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ABSTRACT

The paper presents the formulation of a numerical wave channel (NWC)
for the investigation of the dynamics of free floating bodies in nonlinear
gravity waves. A boundary element (BE) approach for two-dimensional
configurations is introduced using cubic spline approximations for the free
surface discretization and a double node concept for the modeling of contact
points between structures and the fluid. The unknown time-dependent and
nonlinear boundary conditions on the free surface are evaluated by a time-
stepping procedure. In addition, this initial value problem is applicable to
the equations of motion of free floating bodies. In this case the right hand
sides are the external forces, calculated by integrating the pressure distri-
bution on the submerged surfaces at every time step. Here, the unknown
time derivatives of the velocity potential of the fluid have to be derived
e.g. by a finite difference scheme or, as proposed here, by a polynomial ap-
proximation. The advantages of this procedure are minimal discretization
expenses for typical test configurations and a time domain solution, taking
into account the fully nonlinear boundary conditions. Several applications
of this approach are presented and discussed.

INTRODUCTION

To analyze fluid structure interactions experiments with floating bodies are
typically carried out in wave channels. Besides the measurement equipment
and test objects experiments require free capacities of laboratory facilities.
In order to reduce costs and to allow the analysis of various different test
configurations, the development of reliable and sufficient NWC models is
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of great interest. In the first place the numerical treatment of the consid-
ered problem requires an efficient and reliable computation scheme for the
solution of the flow problem. Compared with other methods the boundary
element method (BEM) offers several advantages for this specific application
due to the following significant items:

• in general we have to consider large, arbitrarily shaped domains for
practical purposes which cause large discretization expenses for other
methods (e.g. finite elements or finite differences),

• all quantities of interest — either given or unknown — are localized
on the boundary itself (see problem formulation),

• the discretization of the geometry shows an extreme curvature espe-
cially on the free surface and at the intersections to floating bodies,

• for the implementation of fixed or floating structures only the sub-
merged surfaces of the structures have to be taken into account.

PROBLEM FORMULATION

In order to solve the fluid flow problem the following usual assumptions are
made:

incompressible fluid: this is valid for the considered interaction of float-
ing bodies with gravity waves and is therefore no restriction for the
mentioned applications. Compressibility of the fluid has to be taken
into account in the case of e.g. earthquake induced shock waves, ref.
Antes [1].

irrotational flow: this is not the case with real fluids, especially in the
vicinity of fixed or floating structures. But in general the friction
induced rotation of the flow can be neglected due to low dynamical
viscosity of water and to low relative velocities of gravity waves and
floating structures.

This allows to introduce the potential flow concept, described by the Laplace
equation:

divu = divgrad# = V* $ = 0 , (1)

where u is the fluid velocity and $ the corresponding velocity potential.
Beyond this the equation of motion of the fluid particles can be reduced to
the Bernoulli equation. Written in the general form it states
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— = -^4-vgrad*,

= -9V— P-
(2)

vu

with g the gravitational acceleration, y the vertical position of the considered
point, p the density of the fluid and p the pressure. In this general form one
has to distinguish between

u : the velocity vector of a fluid particle in the flow and
v : the velocity vector of a point moved arbitrarily through the fluid.

As mentioned before the fluid flow problem is solved by transforming the
Laplace equation (1) with a direct method into an integral equation of the
form

= yu,(0<?(x,0-
r

(3)

Field and source points are denoted by x and f, the fundamental solution
of the problem by G and C is a constant with the property C(x) = 1/2, if
F is smooth and x € F.
This formulation is discretized by a BE approach and results in the approx-
imation

(C + H)$(x) = Fu,.(x), (4)

where the vectors # and 0* consist of the ansatz-functions with regard to
the different types of elements (e.g. linear, quadratic, splines, etc.). The
matrices C, H and F are defined by:

H =

F =

(5)

where n^ depends on the order of the ansatz-functions y- and n^ gives the
number of elements.
Considering a mixed boundary value problem the known and unknown
boundary conditions in equation (4) have to be rearranged to get them
in the form

(6)
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Figure 1: Boundary conditions

as a set of linear equations, where A is in general a dense and unsymmetric
matrix. The right hand sides b are given by the boundary conditions:

$ : on the free surfaces of the fluid and
u^ = v% : on all other boundaries.

