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We investigate properties of algorithms that are used to solve coupled evolutionary partial di
erential equations posed on
neighboring, nonoverlapping domains, where the solutions are coupled by continuity of state and normal �ux through a shared
boundary. 	e algorithms considered are based on the widely used approach of iteratively exchanging boundary condition data
on the shared boundary at each time step. 	ere exists a signi�cant and sophisticated numerical analysis of such methods.
However, computations for practical applications are oen carried out under conditions under which it is unclear if rigorous results
apply while relatively few iterations are used per time step. To examine this situation, we derive exact matrix expressions for the
propagation of the error due to incomplete iteration that can be readily evaluated for speci�c discretization parameters. Using the
formulas, we show that the universal validity of several tenants of the practitioner’s conventional wisdom are not universally valid.

1. Introduction

	e class of multiphysics problems in which one physical
process operates in one domain while a second physical
process operates in a neighboring domain, and the solutions
in the component subdomains are coupled by continuity
of state and normal �ux through a common boundary,
which is central to a number of applications [1]. Examples
include conjugate heat transfer between a �uid and solid [2–
5], Stokes-Darcy �ow in karst aquifers [6] and in catalytic
converters [7], modeling of the core and edge plasma �ows in
a tokamak reactor [8, 9], and �ow in heterogeneous porous
media [10–13].

In applications, the processes in the component subdo-
mains are oen themselves represented by complex, multi-
scale, and multiphysics models and the component models
are solved with di
erent discretization methods utilizing
signi�cantly di
erent scales. Such coupled problems present
enormous challenges for e�cient high performance com-
puting [1]. 	ere are very strong incentives to use existing

“legacy” codes for the component models and to treat
component physics solvers as “black boxes.” For these reasons
themost commonly encountered solution strategy is a simple
iterative approach [1–4, 14–17]. In this approach, the models
in each of the component subdomains are associatedwith one
of the two boundary coupling conditions and subsequently
solved independently except for data from the coupling
through the boundary. 	e coupling data for the boundary
conditions for one component model are provided by the
solution of the other component model from the previous
iteration. In a time dependent problem, this iteration is
carried out on each time step.

	is type of coupled physics problemhas been extensively
studied by the numerical analysis community, with the goals
of deriving accurate, stable numerical methods, e�cient, and
accurate coupling algorithms and deriving rigorous a priori
analyses, for example, in [10–15, 17, 18], as well as a posteriori
analyses [2–4, 19]. However, in practice, as mentioned,
the component physics is usually complex and there are
large di
erences in the discretization strategies employed in
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the component subdomains necessitating signi�cant pro-
cessing of transferred information. 	us, the application of
current rigorous mathematical methods and analysis is prob-
lematic if not impossible.	is is partially the reason that there
is a very signicant gulf between the kinds of practices carried
out in high performance computational science and the “best
practices” determined by the mathematical community [3].

In addition, the computational strategies employed in
practice are oen rationalized by a body of conventional wis-
dom which asserts that (1) stability is equivalent to accuracy
and (2) the use of unconditionally stable implicit solvers for
the component physics generally stabilizes the entire coupled
simulation as long as the component solutions are stable.
	is is oen rationalized by some sort of (Neumann) linear
stability analysis applied to the simplied case of two coupled
linear parabolic problems. Based on these ideas, simulations
are deemed acceptable provided they do not exhibit obvious
instabilities such as unbounded behavior or rapid oscillation.
Moreover, due to the prohibitive computational cost, such
conclusions are oen based on the single computation at
hand, rather than through an exhaustive study.

	is paper attempts to address the di�culties that face
extending rigorous convergence analysis to the complex
models and discretizations that occur in practice and illus-
trate issues arising from the conventional wisdom. Instead of
focusing onderiving conditions that guarantee good behavior
as is usual for a standard convergence analysis, we adopt a
di
erent approach and develop a rigorous computable error
representation that can be evaluated for any given choice
of discretization parameters, thus allowing the conventional
wisdom to be veri�ed or not. We consider the canonical
problem of two linear coupled parabolic equations and
formulate the iterative solution method as a �xed point
iteration for a block system on the discrete level. We then
derive an exact formula for the error in the iterated solution.
	is formula is related to the Neumann series for the inverse
of the full systemmatrix.	e argument has several virtues: it
is elementary, it subsumes any sort of ad hoc linear stability
analysis, and it is general in the sense that it holds for a
variety of discretization methods and range of scales for the
component physics. Importantly, it allows for easy evaluation
of various discretization parameter choices, for example, step
size, space mesh, and number of iterations per time step.

We then present a detailed study of the canonical problem
of two linear coupled parabolic equations that amply demon-
strates shortcomings of the conventional wisdom. Firstly, we
are able to dispel the notion that stability implies accuracy.
In particular, we demonstrate that a divergent iteration can
be part of a stable algorithm if the number of iterations
used is low, while the resulting approximation is inaccurate.
In this case, the user might not be aware that the iteration
is divergent if they only consider whether or not obvious
instability occurs. 	is case is particularly interesting since a
serious problem is being masked by seemingly “reasonable”
results. Secondly, we demonstrate that there is no guarantee
that an “unconditionally stable” time integration scheme like
backward Euler remains unconditionally stable if the system
is not solved exactly at each time step.We explore cases where
using a limited number of iterations leads to a conditional
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Figure 1: Illustration of neighboring subdomains.

stability, which depends on the size of the time step. 	e
values of time steps which provide stability can occupy a
range with a maximum and minimum value, rather than just
a maximum.

	e remainder of this paper is organized as follows.
Section 2 introduces the problem and the notation associated
with discretization and iteration. Section 3 derives the pri-
mary results of the paper regarding the stability of the iterative
solution. Section 4 provides numerical examples. Section 5
addresses the multirate case, in which the time step in one
component is an integer multiple of the time step in the other
component. Multirate numerical examples are included. A
brief conclusion is given in Section 6.

