
1. Introduction
1.1 Background

In this paper we will overview electromagnetic inter-

actions with solid and liquid dielectric and magnetic

materials from the macroscale down to the nanoscale.

We will concentrate our effort on radio-frequency (RF)

waves that include microwaves (MW) and millimeter-

waves (MMW), as shown in Table 1. Radio frequency

waves encompass frequencies from 3 kHz to 300 GHz.

Microwaves encompass frequencies from 300 MHz to

30 GHz. Extremely high-frequency waves (EHF) and

millimeter waves range from 30 GHz to 300 GHz.

Many devices operate through the interaction of RF

electromagnetic waves with materials. The characteri-

zation of the interface and interaction between fields
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Table 1. Radio-Frequency Bands [1]

frequency wavelength band

3 – 30 kHz 100 – 10 km VLF

30 – 300 kHz 10 – 1 km LF

0.3 – 3 MHz 1 – 0.1 km MF

3 – 30 MHz 100 – 10 m HF

30 – 300 MHz 10 – 1 m VHF

300 – 3000 MHz 100 – 10 cm UHF

3 – 30 GHz 10 – 1 cm SHF

30 – 300 GHz 10 – 1 mm EHF

300 – 3000 GHz 1 – 0.1 mm THz
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and materials is a critical task in any electromagnetic

(EM) device or measurement instrument development,

from nanoscale to larger scales. Electromagnetic waves

in the radio-frequency range have unique properties.

These attributes include the ability to travel in guided-

wave structures, the ability of antennas to launch waves

that carry information over long distances, possess

measurable phase and magnitude, the capability for

imaging and memory storage, dielectric heating, and

the ability to penetrate materials.

Some of the applications we will study are related to

areas in microelectronics, bioelectromagnetics, home-

land security, nanoscale and macroscale probing,

magnetic memories, dielectric nondestructive sensing,

radiometry, dielectric heating, and microwave-assisted

chemistry. For nanoscale devices the RF wavelengths

are much larger than the device. In many other applica-

tions the feature size may be comparable or larger than

the wavelength of the applied field.

We will begin with an introduction of the interaction

of fields with materials and then overview the basic

notations and definitions of EM quantities, then

progress into dielectric and magnetic response, defini-

tions of permittivity and permeability, fields, relaxation

times, surfaces waves, artificial materials, dielectric 

and magnetic heating, nanoscale interactions, and field

fluctuations. The paper ends with an overview of

biomaterials in EM fields and metrologic issues.

Because this area is very broad, we limit our analysis to

emphasize solid and liquid dielectrics over magnetic

materials, higher frequencies over low frequencies,

and classical over quantum-mechanical descriptions.

Limited space will be used to overview electrostatic

fields, radiative fields, and terahertz interactions. There

is minimal discussion of EM interactions with non-

linear materials and gases.

1.2 Electromagnetic Interactions From the
Microscale to Macroscale

In this section we want to briefly discuss electromag-

netic interaction with materials on the microscale to the

macroscale.

Matter is modeled as being composed of many

uncharged and charged particles including for example,

protons, electrons, and ions. On the other hand, the

electromagnetic field is composed of photons. The

internal electric field in a material is related to the sum

of the fields from all of the charged particles plus

any applied field. When particles such as biological

molecules, cells, or inorganic materials are subjected to

external electric fields, the molecules can respond in a

number of ways. For example, a single charged particle

will experience a force in an applied electric field. Also,

in response to electric fields, the charges in a neutral

many-body particle may separate to form induced

dipole moments, which tend to align in the field; how-

ever this alignment is in competition with thermal

effects. Particles that have permanent dipole moments

will interact with applied dc or high-frequency fields.

In an electric field, particles with permanent dipole-

moments will tend to align due to the electrical torque,

but in competition to thermal randomizing effects.

When EM fields are applied to elongated particles with

mobile charges, they tend to align in the field. If the

field is nonuniform, the particle may experience dielec-

trophoresis forces due to field gradients.

On the microscopic level we know that the electro-

magnetic field is modeled as a collection of photons

[2]. In theory, the electromagnetic field interactions

with matter may be modeled on a microscopic scale by

solving Schrödinger’s equation, but generally other

approximate approaches are used. At larger scales the

interaction with materials is modeled by macroscopic

Maxwell’s equations together with constitutive rela-

tions and boundary conditions. At a courser level of

description, phenomenological and circuit models are

commonly used. Typical scales of various objects are

shown in Fig. 1. The mesoscopic scale is where

classical analysis begins to be modified by quantum

mechanics and is a particularly difficult area to model.

The interaction of the radiation field with atoms

is described by quantum electrodynamics. From a

quantum-mechanical viewpoint the radiation field is

quantized, with the energy of a photon of angular

frequency ω being E = ω. Photons exhibit wave-

duality and quantization. This quantization also occurs

in mechanical behavior where lattice vibrational

motion is quantized into phonons. Commonly, an atom

is modeled as a harmonic oscillator that absorbs or

emits photons. The field is also quantized, and each

field mode is represented as a harmonic oscillator and

the photon is the quantum particle.

The radiation field is usually assumed to contain a

distribution of various photon frequencies. When the

radiation field interacts with atoms at the appropriate

frequency, there can be absorption or emission of

photons. When an atom emits a photon, the energy of

the atom decreases, but then the field energy increases.

Rigorous studies of the interaction of the molecular
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field with the radiation field involve quantization of the

radiation field by expressing the potential energy

V(r) and vector potential A(r, t) in terms of creation and

annihilation operators and using these fields in the

Hamiltonian, which is then used in the Schrödinger

equation to obtain the wavefunction (see, for example,

[3]). The static electromagnetic field is sometimes

modeled by virtual photons that can exist for the short

periods allowed by the uncertainty principle. Photons

can interact by depositing all their energy in photo-

electric electron interactions, by Compton scattering

processes, where they deposit only a portion of the

energy together with a scattered photon, or by pair

production. When a photon collides with an electron it

deposits its kinetic energy into the surrounding matter

as it moves through the material. Light scattering is a

result of changes in the media caused by the incoming

electromagnetic waves [4]. In Rayleigh elastic light

scattering, the photons of the scattered incident light

are used for imaging material features. Brillouin

scattering is an inelastic collision that may form or

annihilate quasiparticles such as phonons, plasmons,

and magnons. Plasmons relate to plasma oscillations,

often in metals, that mimic a particle and magnons are

the quanta in spin waves. Brillouin scattering occurs

when the frequency of the scattered light shifts in

relation to the incident field. This energy shift  relates

to the energy of the interacting quasiparticles. Brillouin

scattering can be used to probe mesoscopic properties

such as elasticity. Raman scattering is an inelastic

process similar to Brillouin scattering, but where the

scattering is due to molecular or atomic-level transi-

tions. Raman scattering can be used to probe chemical

and molecular structure. Surface-enhanced Raman

scattering (SERS) is due to enhancement of the EM

field by surface-wave excitation [5].

Optically transparent materials such as glass have

atoms with bound electrons whose absorption frequen-

cies are not in the visible spectrum and, therefore, inci-

dent light is transmitted through the material. Metallic

materials contain free electrons that have a distribution

of resonant frequencies that either absorb incoming

light or reflect it. Materials that are absorbing in one

frequency band may be transparent in another band.

Polarization in atoms and molecules can be due to

permanent electric moments or induced moments

caused by the applied field, and spins or spin moments.

The response of induced polarization is usually weaker

than that of permanent polarization, because the typical

radii of atoms are on the order of 0.1 nm. On applica-

tion of a strong external electric field, the electron

cloud will displace the bound electrons only about

10–16 m. This is a consequence of the fact that the

atomic electric fields in the atom are very intense,
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approximately 1011 V/m. The splitting of spectral lines

due to the interaction of electric fields with atoms and

molecules is called the Stark effect. The Stark effect

occurs when interaction of the electric-dipole moment

of molecules interacts with an applied electric field that

changes the potential energy and promotes rotation and

atomic transitions. Because the rotation of the mole-

cules depends on the frequency of the applied field, the

Stark effect depends on both the frequency and field

strength. The interaction of magnetic fields with molec-

ular dipole moments is called the Zeeman effect. Both

the Stark and Zeeman effects have fine-structure modi-

fications that depend on the molecule’s angular

momentum and spin. On a mesoscopic scale, the inter-

actions are summarized in the Hamiltonian that con-

tains the internal energy of the lattice, electric and mag-

netic dipole moments, and the applied fields.

In modeling EM interactions at macroscopic scales,

a homogenization process is usually applied and the

classical Maxwell field is treated as an average of the

photon field. There also is a homogenization process

that is used in deriving the macroscopic Maxwell

equations from the microscopic Maxwell equations.

The macroscopic Maxwell’s equations in materials are

formed by averaging the microscopic equations over a

unit cell. In this averaging procedure, the macroscopic

charge and current densities, the magnetic field H, the

magnetization M, the displacement field D, and the

electric polarization field P are formed. At these scales,

the molecule dipole moments are averaged over a unit

cell to form continuous dielectric and magnetic polar-

izations P and M. The constitutive relations for the

polarization and magnetization are used to define the

permittivity and permeability. At macroscopic to meso-

scopic scales the permittivity, permeability, refractive

index, and impedance are used to model the response of

materials to applied fields. We will discuss this in detail

in Sec. 4.5. Quantities such as permittivity, permeabili-

ty, refractive index, and wave impedance are not micro-

scopic quantities, but are defined through an averaging

procedure. This averaging works well when the wave-

length is much larger than the size of the molecules or

atoms and when there are a large number of molecules.

In theoretical formulations for small scales and wave-

lengths near molecular dimensions, the dipole moment

and polarizability tensor of atoms and molecules can be

used rather than the permittivity or permeability. In some

materials, such as magnetoelectric and chiral materials,

there is a coupling between the electric and magnetic

responses. In such cases the time-harmonic constitutive

relations are B
~

(ω) = μH
~

(ω) + η1 E
~

(ω) and D
~

(ω) =

εE
~
(ω) + η2 H

~
(ω). In most materials the constitutive

relations B
~

(ω) = μ 0 (M
~

(ω) + H
~

(ω)) and D
~

(ω) =

ε0 E
~
(ω) + P

~
(ω) are used.

In any complex lossy system, energy is converted

from one form to another, such as the transformation of

EM energy to lattice kinetic energy and thermal energy

through photon-phonon interactions. Some of the

energy in the applied fields that interact with materials

is transfered into thermal energy as infrared phonons.

In a waveguide, there is a constant exchange of energy

between the charge in the guiding conductors and the

fields [6].

When the electromagnetic field interacts with mate-

rial degrees of freedom, a collective response may be

generated. The term polariton relates to bosonic quasi-

particles resulting from the coupling of EM photons or

waves with an electric or magnetic dipole-carrying

excitation [4, 5]. The resonant and nonresonant

coupling of EM fields in phonon scattering is mediated

through the phonon-polariton transverse-wave quasi-

particle. Phonon polaritons are formed from photons

interacting with terahertz to optical phonons.

Ensembles of electrons in metals form plasmas and

high-frequency fields applied to these electron gases

produce resonant quasi-particles, commonly called

plasmons. Plasmons are a collective excitation of a

group of electrons or ions that simultaneously oscillate

in the field. An example of a plasmon is the resonant

oscillation of free electrons in metals and semiconduc-

tors in response to an applied high-frequency field.

Plasmons may also form at the interface of a dielectric

and a metal and travel as a surface wave with most of

the EM energy confined to the low-loss dielectric. A

surface plasmon polariton is the coupling of a photon

with surface plasmons. Whereas transverse plasmons

can couple to an EM field directly, longitudinal

plasmons couple to the EM field by secondary particle

collisions. In the microwave and millimeter wave

bands artificial structures can be machined in metallic

surfaces to produce plasmons-like excitations due to

geometry. Magnetic coupling is mediated through

magnons and spin waves. A magnon is a quantum of a

spin wave that travels through a spin lattice. A polaron

is an excitation caused by a polarized electron traveling

through a material together with the resultant polariza-

tion of adjacent dipoles and lattice distortion [4]. All of

these effects are manifest at the mesoscale through

macroscale in the constitutive relations and the result-

ant permittivity and permeability.
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1.3 Responses to Applied RF Fields

If we immerse a specimen in an applied field and the

response is recorded by a measurement device, the data

obtained are usually in terms of a digital readout or a

needle deflection indicating the phase and magnitude of

a voltage or current, a difference in voltage and

current, power, force, temperature, or an interference

fringe. For example, we deduce electric and magnetic

field strengths and phase through Ampere’s and

Faraday’s laws by means of voltage and current

measurements. The scattering parameters measured on

a network analyzer relates to the phase and magnitude

of a voltage wave. The detection of a photon’s energy is

sensed by an electron cascade current. Cavities and

microwave evanescent probes sense material character-

istics through shifts in resonance frequency from the

influence of the specimen under test. The shift in reso-

nance frequency is again determined by voltage and

power measurements on a network analyzer. Magnetic

interactions are also determined through measurements

of current and voltage or forces [4, 7-9]. These measure-

ment results are usually used with theoretical models,

such as Maxwell’s equations, circuit parameters, or the

Drude model, to obtain material properties.

High-frequency electrical responses include the meas-

urement of the phase and magnitude of guided waves in

transmission lines, fields from antennas, resonant fre-

quencies and quality factors (Q) of cavities or dielectric

resonators, voltage waves, movement of charge or spin,

temperature changes, or forces on charge or spins. These

responses are then combined through theoretical models

to obtain approximations to important fundamental

quantities such as: power, impedance, capacitance,

inductance, conductance, resistance, conductivity, resis-

tivity, dipole and spin moments, permittivity, and perme-

ability, resonance frequency, Q, antenna gain, and near-

field response [10-16].

