4−n(�s0;R3))

]

.

We also need the space

YT = {(v, q) ∈ XT × L2(0, T ;H 3(�
f
0 ; R))|

∂nt q ∈ L2(0, T ;H 3−n(�f0 ; R))(n = 1, 2)},
endowed with its natural Hilbert norm

‖(v, q)‖2
YT

= ‖v‖2
XT

+
2∑

n=0

‖∂nt q‖2
L2(0,T ;H 3−n(�f0 ;R)) .

We shall also need L∞-in-time control of certain norms of the velocity, which
necessitates the use of the following closed subspace of XT :

WT = { v ∈ XT | vttt ∈ L∞(0, T ;L2(�; R
3)),

∂nt

∫ ·

0
v ∈ L∞(0, T ;H 4−n(�s0; R

3))(n = 0, 1, 2, 3)},

endowed with the following norm

‖v‖2
WT

= ‖v‖2
XT

+ ‖vttt‖2
L∞(0,T ;L2(�;R3))

+
3∑

n=0

‖∂nt
∫ ·

0
v‖2
L∞(0,T ;H 4−n(�s0;R3))

.



310 Daniel Coutand & Steve Shkoller

Finally, we will also make use of the space

ZT = {(v, q) ∈ WT × L2(0, T ;H 3(�
f
0 ; R))|

∂nt q∈L2(0, T ;H 3−n(�f0 ; R)), (n = 1, 2)| qtt ∈L∞(0, T ;L2(�
f
0 ; R))},

endowed with its natural norm

‖(v, q)‖2
ZT

= ‖v‖2
WT

+
2∑

n=0

‖∂nt q‖2
L2(0,T ;H 3−n(�f0 ;R)) + ‖∂2

t q‖2
L∞(0,T ;L2(�

f
0 ;R)) .

Remark 2. Note that our functional framework does not make use of the third-time
derivative of the pressure qttt , even though we do use the third-time derivative of
velocity wttt ; this functional framework is necessitated by the fact that the Dirich-
let boundary condition together with the limited regularity of wttt does not allow
us to obtain qttt with the appropriate regularity. Note also that we have added the
L∞-in-time control of qtt in the definition ofZT mostly for a more convenient way
to prove our theorems, rather than out of absolute necessity.

Throughout the paper, we shall use C to denote a generic constant, which may
possibly depend on the coefficients ν, λ, µ, or on the initial geometry given by
� and �f0 (such as a Sobolev constant or an elliptic constant). For the sake of
notational convenience, we will also write u(t) for u(t, ·).

5. The first theorem

We now state our first theorem. We impose greater regularity requirements on
the initial data than is optimal so as to avoid technical difficulties associated with a
particular type of initial data regularization that would otherwise be necessitated.
We consider the case of optimal regularity on the initial data in Theorem 2.

Theorem 1. Let � ⊂ R
3 be a bounded domain of class H 4, and let �s0 be an

open set (with a finite number � 1 of connected components) of class H 4 such
that �s0 ⊂ � and such that the distance between two distinct connected compo-
nents of �s0 (if there are multiple solid components) is greater than zero. Denote

�
f
0 = � ∩ (�s0)c and let ν > 0, λ > 0, µ > 0 be given. Let

(f, ft , ftt , fttt ) ∈ L2(0, T̄ ;H 3(�; R
3)×H 2(�; R

3)×H 1(�; R
3)

×L2(�; R
3)), (6a)

f (0) ∈ H 4(�; R
3) , ft (0) ∈ H 4(�; R

3). (6b)

Assume that the initial data satisfies

u0 ∈ H 6(�
f
0 ; R

3) ∩H 6(�s0; R
3) ∩H 1

0 (�; R
3) ∩ L2

div,f ,
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as well as the compatibility conditions

[∇uf0 N ]tan = 0 on �0, w1 = 0 = w2 on ∂�, ν�uf0 −∇q0 = 0 on �0, (7a)

[(ν[(akl ajl )wf ,ik ]t (0)Nj )3i=1]tan − [(q0 a
j
i t
(0)Nj )

3
i=1]tan

= [cmjkl[(ηs,m ·ηs,j −δmj )ηs,k
]
t
(0)Nl]tan on �0, (7b)

[(ν[(akl ajl )wf ,ik ]t t (0)Nj )3i=1]tan − [(2q1 a
j
i t
(0)Nj + q0 a

j
i tt
(0)Nj )

3
i=1]tan

= [cmjkl[(ηs,m ·ηs,j −δmj )ηs,k
]
t t
(0)Nl]tan on �0, (7c)

ν�wf1 + ν((a
j
l a
k
l )t (0)u

f
0 ,k ),j +Ft(0)− [((aji )t (0)q0),j +q1,i ]3

i=1

= ft (0)+ cmjkl
[[(ηs,m ·ηs,j −δmj )ηs,k ],l

]
t
(0) on �0 , (7d)

where the time derivatives appearing in these equations and in the following ones
are computed from any w satisfying w(0) = u0, ∂nt w(0) = wn (n = 1, 2), and
from any q satisfying ∂nt q(0) = qn (n = 0, 1, 2), where the quantities wn and qn
are defined in the following way. First, q0 ∈ H 3(�

f
0 ; R) is defined by

�q0 = div f (0)+ (a
j
i )t (0)u

i
0,j in �f0 , (8a)

q0 = ν[∇uf0 N ] ·N on �0, (8b)
∂q0

∂N
= f (0) ·N + ν�uf0 ·N on ∂�, (8c)

and w1 ∈ H 1
0 (�; R

3) ∩H 4(�s0; R
3) ∩H 4(�

f
0 ; R

3) by

w1 = ν�u0 − ∇q0 + f (0) in �f0 , (9a)

w1 = f (0) in �s0 . (9b)

Note that w1 ∈ H 4(�
f
0 ; R

3) since �w1 ∈ H 2(�
f
0 ; R

3) and w1 = 0 on ∂�,

w1 = f (0) on �0. We also have q1 ∈ H 3(�
f
0 ; R) defined by

�q1 = div[ν�w1 + Ft(0)+ [ν((ajl akl )t (0)ui0,k ),j −((aji )t (0)q0),j ]3
i=1]

+2(aji )t (0)w
i
1,j +(aji )tt (0)ui0,j in �f0 , (10a)

q1 = ν[∇wf1 N ·N + (akl a
j
l )t (0)u

f
0
i
,k NjNi] − q0 a

j
i t
(0)NjNi

−cmjkl[(ηs,m ·ηs,j −δmj )ηs,k
]
t
(0)Nl ·N on �0, (10b)

∂q1

∂N
= Ft(0) ·N − [(aji )t (0)q0],j Ni + ν�w1 ·N + ν((a

j
l a
k
l )t (0)u

i
0,k ),j Ni

on ∂� , (10c)

and w2 ∈ H 1
0 (�; R

3) ∩H 4(�s0; R
3) ∩H 2(�

f
0 ; R

3) by

wi2 = ν�wi1 + ν((a
j
l a
k
l )t (0)u

i
0,k ),j +F it (0)− ((a

j
i )t (0)q0),j −q1,i

in �f0 , (11a)

w2 = ft (0)+ cmjkl
[[(η,m ·η,j −δmj )η,k ],l

]
t
(0)

in �s0. (11b)
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Finally, q2 ∈ H 1(�
f
0 ; R) is defined by

�q2 =div
[
(f ◦ η)tt (0)+ν [(ajl akl w,k ,j ]t t (0)−[((aji )tt (0)q0+2(aji )t (0)q1),j]3

i=1

]

+3(aji )t (0)w
i
2,j+3(aji )tt (0)w

i
1,j+(aji )tt t (0)ui0,j in �f0 , (12a)

q2 =ν
[
(akl a

j
l )w

f i,k

]

t t
(0)NjNi−cmjkl

[
(ηs,m ·ηs,j −δmj )ηs,k

]
t t
(0)Nl ·N

−q0 a
j
i tt
(0)NjNi−2q1 a

j
i t
(0)NjNi on �0, (12b)

∂q2

∂N
= (f ◦ η)tt (0) ·N−2

[
(a
j
i )t (0)q1

]
,j Ni−

[
(a
j
i )tt (0)q0

]
,j Ni + ν�w2 ·N

+2ν((ajl a
k
l )t (0)w

i
1,k ),j Ni+ν((ajl akl )tt (0)ui0,k ),j Ni on ∂� . (12c)

Then there exists T ∈ (0, T̄ ) depending on u0, f , and�f0 , such that there exists
a unique solution (v, q) ∈ ZT of problem (4). Furthermore, η ∈ C0([0, T ];H 4

(�
f
0 ; R

3) ∩H 4(�s0; R
3) ∩H 1(�; R

3)).

Remark 3. The remarks appearing in [5] at the end of Section 5 concerning the
compatibility conditions and forcing functions for the linear elasticity case still
hold in this setting with the necessary adjustments. In particular, we do not need
the forcing functions to have the same regularity in both phases.

6. Preliminary result

In the remainder of the paper, we set

L(u)i = [cijkl(uk,l +ul,k )],j .
In our limit process as the artificial viscosity tends to zero, we will make use in

a crucial way of the basic following result:

Lemma 1. Let g ∈ C0([0, T ];L2(�s0; R
3)) and u be such that ut ∈ L2(0, T ;H 2

(�s0; R
3)) and

εL(ut )+ L(u) = g on [0, T ] ×�s0. (13)

Then, independently of ε > 0,

‖L(u)‖L∞(0,T ;L2(�s0;R3)) � ‖g‖L∞(0,T ;L2(�s0;R3)) + ‖L(u0)‖L2(�s0;R3).

Proof. Since L(u) ∈ C0(0, T ;L2(�s0; R
3)), let T ′ ∈ [0, T ] be such that

‖L(u(T ′))‖L2(�s0;R3) = sup
[0,T ]

‖L(u)‖L2(�s0;R3).

If T ′ = 0, then the statement of the Lemma is satisfied. Now, let us assume that
T ′ ∈ (0, T ]. Let δ ∈ (0, T ′) be arbitrary. From (13), we infer that

ε2
∫ T ′

T ′−δ
‖L(ut )‖2

L2(�s0;R3)
+

∫ T ′

T ′−δ
‖L(u)‖2

L2(�s0;R3)

+ε [‖L(u(T ′))‖2
L2(�s0;R3)

− ‖L(u(T ′ − δ))‖2
L2(�s0;R3)

] =
∫ T ′

T ′−δ
‖g‖2

L2(�s0;R3)
.
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From the definition of T ′ we then infer that for any δ ∈ (0, T ′),
∫ T ′

T ′−δ
‖L(u)‖2

L2(�s0;R3)
�

∫ T ′

T ′−δ
‖g‖2

L2(�s0;R3)
,

which after division by δ gives at the limit δ → 0:

‖L(u(T ′))‖2
L2(�s0;R3)

� ‖g(T ′)‖2
L2(�s0;R3)

,

which concludes the proof of the Lemma. �
Remark 4. It should be clear that Lemma 1 applies to a more general class of linear
operators than L.

7. The smoothed problem and its basic linear problem

As we described in the introduction, we cannot find an appropriate linear prob-
lem whose fixed-point provides a solution of (4). We are thus lead to introduce the
following (parabolic) regularization of (4), with the artificial viscosity κ > 0:

vit − ν(a
j
l a
k
l v
i,k ),j +(aki q),k = f i ◦ η in (0, T )×�

f
0 , (14a)

aki v
i,k = 0 in (0, T )×�

f
0 , (14b)

vit − κ[cijklvk,l ],j +N(η)i = f i + κhi in (0, T )×�s0 , (14c)

κ cijklvk,l Nj +G(η)i = ν vi,k a
k
l a
j
l Nj

−qaji Nj + κgi on (0, T )× �0 , (14d)

v(t, ·) ∈ H 1
0 (�; R

3) a.e. in (0, T ) , (14e)

v = u0 on �× {t = 0}, (14f)

where

N(η) = −cmjkl[(η,m ·η,j −δmj )ηi,k ],l in �s0, (15a)

G(η) = cmjkl[(η,m ·η,j −δmj )ηi,k ]Nl on �0, (15b)

and

hi(t, ·) = −
[

cijkl
(

u0 + tw1 + t2

2
w2

)k
,l

]

,j in �s0, (16a)

gi(t, ·) =
[

cijkl
(

u0 + tw1 + t2

2
w2

)k
,l

]

Nj on �0. (16b)

Solutions of (4) will be obtained as the limit (as κ → 0) of solutions of (14).

Suppose that v ∈ WT is given. Let η = Id +
∫ ·

0
v and let aji be the quantity

associated with η through (3).
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We are concerned with the following time-dependent linear problem, whose
fixed-point w = v provides a solution of (14):

wit − ν(a
j
l a
k
l w

i,k ),j +(aki q),k = f i ◦ η in (0, T )×�
f
0 , (17a)

aki w
i,k = 0 in (0, T )×�

f
0 , (17b)

wit − κ[cijklwk,l ],j +N(η)i = f i + κhi in (0, T )×�s0, (17c)

κ cijklwk,l Nj +G(η)i = ν wi,k a
k
l a
j
l Nj

−qaji Nj + κgi on (0, T )× �0, (17d)

w(t, ·) ∈ H 1
0 (�; R

3) a.e. in (0, T ) , (17e)

w = u0 on �× {t = 0}. (17f)

Remark 5. The two forcing functions (16a) are introduced for compatibility con-
ditions at time t = 0, allowing the solution of (17) to satisfy (wt (0), wtt (0)) ∈
H 1

0 (�; R
3)2 and even to satisfy the same initial conditions as solutions of (4)

would.

In the following, for the sake of notational convenience, we will denote by

N(u0, (wi)
3
i=1) a generic smooth function depending only on

3∑

i=0

[‖w3−i‖Hi(�s0;R3)+

‖w3−i‖Hi(�
f
0 ;R3)

] (with the convention that u0 = w0), by N((qi)2i=0) a generic

smooth function depending only on
2∑

i=0

‖q2−i‖Hi(�
f
0 ;R3)

and by M(f, κg, κh) a

generic smooth function depending only on‖f ‖V 3
f (T )

+‖f ‖V 3
s (T )

+κ[‖u0‖H 4(�s0;R3)

+‖w1‖H 4(�s0;R3) + ‖w2‖H 4(�s0;R3)]. Then, let w3 ∈ L2(�; R
3) be defined by

wi3 = ν[(ajl akl wi,k ),j ]t t (0)+ (f ◦ η)tt (0)− [aji q,j ]t t (0) in �f0 , (18a)

wi3 = f itt (0)+ cmjkl
[[(η,m ·η,j −δmj )η,k ],l

]
t t
(0) in �s0 , (18b)

where the time derivatives are computed with any η(0, x) = x, w = ηt (0) = u0,
∂nt w(0) = wn, (n = 1, 2), ∂nt q(0) = qn, (n = 0, 1, 2).

Let us now define

bκ(φ) = κ(cijklw2
k,l , φ

i,j )L2(�s0;R), (19a)

cκ(φ) = κ(cijklwk1,l , φ
i,j )L2(�s0;R), (19b)

dκ(φ) = κ(cijklu0
k,l , φ

i,j )L2(�s0;R) . (19c)

By proceding as in [5], we can establish the existence of a fixed-point for system
(14). This follows the lines of [5] by first approximating by a penalty scheme the
divergence-free constraint in the fluid in our Lagrangian setting, and by performing
a regularity analysis of the solution of (17), allowing the use of the Tychonoff
fixed-point theorem. Given the estimates obtained in [5], no new difficulties arise,
since the parabolic artificial viscosity in the solid controls the forcing coming from
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the quasilinear part on a short time which is a priori shrinking to zero, and for this
reason the proof is omitted here.