2. Problem Formulation and Discretization

We consider a system posed on a domain consisting of
two neighboring, nonoverlapping, convex, and polygonal
subdomains Ω1 and Ω2 in 1, 2, or 3 spatial dimensions that
share a common polygonal interface boundary Γ (see [1, 2, 8,
9] for applications). We illustrate in Figure 1.

	e general form of the PDE system is

���U1 +L1U1 = S1 on Ω1 × (0, �],
���U2 +L2U2 = S2 on Ω2 × (0, �],

U1 = U2 on Γ × (0, �],
�̂ ⋅ 
1∇U1 = �̂ ⋅ 
2∇U2 on Γ × (0, �],

(1)

together with the following additional boundary and initial
conditions:

(i) boundary conditions for U1 on �Ω1 \ Γ and initial
conditions forU1 onΩ1,

(ii) boundary conditions for U2 on �Ω2 \ Γ and initial
conditions forU2 onΩ2,

where L1V = ∇ ⋅ (
1∇V) and L2V = ∇ ⋅ (
2∇V) are linear,
coercive elliptic operators, S1, S2 are given functions in �2,
and �̂ is a unit vector normal to Γ and pointing from Ω1 toΩ2.

We next introduce notation for the discretized problem.
	e analysis is based on the backward Euler method in time
but can accommodate various spatial discretization schemes
[3]. For the numerical results included later in the paper,
we use a �nite volume method in space [13, 18, 19], and
the details of that discretization are given in Appendix A. In
order to complete the boundary data for each subdomain,
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we adopt the common strategy of using the solution on the
�rst subdomain to determine Dirichlet boundary data on Γ
for the problem on the second subdomain and, likewise, use
the solution on the second subdomain to provide Neumann
boundary conditions for the problem on the �rst subdomain;
for example, see [2–4, 8–12, 14, 15, 17, 19]. 	us, each
problem is provided with a full set of boundary data, but the
subdomains are not treated symmetrically. By convention, we
assume that component 2 provides state data for component
1, and component 1 provides �ux data for component 2. 	is
leads to the system of discrete equations:

�1̂�+11 = ̂�1 + ��+11 + �21̂�+12 ,
�2̂�+12 = ̂�2 + ��+12 + �12̂�+11 , (2)

where the superscript is the time step index. 	e symbols �1
and �2 are the discrete versions of the operators (�/�� +L1)
and (�/�� +L2), except that ̂� has been moved to the right
hand side. 	e symbols �1 and �2 are the discrete versions of
the source terms S1 and S2 and also take into account the
known boundary data on �Ω1 \ Γ and �Ω2 \ Γ. �21 and �12 are
the projections by which the solution in one subdomain is
used to provide boundary data on Γ for the other subdomain.
	e subscripts “12” and “21” indicate information passing
from “Ω1 toΩ2” and “Ω2 toΩ1.” We refer to ̂1 and ̂2, which
solve (2), as the implicitly coupled solution. We emphasize
that we analyze this method because it is one of the most
common approaches used in practice.

Note that the form of the operators �21 and �12 depends
on the choice of discretization. Some discretizations, for
example, �nite volume, require forming these operators using
some combination of averaging, extrapolation, and interpo-
lation [1]. Other discretizations provide natural de�nitions.
For example, in the case of the mortar method [18, 19], the
coupling between the subdomains has a formal structure
based on Lagrange multiplier variables on the interface. In
this case �21 and �12 correspond to the o
-diagonal blocks of
the Schur complement [20] that are formed by eliminating
the Lagrange multiplier variables.

In all of the above cases, we now write (2) as a single set
of linear equations. Namely,

�̂�+1 = ̂� + ��+1, (3)

where

� = [ �1 −�21−�12 �2 ] , � = [�1�2] , ̂ = [̂1̂2] . (4)

2.1. Block Iteration. As mentioned, the implicitly coupled
system (3)-(4) is not formed or solved exactly in practice.
	e common approach is to use an iterative block solution
approach that involves a sequence of solutions of each
component problem with alternating exchange of coupling
boundary data; for example, see [2–4, 8–12, 14, 15, 17, 19].	is
is easily described using the concept of matrix splitting [20–
22]. We de�ne a matrix splitting � = � −� so that

�̂�+1 = ̂� + ��+1 + �̂�+1. (5)

Starting with some initial guess 0, the following equation

de�nes a �xed point iteration which may converge to ̂�+1.
For the iterates, we use a double superscript, � for the time
step and � for the iteration index. We use � for the number of
iterations to be performed at each time step:

��+1,� = �,� + ��+1 + ��+1,�−1,
� = 1, . . . , �, �+1,0 = �,�. (6)

Note ��+1,�−1 represents the exchange of information
between the components, and the subsequent inversion of� is the solution of the individual components. In the case
of (3), the splitting � = � − � is chosen to separate the
solution of the problems on the subdomains [20–22]. 	is
is motivated by the fact that the coupling of the subdomains
occurs on a manifold of lower dimension. 	is splitting can
be accomplished in a “Gauss-Jacobi” sense:

� = [�1 00 �2] , � = [ 0 �21�12 0 ] , (7)

or in a “Gauss-Seidel” sense:

� = [ �1 0−�12 �2] , � = [0 �210 0 ] . (8)

If this iteration converges, it converges to the implicitly
coupled solution ̂, which is the unique �xed point of the
iteration. By di
erencing (5) and (6), we get

���+1,�+1 = ���+1,�, (9)

where ��+1,� = �+1,�−̂�+1.	is leads to thewell-known result
[20, 21]:

��+1,� = (�−1�)���+1,0. (10)

	e iteration converges if the spectral radius of �−1� is
less than one, and it diverges if the spectral radius is greater
than one [20–22]. If the iteration converges, then we can

get as close as desired to the implicitly coupled solutions ̂�
by iterating. If for any reason we are unable to iterate until
convergence at each time step, the situation is considerably

more complicated. If ̂� cannot be obtained at a given time
step, then it cannot be used as the initial condition for the

next time step, and the iterates � may wander away from the

implicitly coupled solutions ̂�. To investigate how the iterates
wander from their implicitly coupled counterparts, we must
account for both the error from incomplete iteration at every
time step and for the error associatedwith the inherited initial
value at every time step.

3. Analysis of Stability of the Iterative Solution

3.1. Stability in Time for a Single Iteration. In this section,
we derive an error formula for the case of a single iteration
at each time step. 	e motivation is practical both as this
is oen encountered in practice and because the relatively
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simple result shows how the general result proceeds.	e error
is de�ned to be the di
erence between the computed solution
and the implicitly coupled solution at each time step. Recall
the implicitly coupled solution satis�es

�̂�+1 = ̂� + ��+1 + �̂�+1. (11)

For the case of a single iteration per time step, we have � =1 and we can suppress the iteration index. 	e iteration is
simply

��+1 = � + ��+1 + ��. (12)

If we de�ne �� = � − ̂� and Δ̂�+1 = ̂� − ̂�+1, then (12)
becomes

�(̂�+1 + ��+1) = (̂� + ��) + ��+1
+ �(̂�+1 + Δ̂�+1 + ��). (13)

Using (11), we obtain

���+1 = �� + �(Δ̂�+1 + ��). (14)

Substituting � = 0 and � = 1 into (14) and rearranging
gives

�1 = [�−1 +�−1�]�0 + [�−1�]Δ̂1, (15)

�2 = [�−1 +�−1�]�1 + [�−1�]Δ̂2. (16)

Substituting (15) into (16) gives

�2 = [�−1 +�−1�]2�0 + [�−1 +�−1�]
× [�−1�]Δ̂1 + [�−1�]Δ̂2. (17)

In general, the error at time step � is
�� = [�−1 +�−1�]��0

+ �∑
�=1
[�−1 +�−1�](�−�)[�−1�]Δ̂�. (18)

While the form of (18) is not as concise as (10), it is clear that
the stability in time depends on the spectral radius of [�−1 +�−1�].
3.2. Stability in Time for � Iterations. In this section, we derive
a more general version of (18) for the case of � iterations at
each time step. Beginning with (11), the iterates satisfy

��+1,� = �,� + ��+1 + ��+1,�−1,
� = 1, . . . , �, �+1,0 = �,�. (19)

	e error is now de�ned as ��,� = �,� − ̂� for � = 1, . . . , �. We
are interested in obtaining a formula for ��,�.

	e following relationships are useful in deriving the �nal
result:

�+1,0 = �,� = ̂� + ��,� = ̂�+1 + Δ̂�+1 + ��,�,
�+1,� = ̂�+1 + ��+1,�, � = 1, . . . , �. (20)

Substituting these into (19) gives the following, for � = 1:
�(̂�+1 + ��+1,1) = (̂� + ��,�) + ��+1

+ �(̂�+1 + Δ̂�+1 + ��,�), (21)

and, for � = 2, . . . , �,
�(̂�+1 + ��+1,�) = (̂� + ��,�) + ��+1

+ �(̂�+1 + ��+1,�−1). (22)

Substituting into (11) gives the following, for � = 1:
���+1,1 = ��,� + �(Δ̂�+1 + ��,�), (23)

and, for � = 2, . . . , �,
���+1,� = ��,� + ���+1,�−1. (24)

Starting with �0 = 0−̂0, we can use (23) and (24) to �nd�1,� and �2,� and discover the general form for ��,�.	eprocess
is tedious, but the pattern is quickly apparent. 	e �nal form
for the error at time step �where � iterations have been taken
per time step is

��,� = [��]��0 + �∑
�=1
[��]�−�(�−1�)�Δ̂�. (25)

	e form of �� is as follows. For � = 1,
�1 = [�−1 +�−1�], (26)

and, for � > 1, the following recursion relationship holds:

�� = �−1 +�−1�[��−1]. (27)

For example,

�2 = �−1 +�−1�[�−1 +�−1�],
�3 = �−1 +�−1�[�−1 +�−1�[�−1 +�−1�]]. (28)

Note that the results derived above assume that � is being
inverted exactly. Amodi�cation of (25) for the case of inexact
inversion is given in Appendix B. A second modi�cation of
(25), incorporating the use of a weighted Jacobi method in
which the new iterate is taken to be a weighted average of the
old iterate and the Jacobi iterate, is given in Appendix C.