The homogenization procedure used to obtain the

macroscopic Maxwell equations from the microscopic

Maxwell equations is accomplished by averaging the

molecular dipole moments within a unit cell and con-

structing an averaged continuous charge density func-

tion. Then a Taylor series expansion of the averaged

charge density is performed, and, as a consequence, it

is possible to define the averaged polarization vector.

The spatial requirement for the validity of this averag-

ing is that the wavelength must be much larger than the

unit cell dimensions (see Sec. 4.6 ). According to this

analysis, the permittivity of an ensemble of molecules

is valid for applied field wavelengths that are much

larger than the dimensions of an ensemble of molecules

or lattice, assuming one can isolate the effects of the

molecules from the measurement apparatus. This

metrology is not always easy because a measurement

contains effects of electrodes, probes, and other

environmental factors. The concepts of atomic polariz-

ability and dipole molecular moment are valid on a

smaller scale than are permittivity and permeability.

In the absence of an applied field, small random

voltages with a zero mean are produced by equilibrium

thermal fluctuations of random charge motion [17].

Fluctuations of these random voltages create electrical

noise power in circuits. Analogously, spin noise is due

to spin fluctuations. Quasi-monochromatic surface

waves can also be excited by random thermal fluctua-

tions. These surface waves are different from black-

body radiation [18]. Various interesting effects are

achieved by random fields interacting with surfaces.

For example, surface waves on two closely spaced

surfaces can cause an enhanced radiative transfer.

Noise in nonequilibrium systems is becoming more

important in nanoscale measurements and in systems

where the temperatures vary in time. The information

obtained from radiometry at a large scale, or micro-

scopic probing of thermal fluctuations of various

material quantities, can produce an abundance of infor-

mation on the systems under test.

1.4 RF Measurements at Various Scales

At RF frequencies the wavelengths are much larger

than molecular dimensions. There are various approach-

es to obtaining material response with long wavelength

fields to study small-scale particles or systems. These

methods may use very sensitive detectors, such as

single-charge or spin detectors or amplifiers, or average

the response over an ensemble of particles to obtain a

collective response. To make progress in the area of

mesoscale measurement, detector sensitivity may need

to exceed the three or four significant digits obtained

from network analyzer scattering parameter measure-

ments, or one must use large ensembles of cells for a

bulk response and infer the small-scale response.

Increased sensitivity may be obtained by using resonant

methods or evanescent fields.

Material properties such as collective polarization

and loss [19] are commonly obtained by immersing

materials in the fields of EM cavities, dielectric

resonators, free-space methods, or transmission lines.

Some responses relate to intrinsic resonances in a

material, such as polariton or plasmon response,

ferromagnetic and anti-ferromagnetic resonances, and

terahertz molecular resonances.
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Broadband response is usually obtained by use of

transmission lines or antenna-based systems [12-14,

19, 20]. Thin films are commonly measured with

coplanar waveguides or microstrips [14]. Common

methods used to measure material properties at small

scales include near-field probes, micro-transmission

lines, atomic-force microscopes, and lenses.

In strong fields, biological cells may rotate, deform,

or be destroyed [21]. In addition, when there is more

than one particle in the applied field, the fields between

the particles can be modified by the presence of

nearby particles. In a study by Friend et al. [22], the

response of an amoeba to an applied field was studied

in a capacitor at various voltages, power, and frequen-

cies. They found that at 1 kHz and at 10 V/cm the

amoeba oriented perpendicular to the field. At around

10 kHz and above 15 V/cm the amoeba’s internal

membrane started to fail. Above 100 kHz and a field

strength of above 50 V/cm, thermal effects started to

damage the cells.

1.5 Electromagnetic Measurement Problems
Unique to Microscale and Nanoscale Systems

Usually, the electrical skin depth for field penetration

is much larger than the dimensions of nanoparticles.

Because nanoscale systems are only 10 to 1000 times

larger than the scale of atoms and small molecules,

quantum mechanics plays a role in the transport prop-

erties. Below about 10 nm, many of the continuous

quantities in classical electromagnetics take on a quan-

tized aspect. These include charge transport, capaci-

tance, inductance, and conductance. Fluctuations in

voltage and current also become more important than in

macroscopic systems. Electrical conduction at the

10 nanoscale involves movement of a small number of

charge carriers through thin structures and may attain

ballistic transport. For example, if a 1 μA charge

travels through a nanowire of radial dimensions 30 nm,

then the current density is on the order of 3 × 109 A/m2.

Because of these large current densities, electrical

transport in nanoscale systems is usually a non-

equilibrium process, and there is a large influence of

electron-electron and electron-ion interactions.

In nanoscale systems, boundary layers and interfaces

strongly influence the electrical properties, and the local

permittivity may vary with position [23]. Measurements

on these scales must model the contact resistance

between the nanoparticle and the probe or transmission

line and deal with noise.

2. Fundamental Electromagnetic
Parameters and Concepts Used in
Material Characterization

2.1 Electrical Parameters for High-Frequency
Characterization

In this section, the basic concepts and tools needed to

study and interpret dielectric and magnetic response

over RF frequencies are reviewed [24].

In the time domain, material properties can be

obtained by analyzing the response to a pulse or impulse;

however most material measurements are performed by

subjecting the material to time-harmonic fields.

The most general causal linear time-domain

relationships between the displacement and electric

fields and induction and magnetic fields are

(1)

where f
↔

p (t) is a polarization impulse-response dyadic,

(2)

where f
↔

m (t) is a magnetic impulse-response dyadic.

The permittivity ε↔(ω) dyadic is the complex para-

meter in the time-harmonic field relation D
~

(ω) =

ε↔(ω) .E
~
(ω) and, is defined in terms of the Fourier trans-

form of the impulse-response function. For isotropic

linear media, the scalar complex relative permit-

tivity εr is defined in terms of the absolute permit-

tivity ε and the permittivity of vacuum ε 0 (F/m), as

follows ε (ω) = ε 0ε r(ω), where ε r(ω) = ε r ∞ + χr (ω) =

ε′r(ω) – iε″r (ω), and ε r ∞ is the optical-limit of the

relative permittivity. The value of the permittivity

of free space is ε 0 ≡ 1/μ0c
2
ν ≈ 8.854 × 10–12 (F/m), where

the speed of light in vacuum is cν ≡ 299792458 (m/s)

and the exact value of the permeability of free space is

μ0 = 4π × 10 –7 (H/m). Also, tanδd = ε″r/ε′r is the loss

tangent in the material [25].
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Note that in the SI system of units the speed of light,

permittivity of vacuum, and permeability of vacuum

are defined constants. All measurements are related to

a frequency standard. Note that the minus sign before

the imaginary part of the permittivity and permeability

is due to the e iωt time dependence. A subscript eff on the

permittivity or permeability releases the quantity from

some of the strict details of electrodynamic analysis.

The permeability in no applied field is: μ(ω) =

μ0(μ′r (ω) – iμ″r (ω)) and the magnetic loss tangent is

tanδm = μ″r(ω)/μ′r (ω).

For anisotropic and gyrotropic media with an applied

magnetic field, the permittivity and permeability

tensors are hermitian and can be expressed in the

general form

(3)

For a definition of gyrotropic media see [4]. The off-

diagonal elements are due to gyrotropic behavior in an

applied field.

Electric and magnetic fields are attenuated as they

travel through lossy materials. Using time-harmonic

signals the loss can be studied at specific frequencies,

where the time dependence is e iωt. The change in loss

with frequency is related to dispersion.

The propagation coefficient of a plane wave is

γ = α + i β = ik =
coefficient in an infinitely thick half space, where the

guided wavelength of the applied field is much longer

than the size of the molecules or inclusions, is denoted

by the quantity α and the phase is denoted by β. Due to

losses of a plane wave, the wave amplitude decays as

|E| ∝ exp(–αz). The power in a plane wave of the form

E(z, t) = E0 exp (–αz) exp (iωt – iβz), attenuates as

P ∝ exp (–2αz). For waves in a guided structure:

wavenumber, and speed of light c . Below cutoff, the

plane wave is given by

and has units of Np/m. α is approximated for dielectric

materials as

(5)

In dielectric media with low loss, tanδd <<1, and α

reduces in this limit to α → ω

skin depth is the distance a plane wave travels until it

decays to 1/e of its initial amplitude, and is related to

the attenuation coefficient by δs = 1/α. The concept of

skin depth is useful in modeling lossy dielectrics and

metals. Energy conservation constrains a to be positive.

The skin depth is defined for lossy dielectric materials

as

(6)

In Eq. (6), δs reduces in the low-conductivity limit to

to δs → 2c/(ω

Dp = δs /2 is the depth where the plane-wave energy

drops to 1/e of its value on the surface. In metals, where

the conductivity is large, the skin depth reduces to

(7)

where σdc is the dc conductivity and f is the frequency.

We see that the frequency, conductivity, and perme-

ability of the material determine the skin depth in

metals.

The phase coefficient β for a plane wave is given by

In dielectric media, β reduces to

(9)

The imaginary part of the propagation coefficient

defines the phase of an EM wave and is related to the

refractive index by

the positive square root is taken in Eq. (8). Veselago

[26] developed a theory of negative-index materials

(NIM) where he used negative intrinsic
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ε ε ε ε

ε ε ε

⎛ ⎞− +
⎜ ⎟

ω = + −⎜ ⎟
⎜ ⎟⎜ ⎟− +⎝ ⎠



. The plane-wave attenuationi εµω

2 2 , where / 2 / is the cutoffγ ω π λ= − = =c c c ci k k k c

2 2propagation coefficient becomes . of aγ α= −ck k

2 2 1/2

1/2

(((tan tan 1) (tan tan ) )
2

(tan tan 1)) ,

ω
α ε µ δ δ δ δ

δ δ

= − + +

+ −

r r d m d m

d m

' '
c

2
1 tan 1 .

2

ω
α ε µ δ= + −r r d' '

c

tan /2 . Theε µ δr r d' ' c

2

2 1
.

1 tan 1

δ
ε µ δ

=
ω + −

s

r r d

c

' '

tan ). The depth of penetrationε µ δr r d' '

0

1
δ

π µ µ σ
=s

r dcf '

2
1 tan 1 .

2

ω
β ε µ δ= ± + +r r d' '

c

. In normaldielectricsε µ= ± r rn ' '
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δ δ

=± − + +
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' '
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ε′r and µ′r , and the negative square root in Eq. (8) is

used. There is controversy over the interpretation of

metamaterial NIM electrical behavior since the perme-

ability and permittivity are commonly effective values.

We will use the term NIM to describe materials that

achieve negative effective permittivity and permeabili-

ty over a band of frequencies.

The wave impedance for a transverse electric

and magnetic mode (TEM) is

magnetic mode (TM) is γ / iωε. The propagating plane

wave wavelength in a material is decreased by a permit-

tivity greater than that of vacuum; for example, for a

The surface impedance in ohms/square of a conduct-

ing material is Zm = (1 + i )σδs . The surface resistance

for highly lossy materials is

(10)

When the conductors on a substrate are very thin, the

fields can penetrate through the conductors into the

substrate. This increases the resistance of a propagating

field because it is in both the metal and the dielectric.

As a consequence of the skin depth, the internal induc-

tance in a highly-conducting material decreases with

increasing frequency, whereas the surface resistance Rs

increases with frequency in proportion to √f
—

.

Any transmission line will have propagation delay

that relates to the propagation speed in the line. This is

related to the dielectric permittivity and the geometry

of the transmission line. Propagation loss is due to

conductor and material loss.

Some materials exhibit ionic conductivity, so that

when a static electric field is applied, a current is

induced. This behavior is modeled by the dc conductiv-

ity σdc , which produces a low-frequency loss (∝ 1/ω) in

addition to polarization loss (ε″
r ). In some materials,

such as semiconductors and disordered solids, the

conductivity is complex and depends on frequency.

This is because the free charge is partially bound and

moves by tunneling through potential wells or hops

from well to well.

The total permittivity for linear, isotropic materials

that includes both dielectric loss and dc conductivity

is defined from the Fourier transform of Maxwell’s

equation: iω D
~

(ω) + J
~

(ω) ≡ iωε E
~

(ω) + σdc E
~

(ω) ≡
iωεt o t E

~
(ω), so that

(11)

In plots of RF measurements, the decibel scale is

often used to report power or voltage measurements.

The decibel (dB) is a relative unit and for power is

calculated by 10 log10 (Pout /Pin). Voltages in decibels

are defined as 20 log10 (Vout / Vin). α has units of

Np/m. The attenuation can be converted from

1 Np/m = 8.686 dB/m. dBm is similar to dB, but rela-

tive to power in milliwatts 10 log(P/mW).

2.2 Electromagnetic Power

In the time domain the internal field energy U satis-

fies: ∂U/∂t = ∂D/∂t · E + ∂B/∂t · H. Using Maxwell’s

equations with a current density J, then produces

Poynting’s Theorem: ∂U/∂t + ∇ · (E × H) = – J · E,

where the time-domain Poynting vector is S(r, t) =

E(r, t) × H(r, t). The complex power flux (W/m2)

is summarized by the complex Poynting vector Sc(ω) =

=(1/2)(E
~

(ω) × H
~ *

(ω)). The real part of Sc represents

dissipation and is the time average over a complete

cycle. The imaginary part of Sc relates to the reactive

stored energy.