This leads us to the following

Lemma 2. There exists Tκ > 0 depending a priori on κ and on a given expres-
sion of the type N0(u0, (wi)

3
i=1) + N0((qi)

2
i=0) + M0(f, κg, κh), so that there

exists a unique solution (wκ, qκ) ∈ ZTκ of the regularized problem (14). Moreover,
wκ ∈ V 4

s (Tκ).

In the next section we will study the limit of these solutions of the smoothed
problems as κ → 0; this is problematic since the solutions of these regularized
problems are a priori defined on a time interval shrinking to zero as κ → 0.

Moreover, the following variational equations (for n = 0, 1, 2) are satisfied for
any test function φ ∈ L2(0, Tκ ;H 1

0 (�; R
3)):

∫ Tκ

0
(∂nt (wκ)t , φ)L2(�;R3) dt + ν

∫ Tκ

0
(∂nt (a

r
ka
s
kwκ,r ), φ,s )L2(�

f
0 ;R3)

dt

+κ
∫ Tκ

0
(cijkl∂nt wκ

k,l , φ
i,j )L2(�s0;R) dt−

∫ Tκ

0
(∂nt (a

l
kqκ), φ

k,l )L2(�
f
0 ;R)dt

+
∫ Tκ

0
(cijkl∂nt [(η,i ·η,j −δij )η,l ], φ,k )L2(�s0;R3) dt

=
∫ Tκ

0
(∂nt F, φ)L2(�

f
0 ;R3)

+ (∂nt f, φ)L2(�s0;R3) + ∂nt

[
t2

2

]

bκ(φ)+ ∂nt [t]cκ(φ)
+∂nt [1]dκ(φ) dt , (20)

together with the initial conditions wκ(0) = u0, (wκ)t (0) = w1, (wκ)tt (0) = w2
and qκ(0) = q0, (qκ)t (0) = q1, (qκ)tt (0) = q2. Moreover for the third-time
differentiated problem in time, we also have that a.e. in (0, Tκ),

1

2
‖(wκ)ttt (t)‖2

L2(�;R3)
+ ν

∫ t

0
((arka

s
kwκ,r )ttt , (wκ)ttt ,s )L2(�

f
0 ;R3)

+κ
∫ t

0
(cijkl(wκ)ttt

k,l (t), (wκ)ttt
i ,j (t))L2(�s0;R)

−
∫ t

0

∫

�
f
0

(qκ)tt [3(aji )tt (wκ)it ,j +3(aji )t (wκ)
i
tt ,j +(aji )tt twκ i,j ]t

+
∫

�
f
0

(qκ)tt (t) [3(aji )tt (wκ)it ,j +3(aji )t (wκ)
i
tt ,j +(aji )tt twκ i,j ](t)

−
∫ t

0

∫

�
f
0

[3(aji )tt (qκ)t (wκ)
i
tt t ,j +3(aji )t (qκ)tt (wκ)

i
tt t ,j +(aji )tt t qκ(wκ)itt t ,j ]

+
∫ t

0

∫

�s0

cijkl[(η,i ·η,j −δij )η,l ]t t t · (wκ)ttt ,k

� N(u0, (wi)
3
i=1)

+N((qi)2i=0)+
∫ t

0
[(Fttt , (wκ)ttt )L2(�

f
0 ;R3)

+ (fttt , (wκ)ttt )L2(�s0;R3)], (21)
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where we recall that C does not depend on the artificial viscosity κ . The follow-
ing result will be fundamental to our proof that the time interval of existence of
solutions of (14) is in fact κ-independent.

Lemma 3. The mapping γ : t → ‖(wκ, qκ)‖Zt is continuous on [0, Tκ ].
Proof. The continuity with respect to t of the terms of the type L2(0, t;Hs)

is obvious, and since wκ ∈ V 4
s (Tκ) (due to our artificial viscosity), so is the

continuity of
∑3
n=0 ‖∂nt ηκ‖2

L∞(0,t;H 4−n(�s0;R3))
. The only terms that remain are

‖∂3
t wκ‖L∞(0,t;L2(�;R3)) and ‖∂2

t qκ‖L∞(0,t;L2(�
f
0 ;R)).

In order to treat them, we will invoke the fact that due to our artificial viscos-
ity in the solid, we actually have ∂4

t wκ ∈ L2(0, Tκ ;L2(�; R
3)), which provides

∂3
t wκ ∈ C0([0, Tκ ];L2(�; R

3)). For the second-time derivative of the pressure, we
notice that from the variational form, which is true almost everywhere on [0, Tκ ]
for any φ ∈ H 1

0 (�; R
3),

(∂3
t wκ, φ)L2(�;R3) + ν(∂2

t (a
r
ka
s
kwκ,r ), φ,s )L2(�

f
0 ;R3)

+κ(cijkl∂2
t wκ

k,l , φ
i,j )L2(�s0;R) − (∂2

t (a
l
kqκ)− alkqκ tt , φ

k,l )L2(�
f
0 ;R)

+(cijkl∂2
t [(η,i ·η,j −δij )η,l ], φ,k )L2(�s0;R3) − (∂2

t F, φ)L2(�
f
0 ;R3)

−(∂2
t f, φ)L2(�s0;R3) − bκ(φ)

= (alkqκ tt , φ
k,l )L2(�

f
0 ;R) ,

and from the Lagrange multiplier Lemma 13 of [5] associated with the continuity
results previously established, we have the continuity of t → ‖qκ tt‖L∞(0,t;L2(�

f
0 ;R))

on [0, Tκ ].
We now explain briefly why such a control on the fourth-time derivative of

w̃κ holds, and is possible only with the addition of the artificial viscosity in the
solid. In particular, this norm cannot be controlled as κ → 0, which is not cru-
cial for our purposes in any case. In order to understand the idea, we return to
the level of the setting of the fixed-point argument, where we assume that v in an
appropriate convex set of V 4

f (T ) × V 4
s (T ) is given, and search for a solution w

of (17) by a Galerkin approximation on a penalized problem (for the pressure), in
a way similar to [5]. The penalization parameter ε > 0 is given, and we denote

qnε =
2∑

n=0

tn

n!qn− 1

ε
a
j
i (w

n
ε )
i,j , wherewnε is solution of the Galerkin approximation

at rank n, and where aji is computed from η associated with the given v. Our interest
will be with the first problem that appears in our methodology in [5]; namely, the
highest-order time-differentiated problem is multiplied by ∂4

t w
n
ε (which is permit-

ted since it belongs to the appropriate finite dimensional space), and then integrated
from 0 to t . We obtain

∫ t

0
‖∂4
t w

n
ε ‖2
L2(�;R3)

+ ν

∫ t

0
(∂3
t (a

r
ka
s
kw

n
ε ,r ), ∂

4
t (w

n
ε ),s )L2(�

f
0 ;R3)

+
[κ

2
(cijkl∂3

t (w
n
ε )
k,l , ∂

3
t (w

n
ε )
i,j )L2(�s0;R)

]t

0
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−
∫ t

0
(∂3
t (a

l
kq
n
ε ), ∂

4
t (w

n
ε )
k,l )L2(�

f
0 ;R)

−
∫ t

0
(cijkl∂4

t [(η,i ·η,j −δij )η,l ], ∂3
t (w

n
ε ),k )L2(�s0;R3)

+
[∫

�s0

cijkl∂3
t [(η,i ·η,j −δij )η,l ] · ∂3

t (w
n
ε ),k

]t

0

=
∫ t

0

[∫

�
f
0

∂3
t F · ∂4

t w
n
ε +

∫

�s0

∂3
t f · ∂4

t w
n
ε

]

,

leading us for a time small enough depending on the artificial viscosity κ (but not
on n and ε) to an inequality of the type,

∫ t

0
‖∂4
t w

n
ε ‖2
L2(�;R3)

+ sup
[0,t]

[‖∂3
t w

n
ε ‖2
H 1(�

f
0 ;R3)

+ κ‖∂3
t w

n
ε ‖2
H 1(�s0;R3)

+ ε‖∂3
t q

n
ε ‖2
L2(�

f
0 ;R)]

� Cε[N(u0, (wi)
3
i=1)+N((qi)

2
i=0)+N(f )],

whereCε depends a priori on ε. By proceding in a way inspired by our methodology
in Section 9 of [5], we can then prove that we have control, independently of ε, on
the first three norms. Taking the limit first as n → ∞ and then as ε → 0, indeed
provides us with ∂4

t wκ ∈ L2(0, Tκ ;L2(�
f
0 ; R

3)) as announced. �
We note that this latter regularity property in the solid is only possible with the
artificial viscosity κ > 0.

8. An estimate for the solutions of (17) independent of κ

In this section, we will denote (wκ, qκ) = (w̃, q̃) and denote the corresponding
quantities aji by ãji . In what follows, δ > 0 is a given positive number to be made
precise later when it will be chosen to be sufficiently small.

8.1. Energy estimate for w̃ttt independent of κ

We are now going to use the regularity result (w̃, q̃) ∈ ZTκ in the energy inequal-
ity (21) (which was established independently of the artificial viscosity); this time
we interpolate and use the energy properties of the nonlinear elasticity operator, in
order to get an estimate independent of the artificial viscosity.

Step 1. Let I1 =
∫ t

0

∫

�s0

cijkl(η̃,i ·η̃,j −δij )w̃tt ,l ·w̃ttt ,k . An integration by parts

in time shows that

I1 = −1

2

∫ t

0

∫

�s0

cijkl(η̃,i ·η̃,j −δij )t w̃tt ,l ·w̃tt ,k

+1

2

∫

�s0

cijkl(η̃,i ·η̃,j −δij )w̃tt ,l ·w̃tt ,k (t) ,
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and thus with the properties of the Bochner integral in H 2(�s0; R),

η̃,i ·η̃,j (t)− δij =
∫ t

0
[η̃,i ·w̃,j +w̃,i ·η̃,j ],

we deduce

|I1| � Ct ‖w̃tt‖2
L∞(0,t;H 1(�s0;R3))

‖w̃‖L∞(0,t;H 3(�s0;R3))‖η̃‖L∞(0,t;H 3(�s0;R3))

� Ct ‖w̃‖4
Wt
. (22)

Step 2. Let I2 = 3
∫ t

0

∫

�s0

cijkl(η̃,i ·η̃,j −δij )t w̃t ,l ·w̃ttt ,k . Similarly,

I2 = −3
∫ t

0

∫

�s0

cijkl[(η̃,i ·η̃,j −δij )t w̃tt ,l ·w̃tt ,k +(η̃,i ·η̃,j −δij )tt w̃t ,l ·w̃tt ,k ]

+3

[∫

�s0

cijkl(η̃,i ·η̃,j −δij )t w̃t ,l ·w̃tt ,k (t)
]t

0

.

By the same type of argument used in the previous step, we then get

|I2| � Ct ‖w̃tt‖2
L∞(0,t;H 1(�s0;R3))

‖w̃‖L∞(0,t;H 3(�s0;R3))‖η̃‖L∞(0,t;H 3(�s0;R3))

+Ct ‖w̃tt‖L∞(0,t;H 1(�s0;R3))‖w̃‖2
L∞(0,t;H 3(�s0;R3))

‖w̃t‖L∞(0,t;H 1(�s0;R3))

+Ct ‖w̃tt‖L∞(0,t;H 1(�s0;R3))‖w̃t‖2
L∞(0,t;H 2(�s0;R3))

‖η̃‖L∞(0,t;H 3(�s0;R3))

+C
∥
∥
∥cijkl

[

(ui0,j +uj0,i )w1,l+
∫ ·

0
((η̃,i ·η̃,j−δij )t w̃t ,l )t

]∥
∥
∥
L∞(0,t;L2(�s0;R3))

×‖w̃,ktt‖L∞(0,t;L2(�s0;R3))

+N(u0, (wi)
3
i=1),

and thus,

|I2| � δ‖w̃‖2
Wt

+ Ct‖w̃‖4
Wt

+ CδN(u0, (wi)
3
i=1). (23)

Step 3. Let I3 = 3
∫ t

0

∫

�s0

cijkl(η̃,i ·η̃,j −δij )tt w̃,l ·w̃ttt ,k . By an integration by

parts in time,

I3 = −3
∫ t

0

∫

�s0

cijkl[(η̃,i ·η̃,j −δij )tt w̃t ,l ·w̃tt ,k +(η̃,i ·η̃,j −δij )ttt w̃,l ·w̃tt ,k ]

+ 3

[∫

�s0

cijkl(η̃,i ·η̃,j −δij )tt w̃,l ·w̃tt ,k (t)
]t

0

.
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Similarly as before, we get

|I3| � Ct ‖w̃tt‖L∞(0,T ;H 1(�s0;R3))‖w̃‖2
L∞(0,t;H 3(�s0;R3))

‖w̃t‖L∞(0,t;H 1(�s0;R3))

+Ct ‖w̃tt‖L∞(0,T ;H 1(�s0;R3))‖w̃t‖2
L∞(0,t;H 2(�s0;R3))

‖η̃‖L∞(0,t;H 3(�s0;R3))

+Ct ‖w̃tt‖2
L∞(0,T ;H 1(�s0;R3))

‖w̃‖L∞(0,t;H 3(�s0;R3))‖η̃‖L∞(0,t;H 3(�s0;R3))

+Ct ‖w̃tt‖L∞(0,T ;H 1(�s0;R3))‖w̃t‖L∞(0,t;H 1(�s0;R3))‖w̃‖2
L∞(0,t;H 3(�s0;R3))

+C
∥
∥
∥cijkl((η̃,i ·η̃,j )tt (0)w1,l+

∫ ·

0
((η̃,i ·η̃,j−δij )tt w̃,l )t )

∥
∥
∥
L∞(0,t;L2(�s0;R3))

×‖w̃tt ,k ‖L∞(0,t;L2(�s0;R3))

+N(u0, (wi)
3
i=1),

and therefore

|I3| � δ‖w̃‖2
Wt

+ Ct‖w̃‖4
Wt

+ CδN(u0, (wi)
3
i=1). (24)

Step 4. Let I4 =
∫ t

0

∫

�s0

cijkl(η̃,i ·η̃,j −δij )ttt η̃,l ·w̃ttt ,k . By the symmetry of c,

we notice that

I4 = 1

2

∫ t

0

∫

�s0

cijkl(η̃,i ·η̃,j )tt t (η̃,l ·η̃,k)ttt t

−
∫ t

0

∫

�s0

cijkl[4(η̃,i ·η̃,j )tt t (w̃,l ·w̃tt ,k )+ 3(η̃,i ·η̃,j )tt t (w̃t ,l ·w̃t ,k )],

and thus,
∣
∣I4 − 1

4

∫

�s0

cijkl(η̃,i ·η̃,j )tt t (η̃,l ·η̃,k)ttt (t)
∣
∣

� Ct ‖∇w̃tt‖2
L∞(0,t;L2(�s0;R9))

‖∇w̃‖L∞(0,t;H 2(�s0;R9))‖∇η̃‖L∞(0,t;H 2(�s0;R9))

+Ct‖∇w̃t‖L∞(0,t;L2(�s0;R9))‖∇w̃tt‖L∞(0,t;L2(�s0;R9))‖∇w̃‖2
L∞(0,t;H 2(�s0;R9))

+Ct‖∇w̃t‖2
L∞(0,t;H 1(�s0;R9))

‖∇w̃tt‖L∞(0,t;L2(�s0;R9))‖∇η̃‖L∞(0,t;H 2(�s0;R9))

+Ct‖∇w̃‖L∞(0,t;H 2(�s0;R9))‖∇w̃t‖3
L∞(0,t;H 1(�s0;R9))

+N(u0, (wi)
3
i=1)

� N(u0, (wi)
3
i=1)+ Ct ‖w̃‖4

Wt
. (25)

Now, Let I = 1

4

∫

�s0

cijkl(η̃,i ·η̃,j )tt t (η̃,l ·η̃,k)ttt (t). By expanding the inte-

grand with respect to the time derivatives and using the relation in H 3(�s0; R
3):

η̃(t, ·) = Id+
∫ t

0
w̃(t ′, ·) dt ′ and estimates similar as in the previous steps, we find

that
∣
∣
∣
∣
∣
I −

∫

�s0

cijklw̃
j
tt ,i w̃

k
tt ,l (t)

∣
∣
∣
∣
∣
� CδN(u0, (wi)

3
i=1)+ δ‖w̃‖2

Wt
+ Ct‖w̃‖4

Wt
. (26)
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Step 5. By using (25) and (26) we find that
∣
∣
∣
∣
∣
I4 −

∫

�s0

cijklw̃
j
tt ,i w̃

k
tt ,l (t)

∣
∣
∣
∣
∣
� CδN(u0, (wi)

3
i=1)+δ‖w̃‖2

Wt
+ Ct‖w̃‖4

Wt
. (27)

Step 6. By proceding in a way similar to [5], except that we replace the constants
C(M) appearing there by appropriate powers of ‖(w̃, q̃)‖Zt , we find that the inte-
grals set in the fluid domain are bounded by

δ‖(w̃, q̃)‖2
Zt

+Cδ
[
N((qi)

2
i=0)+N(u0, (wi)

3
i=1)+M(f, κg, κh)+t

1
4 ‖(w̃, q̃)‖6

Zt

]
.