We conclude of course that the stability in time is
determined by the spectral radius of the matrix ��. However,
given the conventional wisdom, it is important to point out
that stability does not imply accuracy. If we examine (25),
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it is clear from the term [��]��0 that if �� has a spectral
radius of greater than one then even tiny machine rounding
errors will grow out of control [20], and this is one way to
describe the notion of instability. If the spectral radius of�� is less than one, this can not occur and the method can
then be considered stable. However, the summation term∑��=1[��]�−�(�−1�)�Δ̂� shows that it is still possible for

error to accumulate in time, and the size of this error depends
on the size of the vectorsΔ̂ as well as the e
ect of�−1� and�� on Δ̂. We consider these errors to be an issue of accuracy,
not stability.	is calls into question the conventional wisdom
that if the result does not blow up, then the method is stable
and therefore accurate.

We emphasize that the error formulas derived above
measure the di
erence between the computed numerical
solution and the idealized numerical solution obtained by
solving the implicitly coupled discrete equations. 	e ide-
alized numerical solution is itself a discrete approximation
to the continuous solution of the PDE. 	e accuracy of
the implicitly coupled solution relative to the continuous
solution is a separate matter and would have some order
in ℎ and "�, where ℎ and "� represent the cell width and
time step, such as #(ℎ2) + #("�) assuming a typical second
order accurate spatial discretization and �rst order accurate
time discretization is used. Preserving this ideal accuracy
requires that discrete e
ects such as solution error and errors
arising from projecting between component discretizations
are minimal [19].

3.3. Relationship between�� and�−1. An alternative form for
the �� is

�� = [�−1∑
�=0
(�−1�)�]�−1 + (�−1�)�. (29)

	is form suggests a power series representation for an
approximate inverse. Rewriting the splitting � = � − � as(� − �) = �[& − (�−1�)], then

(� − �)−1 = [& − (�−1�)]−1�−1. (30)

Using a power series for the inverse in brackets [20–22],

assuming that ‖�−1�‖ < 1, we get
(� − �)−1 = [∞∑

�=0
(�−1�)�]�−1. (31)

Hence, provided ‖�−1�‖ < 1, �� becomes an increasingly

accurate approximation of �−1 as the number of iterations �
increases. Speci�cally, the �rst term in (29) approaches (31) as� increases, while the second term in (29) goes to zero.

4. Numerical Examples

We can employ the error formulas derived above by forming
the matrix �� for any given set of discretization parameters,
for example, step size, space mesh, and number of iterations
per time step, and then easily examine the stability of the

Exported state

Exported �ux

uc ue

Figure 2: Diagram of the coupling strategy used in the numerical
experiments, in which linear extrapolation from the last two
available state or �ux values in one subdomain are used to compute
a boundary value for the other subdomain.

overall algorithm for particular choices. In this section, we
present numerical experiments designed to examine aspects
of the conventional wisdom.

We consider a one dimensional domain with * ∈ [0, 1]
and the interface between the two subdomains located at * =1/2, and we pose the heat equation with constant di
usivity
equal to one in each subdomain (
1 = 
2 = 1). 	e outer
boundary conditions are homogeneous Neumann at * = 0
and homogeneous Dirichlet at * = 1. Error measurement
is facilitated by constructing the problems so that the exact

continuous solution is U(*, �) = (1 − *2)�−�. 	e complete
statement of the PDE is

���U1 − �2�*2U1 = (1 + *2)�−�, * ∈ [0, .5], � ∈ [0, �],
���U2 − �2�*2U2 = (1 + *2)�−�, * ∈ [.5, 1], � ∈ [0, �],

U1 = U2, * = .5, � ∈ [0, �],
��*U1 = ��*U2, * = .5, � ∈ [0, �],

��*U1(0, �) = 0,
U2(1, �) = 0,

U1(*, 0) = U2(*, 0) = (1 − *2).
(32)

We use �nite volume in space and backward Euler in time
[13, 18, 19, 21, 22]. 	e details of the discrete equations are
given inAppendix A.	e cell-centered �nite-volumemethod
provides state values at cell centers. Fluxes at cell boundaries
are calculated via di
erencing, while linear extrapolation is
used to compute coupling values at the boundary between
subdomains. Component 1 receives a Dirichlet condition at
the interface that is a linear extrapolation of the two state
values that are the nearest to the interface in component 2
and, similarly, component 2 receives a Neumann condition at
the interface which is a linear extrapolation of the two �ux
values that are the nearest to the interface in component 1
[8, 9]. 	e extrapolation scheme is depicted in Figure 2.

