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ABSTRACT
A large flux of cosmic rays streaming through a magnetized plasma creates cavities of low
plasma density and low magnetic field. The magnetic field focuses the cosmic ray trajectories
into the cavities with the possible formation of filaments or beams of high-energy cosmic rays.
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1 I N T RO D U C T I O N

In Paper I (Bell 2004), building on earlier work by Lucek & Bell
(2000), it was shown that large fluxes of cosmic rays (CRs) can am-
plify a magnetic field to many times its seed value as indicated by
recent X-ray observations (Vink & Laming 2003; Völk, Berezhko &
Ksenofontov 2005; Yamazaki et al. 2004). Paper I considered field
amplification in the context of diffusive shock acceleration of CRs at
the outer shock of supernova remnants (SNRs). CR in the shock pre-
cursor drift relative to the background magnetized thermal plasma
at a velocity equal to the shock velocity v s. The CRs, assumed to
consist of protons, carry an electric current j (j was called j cr in
Paper I), which has to be approximately balanced by an oppositely
directed return current j return carried by the thermal plasma to main-
tain quasi-neutrality. In the three-dimensional turbulence upstream
of the shock, the two currents need not balance locally at every point
in space, and the difference between the two currents is given by
j return = − j + ∇ ∧ B/µ0. The background plasma is subject to a
j return ∧ B force, which must be included in its momentum equa-
tion. The magnetohydrodynamics (MHD) equations for the thermal
plasma are then

ρ
du
dt

= −B ∧ (∇ ∧ B)/µ0 − j ∧ B − ∇ P,

∂B
∂t

= ∇ ∧ (u ∧ B),

∂ρ

∂t
= −∇ · (ρu),

(1)

where P is the plasma pressure. The adiabatic equation of state,
P ∝ ρ5/3, can be used to calculate P, although shock heating must
be included to model the non-linear development of the interaction
between the CRs and the thermal plasma. Because the CRs have
a positive charge density, the thermal plasma must be negatively
charged and is subject to an electric force; however, this is negligible
in the limit that the speed of light is large compared with bulk plasma
velocities. The electric force, due to the electric field E = −u ∧ B,
was included as the final term in equation (1) of Paper I and was
shown to be small in the subsequent analysis. It was shown in Paper
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I that equations (1) of this paper led to an instability that is nearly
purely growing when j takes the values expected in the environment
of a young SNR. The linear growth rate is greatest at wavelengths
(2π/k) much shorter than the CR Larmor radius rg. When kr g �
1, the CR trajectories are essentially unaffected by fluctuations in
the magnetic field on the scale k−1, and the development of the
instability can be derived from equations (1) with j set equal to a
value that is constant in space and time.

In Paper I, the dispersion relation was derived for the case in
which j , k and B0 are parallel, where B0 is the zeroth-order unper-
turbed magnetic field. The non-linear development was followed
with a three-dimensional MHD code (MH3D) in which j and B0

were parallel. Three-dimensional turbulence was seen to develop
and amplify the frozen-in magnetic field to a value much larger than
its seed value.

In this paper, we investigate the multidimensional structure of the
turbulence. The turbulence is strongly driven by the CR current j.
The − j ∧ B force driving the turbulence is always perpendicular
to j. Consequently, the turbulence is not isotropic and its structure
is different in directions parallel and perpendicular to j. We present
four calculations or simulations, each of which illuminates different
multidimensional aspects of the turbulence, and which together give
a clearer picture of the nature of the CR-driven turbulence. The first
calculation is a derivation of the linear dispersion relation for general
mutual orientations of CR current j, zeroth-order magnetic field B0

and perturbation wavenumber k, showing that most rapid growth
occurs when k and B0 are parallel and that growth occurs for all
orientations of j to B0. The other three calculations investigate the
growth of cavities in which the magnetic field and the background
plasma density become very small. A magnetic field forms around
each cavity to produce magnetic forces, which focus CR trajectories
into the cavity and push the thermal plasma out of the cavity. Al-
though we are unable to self-consistently include feedback on to the
CR trajectories, the focusing of CR trajectories into the cavities is
sufficient to imply the eventual formation of extended filaments or
beams of CR propagating through low-density cavities. The growth
of filaments saturates when the electric current in filaments reaches
the Alfvén current. Hence, lower limits can be estimated for the
power carried by each filament or beam and for the characteristic
radius of filaments or beams.
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2 L I N E A R A N D N O N - L I N E A R G ROW T H
O F C R - D R I V E N T U R BU L E N C E

2.1 Linear dispersion relation

In this section the linear dispersion relation is derived for arbitrary
orientation of k, B0 and j showing that growth is most rapid when
k and B0 are parallel, and that growth is possible at all orientations
apart from k · B0 = 0. Although CRs tend to spiral along magnetic
field lines, j and B0 can be non-parallel because of diamagnetic
CR drifts or because of non-uniformities in the magnetic field on
scales less than the CR Larmor radius.