Step 7. Thus, from (21), and Steps 1–6, we then obtain on [0, Tκ ]:

sup
[0,t]

‖w̃ttt‖2
L2(�;R3)

+
∫ t

0

[

‖w̃ttt‖2
H 1(�

f
0 ;R3)

+ κ‖w̃ttt‖2
H 1(�s0;R3)

]

+ sup
[0,t]

‖w̃tt‖2
H 1(�s0;R3)

� Cδ[N(u0, (wi)
3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)+ t

1
4 ‖(w̃, q̃)‖6

Zt
]

+Cδ‖(w̃, q̃)‖2
Zt
. (28)

Step 8. The estimate of q̃t t in L∞(L2), independent of κ , will require some adjust-
ments with respect to the methodology of [5]. To this end, we notice that we can
apply a Lagrange multiplier Lemma similar to Lemma 13 of [5], but corresponding
to the case aji = δ

j
i , to the variational form true on [0, Tκ ]: for all φ ∈ H 1

0 (�; R
3),

(w̃ttt , φ)L2(�;R3)

+ν((ãrk ãskw̃,r )tt , φ,s )L2(�
f
0 ;R3)

+ κ(cijklw̃ktt ,l , φ
i,j )L2(�s0;R)

+(cijkl[(η̃,i ·η̃,j −δij )η̃,l ]t t , φ,k )L2(�s0;R3) − ((ãlk − δkl)q̃tt , φ
k,l )L2(�

f
0 ;R)

−((ãlkq̃)tt−ãlkq̃t t , φk,l)L2(�
f
0 ;R)−(Ftt , φ)L2(�

f
0 ;R3)

−(ftt , φ)L2(�s0;R3)−bκ(φ)
= (q̃tt , div φ)

L2(�
f
0 ;R),

which provides for any t ∈ [0, Tκ ],:
‖q̃t t‖L2(�

f
0 ;R) � C

[
‖w̃ttt‖L2(�;R3)+‖(ãrk ãskw̃,r )tt‖L2(�

f
0 ;R3)

+κ‖w̃tt‖H 1(�s0;R)

+‖[(η̃,i ·η̃,j −δij )η̃,l ]t t‖L2(�s0;R3) + ‖(ãlkq̃)tt − ãlkq̃t t‖L2(�;R)

+‖ã − Id‖
H 2(�

f
0 ;R9)

‖q̃t t‖L2(�
f
0 ;R) +N(u0, (wi)

3
i=1)+M(f, κg, κh)

]
.

By using (28) for the first four terms of the right-hand side of this inequality
and remembering that the L∞(0, t;L2(�

f
0 ; R)) norm of q̃t t is part of the norm Zt

for the next two terms of this inequality, we get

sup
[0,t]

‖q̃t t‖2
L2(�

f
0 ;R) � Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
. (29)
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8.2. Estimate on wtt and wt

From the previous estimates, and the arguments that we will see hereafter for
the case of w̃, we have

‖w̃tt‖2
L2(0,t;H 2(�

f
0 ;R3))

+ ‖q̃t t‖2
L2(0,t;H 1(�

f
0 ;R)) + ‖w̃t‖2

L∞(0,t;H 2(�s0;R3))

� Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
. (30)

Similarly, we infer from (30) that

‖w̃t‖2
L2(0,t;H 3(�

f
0 ;R3))

+ ‖q̃t‖2
L2(0,t;H 2(�

f
0 ;R)) + ‖w̃‖2

L∞(0,t;H 3(�s0;R3))

� Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
. (31)

8.3. Estimate on w̃

We will denote R
3+ = {x ∈ R

3| x3 > 0}, R
3− = {x ∈ R

3| x3 < 0}, and
B−(0, r) = B(0, r) ∩ R

3−. We denote by  an H 4 diffeomorphism from B(0, 1)

into a neighborhood V of a point x0 ∈ �0 such that (B(0, 1) ∩ R
3+) = V ∩�f0 ,

(B(0, 1)∩ R
3−) = V ∩�s0,(B(0, 1)∩ R

2 × {0}) = V ∩�0, with det ∇ = 1.
We consider a cut-off function ζ compactly supported in B(0, 1), and equal to 1 in
B(0, 1

2 ).
With the use of test functions φp = −[ρp � (ζ 2 w̃ ◦ )],α1α1α2α2α3α3 ◦−1

(which is inL2(0, Tκ ;H 1
0 (�; R

3))) in (20) for n = 0, and by denotingW = w̃◦,
Q = q̃ ◦, E = η̃ ◦, we get after integrating by parts appropriately and letting
p → ∞,

1

2
‖ζW,α1α2α3 (t)‖2

L2(R3;R3)

+
∫ t

0
(Wt ,α1α2α3 , [ζ 2W ],α1α2α3 −ζ 2W,α1α2α3 )L2(R3;R3)

+ν
∫ t

0
([b̃rkb̃skW,r ],α1α2α3 , [ζ 2W ],sα1α2α3 )L2(R3+;R3)

−
∫ t

0

∫

R
3+
[Q b̃

j
i ],α1α2α3 [ζ 2W ]i ,jα1α2α3

+κ
∫ t

0
([Cijkl(W,i ·,j ) ,l ],α1α2α3 , [ζ 2W ],kα1α2α3 )L2(R3−;R3)

+
∫ t

0
([Cijkl(E,i ·E,j −,i ·,j ) E,l ],α1α2α3 , [ζ 2W ],kα1α2α3 )L2(R3−;R3)
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� C N(u0, (wi)
3
i=1)+ lim

p→∞

∫ t

0
[ (F, φp)L2(�

f
0 ;R3)

+ (f, φp)L2(�s0;R3)]

+ lim
p→∞

∫ t

0
[ t

′2

2
bκ(φp)+ t ′cκ(φp)+ dκ(φp) ], (32)

where Cijkl = cmnopgimg
j
ng
k
og
l
p ∈ H 3(B(0, 1); R), g = [∇]−1 ∈ H 3(B(0, 1);

R
9), b̃jl = ãkl ()g

j
k .

Remark 6. Note that this limit process as p → ∞ for the nonlinear elastic energy
is possible because ∂nt w̃ ∈ L2(0, Tκ ;H 4−n(�s0; R

3)) (n = 0, 1) due to our artificial
viscosity in the solid. Whereas we could also use difference quotients, it appears
that the product rules are less cumbersome with the use of horizontal derivatives
instead, which is permitted since we already know at this stage the regularity of w̃
and q̃. Also, the limits on the right-hand side of (32) do not present any difficulties,
given the regularity of the forcing functions and three integrations by parts with
respect to horizontal variables.

Remark 7. Since ζ is compactly supported in B(0, 1), the integrals set on R
3, R

3−,
R

3+ do not depend on the extension that we chose for W , E or Q, and simply
represent a more convenient way to write these integrals.

Step 1. Let L1 = κ

∫ t

0
( [CijklW,i ·,j ,l ],α1α2α3 , [ζ 2 W ],kα1α2α3 )L2(R3−;R3).

By using the H 3 regularity of the coefficients Cijkl ,

L1 = κ

∫ t

0
(CijklW,iα1α2α3 ·,j ,l , ζ 2 W,kα1α2α3 )L2(R3−;R3)

+κ
∫ t

0

(
[CijklW,i ·,j ,l ],α1α2α3 −CijklW,iα1α2α3 ·,j ,l ,

ζ 2 W,kα1α2α3

)

L2(R3−;R3)

+κ
∫ t

0

(
[CijklW,i ·,j ,l ],α1α2α3 ,

[ζ 2 W,k ],α1α2α3 −ζ 2 W,kα1α2α3

)

L2(R3−;R3)

� Cκ

∫ t

0
(CijklW,iα1α2α3 ·,j ,l , ζ 2 W,kα1α2α3 )L2(R3−;R3)

−Cκ
∫ t

0
‖w̃‖2

H 3(�s0;R3)

� Cκ

∫ t

0
‖W,α1α2α3 ‖2

H 1(B−(0, 1
2 );R3)

− Cκt‖w̃‖2
Wt
. (33)

Step 2. Let

L2 =
∫ t

0
([Cijkl(E,i ·E,j −,i ·,j ) E,l ],α1α2α3 , [ζ 2Et ],kα1α2α3 )L2(R3−;R3).
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With �3 denoting the set of permutations of {1, 2, 3}, we have

L2 =
∫ t

0
(Cijkl(E,i ·E,j −,i ·,j ) E,lα1α2α3 , ζ

2Et,kα1α2α3 )L2(R3−;R3)

+2
∫ t

0
(ζ 2Cijkl(E,iα1α2α3 ·E,j ) E,l , Et ,kα1α2α3 )L2(R3−;R3)

+
∫ t

0
(ζ 2[[Cijkl(E,i ·E,j )],α1α2α3 −2Cijkl(E,iα1α2α3 ·E,j )]E,l ,

Et ,kα1α2α3 )L2(R3−;R3)

+
∫ t

0
([ζ 2(Cijkl,i ·,j ),α1α2α3 E,l ]t , E,kα1α2α3 )L2(R3−;R3)

−[
(ζ 2(Cijkl,i ·,j ),α1α2α3 E,l , E,kα1α2α3 )L2(R3−;R3)

]t
0

−
∑

σ∈�3

∫ t

0
([ζ 2[Cijkl(E,i ·E,j −,i ·,j )],ασ(1) E,ασ(2)ασ(3)l ],α1 ,

Et ,α2α3k )L2(R3−;R3)

−
∑

σ∈�3

∫ t

0
([ζ 2[Cijkl(E,i ·E,j −,i ·,j )],ασ(1)ασ(2) E,ασ(3)l ],α1 ,

Et ,α2α3k )L2(R3−;R3)

+
∫ t

0
([Cijkl(E,i ·E,j −,i ·,j ) E,l ],α1α2α3 ,

[ζ 2Et ],α1α2α3k −ζ 2Et,α1α2α3k )L2(R3−;R3) .

From the regularity of w̃ and the H 4 regularity of , we then infer

L2 =
∫ t

0
(Cijkl(E,i ·E,j −,i ·,j ) E,α1α2α3l , ζ

2Et,α1α2α3k )L2(R3−;R3)

+2
∫ t

0
(CijklE,α1α2α3i ·E,j ζ 2E,l , Et ,α1α2α3k )L2(R3−;R3)

+
∫ t

0
(C,ijklα1α2α3

E,i ·E,j ζ 2E,l , Et ,α1α2α3k )L2(R3−;R3) + Lr2,

with

|Lr2| � δ‖w̃‖2
Wt

+ Ct ‖w̃‖4
Wt

+ CδN(u0, (wi)
3
i=1). (34)

By integrating by parts in time, we deduce

L2 = −1

2

∫ t

0
(Cijkl(E,i ·E,j −,i ·,j )t E,α1α2α3l , ζ

2E,α1α2α3k )L2(R3−;R3)

+[1

2
(Cijkl(E,i ·E,j −,i ·,j ) E,α1α2α3l , ζ

2E,α1α2α3k )L2(R3−;R3)

]t
0

−2
∫ t

0
(CijklE,α1α2α3i ·E,j ζ 2Et,l , E,α1α2α3k )L2(R3−;R3)
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+[
(CijklE,α1α2α3i ·E,j ζ 2E,l , E,α1α2α3k )L2(R3−;R3)

]t
0

−
∫ t

0
(C,ijklα1α2α3

(E,i ·E,j ζ 2E,l )t , E,α1α2α3k )L2(R3−;R3)

+[
(C,ijklα1α2α3

E,i ·E,j ζ 2E,l , E,α1α2α3k )L2(R3−;R3)

]t
0 + Lr2,

which implies in turn
∣
∣L2 − (Cijklζ 2E,α1α2α3i (t) ·,j ,l , E,α1α2α3k (t))L2(R3−;R3)

∣
∣

� δ‖w̃‖2
Wt

+ CδN(u0, (wi)
3
i=1)+ Ct ‖w̃‖4

Wt
. (35)

With ek (k = 1, 2, 3) denoting the canonical vectors of R
3, let

P(t) = ∥
∥ 2cijkl(η̃,mnil ·ej ) ek − [cijkl(η̃,i ·η̃j − δij )η̃,k ],lmn

∥
∥
L2(�s0;R3)

(t),

where m and n are arbitrarily fixed in {1, 2, 3}. We then have

P(t) � P1(t)+ P2(t),

with

P1(t) = ∥
∥ 2cijkl(η̃,ilmn ·e,j ) ek − 2[cijkl(η̃,mni ·η̃,j )η̃,k ],l

∥
∥
L2(�s0;R3)

(t),

P2(t) = ∥
∥−[cijkl(η̃,i ·η̃,j −δij )η̃,k ],lmn+2[cijkl(η̃,mni ·η̃,j )η̃,k ],l

∥
∥
L2(�s0;R3)

(t).

We first notice that

P1(t) �
∥
∥ 2cijkl[(η̃,ilmn ·ej ) ek − (η̃,ilmn ·η̃,j )η̃,k ]∥∥

L2(�s0;R3)
(t)

+∥
∥ 2cijkl[η̃,imn ·(η̃,j ] η̃,k ),l

∥
∥
L2(�s0;R3)

(t),

Where [u.(v]w),l = u.v,l w + u.vw,l

Next, by writing η̃(t)= Id+
∫ t

0
w̃ and [η̃,mni ·(η̃,j ] η̃,k ),l (t)=[η̃,mni ·(η̃,j ] η̃,k ),l

(0) + ∫ t
0 [[η̃,mni ·(η̃,j ] η̃,k ),l ]t respectively in H 3(�s0; R

3) and L2(�s0; R
3), we

obtain

P1(t) � C[
∫ t

0
‖w̃‖H 3(�s0;R3)] sup

[0,t]
[‖η̃‖2

H 4(�s0;R3)
+ ‖η̃‖H 4(�s0;R3)]

+N(u0, (wi)
3
i=1)+ C

∫ t

0
‖w̃‖H 3(�s0;R3) sup

[0,t]
‖η̃‖2

H 4(�s0;R3)

� N(u0, (wi)
3
i=1)+ Ct ‖w̃‖3

Wt
.

