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ABSTRACT: 
 
Numerous structures uplift under the influence of strong ground motion. While the effects of base uplift on very 
stiff structures which can be idealized as rigid bodies are well-understood, relatively few studies investigate the 
rocking response of flexible structures. Related practical analysis and design methods treat these structures with 
simplified ‘equivalent’ oscillators. This paper addresses the fundamental dynamics of flexible rocking structures. 
The nonlinear equations of motion for the idealized structural model were derived using a Lagrangian 
formulation for large rotations. Particular attention was devoted to the transition in between successive phases; a 
physically consistent classical impact framework was utilized alongside an energy approach. The fundamental 
dynamic properties of this system were compared with those of linear elastic oscillators and rigid rocking 
structures. Results have revealed the distinct characteristics of flexible rocking structures which arise from the 
complex interaction of elasticity and rocking. Preliminary results on the ramifications of this interaction on the 
failure of flexible rocking structures are presented.  
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1 INTRODUCTION 

The investigation of rocking structures was initially motivated by the surprising stability of flexible and slender 
structures under earthquake excitations. In his seminal paper, Housner (1963) cited the uplifting and the 
subsequent rocking motion as a reason for their stability. His work formulates the rocking motion with a rigid 
block model which effectively rules out the failure of the structure through strength deficiency and emphasizes 
the overturning instability. A plethora of studies which followed investigated the complex dynamics that govern 
the overturning response of the rigid block. In particular, Makris and Konstantinidis (2003) drew attention to the 
distinct fundamental dynamics of rocking which depart significantly from those of linear elastic oscillators. 

Relatively few studies have investigated rocking structures with flexible models and their approach emphasized 
strength considerations. Meek (1975) challenged the assumption that structures stick to the ground during 
earthquakes and investigated the dynamic response of a flexible lumped mass structure allowed to uplift. This 
study and further work in the field of flexible rocking structures (e.g. Oliveto et al. 2003) devote little attention 
to rocking amplitude or overturning instability and focus on how uplift affects the structural deformations. In 
some cases, equivalent oscillators are proposed to estimate the maximum structural deformation experienced in 
the uplifted stage (e.g. Chopra and Yim 1985). Research into rocking unreinforced masonry walls (Lam et al. 
2003) and modern bridge piers (Palermo et al. 2004) adopt a similar approach which disregards the interaction of 
elasticity and rocking when defining simplified load deformation curves.  
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Figure 1 - Structural models and parameters considered in the analyses - (a) Linear Elastic Oscillator, (b) Rigid 
Rocking Structure, (c) Flexible Rocking Structure 

This research investigates the interaction of elasticity and rocking in an attempt to clarify the fundamental 
behavior of flexible rocking systems. In particular, the aim is to quantify the effects of this interaction on the 
overturning (stability) and resonance (strength) of flexible rocking structures and to evaluate the use of 
equivalent systems in analyses and design. Specifically, the ability of rigid systems to predict the overturning 
instability of flexible structures, and the ability of equivalent oscillators to determine the structural deformations 
of the flexible rocking systems was investigated.  

2 ANALYTICAL MODELS  

Idealized models were used to represent three typologies of generic structures: linear elastic oscillators, rigid 
rocking structures and flexible rocking structures (see Figure 1). These models assume that the ground is rigid 
and that it has a very high static coefficient of friction so that no sliding occurs between the base and the 
foundation. Furthermore the point masses in structures Figure 1b and Figure 1c have negligible moment of 
inertia.  

Figure 1 shows the structures and the parameters involved. The linear elastic oscillator (Figure 1a) can exhibit 
elastic translational motion only, the rigid rocking structure (Figure 1b) may only rotate about either of its 
corners. The flexible rocking structure (Figure 1c) exhibits both of these actions. The parameter u is the elastic 
translation of the mass and θ is the rigid body rotation of the foundation. Alternatively, the response can be 
defined by R, the distance of the lumped mass from the base pivot, and  , the Lagrangian rotation parameter. 

The classical set of parameters ),( u was used in the representation and evaluation of results whereas the 

Lagrangian set of parameters ),( R was used in the derivation of the equations of motion and the transition of 

phases.  