The dispersion relation is derived by linear solution of equ-
ations (1). The solution takes the form

ξ = ξ0 + {
ξ1 exp[γ t + i k · (r − ∫

u0 dt)] + c.c.
}
, (2)

where c.c. denotes the complex conjugate and ξ represents B, ρ, u
or P . B1, ρ 1, u1 and P1 are complex, and small compared with the
zeroth-order quantities.

The zeroth-order magnetic field and density are constant, but
the zeroth-order velocity increases in time because the zeroth
-order − j ∧ B force is non-zero in general, giving

u0 = − j ∧ B0

ρ0
t (3)

if u0 is zero when t = 0. For example, u0 is time-dependent in the
case of a perpendicular shock. The diamagnetic current carried by
CRs produces a − j ∧ B0 force, which decelerates the background
plasma as it flows into the shock.

The growth rate γ of first-order quantities is derived by stan-
dard procedures as outlined in Appendix A. γ is a function of the
three vectors k, j and B0. In Paper I, the three vectors were as-
sumed to be collinear, but any relative orientation can be considered,
giving[
γ 2 + (k̂ · b̂)2k2v2

A

] [
γ 4 + γ 2k2

(
v2

A + c2
s

) + (k̂ · b̂)2k4v2
Ac2

s

]
= γ 4

0

{
γ 2 + ( ĵ · k̂)2k2c2

s

+ [(k̂ · b̂)2 + (k̂ · ĵ)2 − 2(k̂ · ĵ)(b̂ · ĵ)(k̂ · b̂)]k2v2
A

}
(4)

where γ 4
0 = (k · B0)2 j2/ρ2

0, vA is the Alfvén speed B 0/(µ0ρ 0)1/2,
cs is the sound speed defined by c2

s = ∂P/∂ρ, and a ‘hat’ denotes
a unit vector: k̂ = k/|k|, ĵ = j/| j |, b̂ = B0/|B0|.

If all three vectors k, j and B0 are collinear as in Paper I, the
dispersion relation reduces to[
γ 2 + k2c2

s

] [(
γ 2 + k2v2

A

)2 − γ 4
0

] = 0. (5)

The solution γ 2 + k2c2
s = 0 corresponds to oscillatory sound waves

propagating parallel to B0. The solution (γ 2 + k2v2
A)2 − γ 4

0 = 0
corresponds to transverse modes. Transverse modes are oscillatory
(γ 2 < 0) if k2 > γ 2

0/v
2
A. At longer wavelengths, k2 < γ 2

0/v
2
A, there is

a purely growing mode with γ > 0 which produces the instability.
As derived in Paper I, the maximum value of k at which growth
occurs is given by kB0/µ0 = j . At shorter wavelengths, the tension
in the magnetic field lines −B ∧ (∇∧ B)/µ0 exceeds and stabilizes
the effect of the − j ∧ B force, which drives the instability. At much
longer wavelengths, the tension in the field lines can be neglected,
k2v2

A and k2c2
s can both be neglected, and the dispersion relation has

solutions γ 2 = 0 and γ 4 = γ 4
0 for any mutual orientation of k, j and

B0.
The long wavelength limit (still assuming kr g � 1) can be de-

rived more directly from equations (1) by neglecting ∇ P and −B ∧

(∇∧ B)/µ0, and defining Φ = B/ρ to obtain

du
dt

= − j ∧ Φ,
dΦ
dt

= (Φ · ∇)u, (6)

which yields the dispersion relation γ 4 = γ 4
0 as above. In the purely

growing solution, u1 and Φ1 are perpendicular to each other and to
j, and u1 and Φ1 rotate about j with respect to the position along
the direction of k. The vector Φ has a helical structure if k is paral-
lel to j, and a sheared helical structure in general. Perturbations in
Φ (Φ1 = B1/ρ 0 −B0 ρ 1/ρ

2
0) consist of a combination of pertur-

bations in B and ρ, depending on the mutual orientation of k, j
and B0. The perturbed magnetic field is given by B1 = ρ 0 Φ1 +
iγ −2 B0 (k ∧ j) · Φ1.