Next, we see that

P2(t) �
∥
∥cijkl[(η̃,i ·η̃,j −δij )η̃,kmn+(η̃,i ·η̃,j ),m η̃,kn

+(η̃,i ·η̃,j ),n η̃,km ],l
∥
∥
L2(�s0;R3)

(t)

+∥
∥cijkl[(η̃,mi ·η̃,nj +η̃,in ·η̃,jm )η̃,k ],l

∥
∥
L2(�s0;R3)

(t),
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and by the same type of arguments as for P1(t),

P2(t) � N(u0, (wi)
3
i=1)+ Ct ‖w̃‖3

Wt
,

implying that

P(t) � N(u0, (wi)
3
i=1)+ Ct ‖w̃‖3

Wt
. (36)

Now, from the definition of a solution of the smoothed problem (14),

∥
∥ κcijkl(η̃t ,ilmn ·ej ) ek + [cijkl(η̃,i ·η̃j − δij )η̃,k ],mnl

∥
∥
L2(�s0;R3)

(t)

= ‖(w̃t − f − κh),mn (t)‖L2(�s0;R3),

which implies with (36) that

∥
∥
∥
κ

2
L(w̃,nm )+ L(η̃,nm )

∥
∥
∥
L2(�s0;R3)

(t) � ‖(w̃t − f − κh),nm (t)‖L2(�s0;R3)

+N(u0, (wi)
3
i=1)+ Ct ‖w̃‖3

Wt
.

Since this inequality also holds for any t ′ ∈ (0, t), Lemma 1 provides

‖L(η̃,nm )‖L∞(0,t;L2(�s0;R3)) � C‖w̃t ,mn ‖L∞(0,t;L2(�s0;R3)) + CM(f, κg, κh)

+N(u0, (wi)
3
i=1)+ Ct ‖w̃‖3

Wt
,

which with the estimate on wt from the previous subsection leads to

‖L(η̃,nm )‖L∞(0,t;L2(�s0;R3)) � Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)2i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
. (37)

Step 3. From the estimates on L1 − L2, and similar estimates that we could get
in the fluid as in [5], but this time by replacing C(M) by appropriate powers of
‖(w̃, q̃)‖Zt , we then deduce that for all t ∈ [0, Ť ],

1

2
‖ζW,α1α2α3 (t)‖2

L2(R3+;R3)
+ ν

∫ t

0
(ζ 2brkW,α1α2α3r , b

s
kW,α1α2α3s )L2(R3+;R3)

� Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
.

By the trace theorem, we then get

∫ t

0
‖W‖2

H 3.5(S;R3)
� Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
,
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where S = {
(x1, x2, x3) ∈ R

3| |x1| � 1
2 , |x2| � 1

2 , x3 = 0
}
. By a finite covering

argument, we then get
∫ t

0
‖w̃‖2

H 3.5(�0;R3)
� Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
. (38)

From the estimate (31) on w̃t and the trace estimate (38), we infer in a way
similar to [5] by elliptic regularity arguments that

‖w̃‖2
L2(0,t;H 4(�

f
0 ;R3))

+ ‖q̃‖2
L2(0,t;H 3(�

f
0 ;R))

� Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
. (39)

Similarly, from (37), and the trace estimate (38), elliptic regularity yields

‖η̃‖2
L∞(0,t;H 4(�s0;R3))

� Cδ

[
N(u0, (wi)

3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ Cδ ‖(w̃, q̃)‖2

Zt
. (40)

9. Time of existence independent of κ

From (28), (29), (30), (31), (39) and (40), we then have for any t ∈ [0, Tκ ],
‖(w̃, q̃)‖2

Zt
� Cδ

[
N0(u0, (wi)

3
i=1)+M0(f, κg, κh))+N0((qi)

2
i=0)

]

+Cδt 1
4 ‖(w̃, q̃)‖6

Zt
+ C0δ ‖(w̃, q̃)‖2

Zt
.

The subscripts 0 in C0, N0,M0 mean that we no longer consider generic constants
from now on.

Now, let δ0 > 0 be such thatC0δ0 = 1
2 . For κ > 0 small enough and t ∈ (0, Tκ)

we have

‖(w̃, q̃)‖2
Zt

�4Cδ0

[
N0(u0, (wi)

3
i=1)+M0(f )+N0((qi)

2
i=0)

]
+2Cδ0 t

1
4 ‖(w̃, q̃)‖6

ZT
, (41)

where M0(f ) = M0(f, 0, 0). For conciseness, we will denote C1 = 2Cδ0 and
N1 = 4Cδ0 [N0(u0, (wi)

3
i=1)+M0(f )+N0((qi)

2
i=0)].

Now for t ∈ (0, Tκ) fixed, let αt (x) = x3 − x

C1t
1
4

+ N1

C1t
1
4

, so that

αt (‖(w̃, q̃)‖2
Zt
) � 0.

Now let t1 =
[

2
27C1N

2
1

]4

> 0, which does not depend on κ , and let Ť = min(Tκ, t1).

From now on, we assume that t ∈ (0, Ť ). We then have αt
(
(3C1t

1
4 )− 1

2

)
< 0
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which implies that αt has three real roots z1, z2, z3, with z1 < −(3C1t
1
4 )− 1

2 <

z2 < (3C1t
1
4 )− 1

2 < z3. From the product z1z2z3 = − N1

C1t
1
4

and αt (3N1) < 0, we

infer that 0 < z2 < 3N1 < z3. From (41) and the continuity of t → ‖(w̃, q̃)‖Zt
(established in Lemma 3) we then infer since ‖(w̃, q̃)‖2

Z0
� N1 < z3 that we have

∀t ∈ (0, Ť ], ‖(w̃, q̃)‖2
Zt

� z2 � 3N1. (42)

This implies that η̃(Ť ) ∈ H 4(�
f
0 ; R

3) ∩ H 4(�s0; R
3), w̃(Ť ) ∈ H 1

0 (�; R
3) ∩

H 3(�s0; R
3) ∩ H 3(�s0; R

3), w̃t (Ť ) ∈ H 1
0 (�; R

3) ∩ H 2(�s0; R
3) ∩ H 2(�s0; R

3),

w̃tt (Ť ) ∈ H 1
0 (�; R

3), w̃ttt (Ť ) ∈ L2(�; R
3), q̃(Ť ) ∈ H 2(�

f
0 ; R), q̃t (Ť ) ∈

H 1(�
f
0 ; R), q̃t t (Ť ) ∈ L2(�

f
0 ; R), with a bound that depends only on the right-

hand side of (42). The compatibility conditions for the smoothed problem (14) at
Ť are also satisfied by the definition of a solution, which means that we do not have
any new terms of the type bκ , cκ or dκ associated with w̃(Ť ) to add to the already
existing forcing terms coming from t = 0.

We can thus build a solution of the smoothed problem (14) defined on [Ť , Ť +
δT ], δT depending solely on the right-hand side of (42), which we will still denote
(w̃, q̃). It is then readily seen that (w̃, q̃) ∈ Z

Ť+δT and is a solution of the approxi-

mated problem (14) on [0, Ť +δT ]. If Ť = t1, we have our solution defined on the κ
independent time interval [0, t1], with the κ independent estimate (42). Otherwise,
if Ť < t1, we can also assume that Ť +δT � t1, which implies, in the same fashion
as we got (41),

∀t ∈ [0, T̃ + δT ], ‖(w̃, q̃)‖2
Zt

� N1 + C1t
1
4 ‖(w̃, q̃)‖6

Zt
. (43)

This implies in turn that η̃(Ť+δT ), w̃(Ť+δT ), w̃t (Ť+δT ), w̃tt (Ť+δT ), w̃ttt (Ť+
δT ), q̃(Ť +δT ), q̃t (Ť +δT ), q̃tt (Ť +δT ) are in the same spaces as their respective
counterparts at time Ť , with the same bound as well, since we could from (43)
repeat the same argument leading to (42), this time on [0, Ť + δT ]. Since the com-
patibility conditions at Ť + δT are also automatically satisfied, we can thus build a
solution of the approximated problem (14) defined on [Ť + δT , Ť +2δT ], the time
of existence being the same as starting from Ť from the similarity of the bound that
we obtain on η̃(Ť + δT ), ∂nt w̃(Ť + δT )(n = 0, 1, 2, 3), ∂nt q̃(Ť + δT )(n = 0, 1, 2)
and their respective counterparts at time Ť . We will still denote this solution (w̃, q̃).
It is then readily seen that (w̃, q̃) ∈ Z

Ť+2δT and is a solution of the approximated

problem on [0, Ť + 2δT ]. We then have in the same fashion as we got (41),

∀t ∈ [0, T̃ + 2δT ], ‖(w̃, q̃)‖2
Zt

� N1 + C1t
1
4 ‖(w̃, q̃)‖6

Zt
.

By induction, we then see that we get a solution (w̃, q̃) defined on [0, t1],satisfying
the estimate

∀t ∈[0, t1], ‖(w̃, q̃)‖Zt �3N1 =12Cδ0 [N0(u0, (wi)
3
i=1)+M0(f )+N0((qi)

2
i=0)],

(44)

establishing the independence of the time of existence respectively to κ , since t1
does not depend on κ . In the following we will note T = t1.
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10. Existence for (4)

Proof. We can here choose to take κ = 1
n

, and let n → ∞. By the bound (44)
independent of κ on [0, T ], we then have the existence of a weakly convergent sub-
sequence of (w̃, q̃) in the reflexive Hilbert space YT , to a limit that we call (v, q),
which also belongs to ZT and satisfies the estimate

‖(v, q)‖ZT � 3N1 = 12Cδ0

[
N0(u0, (wi)

3
i=1)+M0(f )+N((qi)

2
i=0)

]
.

The usual compactness theorems ensure at this stage that (v, q) is a solution of (4)
on [0, T ]. The smoothness of our solution ensures that the solids do not collide with
each other (if there is more than one) or the boundary (for an eventually smaller
time), which establishes the existence part of Theorem 1. �

11. Uniqueness for (4)

Proof. Since we cannot use a contractive mapping scheme for our problem, we
have to establish uniqueness separately. Let then (v̄, q̄) denote another solution
of (4) in ZT . Then, taking v − v̄ as a test function in the variational formulation
of the difference between the systems (4) associated with each solution yields for
t ∈ [0, T ],

1

2
‖(v − v̄)(t)‖2

L2(�;R3)
+ ν

∫ t

0
(arka

s
kv,r −ārk āskv̄,r , v,s −v̄,s )L2(�

f
0 ;R3)

+
∫ t

0
(cijkl[(η,i ·η,j −δij )η,k −(η̄,i ·η̄,j −δij )η̄,k ], v,l −v̄,l )L2(�s0;R3)

−
∫ t

0
(a
j
i q−āji q̄, vi,j−v̄i ,j )L2(�

f
0 ;R)

=
∫ t

0
(f ◦ η−f ◦ η̄, v−v̄)

L2(�
f
0 ;R3)

. (45)

For the viscous term in the fluid, we write

arka
s
kv,r −ārk āskv̄,r = arka

s
k(v,r −v̄,r )+ (arka

s
k − ārk ā

s
k)v̄,r ,

which with the L∞(0, T ;H 3(�
f
0 ; R

3)) control of v̄ and v provides us with an
estimate of the type (where C denotes once again a generic constant)

∫ t

0
(arka

s
kv,r −ārk āskv̄,r , v,s −v̄,s )L2(�

f
0 ;R3)

� C

∫ t

0
‖v − v̄‖2

H 1(�
f
0 ;R3)

−C
∫ t

0

∫ t ′

0
‖v − v̄‖2

H 1(�
f
0 ;R3)

.

(46)
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Concerning the forcing term in the fluid, we first notice that if we still denote
E(�)(f ) as f ,

f (t, η̄(t, x))− f (t, η(t, x))

=
∫ 1

0
f,i (t, (η + t ′(η̄ − η))(t, x))dt ′ (η̄i(t, x)− ηi(t, x)),

which leads us to

‖f (t, η̄(t, ·))− f (t, η(t, ·))‖
L1.5(�

f
0 ;R3)

� C‖η̄(t, ·)− η(t, ·)‖
L6(�

f
0 ;R3)

[
3∑

i=1

∫ 1

0

∫

�
f
0

f,2i (t, φ(t
′, t, x))dxdt ′

]0.5

,

with φ(t ′, t, x) = η(t, x)+ t ′(η̄(t, x)−η(t, x)). We have φ(t ′, t, ·) ∈ C0(�; R
3)∩

C1(� ∩ �c0; R
3). Moreover φ(t ′, t, ∂�) = ∂�. We then have by invariance by

homotopy of the Brouwer degree (for the parameter t)

∀z ∈ �, deg(φ(t ′, t, ·),�, z) = deg(φ(t ′, 0, ·),�, z) = deg(Id, �, z) = 1,

which together with the regularity of φ(t ′, t, ·) establishes that φ(t ′, t, ·)(�) = �

and that Card{φ−1(t ′, t, ·)(x)} = 1 for almost all x ∈ �. Thus,
∫

�
f
0

f,2i (t, φ(t
′, t, x))dx =

∫

φ(t ′,t,�f0 )
f,2i (t, y)|det∇φ(t ′, t, φ−1(t ′, t, y))|−1 dy,

which with the L∞(0, T ;H 4(�
f
0 ; R

3)) control of η and η̄ yields
∫

�
f
0

f,2i (t, φ(t
′, t, x))dx � C

∫

�

f,2i (t, y)dy.

Consequently,

‖f (t, η̄(t, ·))− f (t, η(t, ·))‖
L1.5(�

f
0 ;R3)

� C‖η̄(t, ·)− η(t, ·)‖
H 1(�

f
0 ;R3)

‖f ‖H 1(�;R3),

implying
∣
∣
∣
∣

∫ t

0
(f ◦ η − f ◦ η̄, v − v̄)

L2(�
f
0 ;R3)

∣
∣
∣
∣

� C
√
t‖f ‖L2(0,t;H 1(�;R3))‖v − v̄‖2

L2(0,t;H 1(�
f
0 ;R3))

. (47)

Concerning the elastic term,
∫ t

0
(cijkl[(η,i ·η,j −δij )η,k −(η̄,i ·η̄,j −δij )η̄,k ], v,l −v̄,l )L2(�s0;R3)

= I1 + I2 + I3,
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with

I1 =
∫ t

0
(cijkl(η,i ·η,j −δij )(η,k −η̄,k ), v,l −v̄,l )L2(�s0;R3)

= 1

2
(cijkl(η,i ·η,j −δij )(η,k −η̄,k ), η,l −η̄,l )L2(�s0;R3)(t)

−1

2

∫ t

0
(cijkl(η,i ·η,j −δij )t (η,k −η̄,k ), η,l −η̄,l )L2(�s0;R3)

� −Ct‖η(t)− η̄(t)‖2
H 1(�s0;R3)

− C

∫ t

0
‖η − η̄‖2

H 1(�s0;R3)
,

where we have used theL∞(0, T ;H 3(�s0; R
3)) control of v and v̄ for the inequality.

Next, for the same reasons,

I2 =
∫ t

0
(cijkl(η,i −η̄,i ) · η,j η̄,k , v,l −v̄,l )L2(�s0;R3)

=
∫ t

0
(cijkl(η,i −η̄,i ) · (η,j −η̄,j ) η̄,k , v,l −v̄,l )L2(�s0;R3)

+
∫ t

0
(cijkl(η,i −η̄,i ) · η̄,j η̄,k , v,l −v̄,l )L2(�s0;R3)

=
∫ t

0
(cijkl(η,i −η̄,i ) · (η,j −η̄,j ) η̄,k , v,l −v̄,l )L2(�s0;R3)

+1

2
(cijkl(η,i −η̄,i ) · η̄,j η̄,k , η,l −η̄,l )L2(�s0;R3)(t)

−
∫ t

0
(cijkl(η,i −η̄,i ) · η̄,j v̄,k , η,l −η̄,l )L2(�s0;R3).