In the examples, we use a Jacobi iteration with 3 = 1.
Once the exchange of information is complete, each sub-
domain is solved to within machine precision by direct
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Figure 3: Spectral radius for various values of � with �xed "�. Black
is �−1, green is�−1�, blue is ��, and red marks the value one.

inversion of the matrix �. At each time step, the code
produces both the implicitly coupled solution, ̂, by inverting
the coupled system matrix � and the iterative solution, , by
performing the speci�ed number of iterations. 	e implicitly
coupled and iterative solutions can then be compared at
any time step. It is easily veri�ed that the implicitly coupled

solution is unconditionally stable and has accuracy #(ℎ2) +#("�). In the following examples, we concentrate on the error
between the implicitly coupled and iterative solutions. We
introduce the relative error, which is based on the standard
discrete two-norm:

�rel = ‖ − ̂‖2‖̂‖2 . (33)

Finally, we conduct similar experimentswith awide range
of spatial mesh sizes. 	e qualitative results are the same
in every case, although the speci�c threshold values may of
course vary.

4.1. Case 1: Stability of the Algorithm with � Iterations Using a
Fixed Time Step, "�. In the �rst experiment, we set the grid
size to be 16 cells in each subdomain (ℎ = 1/32) and �x the
time step at "� = 1/40. We plot the spectral radius of ��,�−1�, and �−1 for various values of � in Figure 3. Note that

the spectral radius of�−1� is less and one, so the iteration
is convergent, and the spectral radius of �−1 is less than one,
so the implicitly coupled scheme would be unconditionally

stable if we had the luxury of inverting �−1 at each time
step. However, the method is unstable for certain values of�. If one observes the progress of the iterative solution at
a given time step, it is clear that although the iteration is
convergent, certain early iterates contain signi�cantly more
error than the previous iterate. In other words, the error in
the computational iterate does not decrease monotonically.
For the particular problem examined here, it is every fourth
iterate, starting with the second iterate, that has the increased
error. Figure 3 shows that for the �rst few � values in this
sequence (� = 2, 6, 10, 14) the reduced quality of the iterate

Table 1: Relative error at � = 2 for various numbers of iterations.

� �rel1 .052 4.4 ∗ 1093 .094 .655 .056 8.5 ∗ 105200 1.8 ∗ 10−4400 5.6 ∗ 10−7

results in the entire algorithm being unstable, despite the fact
that the iteration is convergent. As the number of iterations
increases, this e
ect is reduced in magnitude and eventually
disappears. We verify the instability by solving to � = 2 (80
time steps) and listing the relative error at � = 2 for several
values of � in Table 1.

	e values � = 200 and � = 400 are included in Table 1
to verify that, since the iteration is convergent, the relative
error approaches zero as the number of iterations becomes
very large. 	e reduction in relative error for large � is fairly
slow, since the spectral radius of�−1� is approximately .975,
as indicated in Figure 3.

	e results of this experiment serve to illustrate one of
our main points that a low number of iterations can interfere
with the unconditional stability of the time discretization.
In addition, it shows that a lower number of iterations can
be stable, while a higher number is unstable. 	e plot of
the spectral radius of �� in Figure 3 indicates that using
2, 6, 10, or 14 iterations leads to an unstable method. 	e
numerical values in Table 1 con�rm the instability for � = 2
and � = 6 (� = 10 and � = 14 yield analogous results).
Backward Euler is considered “unconditionally stable” [21,
22]; however, this fact is based on the assumption that the
system is solved exactly at each time step. For the iterative
algorithm used here, this unconditional stability is only valid
in the limit as the number of iterations goes to in�nity. 	is
example shows how sensitive the stability of the algorithm
is to the number of iterations used. Note that this example
also provides another demonstration of the fact that stability
does not imply accuracy. Notice in Table 1 that the relative
error for the stable case � = 4 is around ten times that of
the nearby stable cases, � = 1, 3, 5. Despite the fact that
the spectral radius of �� is less than one for all the stable
cases, it is still possible for the summation term in (25) to
accumulate signi�cant error in time.	is termmakes amuch
larger contribution for the case of � = 4 than it does for the
other stable cases.	is is not evident from the spectral radius
of �� alone; note that ;(�1) > ;(�4).
4.2. Case 2: Stability of the Algorithm with Time Step "�, Using
a Fixed Number of Iterations, �. In the second experiment,
we use identical conditions except that we �x the number
of iterations � and vary the time step "�. Figure 4 shows the
spectral radii of the relevant matrices for � = 1 and values
of "� ranging from 0 to 0.1. Since ℎ = 1/32, this range
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Figure 4: Spectral radius for various values of "� with � = 1. Black
is �−1, green is�−1�, blue is ��, and red marks the value one.
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Figure 5: Spectral radius for various values of "� with � = 2. Black
is �−1, green is�−1�, blue is ��, and red marks the value one.

Table 2: Relative error at � = 2 for � = 1 with various values of "�.
"� �rel.005 .01.05 .08.1 .22

of time step "� corresponds to a range for the ratio "�/ℎ2
of approximately 1 to 100. Figure 4 implies that the method
with � = 1 is stable for all "� < 0.1. Carrying out the
calculation con�rms this, and the relative errors at the end
of the simulation are given in Table 2.

Figure 5 shows the spectral radii of the relevant matrices
for � = 2. 	e implication is that the method with � = 2 is
stable only for very small values of "�. Table 3 gives relative
errors for the � = 2 case.