The dispersion relation indicates that instability is possible for
all orientations of k, j and B0 except for k perpendicular to B0.
The growth rate of the instability is determined by the parameter
γ 0 = (|k · B0| | j |/ρ 0)1/2. The instability is strongest when the
wavenumber k is parallel to the zeroth-order magnetic field B0.

2.2 A filamentary mode

In Section 2.1 the linear dispersion relation for planar modes
was derived. In this section, we solve equations (1) in cylindrical
(r , θ , z) geometry for the radial expansion with velocity u of a cylin-
drical filament. The filamentary solution gives more insight than the
planar mode solution because it is closer to the natural non-linear
form of the turbulence as found below in non-linear simulations.

We consider the case in which j and B0 are aligned in the
z-direction and in which Bz, B θ , u, ρ and P are functions of r alone.
The twist in z of the magnetic field kB (r ) = B θ /rBz takes the place
of k in the planar calculation, with a field line at radius r spiralling
around the r = 0 axis in a distance 2π/kB. Individual magnetic field
lines have a helical structure, as also found in the planar calculation
in Section 2.1.

In cylindrical geometry with dependence only on r and t, equa-
tions (1) take the form

d

dt

(
Bz

ρ

)
= 0,

d

dt

(
Bθ

ρ

)
= u

r

(
Bθ

ρ

)

dρ

dt
= −ρ

r

∂(ru)

∂r

ρ
du

dt
= j Bθ − ∂P

∂r
− Bθ

µ0r

∂(r Bθ )

∂r
− ∂

∂r

B2
z

2µ0
. (7)

These equations are most easily solved by Lagrangian analysis for
a fluid element at position r(t) at time t and initially at position
r (0) = r 0. The first two equations, expressing flux-freezing, give

Bz

ρ
= Bz0

ρ0
and

Bθ

ρ
= r

r0

Bθ0

ρ0
, (8)

where B z0, B θ0 and ρ 0 are the values of Bz, B θ and ρ in the fluid
element at time t = 0. If the Alfvén speed vA and the sound speed
cs are neglected as in the long wavelength approximation made for
equation (6), the pressure P and the magnetic force can be neglected,
and the momentum equation becomes

du

dt
= jBθ

ρ
giving

d2r

dt2
= jBθ0

r0ρ0
r (9)

with the solution

r = r0 exp(γ0t) where γ0 =
(

j Bθ0

r0ρ0

)1/2

. (10)
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Figure 1. A filament in cylindrical geometry. Plots against radius r/r 1 at
times t/t 1 = 0, 4, 8, 12 and 16, of (i) ρ/ρ1, (ii) u/u1, (iii) B θ /B 1 and (iv)
j return/ j .

γ 0 is the equivalent of the same quantity in the planar analysis when
kB0 is replaced by kBBz0(=B θ0/r 0).

Filament growth is driven by the r-component ( j B θ ) of the
− j ∧ B force, which accelerates the plasma away from the axis.
As the plasma moves outwards, the helical field lines are extended
in the θ direction, decreasing the density ρ of the plasma frozen to
the field lines in the sense that ρ ∝ B θ /r . The radial acceleration
j B θ /ρ consequently increases, thus increasing the expansion veloc-
ity and producing exponential growth in the radius of the helical field
lines.

The solution given by equation (10) is non-linearly correct pro-
vided the pressure and magnetic forces in the thermal plasma remain
negligible and as long as two adjacent fluid elements do not inter-
change radial positions in the analysis. As shown below, even if
the pressure is initially negligible, it soon becomes important as
shocks develop in the radially expanding plasma and equation (10)
no longer applies.

Fig. 1 plots the expansion of a filament calculated by numerical
solution of equation (7) for a uniform and constant CR current j in the
z-direction. The initial filament radius is r1, and the magnetic field
is initialized with Bz = 0.1µ0 jr 1, B θ = 0.1µ0 jr exp (−r 2/2r 2

1).
The − j ∧ B force is an order of magnitude greater than the −B ∧
(∇ ∧ B)/µ0 pressure and tension forces due to the magnetic field,
thus allowing the filament to grow. The thermal pressure is initialized
with a uniform pressure P = B2

z/µ0. In Fig. 1, ρ, u, B θ and the
return current j return = [∂(r B θ )/∂r ]/rµ0 − j are plotted relative to
reference values ρ 1 (the initial density), u1 = jr 1(µ0/ρ 1)1/2, B 1 =
µ0 jr 1 and the CR current j, respectively. The unit of distance is r1,
and the unit of time is t 1 = r 1/u1.