We then write for the second term on the right-hand side of the last equality

η̄,i (t, ·) = ei +
∫ t

0
v̄,i , to get by Korn’s inequality ,

I2 � C[‖η(t)− η̄(t)‖2
H 1(�s0;R3)

− ‖η(t)− η̄(t)‖2
L2(�s0;R3)

]
−Ct sup

[0,t]
‖η − η̄‖2

H 1(�s0;R3)
.

Similarly,

I3 =
∫ t

0
(cijkl(η,j −η̄,j ) · η̄,i η̄,k , v,l −v̄,l )L2(�s0;R3)

� C[ ‖η(t)− η̄(t)‖2
H 1(�s0;R3)

− ‖η(t)− η̄(t)‖2
L2(�s0;R3)

]

−C
∫ t

0
‖η − η̄‖2

H 1(�s0;R3)
.
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Thus,

∫ t

0
(cijkl[(η,i ·η,j −δij )η,k −(η̄,i ·η̄,j −δij )η̄,k ], v,l −v̄,l )L2(�s0;R3)

� C
[

‖η(t)− η̄(t)‖2
H 1(�s0;R3)

− ‖η(t)− η̄(t)‖2
L2(�s0;R3)

]

−C
∫ t

0
‖η − η̄‖2

H 1(�s0;R3)
. (48)

Concerning the pressure term, with aji q − ā
j
i q̄ = (a

j
i − ā

j
i )q + ā

j
i (q − q̄) and the

L∞(0, T ;H 2(�
f
0 ; R)) control of the pressure, we get

−
∫ t

0
(a
j
i q − ā

j
i q̄, v

i,j −v̄i ,j )L2(�
f
0 ;R)

� −C
[√
t‖q − q̄‖

L∞(0,t;L2(�
f
0 ;R))‖v − v̄‖

L2(0,t;H 1(�
f
0 ;R3))

+t‖v − v̄‖2
L2(0,t;H 1(�

f
0 ;R3))

]

. (49)

In order to get the estimate of q− q̄ inL2(�
f
0 ; R), we have to introduce the time

differentiated problem. By taking vt − v̄t in the variational formulation associated
to the difference between the time differentiated systems, we obtain

1

2
‖(vt − v̄t )(t)‖2

L2(�;R3)
+ ν

∫ t

0
([arkaskv,r −ārk āskv̄,r ]t , [v,s −v̄,s ]t )L2(�

f
0 ;R3)

+
∫ t

0
(cijkl[(η,i ·η,j −δij )η,k −(η̄,i ·η̄,j −δij )η̄,k ]t , [v,l −v̄,l ]t )L2(�s0;R3)

−
∫ t

0
([aji q − ā

j
i q̄]t , [vi,j −v̄i ,j ]t )L2(�

f
0 ;R)

=
∫ t

0
([f ◦ η − f ◦ η̄]t , vt − v̄t )L2(�

f
0 ;R3)

. (50)

For the fluid viscous term, we easily find with the L2(0, T ;H 3(�
f
0 ; R

3)) con-
trol of the first-time derivative of the velocity that

∫ t

0
([arkaskv,r −ārk āskv̄,r ]t , vt ,s −v̄t ,s )L2(�

f
0 ;R3)

� C(1 − t)

∫ t

0
‖vt − v̄t‖2

H 1(�
f
0 ;R3)

. (51)

Concerning the forcing term in the fluid, since (f ◦ η)t = (ft + vif,i )(η) (with a
similar formula for v̄), we then deduce in a way similar to the steps leading to (47)
that
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∣
∣
∣
∣

∫ t

0
([f ◦ η − f ◦ η̄]t , [v − v̄]t )L2(�

f
0 ;R3)

∣
∣
∣
∣

�C
√
t[‖ft‖L2(0,t;H 1(�;R3))+‖f ‖L2(0,t;H 2(�;R3))] ‖vt − v̄t‖2

L2(0,t;H 1(�
f
0 ;R3))

.

(52)

For the elastic term, we can also essentially reproduce the arguments leading to
(48), leading us to

∫ t

0
(cijkl[(η,i ·η,j −δij )η,k −(η̄,i ·η̄,j −δij )η̄,k ]t , [v,l −v̄,l ]t )L2(�s0;R3)

� C[ ‖v(t)− v̄(t)‖2
H 1(�s0;R3)

− ‖v(t)− v̄(t)‖2
L2(�s0;R3)

]
−Ct sup

[0,t]
‖v − v̄‖2

H 1(�s0;R3)
. (53)

The pressure term will require more care since we want to avoid the introduction
of qt − q̄t , which the most direct method would lead to. To do so, we notice that

∫ t

0
([aji q − ā

j
i q̄]t , [vi,j −v̄i ,j ]t )L2(�

f
0 ;R) = I4 + I5 + I6,

with

I4 =
∫ t

0
([(aji )t q − (ā

j
i )t q̄], [vi,j −v̄i ,j ]t )L2(�

f
0 ;R),

I5 =
∫ t

0
(a
j
i (qt − q̄t ), [vi,j −v̄i ,j ]t )L2(�

f
0 ;R),

I6 =
∫ t

0
([aji − ā

j
i ]q̄t , [vi,j −v̄i ,j ]t )L2(�

f
0 ;R).

For I4, we have in a way similar to (49),

|I4| � C
[√
t‖q − q̄‖

L∞(0,t;L2(�
f
0 ;R))‖vt − v̄t‖L2(0,t;H 1(�

f
0 ;R3))

+t‖vt − v̄t‖2
L2(0,t;H 1(�

f
0 ;R3))

]

.

For I6, the L2(0, T ;H 2(�
f
0 ; R)) control of q̄t provides us with

|I6| � Ct ‖vt − v̄t‖2
L2(0,t;H 1(�

f
0 ;R3))

.

For I5 we have:

I5 =
∫ t

0
(qt−q̄t , aji vit ,j −āji v̄it ,j )L2(�

f
0 ;R)−

∫ t

0
(qt − q̄t , (a

j
i − ā

j
i )v̄

i
t ,j )L2(�

f
0 ;R)

=
∫ t

0
(q̄t − qt , (a

j
i )t v

i,j −(āji )t v̄i ,j )L2(�
f
0 ;R)

−
∫ t

0
(qt − q̄t , (a

j
i − ā

j
i )v̄

i
t ,j )L2(�

f
0 ;R),

where we have used the relations aji v
i,j = 0 = ā

j
i v̄
i ,j in �f0 for the first integral.

By integrating by parts in time,
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I5 =
∫ t

0
(q − q̄, [(aji )t vi,j −(āji )t v̄i ,j ]t )L2(�

f
0 ;R)

+
∫ t

0
(q − q̄, [(aji − ā

j
i )v̄

i
t ,j ]t )L2(�

f
0 ;R)

+(q̄ − q, (a
j
i )t v

i,j −(āji )t v̄i ,j )L2(�
f
0 ;R)(t)

+(q̄ − q, (a
j
i − ā

j
i )v̄

i
t ,j )L2(�

f
0 ;R)(t).

With the L2(0, T ;H 3(�
f
0 ; R

3)) control of vt we have
∣
∣
∣
∣

∫ t

0
(q − q̄, [(aji )t vi,j −(āji )t v̄i ,j ]t )L2(�

f
0 ;R)

∣
∣
∣
∣

+∣
∣
∫ t

0
(q − q̄, [(aji )t − (ā

j
i )t ]v̄it ,j )L2(�

f
0 ;R)

∣
∣

� C
√
t ‖q − q̄‖

L∞(0,t;L2(�
f
0 ;R))‖vt − v̄t‖L2(0,t;H 1(�

f
0 ;R3))

,

∣
∣(q − q̄, (a

j
i )t v

i,j −(āji )t v̄i ,j )L2(�
f
0 ;R)(t)

∣
∣

� C
√
t ‖q(t)− q̄(t)‖

L2(�
f
0 ;R)‖vt − v̄t‖L2(0,t;H 1(�

f
0 ;R3))

.

The remaining terms are more delicate. We first have

∣
∣
∫ t

0
(q − q̄, (a

j
i − ā

j
i ) v̄

i
t t ,j )L2(�

f
0 ;R)

∣
∣ + ∣

∣(q − q̄, (a
j
i − ā

j
i ) v̄

i
t ,j )L2(�

f
0 ;R)(t)

∣
∣

� C

∫ t

0
‖q − q̄‖

L2(�
f
0 ;R)‖a − ā‖

L4(�
f
0 ;R9)

‖∇v̄t t‖L4(�
f
0 ;R9)

+‖q(t)− q̄(t)‖
L2(�

f
0 ;R)‖a(t)− ā(t)‖

L4(�
f
0 ;R9)

‖∇v̄t (t)‖L4(�
f
0 ;R9)

. (54)

The apparent problem here is that a − ā is estimated in L2(�
f
0 ; R

9) in terms of

v − v̄ in H 1(�
f
0 ; R

3). Now, a bound of this quantity in L4(�
f
0 ; R

9) will require

a bound of v − v̄ in H 2(�
f
0 ; R

3). In order to get such an estimate, we will bound

v − v̄ in H 2(�
f
0 ; R

3) by lower-order terms in v − v̄. To do so, let us first estimate
the trace of v− v̄ on �0 by using the test function −[ζ 2 (v− v̄)◦],αα ◦−1 in the
difference between the variational problems satisfied by v and v̄. By proceeding as
in Section 10, we would then get an estimate of the type, where δ > 0 is given:

∫ t

0
‖ζ∇[(v − v̄) ◦],α ‖2

L2(R3+;R9)
+ ‖ζ∇[(η − η̄) ◦],α (t)‖2

L2(R3−;R9)

� C[√t + δ]
∫ t

0

[

‖v − v̄‖2
H 2(�

f
0 ;R3)

+ ‖q − q̄‖2
H 1(�

f
0 ;R)

]

+Cδ
∫ t

0
‖vt − v̄t‖2

L2(�;R3)
+ C

∫ t

0
‖η − η̄‖2

H 2(�s0;R3)

+C
∫ t

0
‖v − v̄‖2

H 1(�;R3)
,
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which by patching all the charts defining �0 leads to an estimate of v − v̄ in
L2(0, t;H 1.5(�0; R

3)) yielding by elliptic regularity:

∫ t

0
[‖v − v̄‖2

H 2(�
f
0 ;R3)

+ ‖q − q̄‖2
H 1(�

f
0 ;R)] + ‖η(t)− η̄(t)‖2

H 2(�s0;R3)

� C[√t + δ]
∫ t

0
[‖v − v̄‖2

H 2(�
f
0 ;R3)

+ ‖q − q̄‖2
H 1(�

f
0 ;R)]

+Cδ
∫ t

0
‖vt − v̄t‖2

L2(�;R3)
+ C

∫ t

0
‖η − η̄‖2

H 2(�s0;R3)

+C
∫ t

0
‖v − v̄‖2

H 1(�;R3)
.

Thus, with a choice of δ > 0 small enough, we have for t small enough by the use
of Gronwall’s inequality,

‖η(t)− η̄(t)‖2
H 2(�s0;R3)

+
∫ t

0
[‖v − v̄‖2

H 2(�
f
0 ;R3)

+ ‖q − q̄‖2
H 1(�

f
0 ;R)]

� C

∫ t

0
‖vt − v̄t‖2

L2(�;R3)
+ C

∫ t

0
‖v − v̄‖2

H 1(�;R3)
.

By using this estimate in (54), we then get for a time small enough,

∣
∣
∣
∣

∫ t

0
(q − q̄, (a

j
i − ā

j
i ) v̄

i
t t ,j )L2(�

f
0 ;R)

∣
∣ + ∣

∣(q − q̄, (a
j
i − ā

j
i ) v̄

i
t ,j )L2(�

f
0 ;R)(t)

∣
∣
∣
∣

� C
√
t

[∫ t

0
‖vt − v̄t‖2

L2(�;R3)
+

∫ t

0
‖v − v̄‖2

H 1(�;R3)

+‖q − q̄‖2
L∞(0,t;L2(�

f
0 ;R))

]

.

By putting together the estimates on I4, I5 and I6, we have

∣
∣
∣
∣

∫ t

0
([aji q − ā

j
i q̄]t , [vi,j −v̄i ,j ]t )L2(�

f
0 ;R)

∣
∣
∣
∣

� C
√
t

[∫ t

0
‖vt − v̄t‖2

L2(�;R3)
+

∫ t

0
‖v − v̄‖2

H 1(�;R3)

+‖q − q̄‖2
L∞(0,t;L2(�

f
0 ;R))

]

. (55)

Now, by considering the difference between the two variational forms satisfied rep-
ectively by (v, q) and (v̄, q̄), and writing the difference between the pressure terms
as

∫

�
f
0

(a
j
i q − ā

j
i q̄)φ

i,j =
∫

�
f
0

a
j
i (q − q̄)φi,j +

∫

�
f
0

(a
j
i − ā

j
i )q̄φ

i,j ,



Quasilinear Elastodynamics and the Navier-Stokes Equations 335

the Lagrange multiplier Lemma 13 of [5] yields for all t ∈ [0, T ],
‖q(t)− q̄(t)‖

L2(�
f
0 ;R) � C[ ‖(vt − v̄t )(t)‖L2(�;R3) + ‖(v − v̄)(t)‖

H 1(�
f
0 ;R3)

+‖(η − η̄)(t)‖H 1(�s0;R3) + √
t‖v − v̄‖

L2(0,t;H 1(�
f
0 ;R3))

].
(56)

By putting together the estimates (45)–(56), we then obtain for tu > 0 small enough
an inequality of the type:

‖vt − v̄t‖2
L∞(0,tu;L2(�;R3))

+
∫ tu

0
‖vt − v̄t‖2

H 1(�
f
0 ;R3)

+‖v − v̄‖2
L∞(0,tu;H 1(�s0;R3))

� 0,

which shows that (v, q) = (v̄, q̄) on [0, tu]. Let

Tu = sup{t ∈ [0, T ]| (v, q) = (v̄, q̄) on [0, t]}.
If Tu < T , we can repeat the same procedure with Tu replacing 0, which would lead
to uniqueness for [Tu, Tu + δt) as well. Thus, we have Tu = T , which concludes
the proof of the theorem. �

12. Optimal regularity on the initial data

We first recall some extensions and regularization results on domains:

Lemma 4. Let �′ be a domain of class H 4. Then, there exists a linear and contin-
uous operator E(�′) from Hm(�′; R

3) into Hm(R3; R
3) (for each 0 � m � 4)

such that E(�′)(u) = u in �′. Also, if the H 4 norms of a family of domains stay
bounded, the norms of the corresponding linear operators also stay bounded.

Lemma 5. Since �s0 is of class H 4, let ψm ∈ H 4(B−(0, 1); R
3) (m = 1, ..., N )

be a collection of charts defining a neighborhood of its boundary. We note

‖�f0 ‖H 4 =
N∑

m=1

‖ψm‖H 4(B−(0,1);R3).

Then, there exists a sequence of domains (�s,n0 ) of class C∞, so that �s0 ⊂ �
s,n
0 ,

and the domains are defined with a collection of charts ψm,n ∈ H 4(B−(0, 1); R
3)

(m = 1, ..., N ) so that
∑N
m=1 ‖ψm − ψm,n‖H 4(B−(0,1);R3) → 0 as n → ∞. Then

denote the complementary of �
s,n

0 in � by �f,n0 and �n0 = ∂�
s,n
0 . Assume that

n is large enough so that the different connected components of �s,n0 (if there is
more than one solid) do not intersect each other or the boundary of �. Denote
αn = ‖�s,n‖H 6 .