2.3 Quality Factor

The band width of a resonance is usually modeled by

the quality factor (Q) in terms of the decay of the

internal energy. The combined internal energy in a

mechanical system is the kinetic plus the potential

energy; in an electromagnetic system it is the field

stored energy plus the potential energy. In the time

domain the quality factor is related to the decay of the

internal energy for an unforced resonator as as [27]

(12)

The EM field is modeled by a damped harmonic

oscillator at frequencies around the lossless resonant

frequency ω0 and frequency pulling factor (the resonant

frequency decreases from ω0 due to material losses),

Δω as [27]

(13)

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001

Journal of Research of the National Institute of Standards and Technology

8

/ ; for a transverseµ ε
electric mode (TE) is / , and for a transversei µ γω

TEM mode, /( ). In waveguides theguid-λ ε µ≈ vac r rc ' ' f

ed wavelength dependson the cutoff wavelengthg cλ λ
2 2 2 2

and is given by 1/ / 1/ / 1 ( / ) .g c c' 'f cλ ε µ λ λ λ λ= − = −

01
.

π µ µ
δ σ σ

= = r
s

s dc dc

f '
R

o 0 0( ) .
σ

ε ε ε ε ε
ω

= − + dc
t t i' ''

r r

0

0

( )
( ) .

ω
= −

dU t
U t

dt Q

0 0/ 2 ( )
0( ) .

ω 0− ω +Δω= t Q i t
E t E e e

http://dx.doi.org/10.6028/jres.117.001



Taking a Fourier transform of Eq. (13), the absolute

value squared becomes

(14)

and therefore |E(ω)|2, which is proportional to the

power, is a Lorentzian. This linear model is not exact

for dispersive materials, because Q0 may be dependent

on frequency. The quality factor is calculated from the

frequency at resonance f0 as Q0 = f0 / 2(| f 0 – f 3dB|), or

from a fit of a circle when plotting S11(ω) on the Smith

chart. The quality factor is calculated from Q0 = f 0/Δf ,

where Δf is the frequency difference between 3 dB

points on the S21 curve [28]. For resonant cavity meas-

urements, the permittivity or permeability is deter-

mined from measurements of the resonance frequency

and quality factor, as shown in Fig. 2. For time-

harmonic fields the Q is related to the stored field

energies We ,Wh , the angular frequency at resonance ωr ,

and the power dissipated Pd at the resonant frequency:

(15)

Resonant frequencies can be measured with high

precision in high-Q systems; however the parasitic

coupling of the fields to fixtures or materials needs to

be modeled in order to make the result meaningful.

Material measurements using resonances have much

higher precision than using nonresonant transmission

lines.

The term antiresonance is used when the reactive

part of the impedance of a EM system is very high. This

is in contrast to resonance, where the reactance goes to

zero. In a circuit consisting of a capacitor and induc-

tance in parallel, antiresonance occurs when the voltage

and current are in phase.

3. Maxwell’s Equations in Materials
3.1 Maxwell’s Equations From Microscopic to

Macroscopic Scales

Maxwell’s microscopic equations in a media with

charged particles are written in terms of the micro-

scopic fields b, e and sources j, and ρm as

(16)

(17)

(18)

(19)

Note, that at this level of description the macroscopic

magnetic field H and the macroscopic displacement

field D are not defined, but can be formed by averaging

dielectric and magnetic moments and expanding the

microscopic charge density in a Taylor series. In

performing the averaging process, the material length

scales allow the dipole moments in the media to be

approximated by continuously varying functions P and

M. Once the averaging is completed, the macroscopic

Maxwell’s equations are (see Sec. 4.6) to obtain

[27, 29, 30]

(20)

(21)

(22)

(23)

J denotes the current density due to free charge and

source currents. Because there are more unknowns than

equations, constitutive relations for H and D are need-

ed. Even though B and E are the most fundamental

fields, D usually is expressed in terms of E, and B is

usually expressed in terms of H.

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001

Journal of Research of the National Institute of Standards and Technology

9

2

2 2

0

( ) ,

( ) ( )
2

0

ω =
ω

ω − ω − Δω +

A
E

Q

.e h
r

d

W W
Q

P

+
= ω

Fig. 2. Measuring resonant frequency and Q.

0 0 0 ,
t

ε µ µ
∂

∇× = +
∂
e

b j

,
∂

∇× = −
∂t

b
e

0 ,mε ∇ ⋅ = ρe

0.∇ ⋅ =b

,
t

∂
∇× = +

∂
D

H J

,
∂

∇× = −
∂t

B
E

,∇ ⋅ = ρD

.∇ ⋅ = 0B

http://dx.doi.org/10.6028/jres.117.001



3.2 Constitutive Relations

3.2.1 Linear Constitutive Relations

Since there are more unknowns than macroscopic

Maxwell’s equations, we must specify the constitutive

relationships between the polarization, magnetization,

and current density as functions of the macroscopic

electric and magnetic fields [31, 32]. In order to satisfy

the requirements of linear superposition, any linear

polarization relation must be time invariant, further,

this must also be a causal relationship as given in

Eqs. (1) and (2).

The fields and material-related quantities in

Maxwell’s equations must satisfy underlying sym-

metries. For example, the dielectric polarization and

electric fields are odd under parity transformations and

even under time-reversal transformations. The magne-

tization and induction fields are even under parity

transformation and odd under time reversal. These

symmetry relationships place constraints on the nature

of the allowed constitutive relationships and requires

the constitutive relations to manifest related sym-

metries [29, 33-39]. The evolution equations for the

constitutive relationships need to be causal, and in

linear approximations must satisfy time-invariance

properties. For example, the linear-superposition

requirement is not satisfied if the relaxation time in

Eq. (4) depends on time. This can be remedied by using

an integrodifferential equation with restoring and

driving terms [40, 41].

The macroscopic displacement and induction fields

D and B are related to the macroscopic electric field E
and magnetic fields H, as well as M and P, by

(24)

and

(25)

In addition,

(26)

where J is a function of the electric and magnetic

fields, and Q
↔

is the macroscopic quadrupole moment

density. Pd is the dipolemoment density, whereas P is

the effective macroscopic polarization that also

includes the effects of the macroscopic quadrupole-

moment density [27, 29, 30, 32, 42]. The polarization

and magnetization for time-domain linear response are

expressed as convolutions in terms of the macroscopic

fields. For chiral and magneto-electric materials, Eqs.

(24) and (25) must be modified to accommodate cross-

coupling behavior between magnetic and dielectric

response. General, linear relations defining polarization

in non-magnetoelectric and non-chiral dielectric and

magnetic materials in terms of the impulse-response

dyadics are given by Eqs. (1) and (2). Using the

Laplace transform L, gives

(27)

where

(28)

So the real part is the even function of frequency given by

(29)

and the imaginary part is an odd function of frequency

(30)

and therefore

(31)

also

(32)

(33)

The time-evolution constitutive relations for dielec-

tric materials are generally summarized by generalized

harmonic oscillator equations or Debye-like equations

as overviewed in Sec. 5.2.

3.2.2 Generalized Constitutive Relations

Through the methods of nonequilibrium quantum-

based statistical-mechanics it is possible to show that

the constitutive relation for the magnetization in ferro-

magnetic materials is an evolution equation given by 

(34)

where K
↔

m is a kernel that contains of the micro-

structural interactions given in [43], γg is the gyro-

magnetic ratio, χ0 is the static susceptibility, and Heff
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is the effective magnetic field. Special cases of Eq. (34)

reduce to constitutive relations such as the Landau-

Lifshitz, Gilbert, and Bloch equations. The Landau-

Lifshitz equation of motion is useful for ferromagnetic

and ferrite solid materials:

(35)

where α is a damping constant. Another special case of

Eq. (34) reduces to the Gilbert equation

(36)

In electron-spin resonance (EPR) and nuclear

magnetic resonance (NMR) measurements, the Bloch

equations with characteristic relaxation times T1 and T2

are used to model relaxation. T1 relates to spin-lattice

relaxation as the paramagnetic material interacts with

the lattice. T2 relates to spin-spin interactions:

(37)

where χ↔b has only the diagonal elements χb (11) = 1/T2 ,

χb (22) = 1/T2 , χb (33) = 1/T1 , and Ms = Msz
→

. An equation

analogous to (34) can be written for the electrical

polarization [46] as [43]

(38)

The Debye relaxation differential equation is

recovered from Eq. (38) when K
↔

e (r, t , r′, τ) =

I
↔

δ(t – τ)δ(r, – r′)/τe .

4. Electromagnetic Fields in Materials
4.1 The Time-Harmonic Field Approximation

Time-harmonic fields are very useful for solving the

linear Maxwell’s equations when transients are not

important. In the time harmonic field approximation,

the field is assumed to be present without beginning or

end. Periodic signals over − ∞ < t < ∞ are nonphysi-

cal since all fields have a beginning where transients

are generated, but are very useful in probing material

response.

Solutions of Maxwell’s equations that include

transients are most easily obtained with the Laplace

transform. Note that the Laplace or Fourier transformed

fields do not have the same units as the time-harmonic

fields due to integration over time. In Eq. (1), causality

is incorporated into the convolution relation for linear

response. D(t) depends only on E(t) at earlier times and

not future times.

4.2 Material Response to Applied Fields

When a field is suddenly applied to a material, the

charges, spins, currents, and dipoles in a medium

respond to the local fields to form an average field. If

an EM field is suddenly applied to a semi-infinite

material, the total field will include the effects of both

the applied field, transients, and the particle back-

reaction fields from charge, spin, and current rearrange-

ment that causes depolarization fields. This will cause

the system to be in nonequilibrium for a period of time.

For example, as shown in Fig. 3, when an applied EM

field interacts with a dielectric material, the dipoles

reorient and charge moves, so that the macroscopic and

local fields in the material are modified by surface

charge dipole depolarization fields that oppose the

applied field. The macroscopic field is approximately

the applied field minus the depolarization field.

Depolarization, demagnetization, thermal expansion,

exchange, nonequilibrium, and anisotropy interactions

can influence the dipole orientations and therefore the

fields and the internal energy. In modeling the constitu-

tive relations in Maxwell’s equations, we must express

the material properties in terms of the macroscopic

field, not the applied or local fields, and therefore we

need to make clear distinctions between the interaction

processes [40].

Materials can be studied by the response of frequen-

cy-domain or time-domain fields. When considering

time-domain pulses rather than time-harmonic fields,
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this interaction is more complex. The use of time-

domain pulses have the advantage of sampling a

reflected pulse as a function of time, which allows a

determination of the spatial location of the various

reflections.

Time-harmonic fields are often used to study materi-

al properties. These have a specific frequency from

time minus infinity to plus infinity, without transients;

that is, fields with a e iωt time dependence. As a conse-

quence, in the frequency domain, materials can be

studied through the reaction to periodic signals. The

measured response relates to how the dipoles and

charge respond to the time-harmonic signal at each

frequency. If the frequency information is broad

enough, a Fourier transform can be used to study the

corresponding time-domain signal.

The relationships between the applied, macroscopic,

local, and the microscopic fields are important for

constitutive modeling (Fig. 3). The applied field

originates from external charges, whereas the macro-

scopic fields are averaged quantities in the medium.

The displacement and inductive (or magnetic) macro-

scopic fields in Maxwell’s equations are implicitly

defined through the constitutive relationships and

boundary conditions. The local field is the averaged

EM field at a particle site due to both the applied field

and the fields from all of the other sources, such as

dipoles, currents, charge, and spin [47]. The micro-

scopic field represents the atomic-level EM field,

where particles interact with the field from discrete

charges. Particles interact with the local EM field that

is formed from the applied field and the microscopic

field. At the next level of homogenization, groups

of particles interact with the macroscopic field. The

spatial and temporal resolution contained in the macro-

scopic variables are directly related to the spatial and

temporal detail incorporated in the constitutive material 

parameters. Constitutive relations can be exact as in

[40] and Eqs. (34) and (38), but usually, to be useful,

are approximate.

Plane waves are a useful approximation in many

applications. Time-harmonic EM plane waves in mate-

rials can be treated either as traveling without attenua-

tion, propagating with attenuation, or evanescent. Plane

waves may propagate in the form of a propa-

gating wave e i(ωt – βz), or a damped propagating wave

e i(ωt – βz) – αz, or an evanescent wave e iωt – αz. Evanescent

fields are exponentially damped waves. In a wave-

guide, this occurs for frequencies below any transverse

resonance frequencies [24, 48], when k2 – k2
c < 0, where

kc is the cutoff wave number calculated from the

Evanescent and near field EM fields occur at apertures

and in the vicinity of antennas. Evanescent fields can be

detected when they are perturbed and converted into

propagating waves or transformed by dielectric loss.

Electromagnetic waves may convert from near field to

propagating. For example, in coupling to dielectric

resonators the near field at the coupling loops produce

propagating or standing waves in a cavity or dielectric

resonator. Evanescent and near fields in dielectric

measurements are very important. These fields do not

propagate and are used in near-field microwave probes

to measure or image materials at dimensions much less

than λ/2 [49, 50] (see Fig. 17). The term near field usu-

ally refers to the waves close to an waveguide, antenna,

or probe and is not necessarily an exponentially

damped plane wave. In near-field problems the goal is

to model the reactive region. Near fields in the reactive

region, (L < λ/2π), contain stored energy and there is

no net energy transport over a cycle unless there are

losses in the medium. By analogy, the far field relates

to radiation. These remove energy from the transmitter

whether they are immediately absorbed or not. There is

a transition region called the radiative near field.