Fig. 1 shows that plasma is expelled radially from the filament
carrying with it the frozen-in magnetic field and leaving a central
region in which both the plasma density and the magnetic field
are very low. For the chosen parameters, the expansion is super-
sonic and a shock develops in front of a snowplough driven by the
− j ∧ B force. As the filament expands, the azimuthal magnetic
field compresses into a relatively thin shell.

The evolution of the magnetic field is strongly constrained by
the one-dimensionality of the solution and the inability of adja-
cent magnetic field lines to exchange position in radius. The peak
magnetic field can only increase by radial compression of the mag-
netic field. The total magnetic energy increases as each magnetic
field line is extended, but full turbulent amplification of the mag-

netic field is restricted by the geometry. Magnetic forces become
dynamically important in three-dimensional CR-driven turbulence,
as found in Paper I, but this does not occur in this one-dimensional
calculation.

Fig. 1(iv) plots the return current carried by the thermal
plasma as calculated from the curl of the magnetic field j return =
[∂(r B θ )/∂r ]/rµ0 − j . Because the magnetic field is initially small,
the return current nearly balances the CR current at each point in
radius at t = 0, but this is no longer so at later times t > 8 when
| j return| exceeds the CR current j where the gradient in B θ is large.
This is significant for the discussion in Section 4.

2.3 Non-linear structure of the magnetic field

In Section 2.2 we presented a solution for the development of a
single filament in one-dimensional cylindrical geometry. We now
investigate whether filaments arise naturally in less constrained
three-dimensional geometries. Paper I presented a non-linear MHD
calculation of three-dimensional CR-driven turbulence. The CR cur-
rent j and the initial zeroth-order magnetic field were aligned in
the z-direction. j was fixed in time and uniform in space. We can
re-examine the calculation presented in Paper I to see if filaments
develop. Figs 2 and 3 plot a series of slices in (x, y), each at a differ-
ent z, of the magnitude of the magnetic field and the density at time
t = 6 at the end of the phase of rapid non-linear development, but be-
fore the turbulence has saturated. The parameters for the calculation
and further detail, including the normalization of the dimensionless
parameters, can be found in section 8 of Paper I. The calculation
is the same as that for which results are shown in figs 3 and 4 of
Paper I, except that the initial perturbation is not precisely the same.
The density and magnetic field profiles in each slice in Figs 2 and

Figure 2. |B(x , y)| (0 < x < 64, 0 < y < 64) at t = 6 and z = 0, 2, 4. . . 10.

Figure 3. ρ (x , y) (0 < x < 64, 0 < y < 64) at t = 6 and z = 0, 2, 4. . . 10.

C© 2005 RAS, MNRAS 358, 181–187

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/358/1/181/1035335 by guest on 16 August 2022



184 A. R. Bell

Figure 4. The paths of four magnetic field lines in (x,y,z) at t = 6.

3, examined individually, might be interpreted as a collection of
filaments expanding into each other in (x, y). The magnetic field is
concentrated in walls of strong field surrounding regions of low
magnetic field and low density. The lowest density in the cavi-
ties is typically a few per cent of the initial uniform density. The
component of the magnetic field perpendicular to z reverses direc-
tion across the walls of magnetic field, which is consistent with
the magnetic field spiralling around the cavities with a preferred
direction. This field reversal produces the dark lines in Fig. 2, rep-
resenting low magnetic field, in the centre of some parts of the
walls.

The plots in Figs 2 and 3 resemble slices through filaments, but
comparison of nearby slices in z shows that these apparently filamen-
tary structures are not extended in z. The length of the computational
grid in x, y and z is 64 in the dimensionless units of the calculation,
so the distance between each slice in z is only 1/32 of the length
of the cubic computational grid. The limited correlation between
nearby slices means that the structures cannot be described as fila-
ments. The reason for the lack of correlation in z is that there is no
aspect of the physics which strongly transmits information large dis-
tances in the z-direction. CR trajectories are fixed and unaffected by
the magnetic field, and hydrodynamic motions are driven predomi-
nantly perpendicular to the z-direction. However, it is energetically
favourable for the instability to develop with some degree of cor-
relation in z. Otherwise, the turbulence would consist of a series of
unaligned disc-like cavities with a large magnetic shear in the (x , y)
plane between adjacent discs in z and the energy in magnetic field
would be large. Thus, the tension in magnetic field lines commu-
nicates some information and produces some correlation in z, but
the magnetic tension is relatively weak compared with the − j ∧ B
forces driving the perpendicular motions during the early stages of
the evolution of turbulence.