We now state the optimal regularity assumptions needed in our analysis, and
explain the adjustements required to the previous proofs.
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Theorem 2. With the same assumptions as in Theorem 1, except for the following
concerning the regularity of the initial data:

u0 ∈ H 6(�
f
0 ; R

3) ∩H 3(�s0; R
3) ∩H 1

0 (�; R
3) ∩ L2

div,f , (57a)

fs(0) ∈ H 2(�s0; R
3) ∩H 3.5(�0; R

3),

(fs)t (0) ∈ H 1(�s0; R
3),

(fs)tt (0) ∈ L2(�; R
3), (57b)

the conclusion of Theorem 1 still holds.

Remark 8. We have chosen here to take different forcings for the fluid, which we
still denote as f with the same assumptions as in Theorem 1, and the solid, in
order to point out that the higher-order regularity required indeed comes from the
hyperbolic scaling of the Navier-Stokes equations. The somewhat not-so-natural
condition fs(0) ∈ H 3.5(�0; R

3) is set in order to getw1 ∈ H 4(�
f
0 ; R

3) associated

with the condition w3 ∈ L2(�
f
0 ; R

3).

Proof. The idea is to first regularize the domains and initial data, modify the forc-
ings in an appropriate way, and then pass to the limit.

Given 0 � ρ ∈ D(B(0, 1)) with
∫
B(0,1) ρ = 1, we define as usual ρn(x) =

n3ρ(nx).
We first notice that u0, w1, q0 and q1 still have the same regularity in �f0 as in

Theorem 1. We first define in �f,n0 , un0 = u0 and wn1 = w1, qn0 = q0, qn1 = q1,

which is permitted since �f,n0 ⊂ �
f
0 . We next define wn2 in �f,n0 ,

−ν�wn2 + ∇qn2 = ρn � E(�
f
0 )(−ν�w2 +∇q2) in �f,n0 , (58a)

divwn2 = −[(aji )tt (0)ui0,j+2(aji )t (0)w
i
1,j ] in �f,n0 , (58b)

wn2 = 0 on ∂�, (58c)

ν
∂wn2

∂Nn
− q̃n2N

n = ν
∂

∂Nn
ρn � E(�

f
0 )(w2)−ρn � E(�f0 )(q2)N

n on �n0 , (58d)

where Nn denotes the unit normal exterior to �
f,n
0 . Finally we define wn3 ∈

L2(�
f,n
0 ; R

3) by

wn3 = [ν(ajl akl u,k ),j −(aji q,j )3i=1 + F ]t t (0) in �f,n0 ,

where the time derivatives on the right-hand side are computed with the usual rules
from u(0) = un0, ∂pt u(0) = wnp (p = 1, 2), ∂pt q(0) = qnp (p = 0, 1, 2).

We next define un0 in the solid by

L2un0 = L2[ρn � E(�s0)(u0)] in �s,n0 , (59a)

un0 = (un0)
f on �n0 , (59b)

L(un0)+ ρn � E(�
s
0)((fs)t (0)) = (wn2 )

f on �n0 , (59c)
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where the right-hand sides of the previous boundary conditions come from the fluid
regularization previously carried out. Note also that

Lun0 ∈ H 4(�
s,n
0 ; R

3), (60)

(with an estimate that may blow up as n → ∞) since

L(Lun0) = L2[ρn � E(�s0)(u0)] in �s,n0 ,

L(un0) = −ρn � E(�s0)((fs)t (0))+ (wn2 )
f on �n0 .

We can then define f n0 in �s,n0 by

L2f n0 =L2[ρn � E(�s0)(fs(0))] in �s,n0 ,

f n0 = (wn1 )f on �n0 ,

cmjki(f n0 ,m ·Id,j+f n0 ,j ·Id,m )Nn
k =−2cmjki (un0,m ·Id,j +un0,j ·Id,m )un0,ik

+ν[vi,k akl ajl ]t t (0)Nn
j −[qaji ]t t (0)Nn

j on �n0 ,

with the same conventions as for the previous system for the time derivatives eval-
uated from�

f,n
0 , and cmjkl (un0,m ·Id,j +un0,j ·Id,m )un0,ik Nn

l evaluated from�
s,n
0 .

We then define in �s,n0 ,

wn1 = f n0 ,

wn2 = [[cmjkl(η,m ·η,j −δmj )η,k ],l
]
t
(0)+ ρn � E(�

s
0)((fs)t (0)),

= L(un0)+ ρn � E(�
s
0)((fs)t (0)),

wn3 = [[cmjkl(η,m ·η,j −δmj )η,k ],l
]
t t
(0)+ ρn � E(�

s
0)((fs)tt (0)),

where the time derivatives on the right-hand side are evaluated with v(0) = un0,
vt (0) = wn1 . We also define the regularized forcing in the solid

f n(t) = ρn � E(�
s
0)(fs(t)− fs(0)) + f n0 in �s,n0 .

We then have un0, wn1 , wn2 in H 1
0 (�; R

3) ∩ H 4(�
f,n
0 ; R

3) ∩ H 4(�
s,n
0 ; R

3) and

div un0 = 0 in �f,n0 , wn3 ∈ L2(�; R
3), with

‖E(�f,n0 )(un0)− u0‖H 4(�
f
0 ;R3)

+‖E(�s,n0 )(un0)− u0‖H 3(�s0;R3)→0 as n → ∞,

(61a)

‖E(�f,n0 )(wn1 )− w1‖H 4(�
f
0 ;R3)

+ ‖E(�s,n0 )(wn1 )− w1‖H 2(�s0;R3)

+‖wn2 − w2‖H 1(�;R3) + ‖E(�f,n0 )(wn2 )− w2‖H 2(�
f
0 ;R3)

→ 0 as n → ∞,

(61b)

‖un0‖H 6(�
s,n
0 ;R3) � βn, ‖wn1‖H 4(�

s,n
0 ;R3) � βn, ‖wn2‖H 4(�

s,n
0 ;R3) � βn, (61c)

‖wn3 − w3‖L2(�;R3) → ∞ as n → ∞, (61d)

whereβn is a given polynomial expression ofαn andn. We briefly explain how those
constants appear. For instance, for the first estimate of (61c), we have by elliptic reg-
ularity on (59) that‖un0‖H 6(�

s,n
0 ;R3) is bounded by a sum of terms, one of which being
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P(‖�s,n0 ‖H 6) ‖(wn2 )f ‖
H 4(�

f,n
0 ;R3)

, P being a polynomial which does not depend

on n. Next, still by elliptic regularity on (58), we have that ‖(wn2 )f ‖
H 4(�

f,n
0 ;R3)

is

bounded by a sum of terms such as ‖ρn �E(�f0 )(�w2)‖H 2(�
f,n
0 ;R3)

. This particular

term, by the properties of the convolution, is in turn bounded by
n3‖E(�f,n0 )(w2)‖H 1(R3;R3). This shows that a term of the type
P(αn)n

3‖w2‖H 1(�
f
0 ;R3)

appears in the sum of all terms bounding ‖un0‖H 6(�
s,n
0 ;R3).

Since the other terms in the sum can be dealt with similarly, this explains our
estimate (61c).

For the pressures, we have

‖E(�f,n0 )(qn0 )− q0‖H 3(�
f
0 ;R) + ‖E(�f,n0 )(qn1 )− q1‖H 3(�

f
0 ;R)

+‖E(�f,n0 )(qn2 )− q2‖H 1(�
f
0 ;R) → 0 as n → ∞. (62)

Since the initial data un0 and forcings f n(0), f nt (0), f
n
tt (0) are smooth enough to

ensure the regularity properties (61), we then deduce that we have similarly as for
Theorem 1 the existence of a solution wn of a system similar to (20) with f , u0,
�
f
0 , �s0 replaced by their counterparts with an exponent n, and bκ , cκ , dκ replaced

by bn, cn, dn (with the choice κ = 1

n(βn + 1)
) given by

bn(φ) = 1

n(βn + 1)
(cijklwn2 ,

k
l , φ

i,j )L2(�
s,n
0 ;R),

cn(φ) = 1

n(βn + 1)
(cijklwn1 ,

k
l , φ

i,j )L2(�
s,n
0 ;R) + (wn2 − w2, φ)L2(�

f,n
0 ;R)

+(−[(aji q)t (0)Nn
j ]3
i=1 + [(ajl akl )u,k ]t (0)Nn

j , φ)L2(�n0 ;R3)

−(cijkl[(η,i ·η,j −δij )ηk]t (0)Nn
l , φ)L2(�n0 ;R3),

dn(φ) = 1

n(βn + 1)
(cijklun0,

k
l , φ

i,j )L2(�
s,n
0 ;R)

+(−[(aji q)(0)Nn
j ]3
i=1 + [(ajl akl )u,k ](0)Nn

j , φ)L2(�n0 ;R3),

where the time derivatives are computed with a velocity satisfying u(0) = un0,
ut (0) = wn1 and a pressure such that q(0) = qn0 , qt (0) = qn1 . Note that by construc-
tion, the solutions wn of these problems in � satisfy wn(0) = un0, wnt (0) = wn1 ,
wntt (0) = wn2 , wnttt (0) = wn3 . Next, we proceed to energy estimates similar to
Section 8. The bounds obtained are similar, except that this time the terms associ-
ated with bn, cn and dn tend to zero as n → ∞. This is clear from the convergence
results (61) and (62) for the integral terms associated with the fluid. The terms
associated with the solid asymptotically tend to zero by properties of the convo-
lution. For instance, with the notations of Section 8, for φp = −[ρp � (ζ 2 wn ◦
)],α1α1α2α2α3α3 ◦−1, we obtain after a change of variables, an integration by
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parts in time, and three integrations by parts in space:
∣
∣
∣
∣
∣

∫ t

0

t
′2

2n(βn + 1)
(cijklwn2 ,

k
l , φ

i
p,j )L2(�

s,n
0 ;R) dt ′

∣
∣
∣
∣
∣

� C

n(βn + 1)
‖wn2‖H 4(�

s,n
0 ;R3)‖ηn‖L∞(0,t;H 4(�

s,n
0 ;R3)).

Thus with our estimate (61c), we have

∣
∣
∫ t

0

t
′2

2n(βn + 1)
(cijklwn2 ,

k
l , φ

i
p,j )L2(�

s,n
0 ;R) dt ′

∣
∣ � C

n
‖(wn, qn)‖Znt ,

where Znt denotes the same type of space as Zt with �s0 and �f0 replaced by
their counterparts with an exponent n. This type of estimate thus shows that this
term does not change the energy inequalities in Section 8. We can thus reproduce
the arguments of Section 9, establishing that (wn, qn) can be defined over a time
T independently of n, and its norm in ZnT depends solely on N(un0, (w

n
i )

3
i=1) +

N((qi)
2
i=0) + M(f n, 0, 0) and thus, thanks to the estimates (61a), (61b), (61d),

solely on N(u0, (wi)
3
i=1) + N((qi)

2
i=0) + M(f, 0, 0). We can then consider the

sequence (E(�)(wn), E(�
f,n
0 )(qn)) which is bounded in a space similar as ZT

but defined on R
3, and extract (with respect to n) a weakly convergent sequence

in a space modified from YT by replacing the condition u ∈ H 1
0 (�; R

3) by u ∈
H 1(�; R

3) . By the classical compactness results, we next see that the weak limit
(v, q) ∈ ZT and is a solution of (4) with f as the forcing and v(0) = u0. This
solution is also unique in ZT . �

13. The case of incompressible elasticity

In this section, we explain how to treat the supplementary difficulties appearing
when the incompressibility constraint is added in the solid. This leads to the same
system as (4), with the addition of the condition det ∇η = 1 a.e. in�s0, the addition

of [(aki q),k ]3
i=1 on the left-hand side of (4d) and the addition of −qaji Nj (the trace

of q being from the solid phase in this new term) on the left-hand side of (4e). We
now state our result and explain how to overcome the additional difficulties related
to this constraint.

We first update our functional frameworks. While XT and WT do not change,
YT and ZT become respectively

YT =
{
(v, q) ∈ XT × L2(0, T ;L2(�; R))| ∂nt q ∈ L2(0, T ;H 3−n(�f0 ; R)),

∂nt q ∈ L2(0, T ;H 3−n(�s0; R))(n = 0, 1, 2)
}
,

ZT =
{
(v, q) ∈ WT × L2(0, T ;L2(�; R))| ∂nt q ∈ L2(0, T ;H 3−n(�f0 ; R)),

∂nt q ∈ L2(0, T ;H 3−n(�s0; R))(n = 0, 1, 2)| qtt ∈ L∞(0, T ;L2(�; R))
}
.
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Remark 9. Whereas the pressure in the solid satisfies ∂nt q ∈ L∞(0, T ;H 3−n
(�s0; R)) (n = 0, 1, 2), it appears that the limit pressures qκ are controlled uni-
formly in the norm of ZT and seemingly not in these norms. Note also that while
the velocity field is smoother in the fluid phase for the solution of our next theorem,
the pressure field is actually smoother in the solid phase. Whereas our artificial
viscosity smoothes the velocity field in the solid, it also interestingly makes the
pressure in the solid for the regularized system less smooth than the one associated
with the solution of the constrained problem, which is a source of difficulties that
we shall describe later.

We now state our result:

Theorem 3. With the same regularity assumptions as in Theorem 2 and assuming
that the compatibility conditions associated with our new system at t = 0 hold (for
the sake of conciseness we do not state them here), the conclusion of Theorem 1
holds for the case where the incompressibility constraint is added to the solid part.
Furthermore, ∂nt q ∈ L∞(0, T ;H 3−n(�s0; R))(n = 0, 1, 2).

Proof. The extra regularity (with respect to the norm of ZT ) on the pressure in the
solid simply comes from the equation

vt − cmjkl[(η,m ·η,j −δij )η,k ],l +aji q,j = f in (0, T )×�s0,

which once the regularity for the solution w ∈ WT is known provides immediately
the result. We now explain how to obtain a solution in ZT .

The beginning of the proof follows the same lines as in the compressible elastic-
ity case. We first assume that the initial data satisfies the regularity assumptions of
Theorem 1, and define the same smoothed problem as (14) with the corresponding
updates for the incompressibility constraint. We then define the same fixed point
linear problem as (17) where the condition aki w

i,k = 0 in�s0 is added (the aki being
computed from the given v). Next we add aki q,k on the left-hand side of (17c) and

−qaji Nj (the traces being taken from �s0) on the left-hand side of (17d).
We then proceed as in [5] to construct a solution of this system by a penalty

method (the penalty term being this time defined over �) and get the same type of
regularity result. This provides us with a solution (wκ, qκ), which we also denote
by (w̃, q̃), of the incompressible version of (14) on a time Tκ shrinking to zero. As
in the compressible case, (wκ, qκ) is in ZTκ , and since our smoothed problem has a
parabolic artificial viscosity, we also have for the velocity in the solid the regularity
∂nt w ∈ L2(0, Tκ ;H 4−n(�s0; R

3)) (n = 0, 1, 2, 3) (with estimates that blow up as
κ → 0). Thus, (wκ, qκ) ∈ Z̃Tκ with

Z̃t =
{
(w, q) ∈ Zt | ∂nt w ∈ L2(0, t;H 4−n(�s0; R

3))(n = 0, 1, 2)
}
,

endowed with the norm

‖(w, q)‖2
Z̃t

= ‖(w, q)‖2
Zt

+ κ2
2∑

n=0

‖∂nt w‖2
L2(0,t;H 4−n(�s0;R3))

.
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We next proceed as in Section 8 to get energy estimates, which will be carried out
this time for the κ dependent norm of Z̃t , independently of κ on [0, Tκ ], and for
such a purpose it is important to keep the κ2 factor in the definition of the norm.
We could extend the sum to n = 3, though it is not necessary.