Because electrical measurements can now be per-

formed at very small spatial resolutions, and the

elements of electrical circuits are approaching the

molecular level, we require good models of the macro-

scopic and local fields. This is particularly important,

because we know that the Lorentz theory of the local

field is not always adequate for predicting polarizabili-

ties [51, 52]. Also, when solving Maxwell’s equations

at the molecular level, definitions of the macroscopic 
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field and constituative relationships are important. A

theoretical analysis of the local EM field is important

in dielectric modeling of single-molecule measure-

ments and thin films. The effective EM fields at this

level are local, but not atomic-scale, fields.

The formation of the local field is a very complex

process whereby the applied electric field polarizes

dipoles in a molecules or lattices and the applied

magnetic field causes current and precession of spins.

Then, the molecule’s dipole field modifies the dipole

orientations of other molecules in close proximity,

which then reacts back to produce a correction to the

molecule’s field in the given region. This process gets

more complicated for behavior that depends on time.

We define the local EM field as the effective, averaged

field at a specific point in a material, not including the

field of the particle itself. This field is a function of

both the applied and multipole fields in the media. The

local field is related to the average macroscopic and

microscopic EM fields in that it is a sum of the macro-

scopic field and the effects of the near-field. In ferro-

electric materials, the local electric field can become

very large and hence there is a need for comprehensive

local field models. In the literature on dielectric materi-

als, a number of specific fields have been introduced to

analyze polarization phenomena. The electric field

acting on a nonpolar dielectric is commonly called the

internal field, whereas the field acting on a permanent

dipole moment is called the directing field. The differ-

ence between the internal field and directing fields is

the average reaction field. The reaction field is the

result of a dipole polarizing its environment [53].

Nearly exact classical theories have been developed

for the static local field. Mandel and Mazur developed

a static theory for the local field in terms of the polar-

ization response of a many-body system by use of

the T-matrix formalism [54]. Gubernatis extended the

T-matrix formalism [55]. However, the T-matrix contri-

butions are difficult to calculate. Keller’s review article

[56] on the local field uses an EM propagator approach.

Kubo’s linear-response theory and other theories have

also been used for EM correlation studies [40, 53, 57].

If the applied field has a wavelength that is not much

longer than the typical particle size in a material, an

effective permittivity and permeability is commonly

assigned. The terms effective permittivity and perme-

ability are commonly used in the literature for studies

of composite media. The assumption is that the proper-

ties are “effective” if in some sense they do not adhere

to the definitions of the intrinsic material properties. An

effective permittivity is obtained by taking a ratio of

some averaged displacement field to an averaged

electric field. The effective permeability is obtained by

taking a ratio of some averaged induction field to an

averaged magnetic field. This approach is commonly

used in modeling negative-index material properties

when scatterers are designed in such a manner such that

the scatterers themselves resonate. In these situations

the wavelength may approach the dimensions of the

inclusions.

4.3 Macroscopic and Local Electromagnetic Fields

in Materials

The mesoscopic description of the EM fields in a

material is complicated. As a field is applied to a

material, charges reorient to form new fields that

oppose the applied field. In addition, a dipole tends to

polarize its immediate environment, which modifies

the field the dipole experiences. The field that polarizes

a molecule is the local field El and the induced dipole

moment is p = α↔. El , where α↔ is the polarizability. In

order to use this expression in Maxwell’s equations, the

local field needs to be expressed in terms of the macro-

scopic field. Calculation of this relationship is not

always simple.

To first approximation, the macroscopic field is

related to the external or applied field (Ea), and the

depolarization field by

(39)

The local field is composed of the macroscopic field

and a material-related field. In the literature, the effec-

tive local field is commonly modeled by the Lorentz

field, which is defined as the field in a small cavity that

is carved out of a material around a specific site, but

excludes the field of the observation dipole. A well-

known example of the relationship between the

applied, macroscopic, and local fields is given by an

analysis of the Lorentz spherical cavity in a static

electric field. For a Lorentz sphere the local field is the

sum of applied, depolarization, Lorentz, and atomic

fields [4, 56, 58]:

(40)

For cubic lattices in a spherical cavity, the Lorentz local

field is related to the macroscopic field and polarization

by

(41)
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In the case of a sphere, the local field in Eq. (39) equals

the applied field.

For induced dipoles,

(42)

where N is the density of dipoles, and Eq. (41) yields

El = E/(1 – Nα/3ε0 ) = P/Nα.

Onsager [53] generalized the Lorentz theory by

distinguishing between the internal field that acts on

induced dipoles and the directing field that acts on

permanent dipoles. If we use P = ε0 (εr – 1)E in

Eq. (41), we find El = ((εr + 2)/3)E. Therefore, for

normal materials the Lorentz field exceeds the macro-

scopic field. For a material where the permittivity is

negative we can have El ≤ E. In principle, we can null

out the Lorentz field when εr = – 2. Some of the essen-

tial problems encountered in microscopic constitutive

theory center around the local field. Note that for some

materials, recent research indicates that the Lorentz

local field does not always lead to the correct polariz-

abilities [51]. We expect the Lorentz local field expres-

sion to break down near interfaces. For nanoparticles, a

more complicated theory needs to be used for the local

field.

A rigorous expression for the static local field creat-

ed by a group of induced dipoles can be obtained by an

iterative procedure [53, 59] using pi = αiEl(ri) and

(43)

where

(44)

If there are also permanent dipoles, they need to be

included as p(ri) = pperm(ri) + αiEl (ri ).

4.4 Overview of Linear-Response Theory

Models of relaxation that are based on statistical

mechanics can be developed from linear-response

theory. Linear-response theory uses an approximate

solution of Liouville’s equation and a Hamiltonian that

contains a time-dependent relationship of the field

parameters based on a perturbation expansion. This

approach shows how the response functions and

relaxation are related to time dependent polarization

correlation functions. The polarization P(t) is related to

the response dyadic φ↔ (t) and the driving field E(t) by

[53, 60]

(45)

where φ↔ (t – τ) = 0 for t – τ < 0. The susceptibility is

defined as

(46)

where the response in volume V is related to the corre-

lation function for stationary processes in terms of the

microscopic polarization

(47)

and therefore for microscopic polarizations

(48)

Once the correlation functions are determined then

the susceptibility can be found. An approach that

models relaxation beyond linear response is given in

[40, 43, 44, 61]. The method of linear response has

exceeded expectations and has been a cornerstone of

statistical mechanics.

4.5 Averaging to Obtain Macroscopic Field

If we consider modeling of EM wave propagation

from macroscopic through molecular and sub-molecu-

lar to atomic scales, the effective response at each level

is related to different degrees of homogenization. At

wavelengths short relative to particle size the EM prop-

agation is dominated by scattering, whereas at long

wavelengths it is dominated by traveling waves. In

microelectrodynamics, there have been many types of

ensemble and volumetric averaging methods used to

Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.001

Journal of Research of the National Institute of Standards and Technology

14

,lNα=P E

,

( ) ( ) ,

n

i j a ij j

i l i j= ≠

= + ∑E r E E r

5 3
0

3( ) ( ) ( )1
( ) , .

4

⎡ ⎤−⎢ ⎥≈ −
⎢ ⎥πε − −⎢ ⎥⎣ ⎦

j i i i
ij j

j i j i

r r p r p r
E r

r r r r

( ) ( ) ( )
t

t t d
−∞

= φ − τ ⋅ τ τ,∫P E


( )
τ∞ − ω

0
χ(ω) = φ τ τ = χ (ω)− χ (ω) ,∫

  i ' ''
e d i

(0)

τ
0< (τ) >

φ(τ) = − ,


B

d
V

d k T

p p

0

0

0
0

0
0

(0)

(0) ( ) sin( )

(0) ( ) cos( ) .

ωτ

ωτ

∞ −

∞ − 0

∞

∞

χ(ω) = φ(τ) τ =

< (τ) >
− τ

τ

ω ⎡= < τ > ωτ τ−⎢⎣

⎤< τ > ωτ τ⎥⎦

∫

∫

∫

∫

 i

i

B

B

e d

d
V e d

d k T

V
d

k T

i d

p p

p p

p p

http://dx.doi.org/10.6028/jres.117.001



define the macroscopic fields obtained from the micro-

scopic fields [27, 29, 30, 40, 54]. For example, in the

most commonly used theory of microelectromagnetics,

materials are averaged at a molecular level to produce

effective molecular dipole moments. The microscopic

EM theories developed by Jackson, Mazur, and

Robinson [27, 29, 30] average multipoles at a molecu-

lar level and replace the molecular multipoles, with

averaged point multipoles usually located at the center-

of-mass position. This approach works well down to

near molecular level, but breaks down below the

molecular to submolecular level.

In the various approaches, the homogenization of the

fields are formed in different ways. The averaging is

always volumetric rather than a time average. Jackson

uses a truncated averaging test function to proceed

from microscale to the macroscale fields [27]. Robinson

and Mazur use ensemble averaging [29, 30] and statis-

tical mechanics. Ensemble averaging assumes there is a

distribution of states. In the volumetric averaging

approach, the averaging function is not explicitly deter-

mined, but the function is assumed to  be such that the

averaged quantities vary in a manner smooth enough to

allow a Taylor-series expansion to be performed. In the

approach of Mazur, Robinson, and Jackson [27, 29, 30]

the charge density is expanded in a Taylor series and

the multipole moments are identified as in Eq. (49).

The microscopic charge density can be related to the

macroscopic charge density, polarization, and quadru-

pole density by a Taylor-series expansion [27]

(49)

where Q
↔

(r, t) is the quadrupole tensor. In this inter-

pretation, the concepts of P and ρmacro are valid at length

scales where a Taylor-series expansion is valid. These

moments are calculated about each molecular center of

mass and are treated as point multipoles. However, this

type of molecular averaging limits the scales of the

theory to larger than the molecular level and limits the

modeling of induced-dipole molecular moments [40].

Usually, the averaging approach uses a test function fa

and microscopic field e given by

(50)

However, the distribution function is seldom explic-

itly needed or determined in the analysis. The macro-

scopic magnetic polarization is found through an anal-

ogous expansion of the microscopic current density.

In NIM materials, effective properties are obtained

by use of electric and magnetic resonances of embed-

ded structures that produce negative effective ε′ef f [62].

In Sec. 4.6 the issue of whether this response can be

summarized in terms of material parameters is dis-

cussed. Defining permittivity and permeability on these

scales of periodic media can be confusing. The field

averaging used in NIM analysis is based on a unit cell

consisting of split-ring resonators, wires, and ferrite or

dielectric spheres [62, 63].

In order to obtain a negative effective permeability in

NIM applications, researchers have used circuits that

are resonant, which can be achieved by the introduction

of a capacitance into an inductive system. Pendry et al.

[63-65] obtained the required capacitance through gaps

in split-ring resonators. The details of the calculation of

effective permeability are discussed in Reference [63].

Many passive and/or active microwave resonant

devices can be used as sources of effective perme-

ability in the periodic structure designed for NIM

applications [66]. We should note that the composite

materials used in NIM are usually anisotropic. Also, the

use of resonances in NIM applications produce effec-

tive material parameters that are spatially varying and

frequency dispersive.

4.6 Averaging to Obtain Permittivity and

Permeability in Materials

The goal of this section is to study the electrical

permittivity and permeability in materials starting from

microscopic concepts and then progressing to macro-

scopic concepts. We will study the limitations of the

concept of permittivity in describing material behavior

when wavelengths of the applied field approach the

dimensions of the spaces between inclusions or

inclusion sizes. When high-frequency fields are used in

the measurement of composite and artificial structures,

these length-scale constraints are important. We will

also examine alternative quantities, such as dipole

moment and polarizability, that characterize dielectric

and magnetic interactions of molecules, atoms, and that

are still valid even when the concepts of permittivity

and permeability are fuzzy.

The concepts of polarizability and dipole moment

p in p = αEl are valid down to the atomic and molecu-

lar levels. Permittivity and permeability are frequency-

domain concepts that result from the microscopic time-

harmonic form of Maxwell’s equations averaged over a

unit cell. They are also related to the Fourier transform

of the impulse-response function. The most common
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way to define ε↔ is through the impulse-response func-

tion f
↔

p (t).

Statistical mechanics yields an expression for the

impulse-response function in terms of correlation func-

tions of the microscopic polarizations p. For linear

response [53]

(51)

where V is the volume, L0 is Liouville’s operator,

p
.

denotes iL0p, and < >0 denotes averaging over phase.

From this equation, we can identify the impulse-

response dyadic f
↔

p from P(t) = V ∫∞0< p (t)p
.
(τ) >0 · E(τ)

dτ / kBT , and for a stationary system, f
↔

p(t) =

V < p (0)p
.
(– t) >0 /kBT [53].

Ensemble and volumetric averaging methods are

used to obtain the macroscopic fields from the micro-

scopic fields (see Jackson [27] and the references

therein). For example, in the most commonly used

theory, materials are averaged at a molecular level to

produce effective molecular dipole moments. When

deriving the macroscopic Maxwell’s equations from

the microscopic equations, the electric and magnetic

multipoles within a molecule are replaced with aver-

aged point multipoles usually located at the molecular

center-of-mass positions. Then these effective moments

are assumed to form a continuum, which then forms the

basis of the macroscopic polarizations. The procedure

assumes that the wavelength in the material is much

larger than the individual particle sizes. As Jackson

[27] notes, the macroscopic Maxwell’s equations can

model refraction and reflection of visible light, but are

not as useful for modeling x-ray diffraction. He states

that the length scale L0 of 10 nanometers is effectively

the lower limit for the validity of the macroscopic

equations. Of course, this limit can be decreased with

improved constitutive relationships.