In Figure 1 the considered domain and the different types of boundaries and
boundary conditions are characterized by using different kinds of symbols
for the nodes of the discretization:

a) fixed boundaries: e.g. bottom or walls of the NWC, where the velocity
component in the normal direction to the boundary vanishes, i.e.

b) arbitrarily moved boundaries: this kind of boundary is necessary to
describe facilities like wave generators, where a prescribed motion of
the boundary is given by a function / in space and time by

,?, 0- (8)

c) free floating bodies: at the boundaries of the submerged parts of rigid
bodies the time-dependent normal velocity is given by the time deriva-
tive of the normal direction
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and is evaluated by means of the equations of motion of the rigid body.

d) free surfaces of the fluid: the free surfaces are described by the fluid
particles themselves. At these boundaries we assume that the time-
dependent velocity potential $(t) is given, thus the normal velocity of
a fluid particle can be written as

(10)

and is part of the BE solution.

In order to determine the time-dependent boundary conditions c) and d)
an additional initial value problem has to be set up and solved. The mo-
tion of the fluid particles at the free surfaces is described by a Lagrangian
formulation, with v = u in equation (2). The equations of motion for the
fluid particles yield in fully nonlinear form:

Dx
—

(11)

= -9V--P-

Here, the position of the fluid particles on the free surfaces is described by
the vector x = [x^ y^} . The initial condition is given by $ (t = 0) = $Q •
The location and the velocity of a rigid body or a multibody system are
derived by the standard vector differential equations of motion:

—Tt

0

. -M-'(K-hN)

I

-M~i(D-HG). MT'h
(12)

In this state space representation the vector of the state variables is de-
noted by x, I is the matrix identity, M the mass matrix, K the matrix
of the conservative, N the matrix of the nonconservative, D the matrix of
the damping and G the matrix of the giroscopic forces. The function of
excitation is given by the vector h (Z). In the case of a single floating body
the generalized coordinates are

(13)
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with respect to the center of mass of the floating body and with the initial
values

X2 (t = 0) = [ZQ 2/0 Q̂ r and x% (t = 0) = [f<, 2/o ô]̂  - (14)

The excitation h (t) of the floating bodies contains the vectors of the ex-
ternal forces fg and the external torques t«,. They are calculated from the
time-dependent pressure distribution p(t) on the submerged surfaces of the
floating bodies:

d? , (15)

t,= d, x f« , (16)

where n is the normal vector and d, is the distance vector from the sub-
merged part of the boundary to the center of mass of the floating body.
The unknown time-dependent pressure on the submerged surface is gained
by transforming equation (2) into the form

(I?)

NUMERICAL IMPLEMENTATION

As mentioned before the two-dimensional fluid flow problem is solved by a
direct BEM. The considered domain is discretized by one-dimensional finite
elements and a double-node concept allows both, arbitrary shaped bound-
aries as well as the transitions of different kinds of boundary conditions (a,
b, c or d). A spline formulation is used for the discretization of free sur-
faces in order to provide the calculation of tangential derivatives in element
coordinates. With this the velocity of the fluid particles on the free surface
becomes

+v. (is)

All computations of singular integrals of the matrices H and F in (5) utilize
special analytical formulations with regard to the considered element type.
The boundary integral formulation (3) is the model of a steady state flow
problem. In order to analyze even time-dependent, transient problems the
ordinary differential equations (11) and (12) with nonlinear r.h.s. have to
be taken into account. These two sub-problems are condensed to a general
initial value problem

= / (x, t) , x(t = 0) = xo (19)
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and is solved by an explicit predictor-corrector scheme, starting with a
higher order Runge-Kutta method. The accuracy and stability of this pro-
cedure is improved by evaluating the integral equation of the flow problem
(3) at every intermediate time step (ref. Zandbergen et al. [5]). This pro-
cedure already yields good results for nonlinear steady state and breaking
waves, see [3].
The evaluation of the pressure distribution (17) requires an approximation
of the time derivative of the potential ̂~. This is implemented by a second
order polynomial approximation of $(t) and achieves best agreement for the
considered applications. Especially, if the pressure distribution is of interest
at all Neumann-type boundaries the BE approach offers another advantage
(ref. Vinje and Brevig [4]). Due to the fact that the Laplace equation is
valid even for time derivatives of the potential $ = ^j, equation (4) can be
applied to

[C + H] , =F (20)

and just results in an additional right hand side of the linear equations (6).

The main feature of a NWC is a controlled excitation of the free surface and
therefore of floating bodies. Such a wave generator is numerically imple-
mented by a given function (8) at a Neumann-type boundary. If a sinusoidal
excitation is assumed, either translational or rotational, the time-dependent
position vector x(Z) and the boundary conditions v̂ (t) are now described
by:

(21)

— uAcos(ut -f

D-
(22)

a(t) = QQ -f Asin(ut -f

cos(a(t))

= r a(t) = r u Acos(wt +

(23)
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with amplitude A, angular velocity w = 2ir/T — const., phase shift
distance r to the hinge of the flap.

and

RESULTS

The proposed numerical implementation allows a flexible application of a
NWC to analyze fluid structure interactions. In order to verify the model
different test configurations were set up. The results are shown and dis-
cussed exemplarily.