The equations of motion of linear elastic oscillators and rigid rocking structures are well documented in the 
literature. This work presents the equations of motion of the two phases of the motion of flexible rocking 
structures: (i) the full contact phase and (ii) the rocking phase.  In the full contact phase, the flexible rocking 
structure behaves like a linear elastic oscillator. Its equation of motion is given by:  

  

  
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where gu is the horizontal ground motion, mkn / , is the natural frequency of the system and 

)/( km2c is the damping factor. A flexible structure with quiescent initial conditions, initially responds 
elastically until uplift is realized when the overturning moment exceeds the resisting moment due to gravity. 
This condition is checked at each time step and is described by:  

              )()( uBmguumH g             (2) 

where the upper sign represents rocking condition about the right base corner and the lower sign about the left 
base corner. Similar sign notation will be used throughout this paper to represent rocking in each direction. Upon 
uplift, the rocking phase begins. The equations of motion for the rocking phase utilize ),( R and are derived for 
large rotations and small elastic deformations:  
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where the frequency parameter Rgp /  and g denotes the gravity. These equations are highly nonlinear, 

contain coupling between parameters and are piecewise defined. Different equation sets are valid for 0  
and 0 , thus at each time step, parameters ( ,R ) are converted to ( ,u ). When 0 , the integration was 
stopped and contact conditions were assessed to determine the next phase of motion. To do this, fictitious full 
contact and rocking phases were defined and the kinetic energy in each was compared to determine the next 
phase (Oliveto et al. 2003). The fictitious full contact phase occurs when upon impact the body assumes full 
contact and continues its motion deforming elastically. The vertical momentum is fully dissipated and the 
conservation of linear momentum dictates that:  

112 Huu                                  (4) 

where 2u is the post impact full contact fictitious velocity and the subscript 1 indicates pre-impact parameters. 
The impact is instantaneous and the position of the mass does not change during impact. After impact 

12 uu  and 022   . The kinetic energy of the fictitious full contact phase is thus given by:  
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The post-impact parameters of the fictitious rocking phase were derived with the use of a classical impact 
framework where the effects of elasticity on post-impact parameters were also considered, yielding: 
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Equations 6 and 7 were used in conjunction with two constraints: the kinetic energy of the post-impact state must 
be less than that of pre-impact and no bouncing is allowed. The kinetic energy of the fictitious rocking phase is 
given by the following expression:  

)( 222
r RRm

2

1
E                      (8) 

To determine the phase of motion after impact, Equations 5 and 8 were compared. If fcr EE  , a full contact 

phase follows impact with initial conditions set by Equation 4. If rfc EE  , a rocking phase is initiated with post-

impact parameters given by Equations 6 and 7. These equations of motion and criteria for phase transition 
describe the dynamic motion of the flexible rocking structure shown in Figure 1c.   

3 DIMENSIONLESS SYSTEM AND GROUND MOTION PARAMETERS 

Two types of periodic excitation will be utilized in the analyses: trigonometric pulses and harmonic excitations. 
Pulse excitations will be instrumental in understanding the effects of elasticity on overturning instability as 
pulses have been reported in the literature to be the driving force of overturning collapse of rigid rocking 
structures (Zhang and Makris, 2001). Harmonic excitation will be used to determine the effects of resonance on 
flexible rocking structures and investigate if any single frequency excitation can drive the structure to failure, 
either through excessive deformations or overturning instability. 

Due to the nonlinearity of the coupled equations of motion of the rocking phase, numerical integration is 
required. One of the challenges in the analysis of nonlinear systems is to present the results in an intuitive and 
informative manner for a range of different structures. This study employs formal dimensional analysis for this 
purpose. Six fundamental dimensionless input parameters are required to describe the system. Three response 
parameters are defined and are given as follows:  
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where maxu  is the maximum elastic displacement that the flexible rocking structure experiences under the given 

base excitation , cru is the critical displacement at which uplift occurs for an undamped structure, E is the total 

energy of the system and rE is the potential energy of the rigid rocking block at its unstable equilibrium position, 

  . The input parameters are given by:  
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where is the frequency and A is the amplitude of the periodic excitation. The chosen set of dimensionless 
parameters yield a physically similar response under the influence of pulse-type and harmonic ground 
excitations. This allows the representation of generalized results which are valid for a wide class of flexible 
rocking structures subjected to different periodic base excitations.   
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Figure 2- The rocking, dimensionless deformation and the dimensionless energy response of similar systems and the 
sine pulse ground motion utilized in the analyses 

4 COMPARISON OF FUNDAMENTAL DYNAMICS 

To highlight the differences between the systems shown in Figure 1, structures with similar properties were 
subjected to the same sine pulse excitation. The flexible rocking structure was specified to have the same natural 
frequency and damping as the similar linear elastic oscillator and the same geometric properties as the similar 
rigid rocking structure. Figure 2 shows the response of these similar structures. 