For macroscopic heterogeneous materials the wave-

lengths of the applied fields must be much longer

than individual particle or molecule dimensions that

constitute the material. When this criterion does not

hold, then the spatial derivative in the macroscopic

Maxwell’s equations, for example, (∇ × H), and the

displacement field loses its meaning. Associated with

this homogenization process at a given frequency is the

number of molecules or inclusions that are required to

define a displacement field and thereby the related

permittivity.

When the ratio of the dipole length scale to wave-

length is not very small, the Taylor’s series expansion

is not valid and the homogenization procedure breaks

down. When this criteria is not satisfied for metafilms,

some researchers use generalized sheet transition con-

ditions (GSTC’s) [67-70] at the material boundaries;

however, the concept of permittivity for these struc-

tures, at these frequencies, is still in question and is

commonly assigned an effective value. Drude and

others [67, 68] compensated for this by introducing

boundary layers. In such cases, it is not clear whether

mapping complicated field behavior onto effective

permittivity and permeability is useful, since at these

scales, the results can just as well be thought of as

scattering behavior.

When modeling the permittivity or permeability in a

macroscopic medium in a cavity or transmission line,

the artifacts of the measurement fixture must be

separated from the material properties by solving a

relevant macroscopic boundary-value problem. At

microwave and millimeter frequencies a low-loss

macroscopic material can be made to resonate as a

dielectric resonator. In such cases, if the appropriate

boundary-value problem is solved, the intrinsic permit-

tivity and permeability of the material can be extracted

because the wavelengths are larger than the constituent

molecule sizes, and as a result, the polarization vector

is well defined. However, many modern applications

are based on artificial structures that produce an EM

response where the wavelength in the material is only

slightly larger than the feature or inclusion size. In such

cases, mapping the EM response onto a permittivity

and permeability must be scrutinized. In general, the

permittivity is well defined in materials where wave

propagation through the material is not dominated by

multiple scattering events.

5. Overview of the Dielectric Response to
Applied Fields

5.1 Modeling Dielectric Response Upon

Application of an External Field

Dielectric parameters play a critical role in many

technological areas. These areas include electronics,

microelectronics, remote sensing, radiometry, dielectric

heating, and EM-assisted chemistry [20]. At RF

frequencies dielectrics exhibit behavior that metals

cannot achieve because dielectrics allow field penetra-

tion and can have low-to-medium loss characteristics.
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Using dielectric spectroscopy as functions of both

frequency and temperature we can obtain some, but not

all of the information on a material’s molecular or

lattice structure. For example, measurements of the

polarization and conductivity indicate the polarizability

and free charge of a material and polymer mobility of

side chains can be studied with dielectric spectroscopy.

Also, when a polymer approaches a glass transition

temperature the relaxation times change abruptly.

This is observable with dielectric spectroscopy. In

addition, the loss peaks of many liquids change with

temperature.

When an EM field is applied to a material, the atoms,

molecules, free charge, and defects adjust positions. If

the applied field is static, then the system will eventu-

ally reach an equilibrium state. However, if the applied

field is time dependent then the material will continu-

ously relax in the applied field, but with a time lag. The

time lag is due to screening, coupling, friction, and

inertia. An abundance of processes are occurring during

relaxation, such as heat conversion processes, lattice-

phonon, and photon phonon coupling. Dielectric relax-

ation can be a result of dipolar and induced polariza-

tion, lattice-phonon interactions, defect diffusion,

higher multipole interactions, or the motion of free

charges. Time-dependent fields produce nonequilibri-

um behavior in the materials due both to the heat

generated in the process and the constant response to

the applied field. However, for linear materials and

time-harmonic fields, when the response is averaged

over a cycle, if heating is appreciable, nonequilibrium

effects such as entropy production relate more to

temperature effects than the driving field stimulus. The

dynamic readjustment of the molecules in response

to the field is called relaxation and is distinct from

resonance. For example, if a dc electric field is applied

to a polarizable dielectric and then the field is sudden-

ly turned off, then the dipoles will relax over a charac-

teristic relaxation time into a more random state.

The response of materials depends strongly on

material composition and lattice structure. In many

solids, such as solid polyethylene, the molecules are not

able to appreciably rotate or polarize in response to

applied fields, indicating a low permittivity and small

dispersion. The degree of crystallinity, existence of

permanent dipoles, dipole-constraining forces, mobility

of free charge, and defects all contribute to dielectric

response. Typical responses for high-loss and low-loss

dielectrics are shown in Figs. 4, 5, and 6.
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Fig. 4. Broadband permittivity variation for materials [71].

Fig. 5. Typical frequency dependence of ε′r of low-loss fused silica

as measured by many methods.

Fig. 6. Typical frequency dependence of the loss tangent in low-loss

materials such as fused silica.
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A material does not respond instantaneously to an

applied field. As shown in Fig. 4, the real part of the

permittivity is a monotonically decreasing function of

frequency in the relaxation part of the spectrum, far

away from intrinsic resonances. At low frequencies, the

dipoles generally follow the field, but thermal agitation

also tends to randomize the dipoles. As the frequency

increases to the MMW band, the response to the driv-

ing field generally becomes more incoherent. At higher

frequencies, in the terahertz or infrared spectrum, the

dipoles may resonate, and therefore the permittivity

rises until it becomes out of phase with the field and

then drops. At RF frequencies, materials with low loss

respond differently from materials with high loss

(compare Fig. 4 for a high-loss material versus a low-

loss material in Figs. 5 and 6). For some materials, at

frequencies at the low to middle part of the THz band,

ε′r may start to contain some of the effects of resonances

that occur at higher frequencies, and may start to

slowly increase with frequency, until resonance, and

then decreases again.

The local and applied fields in a dielectric are

usually not the same. As the applied field interacts with

a material it is modified by the fields of the molecules

in the substance. Due to screening, the local electric

field differs from the applied field and therefore

theories of relaxation must model the local field (see

Sec. 4.3).

Over the years, many models of polar and nonpolar-

materials have been developed that use different

approximations to the local field. The Clausius-

Mossotti equation was developed for noninteracting,

nonpolar molecules governed by the Lorentz equation

for the internal field. This equation works well for non-

polar gases and liquids. Debye introduced a generaliza-

tion of the Clausius-Mossotti equation for the case of

polar molecules. Onsager developed an extension of

Debye’s theory by including the reaction field and a

more comprehensive local field expression [53]. For a

dielectric composed of permanent dipoles, the polariza-

tion is written in terms of the local field as Eq. (42)

There are electronic, ionic, and permanent dipole

polarizability contributions, so that µ→d = (αel + αion +

αperm )El , αel = 4πε0R
3 / 3, αion = e2 / Yd0 . Here, Y is

Young’s modulus, R is the radius of the ions, d0 is

the equilibrium separation of the ions, and αperm =

|µ→e |2 /3kBT, where µ→e is the permanent dipole moment.

There may also be a contribution to the polarizability

due to excess charge at microscopic interfaces. Using

the Lorentz expression for the local field, the polariza-

tion can be written as

(52)

or

(53)

This is the Clausius-Mossotti relation that is common-

ly used to estimate the permittivity of nonpolar

materials from atomic polarizabilities:

(54)

or

(55)

The Clausius-Mossotti relation relates the permittivity

to the polarizability. The polarizability is related to the

vector dipole moment µ→d of a molecule or atom and

the local field El , µ→d = αEl . In principle, once the

polarizability is determined for a group of molecules,

then the permittivity of the ensemble can be calculated

with the implicit assumption that there are many mole-

cules located over the distance of a wavelength. Typical

polarizabilities of atoms are between 0.1 and 100 Fm2

[72]. Polarizabilities of molecules can be higher than

for atoms. The local field for a sphere is related to the

polarization by Eq. (41).

A generalization of the Clausius-Mossotti equation

to include a permanent moment µ→e is summarized in

what is called the Debye equation that is valid for gases

and dilute solutions:

(56)

The Debye equation could be used to estimate the

permittivity of a gas if both the polarizability and the

dipole moment were known from experiment.
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For a specific dipole immersed in an environment of

surrounding dipoles, the dipole will tend to polarize the

surrounding dipoles and thereby create a reaction field.

Onsager included the effects of the reaction field into

the local field and obtained the following relationship

for the static field that, and unlike the Debye equation,

can be used to model the dipole moment of some pure

liquids:

(57)

where ε∞ is the optical limit of the permittivity. The

Onsager equation is often used to calculate dipole

moments of gases. Both atoms and molecules can

polarize when immersed in a field. Note that Eq. (57)

uses the permittivity of the liquid, which is a macro-

scopic quantity to estimate the microscopic dipole

moment.

5.2 Dielectric Relaxation and Resonance

5.2.1 Simple Differential Equations for Relaxation

and Resonance

A very general, but simplistic equation, for modeling

polarization response that depends on time is given by

a harmonic-oscillator relation:

(58)

where P is polarization, τ is the relaxation time, ω0

Various special cases of Eq. (58) serve as simple, naive

models of relaxation, resonance, and plasmonic

response. The first term relates to the effects of inertia,

the second to dissipation, the third to restoring forces,

and the RHS represents the driving forces. A weakness

of Eq.(58) is that the simple harmonic oscillator model

assumes only a single relaxation time, and resonance

frequency. This equation can be generalized to include

interactions, (see Eq. (117)). In most materials, the

molecules are coupled and have a broad range of relax-

ation frequencies that widens the dielectric response.

For time-harmonic fields Eq. (58) is

(59)

A resonance example is shown in Fig. 7. Intrinsic

material resonances in ionic solids can occur at high

frequencies due to driving at phonon normal-mode

frequencies and relate to the mass inertial aspect in

sublattices.

If we eliminate the inertial interaction when

ω2
0>> ω2, we have the time-domain Debye differential

equation for pure relaxation:

(60)

For time-harmonic fields, the Debye response is

(61)

Except for liquids like water, dielectrics rarely exhibit

the response of Eq. (61) since there is no single

relaxation time over RF frequencies.

We generally assume that dipoles reorient in an

applied field in discrete jumps as the molecule makes

transitions from one potential well minimum to

another with the accompanied movement of a polaron

or defect in the lattice. The Debye model of relaxation

assumes that dipoles relax individually with no inter-

action between dipoles and with no inertia, but includes

frictional forces. The real part of the permittivity for

dipolar systems generally does not exhibit single-pole

Debye response, but rather a power-law dependence. 

The origin of this difference can be attributed to many-

body effects that tend to smear the response over a

frequency band.
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If we eliminate the restoring force term in Eq. (59),

we have an equation of motion for charged plasmas,

(62)

For time-harmonic fields, this becomes

(63)

5.2.2 Modeling Relaxation in Dielectrics

The polarization of a material in an applied field

depends on the permanent and induced dipole

moments, the local field, and their ability to rotate with

the field. Dielectric loss in polar materials is due

primarily to the friction caused by rotation, free charge

movement, and out-of-phase dipole coupling. Losses in

nonpolar materials originate mainly from the inter-

action with neighboring permanent and induced

dipoles, intrinsic photon-phonon interactions with the

EM field, and extrinsic loss mechanisms caused by

defects, dislocations, and grain structure. Loss in many

high-purity crystals is primarily intrinsic in that a

crystal will vibrate nearly harmonically; however,

anharmonic coupling to the electric field and the

presence of defects modifies this behavior. The an-

harmonic interaction allows photon-phonon interaction

and thereby introduces loss [73]. High-purity centro-

symmetric dielectric crystals, that is, crystals with

reflection symmetry, such as crystalline sapphire,

strontium titanate, or quartz, have generally been found

to have lower loss than crystals with noncentro-

symmetry [74].

A transient current may be induced if an electric field

is applied, removed, or heated. This can be related to

the dielectric response. The depolarization current for

many lossy disordered solids is nonexponential and, at

time scales short relative to the relaxation time of the

media, can satisfy a power law of the form [75, 76]

(64)

and satisfy a power law at long times of the form

(65)

where 0 < n, m < 1. In this model, a short time scale

corresponds to frequencies in the microwave region

(τ ∝ 1/ f < 1 × 10–9 s) and long relaxation times refer to

frequencies less than 10 kHz (τ ∝ 1/ f < 1 × 10–4 s). In

order to satisfy theoretical constraints at very short

periods the current must depart from Eq. (64). There

are exceptions to the behavior given in Eqs. (64) and

(65) in dipolar glasses, polycrystalline materials, and

other materials [77]. The susceptibility of many lossy

disordered solids typically behave at high frequencies

as a power law

(66)

This implies χ″ /χ′ is independent of frequency. On the

other hand, measurements of many ceramics, glasses,

and polymers exhibit a loss tangent that increases

approximately linearly with frequency as shown in

Fig. 6.

Dissado and Hill conclude that nonexponential

relaxation is related to cluster response [75]. In their

model, molecules within a correlated region react to the

applied field with a time delay. The crux of this

approach is that in most condensed-matter systems the

relaxation is due not to independently relaxing dipoles,

but rather that the relaxation of a single dipole depends

on the state of other dipoles in a cluster. Therefore their

model includes dipole-dipole coupling. This theory of

disordered solids is based on charge hopping and

dipolar transitions within regions surrounding a defect

and between clusters [75]. The effect is to spread out

the response over time and therefore to produce non-

exponential behavior. Dissado and Hill developed a

representation of a correlation function that includes

cluster interaction. According to this theory, the

time-domain response for short time scales is Gaussian

e– t 2 / τ 2

.

At longer periods there are intra-cluster transitions

that follow a power law of the form t –n. At still longer

periods there are inter-cluster transitions with a Debye-

type response e– t / τ, and finally at very long periods

there is response of the form t – m – 1 [75].