As before, the first set of estimates has to be carried out on the highest-order
time derivative. Our energy inequality (21) has the same form, except that the inte-
grals over �f0 where q̃ appears have to be taken this time on �. The part over �f0
is estimated as before. We now explain how to deal with the integrals set on�s0 for
the pressure, which indeed needs some justifications since the velocity in the solid
is not controlled uniformly in κ in a space as smooth as the velocity in the fluid,
while the pressure is controlled in the same type of spaces in both phases. �

13.1. Estimates on w̃ttt

Here t denotes any time in (0, Tκ). The most difficult integrals set in [0, t]×�s0
and associated with the incompressibility constraint in the solid are K1

=
∫ t

0

∫

�s0

q̃t t (ã
j
i )t w̃

i
t t t ,j and K2 =

∫ t

0

∫

�s0

q̃(ã
j
i )tt t w̃

i
t t t ,j , the others being either

less difficult or similar to estimate.

Step 1. For K1, if we denote Ns = −N , we have

|K1| =
∣
∣
∣
∣
∣
−

∫ t

0

∫

�s0

(q̃tt ),j (ã
j
i )t w̃

i
t t t +

∫ t

0

∫

�0

q̃t t (ã
j
i )t w̃

i
t t tN

s
j

∣
∣
∣
∣
∣

� C

[ ∫ t

0
‖q̃t t‖H 1(�s0;R)‖η̃‖H 3(�s0;R3)‖w̃‖H 3(�s0;R3)‖w̃ttt‖L2(�s0;R3)

+
∫ t

0
‖q̃t t‖

H
1
2 (�s0;R)

‖η̃‖H 3(�s0;R3)‖w̃‖H 3(�s0;R3)‖w̃ttt‖
H

1
2 (�

f
0 ;R3)

]

� C
√
t‖(w̃, q̃)‖4

Zt
+ Ct

1
2 sup

[0,t]

[

‖q̃t t‖
1
2
L2(�s0;R)‖w̃ttt‖

1
2

L2(�
f
0 ;R3)

]

‖(w̃, q̃)‖3
Zt

(63)

� Ct
1
4 ‖(w̃, q̃)‖4

Zt
, (64)

where we have used the continuity of w̃ttt in the sense of traces along �0 to bound

the L2(�0; R
3) norm of w̃ttt by means of the H

1
2 (�

f
0 ; R

3) norm. Note that we
have also used the fact that the L∞(L2) norm of q̃t t is in the definition of the norm
of Zt . In order to get an estimate on this norm, we should proceed in a way similar
to the one used for (29) in Section 9.

Step 2. Concerning K2, we have by integration by parts in space:

K2 = −
∫ t

0

∫

�s0

q̃,j (ã
j
i )tt t w̃

i
t t t +

∫ t

0

∫

�0

q̃(ã
j
i )tt t w̃

i
t t tN

s
j ,

since our artificial viscosity provides the regularity w̃tt ∈ L2(0, Tκ ;H 2(�s0; R
3))

and w̃ttt ∈ L2(0, Tκ ;H 1(�s0; R
3)) (with estimates that may blow up as κ → 0).
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The difficulty here comes from the second integral. Whereas s for K1 we can
estimate the trace of w̃ttt on �0 from the fluid, we have to take the norm of
∇w̃tt in H−0.5(�0; R

9), which is problematic since the norm Zt contains only
its L2(�s0; R

9) norm. In order to circumvent this difficulty, we notice that the same

formula holds if we replace w̃ttt byE(�f0 )(w̃
f
ttt ) (the extension to R

3 of the veloc-

ity in the fluid). Since w̃ttt = w̃
f
ttt on �0, we have w̃ttt = E(�

f
0 )(w̃

f
ttt ) on �0,

which implies that

K2 = −
∫ t

0

∫

�s0

q̃,j (ã
j
i )tt t w̃

i
t t t +

∫ t

0

∫

�s0

q̃(ã
j
i )tt tE(�

f
0 )(w̃

f
ttt ),

i
j

+
∫ t

0

∫

�s0

q̃,j (ã
j
i )tt tE(�

f
0 )(w̃

f
ttt )

i ,

and thus,

K2 � C

∫ t

0
‖q̃‖H 3(�s0;R)‖w̃tt‖H 1(�s0;R3)‖η̃‖H 3(�s0;R3)‖w̃ttt‖L2(�;R3)

+C
∫ t

0
‖q̃‖H 3(�s0;R)‖w̃t‖H 1(�s0;R3)‖w̃‖H 3(�s0;R3)‖w̃ttt‖L2(�;R3)

+C
∫ t

0
‖q0 +

∫ ·

0
q̃t‖H 2(�s0;R)‖w̃tt‖H 1(�s0;R3)‖η̃‖H 3(�s0;R3)‖w̃ttt‖H 1(�

f
0 ;R3)

+C
∫ t

0
‖q0 +

∫ ·

0
q̃t‖H 2(�s0;R)‖w̃t‖H 1(�s0;R3)‖w̃‖H 3(�s0;R3)‖w̃ttt‖H 1(�

f
0 ;R3)

� C ‖(w̃, q̃)‖3
Zt

∫ t

0
‖q̃‖H 3(�s0;R)

+C ‖(w̃, q̃)‖2
Zt

‖q0‖H 2(�s0;R)
∫ t

0
‖w̃ttt‖H 1(�

f
0 ;R3)

+C√
t ‖(w̃, q̃)‖2

Zt
‖q̃t‖L2(0,t;H 2(�s0;R))

∫ t

0
‖w̃ttt‖H 1(�

f
0 ;R3)

� C
√
t [ ‖(w̃, q̃)‖4

Zt
+N((qi)

2
i=0) ].

The most difficult integral set at time t on �s0 and containing q̃ is

K3 =
∫

�s0

q̃t t (ã
j
i )t w̃

i
t t ,j ,

for which we apparently just have an estimate of the type |I3| � C‖(w̃, q̃)‖2
Zt

(without any small parameter in front). We now explain how to treat this difficulty.

Step 3. We first notice that

K3 = −
∫

�s0

q̃t t ,j (ã
j
i )t w̃

i
t t +

∫

�0

q̃t t (ã
j
i )t w̃

i
t tN

s
j .

If we could say that q̃t t is L∞(H 1) controlled, the L∞(L2) control of w̃tt would
give us a suitable bound for K3. Whereas we have seen in the statement of our
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theorem that qtt for the limit solution is indeed in L∞(H 1), we cannot seemingly
get such a bound on the approximate pressures q̃t t . In order to get around this, we
introduce similarly as in the previous step the extension to the solid domain of the
velocity in the fluid. Since a similar integration by parts formula holds when we
replace w̃tt by E(�f0 )(w̃

f
tt ), we deduce

K3 = −
∫

�s0

q̃t t ,j (ã
j
i )t w̃

i
t t +

∫

�s0

q̃t t (ã
j
i )tE(�

f
0 )(w̃

f
tt )
i ,j

+
∫

�s0

q̃t t ,j (ã
j
i )tE(�

f
0 )(w̃

f
tt )
i . (65)

The easier term to estimate is K2
3 =

∫

�s0

q̃t t (ã
j
i )tE(�

f
0 )(w̃

f
tt )
i ,j , for which we

have for an arbitrary δ > 0:

|K2
3 | � C‖q̃t t‖L2(�s0;R)‖Id +

∫ t

0
w̃‖H 3(�s0;R3)‖u0

+
∫ t

0
w̃t‖

1
4
H 2(�s0;R3)

‖w̃‖
3
4
H 3(�s0;R3)

[‖w2‖H 1(�
f
0 ;R3)

+√
t‖w̃ttt‖L2(0,t;H 1(�

f
0 ;R3))

]
� C‖q̃t t‖L2(�s0;R)[1 + t‖(w̃, q̃)‖Zt ][N(u0, (wi)

3
i=1)

+t 1
4 ‖(w̃, q̃)‖

1
4
Zt

] ‖(w̃, q̃)‖
3
4
Zt

[N(u0, (wi)
3
i=1)+ t

1
2 ‖(w̃, q̃)‖Zt ]

� C‖(w̃, q̃)‖Zt [N(u0, (wi)
3
i=1)+ t

1
4 ‖(w̃, q̃)‖

1
4
Zt

]‖(w̃, q̃)‖
3
4
Zt

×[N(u0, (wi)
3
i=1)+ t

1
2 ‖(w̃, q̃)‖Zt ]2

� δ‖(w̃, q̃)‖2
Zt

+ CδN(u0, (wi)
3
i=1)+ Cδt

1
4 ‖(w̃, q̃)‖4

Zt
. (66)

For the first integral, the nonlinear elastodynamics equation in �s0 provides

∇q̃t t = ã−1
[
−w̃ttt + κLw̃tt + cijkl[(η̃,i ·η̃,j −δij )η̃,k ]t t ,l

−2ãt∇q̃t − ãt t∇q̃ + ftt + κh
]
,

leading us forK1
3 =

∫

�s0

q̃t t ,j (ã
j
i )t w̃

i
t t to (since ã−1 = ∇η̃ in virtue of det ∇η̃ = 1),

K1
3 =

∫

�s0

[

∇η̃ [−w̃ttt + cijkl[(η̃,i ·η̃,j −δij )η̃,k ]t t ,l −2ãt∇q̃t − ãt t∇q̃

+ftt + κh]
]j
(ã
j
i )t w̃

i
t t + κ

∫

�s0

[∇η̃ [Lw̃tt ]]j (ãji )t w̃it t . (67)

The integrals on the first line of this equality do not give any trouble and can be
estimated in the same fashion. For instance, we have for

K3
3 =

∫

�s0

[
∇η̃[cijkl[(η̃,i ·η̃,j −δij )w̃t ,lk ]

]j
(ã
j
i )t w̃

i
t t ,
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|K3
3 | � C‖Id +

∫ t

0
w̃‖4

H 3(�s0;R3)
‖w̃t‖H 2(�s0;R3)‖w2 +

∫ t

0
w̃ttt‖L2(�s0;R3)‖u0

+
∫ t

0
w̃t‖

1
4
H 2(�s0;R3)

‖w̃‖
3
4
H 3(�s0;R3)

� δ‖(w̃, q̃)‖2
Zt

+ Cδt
1
4 ‖(w̃, q̃)‖7

Zt
+ CδN(u0, (wi)

3
i=1)). (68)

Now, the difficult term to handle isK4
3 = κ

∫

�s0

[∇η̃[Lw̃tt ]]j (ãji )t w̃it t . We first write

the divergence form Lw̃
p
tt = σ,

mp
m (w̃tt ), and integrate by parts:

K4
3 = −κ

∫

�s0

[∇η̃,m [σmp(w̃tt )]3
p=1]j (ãji )t w̃it t

−κ
∫

�s0

[∇η̃[σmp(w̃tt )]3
p=1]j [(ãji )t w̃it t ],m

+κ
∫

�0

[∇η̃[σmp(w̃tt )]3
p=1]j (ãji )t w̃it tNs

m,

leading us to

∣
∣
∣
∣K

4
3 − κ

∫

�0

[∇η̃[σmp(w̃tt )]3
p=1]j (ãji )t w̃it tNs

m

∣
∣
∣
∣ � Cκ‖(w̃, q̃)‖5

Zt
, (69)

and thus by putting together (67), (68) and (69),

∣
∣
∣
∣
∣

∫

�s0

q̃t t ,j (ã
j
i )t w̃

i
t t − κ

∫

�0

[∇η̃[σmp(w̃tt )]3
p=1]j (ãji )t w̃it tNs

m

∣
∣
∣
∣
∣

� Cκ‖(w̃, q̃)‖5
Zt

+ Cδt
1
4 ‖(w̃, q̃)‖7

Zt
+ δ‖(w̃, q̃)‖2

Zt
(70)

+Cδ
[
N(u0, (wi)

3
i=1)+N((qi)

2
i=0)+M(f, κg, κh)

]
. (71)

Now, the apparent problem comes from the term σmp(w̃tt ) on �0 that should
be taken in H−0.5(�0; R), which is troublesome since the norm in Zt appropriate
for our limit process only contains its L∞(0, t;L2(�s0; R)) norm. In order to cir-

cumvent this, we notice that we also have, since E(�f0 )(w̃tt ) is at least as smooth
as w̃tt in �s0,

∣
∣
∣
∣
∣

∫

�s0

q̃t t ,j (ã
j
i )tE(�

f
0 )(w̃tt )

i−κ
∫

�0

[∇η̃[σmp(w̃tt )]3
p=1]j (ãji )tE(�f0 )(w̃ftt )iNm

∣
∣
∣
∣
∣

� Cκ‖(w̃, q̃)‖5
Zt

+ Cδt
1
4 ‖(w̃, q̃)‖7

Zt
+ δ‖(w̃, q̃)‖2

Zt

+Cδ[N(u0, (wi)
3
i=1)+N((qi)

2
i=0)+M(f, κg, κh)], (72)
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leading us, since w̃ = E(�
f
0 )(w̃

f ) on �0, to

∣
∣
∣
∣
∣

∫

�s0

q̃t t ,j (ã
j
i )t w̃

i
t t −

∫

�s0

q̃t t ,j (ã
j
i )tE(�

f
0 )(w̃tt )

i

∣
∣
∣
∣
∣

� Cκ‖(w̃, q̃)‖5
Zt

+ Cδt
1
4 ‖(w̃, q̃)‖7

Zt
+ δ‖(w̃, q̃)‖2

Zt

+Cδ[N(u0, (wi)
3
i=1)+N((qi)

2
i=0)+M(f, κg, κh)]. (73)

Thus, by using (65), (66) and (73), we have

|K3| � (Cκ + Cδt
1
4 )‖(w̃, q̃)‖7

Zt
+ δ‖(w̃, q̃)‖2

Zt

+Cδ[N(u0, (wi)
3
i=1)+N((qi)

2
i=0)+M(f, κg, κh)]. (74)

Thus, we finally arrive to estimates analogous to (28) and (29), with the right-hand
side being of the same type as in (74).

13.2. Estimate on w̃tt and w̃t

With the same arguments as in the next subsection, we have for n = 2, 1:

‖∂nt w̃‖2
L2(0,t;H 4−n(�f0 ;R3))

+‖∂nt q̃‖2
L2(0,t;H 3−n(�f0 ;R3))

+‖∂nt η̃‖2
L∞(0,T ;H 4−n(�s0;R3))

+κ2‖∂nt w̃‖2
L2(0,t;H 4−n(�s0;R3))

+ ‖∂nt q̃‖2
L2(0,t;H 3−n(�s0;R3))

� Cδ[N(u0, (wi)
3
i=1)+M(f, κg, κh)+N((qi)

2
i=0)]

+(Cκ + Cδt
1
4 )‖(w̃, q̃)‖7

Zt
+ Cδ‖(w̃, q̃)‖2

Zt
. (75)

We now explain in the case of the highest space derivative how to obtain elliptic
estimates independent of κ , since the addition of the pressure term does not allow
us to use Lemma 1 directly in the present case.

13.3. Estimate on η̃ in �s0

13.3.1. Regularity of the trace of η̃. First, by proceeding as in Section 8, and as
for the case of the highest-order time derivative, we get an estimate for the trace
similar to (38), with a majorant of the same type as in (74). We explain hereafter how
to handle the estimates related to the pressure in the solid in order to get this trace
estimate since difficulties, different from those in the higher-order time derivative
problem, appear in the higher-order space derivative problem.