For the case of � = 6, the plot and table are shown
in Figure 6 and Table 4. 	is case illustrates that instability

Table 3: Relative error at � = 2 for � = 2 with various values of "�.
Note that for larger values of "�, fewer time steps are needed to reach� = 2, so the relative error does not grow as large.

"� �rel.0025 .01.005 5.7 ∗ 1016.05 2.5 ∗ 104.1 19
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Figure 6: Spectral radius for various values of "� with � = 6. Black
is �−1, green is�−1�, blue is ��, and red marks the value one.

Table 4: Relative error at � = 2 for � = 6 with various values of "�.
"� �

rel.005 .0135.05 117.1 .0114
can occur for a limited range of time steps with a minimum
and a maximum, not simply for time steps above a certain
threshold, as one might expect. 	e � = 6 case makes it clear
that the method is stable for su�ciently small and su�ciently
large time steps and is unstable in between. (In fact this is also
true for the � = 2 case, and if the horizontal axis in Figure 5
is carried out to much larger time steps the spectral radius of�2 does eventually drop below one.)	is is a surprising result
since onewould not expect reducing the time step to promote
instability, nor increasing the time step to restore stability.

Finally, in Figure 7 we provide two further plots for the� = 10 and � = 18 cases. 	ese show the relationship
between �� and �−1 discussed in Section 3.3. 	e spectral
radius of �−1 is less than one for all values of "�, and it
decreases monotonically with increasing "�. We know from
the expansions in Section 3.3 that as � becomes large then ��
approaches �−1. However, there is no reason to expect the
spectral radius of �� to be monotonic in "� for small values
of �, and the plots in this section show that it is not. 	ere is
a characteristic bump in the plots of the spectral radius of ��
versus "�, and it is in this range of "� values that the spectral
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Figure 7: Spectral radius for various values of "� with � = 10 (a), and � = 18 (b). Black is �−1, green is�−1�, blue is ��, and red marks the
value one.

radius of �� may exceed 1, leading to an unstable method.
Naturally, as � becomes large, the size of this bump is reduced,

since�� is driven closer to�−1. In the � = 18 case, the spectral
radius of �� is less than 1 for all time steps.

5. The Multirate Case

Multirate integration using di
erent time steps for the di
er-
ent components is a common practice [1, 8, 9]. In this case,
the implicitly coupled system and error formulas are changed
slightly.We assume the longer time step is an integer multiple
of the shorter time step, so component 2 will take @ steps
for every one step in the component 1. 	e outline of the
derivation for@ = 2 is given here, but results easily generalize.
	e large time steps correspond to the index � and the small
time steps correspond to fractional indices. First, component
1 equation is straightforward since it only involves one time
step:

�1̂�+11 = ̂�1 + ��+11 + �21̂�+12 . (34)

Next, component 2 equation requires compounding two
steps:

�2̂�+1/22 = ̂�2 + ��+1/22 + �12̂�+11 ,�2̂�+12 = ̂�+1/22 + ��+12 + �12̂�+11 . (35)

Aer carrying out the algebra and generalizing to larger@, we obtain the system:

[[
[

�1 −�21
−�−1∑
�=0
(�−12 )��12 �2 ]]]

[
[
̂�+11̂�+12 ]]

= [[
[

̂�1 + ��+11
(�−12 )�−1̂�2 + �−1∑

�=0
(�−12 )���+(�−�)/�2

]]
]
.

(36)

	e fractional index is used to indicate the small time steps.

Now that the implicitly coupled system has been de�ned,
we can choose a splitting that de�nes� and � in the error
formulas above. 	e error formula for the multirate case is
very similar to (25), but we must de�ne matrices ��,� where �
is the number of iterations per time step and @ is the integer
number of time steps taken in component 2 for each time step
taken in component 1. Let

G� = [&1 00 (�−12 )�−1] , (37)

where &1 is an identity matrix of the same size as �1. 	e
recursion relationship for the ��,� is

�1,� = �−1G� +�−1�,
��,� = �−1G� +�−1���−1,�. (38)

	e alternative form for ��,�, analogous to (29) is
��,� = [�−1∑

�=0
(�−1�)�]�−1G� + (�−1�)�. (39)

	is means that as � goes to in�nity, ��,� approaches �−1G�
(note that G1 = &). Finally, the multirate error formula is

��,�� = [��,�]��0 + �∑
�=1
[��,�]�−�(�−1�)�Δ̂�. (40)

5.1. Multirate Example 1: Varying @ with Constant �. 	e
multirate examples are the same as those described in
Section 4.2 with only the values of � and @ altered. We use
the same Jacobi style iteration, so based on (36) we have

� = [�1 00 �2] , � = [[
[

0 �21
�−1∑
�=0
(�−12 )��12 0 ]]]

. (41)
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Figure 8: Spectral radii for multirate example 1. � = 1, @ = 2 (a), and � = 1, @ = 10 (b). Black is �−1, dotted black is �−1G�, green is�−1�,
blue is ��, and red marks the value one. 	e horizontal axis shows the size of the large time step.
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Figure 9: Spectral radii for multirate example 2. � = 3, @ = 2 (a), and � = 100, @ = 2 (b). Black is �−1, dotted black is �−1G�, green is�−1�,
blue is ��, and red marks the value one. 	e horizontal axis shows the size of the large time step.