Although extended filaments do not develop in z, Fig. 4 shows
that magnetic field lines become helical. The approximately spiral
structure of field lines is consistent with the observation that the field
has a preferred direction around the cavities. However, the centre
of the spiral, in as much as it can be defined, wanders in the x , y
plane as a field line progresses in z. The overall structure might be
described as a collection of wandering filaments.

2.4 A filamentary solution driven by a CR beam

Section 2.3 has shown that, although slices in magnetic field and
density at constant z resemble slices through filaments, the struc-
tures are not extended in z because no aspect of the physics strongly
communicates information in the z-direction. We argue in Section 3
that this situation changes when the turbulence is fully evolved be-
cause CR trajectories are then affected by the magnetic field and
transmit information along their direction of propagation. In this
present section we show that, if we assume the pre-existence of
a filament of intense CR flux, then a coincident low-density fila-

ment forms in the background plasma, which is accompanied by
a magnetic field with the form required to further concentrate the
CR trajectories into the pre-existing filament.

The three-dimensional MHD calculations presented in Sec-
tion 2.3 and in section 8 of Paper I assumed that the CR current
is uniform in three-dimensional space. Here, we impose a profile on
the CR current

j(x, y) = j0 exp
[−(x2 + y2)/2r 2

b

]
, (11)

where r b = 16 is the radius of the beam in the dimensionless units of
the calculation. j 0 is equal to the uniform current density used in the
calculations in Section 2.3. Apart from the shaping of the CR current,
all aspects of the calculation, including the initial conditions, are the
same as the calculation discussed in Section 2.3. Time sequences of
the evolution of magnetic field and density are plotted in Figs 5(i)–
(viii). Each plot is a slice in (x , y) at the same z. Initially, density and
magnetic field structures grow on a scale smaller than rb. By t = 6,
the structures have self-organized into a filament as the dominant
scalelength increases to rb. By this time, the structure resembles
the cylindrical solution found in Section 2.2, showing that this is a
natural outcome for turbulence driven by a CR beam. Figs 5(ix)–(xii)
plot, as a function of x and z, the mean magnetic field magnitude
(averaged in y over the length L , L = 64, of the computational
grid) 〈|B(x, z)|〉y = ∫ L

0
|B(x, z)|dy/L . At early times, a small-scale

magnetic field grows within the beam. By t = 6, limb-brightening
is consistent with the growth of a ring of magnetic field spiralling
around an empty cavity. As expected, the structure is extended in z,
unlike those in Section 2.3.

The evolution into a single filamentary cavity or beam might take
place by a number of processes, but, whatever the details of the
process, it is clear from the following general considerations that an
azimuthal field must develop around the CR beam. The only way
energy can be extracted from the CR beam is through an electric
field Ez in the z-direction. −jEz is the rate per unit volume at which
energy is given to turbulence and to the background plasma. Hence,
the characteristic electric field within the beam is

Ez = − 1

j

∂Uturb

∂t
(12)

where U turb is the turbulent energy density. Because the electric field
outside the CR beam is zero, the electric field has a non-zero curl,
which gives rise to an azimuthal magnetic field

∂Bθ

∂t
∼ − Ez

rb
∼ 1

jrb

∂Uturb

∂t
giving Bθ ∼ Uturb

jrb
. (13)

The direction of Ez, and consequently B θ , is set by the need for the
electric field to decelerate the CR. The direction of B θ is always that
which results in CR beam-focusing and corresponding expulsion
of plasma from the beam. This is an example of a more general
phenomenon: if a charged particle beam is slowed by an electric
field, then a magnetic field evolves which focuses the beam. Another
example is the self-focusing of energetic laser-produced electrons
propagating through a dense plasma (Bell & Kingham 2003).

The electric field in the z-direction can be calculated by an alter-
native method when the turbulence is still of small amplitude and
can be treated as a collection of linearly growing modes with growth
rates γ . Taking the simple case when the −B ∧ (∇∧ B)/µ0 force
and the pressure force ∇ P can be neglected so that ρdu1/dt =
ργ u1 = − j ∧ B1, the second-order electric field E2 = −u1 ∧
B1 = ( j ∧ B1) ∧ B1/ργ extracts energy from the CR beam at a
rate