Step 1. Let Q1 =
∫ t

0

∫

R
3−
[Q b̃

j
i ],α1α2α3 [ζ 2Wi],α1α2α3j .

Then,

Q1 = Q2 +Q3 +Q4,
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with

Q2 =
∫ t

0

∫

R
3−
Q b̃

j
i ,α1α2α3 [ζ 2Wi],α1α2α3j ,

Q3 =
∫ t

0

∫

R
3−

[
[Q b̃

j
i ],α1α2α3 −Q,α1α2α3 b̃

j
i −Q b̃

j
i ,α1α2α3

]
[ζ 2Wi],α1α2α3j ,

Q4 =
∫ t

0

∫

R
3−
Q,α1α2α3 b̃

j
i [ζ 2Wi],α1α2α3j .

For Q2, we first notice that for θ = η̃ ◦ , if εijk is the sign of the permutation
between {i, j, k} and {1, 2, 3} if i, j, k are distinct, or set to zero otherwise, then

b̃
j
i ,α1α2α3 W

i,α1α2α3j = 1

2
εmniεpqj [θ,mp θ,nq ],α1α2α3 W,

i
jα1α2α3

= εmniεpqj θ,mpα1α2α3
θ,nq W,

i
jα1α2α3

+1

2

∑

σ∈�3

εmniεpqj θ,mpασ(1) θ,
n
qασ(2)ασ(3)

W,ijα1α2α3

+1

2

∑

σ∈�3

εmniεpqj θ,mpασ(1)ασ(2) θ,
n
qασ(3)

W,ijα1α2α3

= 1

2
εmniεpqj [θ,mpα1α2α3

θ,ijα1α2α3
]t θ,nq

+1

2

∑

σ∈�3

εmniεpqj θ,mpασ(1) θ,
n
qασ(2)ασ(3)

W,ijα1α2α3

+1

2

∑

σ∈�3

εmniεpqj θ,mpασ(1)ασ(2) θ,
n
qασ(3)

W,ijα1α2α3
,

where we have use εmniεpqj = εnmiεqpj on the second equality and εmniεpqj =
εinmεjqp on the third one. Thus,

Q2 =
∫ t

0

∫

R
3−
Qb̃

j
i ,α1α2α3 [[ζ 2W ]i ,α1α2α3j −ζ 2W,ijα1α2α3

]

−1

2

∫ t

0

∫

R
3−

∑

σ∈�3

εmniεpqj [Qθ,mpασ(1) θ,nqασ(2)ασ(3) ζ 2],α1 W,
i
jα2α3

−1

2

∫ t

0

∫

R
3−

∑

σ∈�3

εmniεpqj [Qθ,mpασ(1)ασ(2) θ,nqασ(3) ζ 2],α1 W,
i
jα2α3

−1

2

∫ t

0

∫

R
3−
εmniεpqj ζ 2θ,mpα1α2α3

θ,ijα1α2α3
[Qθ,nq ]t

+1

2

[
∫

R
3−
εmniεpqj ζ 2θ,mpα1α2α3

θ,ijα1α2α3
Qθ,nq

]t
0,
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showing that

|Q2| � C
√
t‖(w̃, q̃)‖4

Zt
+

∣
∣
∣
∣
∣

∫

R
3−
εmniεpqj ζ 2θ,mpα1α2α3

θ,nqα1α2α3
Qθ,ij

∣
∣
∣
∣
∣
(t)

+N((qi)2i=0).

In order to estimate the remaining term, we notice by integrating by parts twice for

Q5 =
∫

R
3−
εmniεpqj ζ 2θ,mpα1α2α3

θ,nqα1α2α3
Qθ,ij that

Q5 = εmniεpqj
∫

R
3−
ζ 2θ,mqα1α2α3

θ,npα1α2α3
Q θ,ij

−εmniεpqj
∫

R
3−

[
(ζ 2Qθ,ij ),p θ,

m
α1α2α3

θ,nqα1α2α3

−(ζ 2Qθ,ij ),q θ,
m
α1α2α3

θ,npα1α2α3

]

+εmniεpqj
∫

x3=0
ζ 2Q θ,mα1α2α3

[
θ,nqα1α2α3

θ,ij (e3)p − θ,npα1α2α3
θ,ij (e3)q

]
.

Since εpqj = −εqpj , we then infer

2Q5 = −εmniεpqj
∫

R
3−
θ,mα1α2α3

[(ζ 2Qθ,ij ),p θ,
n
qα1α2α3

−(ζ 2Qθ,ij ),q θ,
n
pα1α2α3

]

+εmniεpqj
∫

x3=0
ζ 2Q θ,mα1α2α3

[θ,nqα1α2α3
θ,ij (e3)p − θ,npα1α2α3

θ,ij (e3)q ].

Now, if we note θf = E(�
f
0 )(η̃

f ) ◦, we also have for

∫

R
3−
εmniεpqj ζ 2θf ,mpα1α2α3

θ,nqα1α2α3
Qθ,ij

a similar formula. Since θ,mα1α2α3
= θf ,mα1α2α3

on {x3 = 0}, we then have

2Q5 = −εmniεpqj
∫

R
3−
(θ − θf ),mα1α2α3

[
(ζ 2Qθ,ij ),p θ,

n
qα1α2α3

−(ζ 2Qθ,ij ),q θ,
n
pα1α2α3

]

+2
∫

R
3−
εmniεpqj ζ 2θf ,mpα1α2α3

θ,nqα1α2α3
Qθ,ij ,
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leading us to

|Q5| � C

∥
∥
∥
∥Id +

∫ t

0
w̃

∥
∥
∥
∥

1
4

H 3(�s0;R3)

‖η̃‖
7
4
H 4(�s0;R3)

∥
∥
∥
∥q0 +

∫ t

0
q̃t

∥
∥
∥
∥
H 2(�s0;R)∥

∥
∥
∥Id +

∫ t

0
w̃

∥
∥
∥
∥
H 3(�s0;R3)

+C
∥
∥
∥
∥Id +

∫ t

0
w̃

∥
∥
∥
∥

1
4

H 3(�
f
0 ;R3)

‖η̃‖
7
4
H 4(�s0;R3)

∥
∥
∥
∥q0 +

∫ t

0
q̃t

∥
∥
∥
∥
H 2(�s0;R)∥

∥
∥
∥Id +

∫ t

0
w̃

∥
∥
∥
∥
H 3(�s0;R3)

+C
∥
∥
∥
∥Id +

∫ t

0
w̃f

∥
∥
∥
∥
H 4(�

f
0 ;R3)

‖η̃‖H 4(�s0;R3)

∥
∥
∥
∥q0 +

∫ t

0
q̃t

∥
∥
∥
∥
H 2(�s0;R)∥

∥
∥
∥Id +

∫ t

0
w̃

∥
∥
∥
∥
H 3(�s0;R3)

� δ‖(w̃, q̃)‖2
Zt

+ C
√
t‖(w̃, q̃)‖4

Zt
+ Cδ[N(u0, (wi)

3
i=1)+N((qi)

2
i=0)]

Step 2. We see by integrating by parts with respect to the direction α1 that we have

|Q3| � C
√
t‖(w̃, q̃)‖4

Zt
.

Step 3. Next, Q4 = Q6 +Q7, where

Q6 =
∫ t

0

∫

R
3−
Q,α1α2α3 b̃

j
i ζ

2Wi,α1α2α3j

Q7 =
∫ t

0

∫

R
3−
Q,α1α2α3 b̃

j
i

[
[ζ 2W ]i ,α1α2α3j −ζ 2Wi,α1α2α3j

]
.

We first have

|Q7| � C

∫ t

0
[‖q̃‖H 3(�s0;R)‖w̃‖H 3(�s0;R3)‖η̃‖2

H 3(�s0;R3)
] � C

√
t‖(w̃, q̃)‖4

Zt
.

For Q6 the divergence condition b̃ji W
i,j = 0 on Supp ζ implies that

Q6 =
∫ t

0

∫

R
3−
Q,α1α2α3 ζ

2
[
b̃
j
i W

i,α1α2α3j −(b̃ji W i,j ),α1α2α3

]
,

which in turn provides,

|Q6| � C

∫ t

0
[‖q̃‖H 3(�s0;R)‖w̃‖H 3(�s0;R3)‖η̃‖2

H 4(�s0;R3)
] � C

√
t‖(w̃, q̃)‖4

Zt
,

which concludes the estimates on the pressure terms in the solid, justifying why we
obtain a trace estimate similar as (38) with a majorant of the type of the right-hand
side of (74). Now, we turn our attention to the recovery of the regularity in the solid,
which will need some justifications since we cannot directly apply Lemma 1.
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13.3.2. Regularity in the incompressible solid. First, with the introduction of

F̃ = −w̃t + cijkl[(η̃,i ·η̃,j −δij )η̃,k ],l −Lη̃ + f + κh in �s0,

and of r̃ , the solution in �s0 of

κ

2
r̃t + r̃ = q̃,

r̃(0) = q0,

we have for the nonlinear elastodynamics

−κ
2
∇η̃ Lw̃ − ∇η̃ Lη̃ + ∇

[κ

2
r̃t + r̃

]
= ∇η̃ F̃ in �s0,

i.e.,

κ

2
[−∇η̃ Lη̃ + ∇ r̃]t − ∇η̃ Lη̃ + ∇ r̃ = ∇η̃ F̃ − κ

2
∇w̃ Lη̃ in �s0. (76)

We now apply Lemma 1 to this equation, leading us to

sup
[0,t]

‖ − ∇η̃ L(η̃)+ ∇ r̃‖H 2(�s0;R3) � sup
[0,t]

‖∇η̃ F̃ − κ

2
∇w̃ Lη̃‖H 2(�s0;R3)

+‖ − L(Id)+ ∇q0‖H 2(�s0;R3),

and, with H̃ = −L(η̃)+ ∇ r̃ , to

sup
[0,t]

‖H̃‖H 2(�s0;R3)

� sup
[0,t]

[‖∇η̃ F̃ − κ

2
∇w̃ Lη̃‖H 2(�s0;R3) + ‖(∇η̃ − Id) L(η̃)‖H 2(�s0;R3)]

+N((qi)2i=0). (77)

We then want to use elliptic regularity on the system:

−Lη̃ + ∇ r̃ = H̃ in �s0, (78a)

div η̃ = (−ãji + δij )η̃
i ,j +3 in �s0, (78b)

η̃ = η̃|�0 on �0, (78c)

where the trace on�0 is estimated as we explained in the previous subsection. Now,
for the divergence condition in �s0, we notice that:

[
(ã
j
i − δij )η̃

i ,j

]
,i1i2i3 = ã

j
i ,i1i2i3 η̃

i ,j +(ãji − δij )η̃
i ,j i1i2i3

+
∑

σ∈�3

[
ã
j
i ,iσ (1) η̃

i ,j iσ (2)iσ (3) +ãji ,iσ (1)iσ (2) η̃i ,j iσ (3)
]
.

For the apparently problematic first term on the right-hand side, we first notice that

ã
j
i ,i1 η̃

i ,j = 1

2
εmniεpqj (η̃,mp η̃,

n
q ),i1 η̃,

i
j = εmniεpqj η̃,mpi1 η̃,

n
q η̃,

i
j

= εinmεjqpη̃,ij i1 η̃,
n
q η̃,

m
p = 2ãji η̃

i ,j i1 ,
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which with the condition ãji η̃
i ,j = 3, provides 0 = ã

j
i ,i1 η̃

i ,j , and thus

ã
j
i ,i1i2i3 η̃

i ,j = −ãji ,i1i2 η̃i ,j i3 −ãji ,i1i3 η̃i ,j i2 −ãji ,i1 η̃i ,j i2i3 .
We then deduce that

‖(ãji − δij )η̃
i ,j ‖H 3(�s0;R)(t)

� δ‖(w̃, q̃)‖2
Zt

+ CδN(u0, (wi)
3
i=1)+ Ct ‖(w̃, q̃)‖3

Zt
. (79)

Now, with (77) and (79), elliptic regularity on (78) provides for

‖η̃‖2
L∞(0,t;H 4(�s0;R3))

+
∥
∥
∥
∥
∥
r̃ − 1

|�s0|
∫

�s0

r̃

∥
∥
∥
∥
∥

2

L∞(0,t;H 3(�s0;R))

a bound of the same type as the right-hand side of (74), with however the norms in
Zt replaced by the norms in Z̃t , due to the term κ‖∇w̃ Lη̃‖H 2(�s0;R3) appearing on
the right-hand side of (77), that we bound by

Cκ‖w̃(t)‖H 3(�s0;R3)‖L(Id)+
∫ t

0
Lw̃‖H 2(�s0;R3)

� Cκ‖w̃(t)‖H 3(�s0;R3)

√
t‖w̃‖L2(0,t;H 4(�s0;R3))

� C
√
t‖(w̃, q̃)‖2

Z̃t
.

We now turn our attention to the pressure, which we just need to control in
L2(0, t;H 3(�s0; R)). In order to do so, we notice from (76) that we have for K̃ =
κ
2 [−Lw̃ + ∇ r̃t ]:

K̃ = κ

2
[∇η̃ − Id] Lw̃ + ∇η̃ Lη̃ − ∇ r̃ + ∇η̃ F̃ − κ

2
∇w̃ Lη̃,

which with the previous estimate on η̃ and r̃ shows that we have a bound on
‖K̃‖2

L2(0,t;H 2(�s0;R3))
of the same type as the right-hand side of (74), but where

the norms in Zt are replaced by norms in Z̃t due to the estimate in L2(H 2) of
κ[∇η̃ − Id] Lw̃. Now, elliptic regularity on the system:

−Lκw̃ + ∇κrt = 2K̃ in �s0,

div κw̃ = κ(−ãji + δij )w̃
i ,j in �s0,

κw̃ = κw̃
f
|�0

on �0,

provides, after integrating in time, an estimate for

κ2

[

‖w̃‖2
L2(0,t;H 4(�s0;R3))

+ ‖r̃t − 1

|�s0|
∫

�s0

r̃t‖2
L2(0,t;H 3(�s0;R))

]

with a bound similar as in (74), still with the norms in Zt replaced by norms in Z̃t .
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Thus, we obtain for ‖q̃− 1
|�s0|

∫
�s0
q̃‖2
L2(0,t;H 3(�s0;R)), the same type of estimate

as well. Given our estimate on q̃t t , this also implies the same type of majoration for
‖q̃‖2

L2(0,t;H 3(�s0;R)).
Thus, we are lead to

‖(w̃, q̃)‖2
Z̃t

�
(
Cκ + Cδt

1
4

)
‖(w̃, q̃)‖8

Z̃t
+ δ‖(w̃, q̃)‖2

Z̃t

+Cδ
[
N(u0, (wi)

3
i=1)+N((qi)

2
i=0)+M(f, κg, κh)

]
,

which leads as in Section 9 to the introduction of a polynomial, this time of degree
4, which does not bring any substantial change with respect to Section 9. Note
that the addition of Cκ‖(w̃, q̃)‖8

Zt
does not create any difficulty since a small κ1 is

chosen at the same stage as t1, and the conclusion is similar as in Section 9 from
the continuity of ‖(w̃, q̃)‖

Z̃t
on [0, Tκ ] which is established in the same way as the

continuity of ‖(w̃, q̃)‖Zt . We then infer that there is a time of existence of κ for our
smoothed problems, with a bound on ‖(w̃, q̃)‖

Z̃T
and thus on ‖(w̃, q̃)‖ZT indepen-

dent of κ . Existence follows then by weak convergence in YT and uniqueness can
be established similarly as for the compressible case in Section 11.
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