Jonscher, Dissado, and Hill have developed theories

of relaxation based on fractal self-similarity [78, 79].

Jonscher’s approach is based on a screened-hopping

model where response is modified due to many-body

charge screening [80]. In the limit of weak screening,

the Debye model is recovered.

Nonexponential response has been obtained with

many models. In any materials where the dipoles do not

rotate independently, the relaxation is nonexponential.
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Nonexponential response has also been reproduced in

computer simulations for chains of dipoles by means of

a correlation-function approach with coupled rate

Eqs. [81-83].

Note that nonexponential time-domain response is

actually required for over some bands in order to have a

causal-function response over all frequencies. This is a

consequence of the Paley-Wiener theorem [84].

According to this theorem, the correlation or decay func-

tion cannot be a purely damped exponential func-

tion for large times. If C(t) is the decay function then

(67)

must be finite. This requires the decay function to

vanish less fast than a pure exponential at large times,

C(t) ≈ exp (– ct q) where q < 1 and c is a constant. We

can show that at short times, decay occurs faster than

exponential [85].

Nigmatullian et al. [86, 87] used the Mori-Zwanzig

formalism to express the permittivity in a very general

form:

(68)

and concluded that for most disordered materials, the

response is similar to that of a distributed circuit with

R±(iω) = [(iωτ1)± ν 1+ (iωτ2)± ν 2]±, where νi are constants

determined by numerical fits. In the formulation of

Baker-Jarvis et al. [88], R± corresponds to the complex

relaxation times τ(ω) as R+(iω) = iωτ(ω) (see Sec. 11).

A (iωτ)(n–1) frequency dependence of the complex

relaxation periods corresponds to a impulse-response

function of the form t – n.

In addition, in analyzing dielectric data the electric

modulus approach is sometimes used where M(ω) =

M′ (ω)+iM″ (ω) = 1/εr = ε′r / (εr′2+ εr″2)+iεr″/ (εr′2+ εr″2).
Dielectric relaxation has also been described by

Kubo’s linear-response theory that is based on cor-

relation functions. This is an example of a relaxation

theory derived from Liouville’s equation. The main

difficulty with these approaches is that the correlation

functions are difficult to approximate to highlight the

essential physics, and gross approximations are usually

made in numerical calculations. The linear expansion

of the probability-density function in Kubo’s theory

also limits its usefulness for highly nonequilibrium

problems. Baker-Jarvis et al. have recently used a

statistical-mechanical projection-operator method

developed by Zwanzig and Robertson [89] to model

dielectric and magnetic relaxation response and the

associated entropy production [19, 40, 41, 43, 44].

6. The Distribution of Relaxation Times
(DRT) Model for Homogeneous
Materials

There are many models used to fit measured frequen-

cy-dependent dielectric relaxation data for homoge-

neous materials. These models are usually general

enough to fit many types of response. When dealing

with heterogeneous materials, mixture equations are

commonly used (Sec. 22). The DRT model is restricted

to relaxation, and it assumes there is a probability

distribution y (t) that underpins the relaxation response

with a relaxation time τ. In this model, the permittivity

can be written as

(69)

where

(70)

Note that DRT is a single-pole model and cannot be

used for resonances. We see that in the DRT, Debye

relaxations are weighted by a probability-density

function. Equation (69) can be inverted by the Laplace

transform as shown in the Appendix of Böttcher [53].

The DRT approach is sufficiently general that most

causal, relaxation dielectric-response phenomena can

be described by the model for Debye and power-law

response. In the DRT the slope of ε′r (ω) is always

negative [90]. This is consistent with causality. It also

indicates that the model is only valid for relaxation and

not resonance. Around resonance ε′r (ω) can increase

with frequency and become negative as indicated in

Fig. 7.

Equation (69) can fit the relaxation response of

many dielectrics because the Debye equation originates

from a rate equation based on thermodynamics contain-

ing the essential physics, and Eq. (69) is a distribution

of Debye relaxations. The DRT then extends this into a

multi-relaxation period rate equation. We consider

various special cases of Eq. (69) below. For other

special cases please see Böttcher [53]. In any complex

dielectric material, we would expect there would be a

broadening of relaxation times due to heterogeneity of

the molecular response, and in this context the DRT

model makes sense. This approach is often criticized,
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because it is not always possible obtain a physical inter-

pretation of the distribution function [75].

6.1 Debye Model

The simplest case of the distribution function in

Eq. (69) is an uncorrelated approximation where

(71)

which yields the Debye response

(72)

In this case, the pulse response function is

(73)

In terms of components,

(74)

and

(75)

If ωτ is eliminated in the Debye model, and the

equations for εr′(ω) and εr″ (ω) are plotted against each

other, we obtain the equation for a circle:

(76)

The center of the circle is on the horizontal axis.

The reasons why the Debye equation is a paradigm

in dielectric relaxation theory is because it is simple

and contains the essential physics and thermodynamics

in relaxation. That is, it models idealized relaxation,

and it yields predictions on the temperature dependence

of the relaxation time τ = A exp (Ea /RT), where Ea is

the activation energy.

6.2 Cole-Cole Model

The Cole-Cole model has been found useful for

modeling many liquids, semisolids, and other materials

[53]. In this case,

(77)

and

(78)

where α < 1. The pulse response function is fp (t) =

real and imaginary parts of the permittivity can be

separated into

(79)

(80)

A plot of εr′(ω) versus εr″(ω) yields a circle, where the

center is below the vertical axis.

6.3 Cole-Davidson Model

The Cole-Davidson model has also been found

useful for modeling many liquids, semisolids, and other

materials [53]. If we consider the case τ ≤ τ0 :

(81)

and zero otherwise. The permittivity is

(82)

where β < 1. The pulse response function is

(83)

The real and imaginary parts of the permittivity can be

separated into

(84)

(85)

The plot of εr′(ω) versus εr″(ω) maps out a skewed arc

rather than a circle.
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6.4 Havrilak-Negami Model

The Havrilak-Negami distribution has two para-

meters to fit data and is very general. It can be used to

fit the response of many liquids and non-Debye solid

materials [53]. In the special case α = 0 it reverts to the

Cole-Davidson model. The distribution function is

(86)

and θ = tan–1{sin π (1 – α) / (τ /τ0 + cos π (1 – α))}

(87)

where 0 < α ≤ 1 and 0 < β ≤ 1, and

(88)

(89)

7. Loss and Conductivity

Loss originates from the conversion of EM field

energy into heat and radiation through photon-phonon

interactions. In dielectrics the heating is caused by the

transformation of electromagnetic energy into lattice

kinetic energy, which is seen as frictional forces on

dipoles and the motion and resulting friction of free

charges in materials. Major mechanisms of conduction

in dielectrics in the RF band are ionic or electrolytic

migration of free ions, impurities or vacancies, electro-

phoretic migration of charged molecules, and elec-

tronic conduction of semi-free electrons that originate

from jump processes of polarons. At low frequencies,

dipoles can respond to the changes in the applied field,

so dielectric losses usually are low and the stored

energy is high, but as the frequency increases, the

dipole response tends to fall behind the applied field

and, therefore, the loss usually increases and the stored

energy decreases. This is related to the phasing between

the current and voltage waves, in analogy to the heating

an electric motor encounters when the phase between

the voltage and current changes.

Ionic conduction in insulating dielectrics is due to

the migration of charged ions. The migration takes

place through tunneling or jumps induced by the

applied field, or by slow migration under the applied

field. In solid polymers it may proceed by jumps from

one vacancy to another or by electronic conduction. In

oxide glasses it is the movement of positively charged

alkali ions in the applied field. In many materials, the

dielectric losses originate in vacancy-vacancy and

vacancy-impurity relaxations.

At high frequencies, lossy semiconductors, super-

conductors, and metals have a complex free-charge ac

conductivity that is explained by the Drude model. This

can cause the effective permittivity to become negative

[27]. To understand this, consider Maxwell’s equation,

(90)

We can define an effective charge current as

(91)

or for time-harmonic fields

(92)

Combining ac J with the displacement field produces

an effective real part of the permittivity that can be

negative over a region of frequencies. For example in

plasmas and superconductors, the effective conduct-

ivity satisfies iωD
∼

(ω) + J
∼

(ω) = [iω(ε′(ω) – iε′′(ω)) +

σ′(ω) – iσ′′(ω)]E
∼

(ω), yielding

(93)

where σ′ ≈ σdc and σ″ relates to the reactive part of the

surface impedance. A large σ″ can produce a negative

real part of the total permittivity such as what occurs in

superconductors [91].
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A total conductivity has been used in the literature to

model either the ac effects of the free charge and

partially bound free charge in hopping and tunneling

conduction, or as another way of re-expressing the

complex permittivity. Because some charge is only

partially bound, the distinction between conductivity

and permittivity can, at times, get blurred. This blurring

points out the mesoscopic property of the permittivity.

Most models of ac conductivity are based on charged

particles in potential wells where energy fluctuations

determine whether the particle can surmount a potential

barrier and thereby contribute to the conductivity. In

conducting liquids, human tissue, and water-based

semisolids the conductivity is generally flat with

increasing frequency until megahertz frequencies, and

then it increases, often in a nearly linear fashion.

There are a number of distinct models for σtot . The

Drude model of the complex conductivity of electrons

or ions in a metal is approximately modeled as

(94)

where γ0 is the collision frequency, N is the electron

density, m is the ion mass, and e is the electronic charge

[27]. Note that the dc conductivity is σdc = Ne2 /mγ0 .

The net dielectric response is a sum of the dipolar

contribution and that due to the ions, where

ε′e f f = ε′d – Ne2 /m (γ2
0+ ω2) and ε″(ω) = Ne2γ0 /mω (γ2

0

+ ω2) + ε″d(ω). Therefore, for metals, the real part of the

permittivity is negative for frequencies near the plasma

metals is usually well above 100 GHz. The conduct-

ivity is thermally active and can be modeled for some

ionic materials as [92]

(95)

where nc is the ion vacancy, b is the ion jump distance,

ν0 is a characteristic ion frequency, and ΔG is the

Gibb’s free energy.

For plasmas at high frequencies

(96)

For disordered solids, where hopping and tunneling

conduction takes place with a relaxation time τe , the ac

conductivity can be expressed as [93, 94]

(97)

8. Double Layers and Conducting
Materials Near Metal Interfaces

Conducting and semiconducting dielectric materials

at interfaces or metallic contacts can be influenced by

the effects of double layers. Measurements on conduct-

ing liquids are complicated by the effects of electrode

polarization, which are the direct result of the double

layers [95]. Double layers and electrode polarization

are due to the build up of anions and cations at the

interface of electrodes and conducting materials,

as shown in Fig. 8. Modeling ionic solutions near

electrodes is complicated, because the charge is mobile

and depends on the potential.
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Two conducting dissimilar materials can have differ-

ent electronic affinities. When these dissimilar materi-

als are in contact, a potential gradient frequently

develops between the materials. As a result an electri-

cal double layer forms at a material interface. This

interface could be between liquid and metal electrodes

or the layer between a biomolecule and a liquid. The

potential difference will attract ions of opposite charge

to the surface and repel like charges. For a double

layer, the charge density depends nonlinearly on the

applied potential and is modeled at low frequencies

by the Poisson-Boltzmann equation for the

potential [96, 97] (∇2ψ = −ρ(ψ)/ε). The potential

decreases roughly exponentially from the surface as

ψ(x) = ψ0 exp (– x /λD), where λD is the Debye screen-

ing length or skin depth. The region near the electrode

consists of the Stern layer and a diffuse region beyond

the Stern layer where the potential decays less rapidly.

It is known that the Poisson-Boltzmann equation is of

limited use for calculating the potential around many

biomolecules due to molecular interactions and the

effects of excluded volume [97].

At the interface of conductive materials and elec-

trodes, electrode polarization produces a capacitive

double-layer region in series with the specimen under

test. The presence of electrode polarization results in

ε′e f f being much greater than the value for the liquid by

itself. Because the electrode capacitance is not a

property of the material under test, but rather the inter-

face, it can be treated as a systematic uncertainty and

methods to remove it from the measurement can be

applied. Double layers also form at the metal interface

with semiconducting materials where the conductivity

is a function of applied voltage.

The effects of electrode polarization can strongly

affect dielectric measurements up to around 1 MHz, but

the effects can be measurable up into the low gigahertz

frequencies. Any electrode influencing the calculated

permittivity should be treated as a systematic source

of uncertainty. Alternatively, the permittivity with

the electrode effects could be called the effective

permittivity.

The effects of electrode polarization capacitance as

commonly analyzed with the following model [98]

(98)

(99)

where C and R are the measured capacitance and resist-

ance, Cp and Rp are the electrode double-layer capaci-

tance and resistance, and Cs and Rs are the specimen

capacitance and resistance. A way to partially eliminate

electrode polarization is to measure the capacitances C1

and C2 and resistances R1 and R2 at two separations d1

and d2 . Because Cp is the same for each measurement

and Cs can be scaled as Cs2 = (d1 /d2 )Cs1 , we can obtain

the specimen capacitance. Another way of minimizing

the effects of electrode polarization is to coat the

capacitor plates with platinum black [99]. This lessens

the influence of electrode polarization by decreasing

the second term on the right hand side of Eq. (98).

However, both the coating and two-distance methods

schemes do not completely solve this problem. For

biological liquids, often the buffer solution is first

measured by itself and then again with the added

biological material and the difference between the

measurements is reported.