− j · E2 = j2 B2
⊥

γρ
(14)
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Figure 5. Turbulence driven by a beam of CRs. The plots are of |B(x , y)|, ρ(x , y) and 〈|B(x , z)|〉y in the top, middle and bottom rows, respectively. The plots
are at times t = 2, 4, 6 and 8 in the first, second, third and fourth columns, respectively. The grey-scale minima (black) and maxima (white) for each plot as
bracketed pairs (minimum, maximum) are: (i) (0.77, 1.29); (ii) (0.49, 1.89); (iii) (0.05, 5.59); (iv) (0.06, 8.83); (v) (0.78, 1.24); (vi) (0.56, 1.62); (vii) (0.14,
2.62); (viii) (0.01, 5.99); (ix) (0.95, 1.09); (x) (0.93, 1.25); (xi) (0.89, 2.58); (xii) (0.89, 3.90).

where B⊥ is the component of B1 perpendicular to j. Energy is
extracted from the beam, and the CR trajectories are focused into
the beam provided the turbulence is growing in amplitude (γ >

0). Equation (14) can be reconciled with equation (12) by inserting
the growth rate γ = (k · B0 j/ρ)1/2 and recognizing that the kinetic
energy ρu2

1/2 exceeds the magnetic energy for wavelengths at which
the magnetic tension can be neglected.

3 E VO L U T I O N O F T U R BU L E N C E W H E N
j A N D B 0 A R E PA R A L L E L

In this section, we bring together the insights from Section 2 to form
an overview of the evolution of turbulence through the linear phase
to fully developed non-linearity. Because CRs tend to stream along
the magnetic field, and differential fluid motion in the direction of
j stretches the magnetic field in the same direction, j and B0 are
approximately parallel in many cases. The case of parallel j and B0

is also the easiest to understand, so we confine ourselves to this case
for simplicity.

Turbulence, if that is the correct word because the final state is
not completely disordered, develops according to the following se-
quence. According to the planar mode analysis of Section 2.1, mag-
netic structure grows initially on scales close to µ0 j/B 0, which are
much smaller than the CR Larmor radius. CR trajectories are there-
fore unaffected by the magnetic field perturbations. For each planar
mode, the perturbed field lines form helices that grow exponentially
in amplitude as the helices expand laterally. The initial small-scale
perturbations non-linearly saturate at relatively small amplitudes
due to tension in magnetic field lines. The dominant spatial scale
becomes larger as the turbulence develops, with saturation taking
place at increasing amplitude and with a magnetic field much larger
than B0. As discussed in Paper I, the move to larger scales halts
and the overall process saturates when the dominant scalelength be-

comes equal to the CR Larmor radius and the CRs gyrate around
the amplified field lines. Section 2.2 gives a perspective from con-
figuration space, which complements the Fourier space analysis of
Section 2.1. Section 2.2 picks up the helical structure of the per-
turbed field lines found in Section 2.1 and follows in cylindrical
geometry the growth of field lines close to the r = 0 axis and spi-
ralling around the r = 0 axis. As found in the planar mode analysis
the helical field lines expand laterally away from the axis, carry-
ing with them the plasma into which they are frozen and forming a
density cavity on the axis. Slices perpendicular to j (and B0) in the
non-linear calculation of Section 2.3 demonstrate the development
of cavities in which both the plasma density and magnetic field are
very small. The size of the cavities increases with time, and this
corresponds to the evolution towards large scalelengths indicated
by the planar mode calculation. The cavities are formed by − j ∧ B
acceleration of the background fluid perpendicular to j, and hence
the cavities tend to be disc-like rather than filamentary. Tension in
field lines produces some correlation in the direction of j so the
overall picture of magnetic field line structure is of a collection of
wandering helices. The field lines wind around the cavities with a
preferred orientation which produces the − j ∧ B force that causes
the cavity to expand. The cavities initially expand exponentially
in time, but non-linearly encounter nearby cavities expanding to-
wards them, whereafter cavity expansion continues but at a slower
rate. The plasma between adjacent cavities is compressed produc-
ing high-density, high magnetic field walls between cavities. The
plasma in the walls is heated by compression and shocks. Because
the magnetic field winds in a preferred direction about each cavity,
the magnetic field changes direction within the walls.

The overall process saturates when the scalelength becomes com-
parable with the CR Larmor radius. In configuration space, this can
be expected to correspond to the situation in which the cavity di-
mensions have expanded to equal the CR Larmor radius. Although
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CRs are able to pass easily through the low magnetic field in the
cavities, the CR current is then unable to penetrate the large mag-
netic field in the wall, and the − j ∧ B force causing the cavity to
expand is much reduced at this stage. The calculations of Section 2
cannot fully address the saturation phase because the feedback of
magnetic field on to the CR trajectories needs to be included in the
model.