In the �rst multirate example, � is set to 1, and @ is set �rst
to 2 and then to 10. Figure 8 shows the spectral radii of the
relevant matrices.

Values of @ larger than 10 produce no visible change in
the plot, so Figure 8(b) can be taken to represent the case of
“many” time steps in component 2 within each time step for
component 1. 	ere is now a range of time steps for which
the iteration diverges. As might be expected, the algorithm is
unstablewhen the iteration is divergent. In otherwords, when

the spectral radius of�−1� is greater than one, the spectral
radius of �� is greater than one.

As the number of iterations, �, approaches in�nity, a
divergent iteration must result in an unstable algorithm.
However, for the case of �nite iteration, this is not guaranteed,
and the next experiment illustrates this point.

5.2. Multirate Example 2: Varying � with Constant @. In the
second multirate example, @ is set to 2, and � is set �rst
to 3 and then to 100. Figure 9 shows the spectral radii for
the relevant matrices. 	e results show that the method may
be stable, even though the iteration is divergent. Figure 9(a)

include a region inwhich the spectral radius of�−1� ismore
than one, yet the spectral radius of �� is less than one. In
Figure 9(a), where only 3 iterations are used per large time
step, the entire range of "� values for which the iteration
is divergent results in a stable algorithm. In Figure 9(b),
where the number of iterations is raised to 100, the region of
divergence and the region of instability are very nearly the
same. Such cases are not unique to multirate examples and
have also been observed in single rate examples. Of course
these cases can only occur when the number of iterations per
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Figure 10: Spectral radii for multirate example 1 in 2 spatial dimensions. � = 1, @ = 2 (a), and � = 1, @ = 10 (b). Black is �−1, dotted black is�−1G�, green is�−1�, blue is ��, and red marks the value one. 	e horizontal axis shows the size of the large time step.

time step is small, since iteratingmany times with a divergent
iteration would certainly lead to an unstable algorithm. 	is
is an interesting case, since a stable algorithm could contain
a divergent iteration and the user might not know.

5.3. Multirate Example in Two Spatial Dimensions. In this
section, themultirate tests in Sections 5.1 and 5.2 are extended
to a problem in two spatial dimensions posed on *1 ∈ [0, 1],*2 ∈ [0, .5] with the interface located at *1 = .5:

���U1 − ΔU1 = J	(*1, *2, �),
(*1, *2) ∈ [0, .5] × [0, .5], � ∈ [0, �],

���U2 − ΔU2 = J
(*1, *2, �),
(*1, *2) ∈ [.5, 1] × [0, .5] , � ∈ [0, �],

U1 = U2, *1 = .5, *2 ∈ [0, .5], � ∈ [0, �],
�̂ ⋅ ∇U1 = �̂ ⋅ ∇U2, *1 = .5, *2 ∈ [0, .5], � ∈ [0, �],
��*1U1 (*1, *2, �) = 0, *1 = 0, *2 ∈ [0, .5] , � ∈ [0, �] ,
U1(*1, *2, �) = 0, *1 = 1, *2 ∈ [0, .5] , � ∈ [0, �] ,

U2(*1, *2, �) = 0, *1 ∈ [0, 1], *2 = 0 or .5, � ∈ [0, �],
U1(*1, *2, 0) = M	(*1, *2, �), *1 ∈ [0, 1], *2 ∈ [0, .5],
U2(*1, *2, 0) = M
(*1, *2, �), *1 ∈ [0, 1], *2 ∈ [0, .5].

(42)

	e purpose of this example is to examine the changes in
the spectral radii of the relevant matrices resulting from

the change to two spatial dimensions. We use the standard
�nite volume discretization with 16 × 16 cells in each subdo-
main. Since the functions J	, J
, M	, and M
 have no impact
on the relevant matrices, we do not state them explicitly.

Plots of the spectral radii of the relevant matrices are
given in Figures 10 and 11. 	e spectral radius of �−1 is much
smaller in the two space dimension case. Nonetheless, the
plots show that the two space dimension case exhibits the
same qualitative behavior as the one space dimension case. In
particular, there is a range of time steps for which the iteration
is divergent and also a range of time steps forwhich the overall
method is unstable.

6. Conclusion

By selecting a coupling strategy comprising space and
time grids and an associated rule by which information
is exchanged between components, we de�ne an implicitly
coupled system. At each time step, we seek a solution of this
implicitly coupled system through a block iterative strategy.
Since only a limited number of iterations can be performed
at each time step, there will be some iteration error which
separates the �nal iterate from the implicitly coupled solution.
	ese errors are propagated to the next time step in the form
of errors in the initial condition and are compounded as
the incomplete iteration process repeats itself at each time
step. 	e cumulative e
ect can manifest itself as conditional
stability, meaning the solution is only stable for certain values
of "� despite the unconditional stability of the implicitly
coupled solution.

We have derived formulas for this error which show
that stability hinges on the spectral radius of the matrix�� and further show that there is a mechanism for error
to accumulate in time even if the algorithm is stable.
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Figure 11: Spectral radii for multirate example 2 in 2 spatial dimensions. � = 3, @ = 2 (a), and � = 100, @ = 2 (b). Black is �−1, dotted black
is �−1G�, green is�−1�, blue is ��, and red marks the value one. 	e horizontal axis shows the size of the large time step.