For dielectric measurements, probably the best

approach is to bypass much of the electrode-polariza-

tion problem altogether and use a four-probe capacitor

system as shown in Fig. 9. The four-probe capacitance

technique overcomes electrode problems by measuring

the voltage drop away from the plates and thereby

avoiding the double layer [100].
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9. Relationships of the Permittivity
Components: Causality and
Kramers-Kronig Equations

Kramers-Kronig relations relate the real and imagi-

nary parts of the permittivity. These equations are a

result of causality and analytic functions. There are

many forms of the Kramers-Kronig conditions [101],

below are standard relationships

(100)

(101)

For example, if we neglect any dc conductivity, the

dc permittivity must satisfy

(102)

We should note that σdc is not causally related to the

permittivity and, therefore, before Kramers-Kronig

analysis is performed, the contribution of conductivity

to the loss should be subtracted.

As a consequence of causality, the permittivity

satisfies the condition ε∗(ω) = ε(– ω). Causality and

second law of thermodynamics requires that when

the response is averaged over a cycle, for a passive

system ε″(ω) > 0 and µ″(ω) > 0. However, ε′(ω) or

µ′ (ω) can be greater or less than zero. Also, the real part

of the characteristic impedance must be greater than

zero.

10. Static and Dipolar Polarization

10.1 Static Polarization

The total kinetic energy (K) plus potential energy of

a dipole in a static applied field is approximately

(103)

The probability that a dipole is aligned at angle θ to the

directing electric field is

(104)

The average moment for N dipoles is therefore

(105)

or

(106)

where L(x) = coth(x) – 1/x ≈ x/3 – x3/45 + x5/945... is

the Langevin function. At high temperatures or weak

fields, the Langevin function is approximated as

(107)

and in the approximation we assume |µ→e ||E|/kBT < 0.1.

Note that the model shows that the polarizing effect of

the applied field affects < cosθ >, and there is a lesser

effect on the direction of the individual dipole

moments. At room temperature this corresponds to an

electric field of about 3 × 107 (V/m), which is a very

strong field. In intense fields or low temperatures, higher-

order terms in the Langevin function must be included

[53].

Using a similar analysis, the magnetic moment for

noninteracting paramagnetic materials has the same

form as Eq. (107)

(108)

10.2 Deriving Relaxation Equations by

Analyzing Dipolar Orientation in

an Applied Field

Upon application of an electric field, dipole moments,

impurities, and vacancies can change positions in the

lattice potential wells. This is the origin of rotation,

conduction, and jump reorientation [53, 102].

Consider the density of N± molecules where there

are N± dipole moments that are aligned either parallel

(+) or antiparallel (–) to the applied field. The time

evolution of the numbers of dipoles is described by the

number of dipoles flipping one direction minus the
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number flipping the other direction characterized by the

transition rates ν± , where ν+ denotes the rate of going

from a + state to a – state

(109)

In equilibrium and in the absence of an electric field,

the number of transitions in either direction is the same

so that ν+N+ = ν– N– , where N+ + N– = N. In an electric

field, the transition rates are given by

(110)

where ν∞ is the maximum transition rate and the factor

3 is related to isotropic polarization pE → |µ→e ⋅ ΕΕ| /3. At

high temperatures and ν0 = ν∞ exp (– U0 /kBT )

(111)

Therefore, for molecules that each have a permanent

electric dipole moment µ→e , the net polarization is

P(t) = |µ→e |(N+ – N–) = |µ→e |(2N+ – N), and

(112)

The relaxation time is τ = 1/2ν0 = (1/2ν∞) exp (U0 / kBT).

In this model the susceptibility is

(113)

Therefore Eq. (112) reduces to the Debye equation

(114)

Note that such a simple model can describe to a

remarkable degree the polarization and yields a

relaxation time with a reasonable dependence on

temperature. This indicates the basic physics is correct.

11. Relaxation Times

11.1 Background

When a field is applied to a material, the material

responds by re-arranging charge, causing spin pre-

cession, and currents. The characteristic time it takes

for the response is called a relaxation time. Relaxation

times are parameters used to characterize both dielec-

tric and magnetic materials. Dielectric relaxation times

are correlated with mechanical relaxation times [103].

Magnetic relaxation in NMR and ESR is modeled by

spin-spin (T2) and spin-lattice (T1) relaxation times.

In the literature, dielectric relaxation times have been

identified for molecules and bulk materials. The first is

a single molecule relaxation time τs and the other is a

Debye mesoscopic relaxation time τD . For magnetic

nanoparticles in a fluid, where the magnetic moment is

locked in place in the lattice, the Brownian time

constant is defined as τB = 3νVH /kBT, where ν is the

fluid viscosity and VH is the hydrodynamic volume of

the particle [104]. The Neel relaxation time is for

crystals where the magnetic moment is free to rotate in

the field. Dielectric relaxation times are related to how

the dipole moments and charge are constrained by the

surrounding material. The characteristic relaxation time

for a polarized material that was in an applied field at

t = 0 to decay to a steady state is related to the coupling

between dipoles and details of the lattice. At high

frequencies, the electric response of a material lags

behind the applied field when the field changes faster

than the relaxation response of the molecules. This lag

is due to long and short-range forces and inertia. The

characteristic Debye relaxation time τD can be obtained

from the maximum of the loss peak in Eq. (61).

Relaxation times are usually defined through the decay

of the impulse-response function that is approximated

by a Debye response exp (– t /τ). Debye used Onsager’s

cavity model to show that τD / τs = (εs + 2) / (ε∞ + 2)

[105, 106]. Arkhipov and Agmon [105] showed that

τD / τs = (3kBT /µ2
dρc )(εs – ε∞)(2εs + ε∞)/εs , where ρc is

the density of molecules, and µd is the dipole moment.

In their review, Arkhipov and Agmon also discuss the

relationship between macroscopic and microscopic

relaxation times from various perspectives [105]. This

theory predicts that the macroscopic and microscopic

relaxation times are related by τD / τs ≈ (2εs + ε∞) / 3εs.

Debye showed that the microscopic relaxation time for

molecules of radius a is related to the viscosity η and

the friction constant ζ by τs = 4πa3η /kBT = ζ /2kBT . 
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The Arrenhius relaxation rate is modeled as

τ = τ0 exp (U /kBT ) . The Vogel-Fulcher relaxation time

is used to model relaxation near polymer glass transi-

tion temperatures as τ = τ0 exp (U /kB(T – T0 )). The

relaxation time can also be related to changes in the

activation entropy ΔS, Helmholtz energy of activation

ΔH, and free energy ΔF as τ = ( /kBT ) exp (ΔF /RT),

and the entropy of activation is related by ΔS =

(ΔH – ΔF) / T. Therefore, we have τ = (h / kBT ) exp

(ΔH /RT – ΔS /R). So, by fitting the relaxation times

obtained by dielectric measurements as a function of

temperature we can extract changes in the entropy ΔS

and the Helmholtz free energy ΔH for an activation

process.

The typical relaxation time T1 in NMR experiments

is longer than in EPR [107]. In EPR experiments, relax-

ation times are generally less than milliseconds. In

dielectrics, the relaxation times of liquids can be

picoseconds, as indicated in Table 2, but in some

glasses they can be seconds and longer. The character-

istic relaxation times have been found to change with

the frequency of the applied field [88]. This is due to

the restoring and frictional forces acting differently

under different field conditions. In the past researchers

have realized this and resorted to using phenomeno-

logical DRT models as in Eq. (69).

11.2 Relaxation Time Based Model in Fields of

Varying Frequency

A very general approach to modeling the suscepti-

bility can be obtained by the Laplace transform of the

time-invariant approximation to Eq. (38). This yields

a permittivity in terms of complex relaxation times

τ(ω) = τ′(ω) – iτ″(ω) [46]:

(115)

(116)

The assumption of this model is that at RF frequencies

the relaxation has a dependence on the frequency of the

driving field. This frequency dependence originates from

the applied field acting on the molecules in the material

that keeps the molecules in a nonequilibrium electro-

magnetic state. Equations (115) and (116) have the same

form as the Laplace transform of a linear harmonic oscil-

lator equation of motion. However, this model contains

additional information through the frequency depend-

ence of the relaxation times. For a real, frequency-inde-

pendent relaxation time (τ′ constant and τ″ = 0), Eq. (38)

is the Debye equation. In the special case where τ′ is con-

stant, the ensemble response function is of the form exp

(–t /τ′) and we have classical Debye relaxation. This can

be traced to the fact that the Debye model assumes there

is no inertia, and therefore, a purely damped motion of

dipoles. Performing the inverse Laplace transform of the

time-invariant approximation to Eq. (38) we obtain

another form for the polarization equation,

(117)

Equation (117) highlights the physics of the inter-

action with materials and is useful in determining the

underlying differential equation related to phenomeno-

logical models. For this equation the Debye model is

obtained if τ– (t) = τ0δ(t). Relaxation phenomenological

models such as Cole-Davidson can be related τ(ω).

Therefore the underlying differential equations can be

cast into the form of Eq. (117). Because they are

complex pairs, it is not possible to extract the time-

domain functions of τ′(ω) and τ″(ω) independently.

It is important to study the origin of the frequency-

domain components. Whereas τ′(ω) models the out-of-

phase behavior and loss, τ″(ω) models the effects of the

local field on the restoring forces. If τ″(ω) is positive it

is related to inertial effects. If τ″(ω) is negative, it is

related to the local field interaction that tends to

decrease the polarization through depolarization. The

relaxation times are

(118)
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Table 2. Relaxation Times of Common Liquids [105]

water (22 °C) 78.4 6.2 8.3 1.0

methanol (22 °C) 32.6 5.9 51.5 7.1

ethanol (22 °C) 24.3 4.5 163.0 9.0

1-propanol (22 °C) 20.4 3.7 329.0 15.0

2-propanol (22 °C) 19.4 2.4 59.0 ..
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(119)

In Fig. 10 we plot the relaxation times extracted from

dielectric measurements as well as measurements given

in Reference [108]. We see that the measured τ″(ω)

values are all negative. We see that for ethanediol, τ″ is

very small and τ′ is nearly frequency-independent.

Therefore ethanediol, is well modeled by the Debye

equation. The physical significance of τ′(ω) relates to

the effective time for the material to respond to an

applied electric field. τ″(ω) > 0 at resonance cor-

responds to an effective ensemble period of oscillation

and τ″(ω) < 0 corresponds to a characteristic time scale

for charge depolarization and screening effects. An

interpretation is that in relaxation the effects of the

local field on the short-range restoring forces and

screening may have a frequency dependence. This

frequency dependence can manifest itself as the

commonly observed frequency shift in the loss peak

relative to the Debye model. We also see that τ″ < 0 can

be interpreted as the effects of the local field on the

short-range electric restoring forces, which tend to

reduce the permittivity and modify the position of

the maximum in the loss curve relative to the Debye

maximum condition (ωτ′ = 1). The behavior for

τ″(ω) < 0 is analogous to what is seen in longitudinal

optical-phonon behavior that yields a local field that

tends to reduce polarization. Over frequencies where 

mass-related inertial interactions are important,

τ″(ω) > 0. This occurs in polaritonic resonances at

terahertz to infrared frequencies and in negative-index

materials. In this case the local field tends to enhance

the polarization through the effects of inertia that coun-

teract restoring forces [5]. When τ″ω = 1, the real part

of the susceptibility goes to zero, indicating the system

is going through resonance. In general, just as in

the Debye and other phenomenological models, the

relaxation times can depend on temperature

(A exp (U0 /kBT )).

11.3 Surface Waves

Electromagnetic surface waves occur in many appli-

cations. Surface waves can be supported at the interface

between dielectrics and conductors. These waves

travel on the interface, but decay approximately

exponentially away from the surface. There are many

types of surface waves, including ground waves and

surface plasmons polaritons (SPP) that travel at the

interface between a dielectric and conductor, surface

plasmons on metals, and Sommerfeld and Goubau

waves that travel on coated or uncoated wires. SPP’s

require the real part of the permittivity of the metal to

be negative [109]. A Goubau line guides a surface wave

and consists of a single conductor coated with dielectric

material [110]. A Sommerfeld surface wave propagates

as a TM mode around a finitely conductive single bare

conductor. Plasmonic-like surface waves can form

from incident microwave electromagnetic energy on

subwavelength holes in metal plates. We will examine

plasmonic surface waves in Sec. 14.2.

11.4 Electromagnetic Radiation

Classical electrodynamics predicts that accelerated

charged particles generate EM waves. This occurs in

antennas where charged particles oscillate to produce

radiation. Linearly or elliptically polarized radiation

waves are determined by the type of acceleration the

source charged particles undergo. If the charge particle

undergoes oscillation from a nonlinear restoring force,

the emitted radiation may not be monochromatic.

11.5 Thermal Noise and Blackbody Fields

Due to the continual Brownian motion of micro-

scopic charges, thermal Johnson noise fields are

produced over a broad distribution of frequencies [111,

112]. There are also many other sources of noise such
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as phase noise and shot noise. Thermal movement and

blackbody radiation are a source of electrical noise and

was described theoretically by Nyquist [112]. This

theory was expanded by Callen [113]. A blackbody has

an emissivity of near unity and is an excellent absorber

and emitter of radiation. The spectral distribution of

blackbody radiation follows the Planck distribution

for the energy density u (T, f ) = (8πh f 3 / c3 ) /

(exp (h f /kBT – 1)). Examples of blackbody radiation

include radiation from intergalactic space, as well as

black cavities with an aperture. Typical blackbody

materials have some free electrons and a distribution of

molecular resonant frequencies and, as a result, are

useful in converting optical energy into heat energy.