In the saturation phase, CR trajectories are affected by the mag-
netic field. As this phase is approached, the first effect will be
that each cavity acts as a lens focusing the CR trajectories. The
− j ∧ B force, which acts to expand the cavity, also reacts to de-
flect CR towards the centre of the cavity as required by momentum
conservation. The CR trajectories are focused towards a point down-
stream of the cavity, thus increasing the downstream − j ∧ B forces
and creating a cavity downstream of the first cavity. The second
cavity produces cavitation yet further downstream and a filament is
formed. In contrast with earlier stages in the evolution of turbulence,
once the CR trajectories are deflected by the turbulent magnetic field,
there is now a mechanism to transfer information along the direction
of j and cause the cavities to develop as filaments.

The interaction between CRs and the background plasma is anal-
ogous to the filamentation of laser light as it passes through a
plasma (Kruer 1988; Young 1991). It is particularly analogous
to thermal self-focusing (Craxton & McCrory 1984) in which a
beam of laser light heats the plasma through which it passes.
The increased thermal pressure in the beam drives thermal plasma
out of the beam, creates a density cavity, and the refractive in-
dex focuses the laser light into the cavity. The feedback process
between plasma heating, increased thermal pressure, cavity forma-
tion and refraction can cause a laser beam to self-focus or a uni-
form laser beam to break into filaments. Ideally, we would model
the analogous self-consistent feedback of the magnetic field on
to a CR beam to calculate whether CR self-focusing occurs, but
we do not have the computational resources needed to model ad-
equately the CR trajectories. However, Section 2.4 demonstrates
that CRs focused to a higher flux by a cavity would tend to pro-
duce a downstream filament if we were able to model the CR
trajectories.

The picture of turbulence developed in this section applies if
the CRs are mono-energetic. Normally, CRs with a large range of
energies would participate in the process producing turbulence on
a large range of spatial scales and evolutionary time-scales. The
interaction between turbulence on different scales is beyond the
scope of this paper.

4 T H E P OW E R I N E AC H C AV I T Y
O R F I L A M E N T

The turbulence saturates when the radius R of cavities, or filaments,
is comparable to the CR Larmor radius, that is when R ∼ r g =
ε/cB where ε is the energy of the CRs in eV. The electric current
passing through the cavity is then I = 2π RB/µ0 ∼ 2π ε/cµ0. This
current is the Alfvén current, although the Alfvén current is often
defined without the factor of 2π (Miller 1982). The Alfvén current
is the maximum current that can be carried by a charged particle
beam without the beam pinching under its own self-generated mag-
netic field. In our case, the current I cr carried by the CR is balanced
by an oppositely directed return current I return carried by the ther-
mal plasma, and the total current is given by the sum, I = I cr +
I return. For the calculation in Section 2.2, Fig. 1(iv) shows that the

return current within the cavity balances the CR current, j return ≈
− j , but that | j return| can be large compared to j at the edge of the
cavity where the magnetic field is strong and has large gradients.
We define χ = I/I cr as the ratio of the total current to that carried
by the CRs, in which case the power carried by CRs through the
cavity is

Pcr = Icrε = Iε/χ ∼ 2πε2/χcµ0 = 1.7 × 1028ε2
15/χ W, (15)

where ε 15 is the CR energy in units of 1015 eV. Because χ � 1,
equation (15) gives a lower bound on the CR power through each
cavity or filament at saturation. In the case of Fig. 1(iv), χ is less
than one, but not by orders of magnitude. Consequently, the Alfvén
current provides a good first estimate of the characteristic CR current
carried by a filament.

If the energy density Ucr of high-energy CRs producing the cavity
is a fraction f of ρv2

s , where the SNR shock propagates at velocity
v s into a medium of density ρ, then f ρv3

s is the CR energy flux
relative to the upstream plasma and Pcr = πR2 f ρv3

s . A discussion
of the upstream energy density of high-energy CRs, and hence the
value of f , can be found in section 7 of Paper I. Substituting the ex-
pression for Pcr into equation (15) gives an estimate for the filament
radius

R ∼
(

2ε2

χcµ0 f ρv3
s

)1/2

∼ 6 × 1014ε15χ
−1/2 f −1/2

0.01 n−1/2
cm v

−3/2
7 m (16)

where ncm is the upstream nucleon density in cm−3, v7 is the shock
velocity in units of 107 ms−1 and f 0.01 = f /0.01.