Significant differences can be observed in the rocking response of the flexible rocking structure. A high 
frequency oscillation in the rocking curves indicates the coupling of elasticity and rocking. This oscillation is the 
strongest at the beginning of each rocking cycle and as the elastic motion is damped out, the rocking action of 
the flexible structure dominates the motion. Another important difference between the rigid rocking system and 
the flexible rocking system relates to the transition in between rocking cycles. While the rigid structure proceeds 
directly from one rocking cycle to another, accompanied by a loss in angular velocity, the transitions of flexible 
structures are more complicated. In the specific case of Figure 2, upon every impact the structure proceeded to a 
new rocking cycle directly. However, the elasticity effects counteract the rocking action and cause the rocking 
cycle just after the first impact to be very short in amplitude and duration. A short full contact phase follows and 
upon reaching the uplift condition, rocking about the same corner takes place. In short, the elasticity effects 
counteract rocking action resulting in a rotation response significantly different in shape, amplitude and duration.  

The structural deformations of the flexible rocking system are markedly different from the similar linear elastic 
oscillator. The natural frequency and damping of the uplifted system is higher. The deformation response can be 
conceived as the sum of an average distortion and a high frequency oscillation with heavy damping. The elastic 
motion of the uplifted state seems to be independent of the ground motion as oscillations are fully damped out 
despite continuing ground motion. However, the observation that the dimensionless deformation response in the 
first rocking cycle differs significantly from the rest shows the sensitivity of the deformation response to initial 
conditions of the rocking cycle. These fundamental dynamic differences are summarized in Table 1 where 

un, and u denote the uplifted natural frequency and damping respectively.                                  
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Table 1 The comparison of fundamental properties of three systems shown in Figure 1 

Parameters  Linear Elastic Oscillator Rocking Rigid Structure Rocking Flexible Structure 

Restoring Mechanism Elasticity Gravity Gravity and Counteracting Elasticity 
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Force/Moment  
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5 THE EFFECTS OF INTERACTION OF ELASTICITY AND ROCKING  

Section 4 outlined some of the fundamental dynamic differences between the systems shown in Figure 1 arising 
from the complex interaction of elasticity and rocking. Of practical interest is how these differences affect the 
failure of the rocking structure either through overturning (stability) or resonance (strength).  

Figure 3 shows the rotation and dimensionless deformation response of similar structures to different excitations. 
This figure depicts the differing overturning response of flexible and rigid rocking structures. In the upper row of 
Figure 3 the flexible structure overturns under a low frequency excitation which does not even uplift the rigid 
structure. This emphasizes the role of uplift in the overturning response of rocking structures. In the lower row of 
Figure 3 the same flexible structure survives a different pulse and starts to rock freely, while the rigid structure 
overturns. It can be observed that the counteracting elasticity effects cause multiple impacts after each rocking 
cycle dissipating more energy and preventing the failure of the flexible rocking structure. These graphs point out 
significant differences in the overturning instability of flexible rocking structures that requires investigation.  

Psycharis (1991) has shown that exciting a flexible rocking structure at its natural frequency generates limited 
deformations and does not cause the build-up of rocking motion. Another possibility to facilitate resonance is to  
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Figure 3 - The rocking and dimensionless elastic deformation response of similar systems to different frequency and 
amplitude sine pulse excitations. 

excite the structure at its uplifted resonant frequency un, (see Table 1) with harmonic excitation. Figure 4 shows 

such a case. The high frequency excitation causes oscillations in the rocking response which, due to coupling, 
excites the uplifted structure at its resonant frequency. This coupling excitation is magnified by resonance and 
causes excessive deformations, much higher than observed in the linear elastic response. The feedback effect of 
the increasing magnitude of elastic deformations on the rocking response should also be noted. The 
counteracting elasticity effects cause a pounding-like rocking response where very short rocking cycles reach 
high amplitudes of rotation. As a result, excessive deformations caused by ‘uplifted resonance’ could drive the 
structure to failure. 

                                    

Figure 4 - The rocking, dimensionless deformation and the dimensionless energy response of similar systems to the 
harmonic ground motion with the uplifted natural frequency 
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6 CONCLUSIONS 

The fundamental dynamics of linear elastic oscillators, rigid rocking structures and flexible rocking structures 
were compared. The differences in between these systems, arising from the complex interaction of elasticity and 
rocking were emphasized. The overturning response of flexible rocking structures was markedly different from 
its rigid counterpart and requires thorough investigation. The phenomena of uplifted resonance may result in 
excessive deformations which might cause failure through strength deficiency. In addition, the use of equivalent 
oscillators to determine structural deformations accurately requires a thorough understanding of the coupled 
rocking action.  
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