Example 1: Horizontally moved piston-type wave generator

In Figure 2 a sketch of this problem is given, where d = 1 m and t = 2m.
The free surface is excited on the left hand side by a piston-type wave gener-
ator with a given function, see equation (21). The amplitude is A — 0.3 m,
the frequency of the excitation fi = 0.5 Hz and the phase shift is 0 = — ?r/2.
This means, the sinusoidal motion of the flap starts at the minimum posi-
tion (ref. Figure 3 and 4). On the right hand side the wave tank is bounded
by a fixed vertical wall. Figure 3 shows the time evolution of the free surface
for t = 0. . . 1.38s, with A* = 0.06s. Both, the runup of the wave on the
fixed wall and on the piston as well as the movement of the free surface
wave crest is evident. The runup behavior is more clearly given in Figure
4. Here, the time-dependent position of the free surface is depicted for the
contact points at the piston and at the fixed wall and compared with the
movement of the piston in x-direction. Due to the propagating wave crest
an increasing phase shift between excitation x(t) and wave elevation y(t)
at the piston is obviously. A similar experiment with a constant horizontal
velocity of the piston is discussed in detail by van Daalen [2].

2A

Figure 2: Definition sketch, ex. 1
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Figure 3: Time evolution, t = 0... 1.38 s
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Runup on the piston and on the wall compared with the motion
of the piston x(t)
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Example 2: Vertically moved piston-type wave generator

Yo

-$

<@-

2A

Figure 5: Definition sketch, ex. 2

This test configuration was chosen in order to compute the hydrodynamic
force acting on the bottom of a piston-type wave generator. In Figure 5 the
definition sketch is given, with A = 0.2m, b = 1 m, d = 1 m, t = 8m, XQ =
5 m, yo = 0.8 m and the frequency of the excitation is fl = 1 Hz, ref. to equa-
tion (22). For this nonsymmetric problem with a divided free surface the
forces are computed by integrating the pressure distribution on the consid-
ered surface, i.e. the bottom of the wave generator. In order to compare the
influence of the hydrostatic and the nonlinear hydrodynamic terms equation
(17) was split and computed by parts. The results of this procedure are de-
picted in Figure 6. For this configuration, with A = 0.2m and Q, — 1 Hz the
resultant force acting on the piston-type wave generator depends obviously
on the hydrodynamic part. The intense changes and greater amplitude in
the hydrodynamic terms dominate the pressure distribution although the
absolute value of the hydrostatic part, that just depends on the vertical
position of the piston, is on a much higher level.
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Figure 6: Hydrostatic, hydrodynamic and resultant force

3.5

Example 3: NWC with a flap-type wave generator and a single free float-
ing body

Figure 7 depicts a sequence of a NWC animation of the considered problem
with a free floating body. The free surface is excited on the left hand side
by a flap-type wave generator with a given time-function (23). On the right
hand side the wave tank is bounded by a fixed vertical wall. The ratio of
waterdepth to tank-length is 1/10 and the ratio of body-intersected surface
to the tank-length is 1/20. In Figure 8 the change of the shape of the
boundary during the first ten time-steps (At = 0.2s) is depicted. It clearly
shows the initially starting drift motion of the body in the x-direction. In
order to describe the time-dependent, transient behavior of the free floating
body it is more convenient to use the time histories as in Figure 9 and 10.
The increasing roll amplitudes can be seen in Figure 9 and especially the
drift-motion of the free floating body due to the nonlinear description of the
free surface flow is evident in Figure 10.
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Figure 7: Animation; NWC with free floating body
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Figure 8: Time evolution of the flap-type wave generator and the
floating body motion
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Figure 9: Roll angle <%„ versus time
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Figure 10: Plane motion of the center of mass
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CONCLUSIONS

The paper presents a boundary element formulation to simulate fluid struc-
ture interaction problems with nonlinear gravity waves. Because all quan-
tities of interest are located on the boundary itself and with regard to the
recent developments in boundary element methods (BEM) this is a most effi-
cient approach with minimal discretization expenses. The major advantage
of a boundary element formulation is the direct numerical implementation
of the equations of motion in an explicit form, both for the fluid particles on
the free surface and on one ar more floating bodies. A time-stepping proce-
dure allows the treatment of time-dependent and nonlinear conditions. In
particular this proposal provides the extension of the model to a numerical
wave channel (NWC) concept in order to analyze in time domain single or
multibody systems in nonlinear gravity waves. Some typical test configu-
rations for the proposed method are described, the results are shown and
discussed. These NWC applications with flap- or piston-type wave genera-
tors obviously show the drift motion of floating bodies in wave tanks and
the transient behavior of roll and heave motion.
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