The estimate for the filament radius in equation (16) indicates
that high-energy CRs may be able to drive cavities or filaments
that are large enough to be observable. However, it is questionable
whether the cavities have time to self-organize into extended fila-
ments on the large scale in SNRs. The cavities are hydrodynamic
structures driven by the CR pressure, which has a magnitude P cr =
f ρv2

s /3, and the characteristic hydrodynamic, or acoustic, veloc-
ity (P cr/ρ)1/2 associated with the CR pressure is ( f /3)1/2v s. In the
characteristic time R s/v s taken for a SNR shock to expand through
the SNR radius Rs, cavity or filament formation is probably un-
likely on scales greater than ∼ f 1/2 R s, but further work is needed
to determine whether large cavities or filaments might be expected
upstream of SNR shocks. Large-scale CR filaments or beams are
more likely in other objects in which CR are injected into the sur-
rounding medium over a long period of time. In SNRs, conditions
for filamentation may occur at very early stages in which the SNR
shock propagates through a circumstellar wind. The circumstellar
wind density decreases with radius, and a large flux of CR, produced
at high density, might escape into a low-density medium, which is
easily modified by the CR pressure.

5 S U M M A RY

We have shown that in suitable conditions, streaming CRs interact
with a background thermal plasma to create cavities of low den-
sity and low magnetic field. The non-linear development of these
structures is expected to saturate when the radius of the cavity is
comparable with the CR Larmor radius. The orientation of the mag-
netic field is such as to focus the CR trajectories into the cavity.
Given sufficient time this may lead to filamentation in the CR flux.
If the process reaches saturation, the power carried by CRs passing
through each cavity or filament is at least 1.7 × 1028ε2

15 W.
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A P P E N D I X

Here we outline a derivation of the dispersion relation (equation 4). The equations to be linearized and solved are (equation 1)

ρ
du
dt

= −B ∧ (∇ ∧ B)/µ0 − j ∧ B − ∇ P,

∂B
∂t

= ∇ ∧ (u ∧ B),

∂ρ

∂t
= −∇ · (ρu)

and the solution takes the form

ξ = ξ0 +
{

ξ1 exp[γ t + i k · (r −
∫

u0 dt)] + c.c.

}

where ‘c.c.’ denotes the complex conjugate and ξ represents B, ρ, u and P . B1, ρ 1, u1 and P1 are complex and small compared with the
zeroth-order quantities B0, ρ 0, u0 and P0. If j and B0 are not parallel, the zeroth-order velocity u0 increases in time:

u0 = − j ∧ B0

ρ0
t .

The first-order equations are

γρ0u1 = − j ∧ B1 + j ∧ B0
ρ1

ρ0
− iB0

µ0
∧ (k ∧ B1) − ikc2

s ρ1

γ B1 = ik ∧ (u1 ∧ B0),

γρ1 = −iρ0(k · u1)

where c2
s = ∂P/∂ρ is the square of the sound speed. These can be reduced to a single equation in u1

γ 2u1 = − iγ 2
0 ĵ ∧ u1 − k2c2

s (k̂·u1)k̂ − k2v2
A

× {
(k̂ · b̂)2u1 − (k̂ · b̂)(k̂ · u1)b̂

− (k̂ · b̂)(b̂ · u1)k̂ + (k̂ · u1)k̂
}

where γ 2
0 = (k · B0) j/ρ 0, vA is the Alfvén speed B 0/(µ0ρ 0)1/2, and ‘hat’ denotes a unit vector (e.g. b̂ is the unit vector in the direction B0).

The next step in the derivation is to set up a coordinate system with axes defined by unit vectors i 1, i 2 and i 3 in the directions k, k ∧ (k ∧
B0) and k ∧ B0. u1 and j can have non-zero components in each of the three directions. B0 can have non-zero coordinates in only the first
two directions, and k is non-zero only in the first direction. Three simultaneous equations can be derived for the three components of u1. The
solution for u1 is non-zero if∣∣∣∣∣∣∣
γ 2 + k2c2

s + (1 − b2
1)k2v2

A −iγ 2
0 j3 − b1b2k2v2

A iγ 2
0 j2

iγ 2
0 j3 − b1b2k2v2

A γ 2 + b2
1k2v2

A −iγ 2
0 j1

−iγ 2
0 j2 iγ 2

0 j1 γ 2 + b2
1k2v2

A

∣∣∣∣∣∣∣
= 0

where b1 = i1· b̂, b2 = i2· b̂, j1 = i1· ĵ, j2 = i2· ĵ , and j3 = i3· ĵ are the non-zero components of b̂ and ĵ , respectively. From this, the
derivation of the dispersion relation (equation 4) is straightforward.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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