By examining the spectral radius of �� for a variety of
discretization choices on a simplemodel problemwe demon-
strate several important points. Firstly, the unconditional
stability of the time integration method is not necessarily
retained if a low number of iterations per timestep are used.
Instead, a conditional stability may occur, where the method
is stable for a range of values of "�. In additon, we show
by example that it is possible for the method to be stable
even if the iteration is divergent, provided a low number of
iterations is used. 	ese results seem to contradict intuition,
which suggests that a convergent iteration will produce a
stable algorithm and a divergent iteration will produce an
unstable algorithm. However, both of these ideas hold only
in the limit as the number of iterations goes to in�nity, and
in the case of �nite iteration we have shown that there are
exceptions.

Finally, the question of accuracy must be considered in
addition to the issue of stability. 	e error formulas derived
above show that the iterative solutionmay wander away from
the implicitly coupled solution over time even if the method
is stable in the traditional sense.

Appendices

A. Discrete Equations for 1D Finite
Volume with Backward Euler in Time on
the Heat Equation

Let there be � cells in the 1D spatial grid in a given subdomain,* ∈ [*�, *�]. Let �� be the discrete solution on cell � at timeN, "� the constant time step, and ℎ the constant cell width.

	e symbol J�� represents the exact integral over cell � of the
right hand side of the PDE evaluated at time N. 	e symbol
��+1/2 represents the di
usivity function evaluated at the

boundary between cell � and cell �+1, at time N. 	e system of
equations below, when placed intomatrix form, describes the
terms in (3) as theywere implemented for the numerical tests.

�+1� + "�ℎ (��+1 −

�+1�+1/2(�+1�+1 − �+1� )ℎ ) = "�ℎ J�+1� + �� ,

for � = 1,
(A.1)

where ��+1 is the known Neumann boundary condition at* = *� at time N + 1.
Consider

�+1� + "�ℎ [[

�+1�−1/2(�+1� − �+1�−1 )ℎ − 
�+1�+1/2(�+1�+1 − �+1� )ℎ ]

]
= "�ℎ J�+1� + �� , for � = 2, . . . , � − 1,

�+1� + "�ℎ (

�+1�−1/2(�+1� − �+1�−1 )ℎ − 
�+1�+1/2(Q�+1 − �+1� )ℎ/2 )

= "�ℎ J�+1� + �� , for � = �,
(A.2)

whereQ�+1 is the knownDirichlet boundary condition at * =*� at time N + 1.
Note that (A.1) and (A.2) are valid for both of our

subdomains provided that ��+1 and Q�+1 are interpreted
as given boundary conditions on the outer boundaries of
the entire domain and are determined by the extrapolation
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strategy depicted in Figure 2 at the interface between the
subdomains.

B. Inexact Component Solutions (Inexact
Inversion of �)

	e error formulas derived in Sections 3.1 and 3.2 can easily
be modi�ed to include the e
ects of inexact inversion of�.
We �rst adjust (18) from Section 3.1, for a single iteration per
time step. 	e iterates are now de�ned by

�+1 = �−1[� + ��+1 + ��] + R�, (B.1)

where R� represents the error from inexact inversion. 	e
result corresponding to (18) in Section 3.1 is now

�� = [�1]��0 + �∑
�=1
[�1](�−�)[�−1�]Δ̂�

+ �∑
�=1
[�1](�−�)R�.

(B.2)

Notice the extra term resulting from incomplete iteration.
Repeating the process for � iterations per time step, the

computational iterates are de�ned by

�+1,� = �−1[� + ��+1 + ��+1,�−1] + R�+1,�. (B.3)

Following the same logic and derivation used in Section 3.2,
the expression corresponding to (25) is

��,� = [��]��0 + �∑
�=1
[��]�−�(�−1�)�Δ̂�

+ �∑
�=1
[��](�−�) �∑

�=1
(�−1�)�−�R�,�.

(B.4)

Notice that, with multiple iterations per time step, the R
term needs a double index because an error due to inexact
inversion is made at every iteration. Equation (B.4) contains
both terms from (25) and has an additional term which
represents the error caused by the inexact inversions. 	e
matrix �� is the key to the growth of all three terms and
therefore remains the key to stability.

C. Weighted Jacobi

It is worth noting that the error formula (25) can easily be
altered to allow for a “relaxed” Jacobi iteration [20–22], in
which a weighted average of the new and old iterates of a
standard Jacobi iteration is taken to be the next iterate (see,
e.g., [23]). If we rewrite (25) as

�� = [��]��0 + �∑
�=1
[��]�−�(S)�Δ̂�, (C.1)

withS = [(1−3)&+3�−1�] and rede�ne�1 = [3�−1+S],
then for � > 1

�� = 3�−1 + S[��−1]. (C.2)

With this de�nition of ��, (25) holds for any value of 3 ∈[0, 1], with 3 = 1 corresponding to standard iteration. In
some cases where the iterative convergence at each time step
is slow, the iterates tend to oscillate around the implicitly
coupled solution at that time step. In these cases, adjusting3 can drastically accelerate iterative convergence.
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