They are also good radiators of infrared thermal

energy. Most materials only partially reflect any

incident energy. Therefore, they do not radiate as much

power as a blackbody at the same temperature. The

ratio of the energy radiated by a material relative to that

of an ideal black body is the emissivity. In a frequency

band Δ f , the emissivity is defined as e = P / (kBTΔ f ). 

The emissivity satisfies 0 ≤ e ≤ 1. The brightness

temperature is TB = eT , where T is the physical

temperature. Nyquist/Johnson noise in the RF band

has only a weak frequency dependence. It is modeled

for voltage fluctuations in a transmission line termi-

nated by resistors R over a frequency band Δ f by

< ν2 >/R = 4kBTΔ f [112].

Radiometers in the RF band are usually receiving

antennas that collect noise power from the direction

they are pointed and infer the brightness temperature.

The goal of radiometry is to infer information about

the remote source of noise from the brightness temper-

ature [111].

Quantum-field theory models the vacuum as filled

by quantum fluctuations that contain a spectrum of

frequencies having energy (1/2) ω. In this model,

fluctuations give rise to virtual photons and sponta-

neous emission of short-lived particles. Virtual photons

and short-lived particles are allowed by the uncertainty

principle between energy and time: ΔEΔ t ≈ .

Vacuum fluctuations can produce attractive forces

between nanometer-spaced parallel electrodes. This

Casimir effect is commonly explained classically by

the cutoff of EM modes between the plates so that the

external radiation pressure exceeds the pressure

between the plates [114]. A more complete and satis-

factory description can be derived with quantum

mechanics. The force is extremely short range. It has

also been shown that the force can be made repulsive

by changing one of the plates from a metal to a dielec-

tric such as silica [115]. In addition, there has been

speculative research where NIM materials are used for

the microscopic plates to produce levitation of nano-

particles [116]. Casimir effects may play a role in

future modeling of microelectronics because the

electrode separations are close to where these effects

become important.

12. Magnetic Response

12.1 Overview of Magnetism

In this section, we will very briefly overview the

basic elements of magnetic phenomena needed in our

applications to RF interactions. Magnetism has a

quantum-mechanical origin intimately related to the

spin and angular momentum and currents of electrons,

nuclei, and other particles. Stern and Gerlach [4]

proved the existence of discrete magnetic moments by

observing the quantized deflection of silver atoms

passing through a spatially varying magnetic field.

Electrons orbiting a nucleus form a magnetic moment

as well as the intrinsic spin of the electron. Magnetic

moments are caused either by intrinsic quantum-

mechanical spin or by currents flowing in closed loops

m ∝ (current)(area).

Spins react to a magnetic field by precessing around

the applied field with damping [117]. For spins of the

nucleus, this precession forms the study of nuclear

magnetic resonance (NMR); for paramagnetic

materials it is called electron-spin or ESR or

electron-paramagnetic resonance or EPR; and for

ferromagnetic materials it is called ferromagnetic

resonance or FMR . The dynamics in spin systems are

tied phenomena such as spin precession, relaxation,

eddy currents, spin waves, and voltages induced by

domain-wall movements [7-9, 118].

Paramagnetism originates from spin alignment in an

applied magnetic field and relates to the competition

between thermal versus magnetic energy (m . B /kBT )

(see A in Fig. 11). Paramagnets do not retain significant

magnetization in the absence of an applied magnetic

field, since thermal motion tend to randomize the spin

orientations.

The origin of diamagnetism in materials is the orbital

angular momentum of the electrons in applied fields.

Diamagnetic materials usually do not have a strong

magnetic response, although there are exceptions. In

ferromagnetic materials, exchange coupling allows

regions of aligned spins to be formed [119]. Ferro-

magnetic and ferrimagnetic materials may have spin

resonances in microwave to millimeter wave frequen-

cies [120]. Ferrimagnetic materials consist of two
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overlapping lattices whose spins are oppositely direct-

ed, but with a larger magnetic moment in one lattice

than the other. Antiferromagnetism is a property of

many transition elements and some metals. In these

materials the atoms form an array with alternating spin

moments, so the average spin and magnetic moment

are zero. Antiferromagnetic materials are composed of

two interpenetrating lattices. Each lattice has all spins

more or less aligned, but the lattices, as a whole, are

inverse. Resonances in antiferromagnetic materials

may occur at millimeter wave frequencies and above.

Antiferromagnetic materials are paramagnetic above

the Neel temperature.

12.1.1 Two-State Spin System

In order to contrast decoupled spin response with

dielectric dipole response in Sec. 10.2, we will develop

the well-known statistical approach of noninteracting

paramagnetism. In a paramagnetic material, the net mag-

netic moment is the sum of individual moments in an

applied field. If the spin moments are σ± = ±µ and the

probability density of the spin being up or down in an

applied field is pi , then the net magnetic moment is [4]

(120)

where the probabilities of being in the low energy (–) or

high (+) energy states are

(121)

(122)

Therefore, for N spins and when µ→ . B /kBT << 1

(123)

In the case of isotropy < m > = Nµ 2B /3kBT . So we

obtain the same form as in the case of noninteracting

dielectrics in Eq. (107).

12.1.2 Paramagnetic Response With Angular

Momentum J

For atoms with angular momentum J with 2J + 1

discrete energy levels, the average magnetization can

be expressed in terms of the Brillioun equation BJ [4]

(124)

where x = g J µBB / kBT and BJ (x) = (2 J + 1) / 2 J

coth((2J + 1)x /2J ) – (1 /2J ) coth(x /2J ) and g is the

g-factor given by the Landé equation.

12.2 Magneto-Dielectric Response: Magneto-

Electric, Ferroelectric, Ferroic, and Chiral

Response

Researchers have found that in magneto-electric,

ferroic, and chiral materials the application of magnet-

ic fields can produce a dielectric response and the

application of an electric field can produce a magnetic

response (see for example [121]). These cross coupling

behaviors can be found to occur in specific material

lattices, layered thin films, or by constructing compos-

ite materials. An origin of the intrinsic magneto-electric

effect is from the strain-induced distortion of the spin

lattice upon the application of an electric field. When a

strong electric field is applied to a magneto-electric

material such as chromium oxide, the lattice is slightly

distorted, which changes the magnetic moment and

therefore the magnetic response. Extrinsic effects can

be produced by layering appropriate magnetic, ferro-

electric, and dielectric materials in such a way that an

applied electric field modifies the magnetic response

and a magnetic field modifies the electric response.

Chiral materials can be constructed by embedding
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Fig. 11. Simplistic summary of spin orientations for A) para-

magnetic B) ferromagnetic C) ferrimagnetic D) antiferromagnetic

materials.
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conducting spirals into a dielectric matrix. In artificial

magneto-electric materials the calculated permittivity

and permeability may be effective rather than intrinsic

properties. The constitutive relations for the induction

and displacement fields are not always simple and can

contain cross coupling between fields. For example,

D
∼

(ω) = α↔1
. E
∼

(ω) + α↔2
. B
∼

(ω) , where α↔i are constitu-

tive parameters.

13. Electromagnetic-Driven Material
Resonances in Materials at RF
Frequencies

At the relatively longer wavelengths of RF frequen-

cies, (1 × 104 m to 1 mm), only a few classes of in-

trinsic resonances can be observed. Bulk geometric

resonances, standing waves, and higher-mode reso-

nances can occur at any frequency when an inclusion

has a dimension that is approximately equal to an

integral multiple of one-half wavelength in the materi-

al. These geometrical resonances are sometimes misin-

terpreted as intrinsic material resonances. Most of the

intrinsic resonant behavior in the microwave through

millimeter frequency bands are due to cooperative

ferromagnetic and ferrite spin-related resonances,

antiferromagnetic resonances, microwave atomic

transitions, plasmons and plasmon-like resonances, and

polaritons at metal-dielectric interfaces. Atoms such as

cesium have transition resonances in the microwave

band. Large molecules can also be made to resonate

under the application of high RF frequencies and

THz frequencies. NIM commonly use non-intrinsic split-

ring structure resonances together with plasma

resonances to achieve unique electromagnetic

response. At optical frequencies, individual molecules

or nanoparticles can sometimes be resonated directly or

through the use of plasmons.

Water has a strong relaxation in the gigahertz

frequency range and water vapor has an absorption

peak in the gigahertz range, liquid water has no dielec-

tric resonances in the microwave range. The resonances

of the water molecule occur at infrared frequencies at a

wavelength around 9 μm. In magnetic materials,

ferromagnetic spin resonances occur in the megahertz

to gigahertz to yielding MMW bands. Antiferro-

magnetic resonances can occur at millimeter frequen-

cies. Gases such as oxygen with a permanent magnetic

moment can absorb millimeter waves [122]. In the

frequency region from 22 to 180 GHz, water-vapor

absorption is caused by the weak electric dipole

rotational transition at 22 GHz, and a stronger

transition occurs at around 183 GHz [123].

If high-frequency fields are applied to ferrite materi-

als, there are relaxations in the megahertz frequencies,

and in the megahertz to MMW frequencies there are

spin resonances [119, 121, 124, 125].

14. Artificial Materials: Plasmons,
Super-Lensing, NIM, and Cloaking
Response

The term metamaterial refers to artificial structures

that can achieve behaviors not observed in nature.

NIMs are a class of metamaterials where there are

simultaneous resonances in the permittivity and perme-

ability. Many artificial materials are formed from

arrays of periodic unit cells formed from dielectric,

magnetic, and metal components, and when subjected

to applied fields, achieve interesting EM response.

Examples of periodic structures are NIM that utilize

simultaneous electric and magnetic resonances [126].

Metafilms, band filters, cloaking devices, and photonic

structures all use artificial materials. Artificial materials

are also used to obtain enhanced lensing and anomalous

refraction and other behaviors [65, 126-131]. A very

good overview is given in [128]. In the literature NIM

materials are commonly assumed to possess an intrin-

sic negative permittivity and permeability. However,

the resonator dimensions and relevant length scales

used to achieve this behavior may not be very much

smaller than a wavelength of the applied field [132].

Therefore, the continuous media requirement for

defining the permittivity and permeability becomes

blurred. The mapping of continuous media properties

onto metamaterial behavior can at times cause para-

doxes and inconsistencies [69, 133-137]. However, the

measured EM scattering response in NIM is achieved,

whether or not an effective permittivity and perme-

ability can be consistently defined. Because of the

inhomogeneity in the media, the permittivity and perme-

ability in some of these applications are effective para-

meters and spatially dispersive and not the intrinsic

properties that Veselago assumed for a material [26,

138]. In some metamaterials and metafilms where the

ratio of the particle size to the wavelength is not small,

boundary transition layers are typically included in the

model so that the terminology of effective permittivity

and permeability can be used. In Sec. 4.6, we described

the criterion of defining a polarization by a Taylor

series expansion of the charge density. The problem
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of whether these composite materials can be described

in terms of a negative index is complicated by the

issues described above. The measured permittivity

tensor is an intrinsic property and should not depend on

the field application or the sample boundaries, if the

electrodynamic problem is modeled correctly.

Pendry [127] introduced the idea of constructing a

lens from metamaterials that could achieve enhanced

imaging that is not constrained by the diffraction limit.

It should be noted that microwave near-field probes

also have the capability of subwavelength imaging by

using the near field around a probe tip (see Sec. 16).

14.1 Veselago’s Argument for NIM Materials With

Both ε′r(eff ) < 0 and µ′r(eff ) < 0

In this section we overview the theory behind NIM

[26]. The real parts of the permittivity and perme-

ability can be negative over a band of frequencies

during resonances. Of course, to maintain energy

conservation in any passive material, the loss-factor

part of the permittivity and permeability must always

be positive. This behavior has only been recently

exploited to achieve complex field behavior [26, 62,

67, 88, 127, 139].

Polarization resonance is usually modeled by a

damped harmonic-oscillator equation. The simple

harmonic-oscillator equation for the polarization P
∼

(ω)

for single-pole relaxation can be written as Eq. (58).

For a time-harmonic-field approximation, the effective

dielectric susceptibility has the form

(125)

The real part of the susceptibility can be negative

around the resonance frequency (see Fig. 7). A similar

equation can apply for a resonance in a split-ring or

other resonator to obtain a negative real part of the

permeability.

In most electromagnetic material applications the

plane-wave propagation vector and group velocities are

in the same direction. Backward waves are formed

when the group velocity and phase velocity are in oppo-

site directions. This can be produced when the real parts

of the permittivity and permeability are simultaneously

negative. When this occurs, the refractive index is

Because of this result, researchers have argued that this

accounts for the anomalous refraction of waves through

NIMs, reverse Cherenkov radiation, and reverse

Doppler effect, etc.

Snell’s law for the reflection of an interface between

a normal dielectric and an NIM satisfies θinc = θreflection,

but the refracted angle in NIM is θtrans = sgn (nNIM)

the permittivity or the permeability are negative, then

damped field behavior is attained.

These periodic artificial materials do produce inter-

esting and potentially useful scattering behavior; how-

ever since they often involve resonances in structures

that contain metals, they are lossy [62]. There has

been debate in the literature over how to interpret the

observed NIM behavior, and some researchers believe

the results can be explained in terms of surface waves

rather than invoking NIM concepts [137].

The approach used to realize a negative effective

magnetic permeability is different from that for

obtaining a negative effective ε′r. Generally, split-ring

resonators are used to obtain negative μ′r , but recently

there has been research into the use of TM and TE

resonant modes in dielectric cubes [69] or ferrite

spheres to achieve negative properties [62, 141].

Dielectric, metallic, ferrite, or layered dielectric-

metallic inclusions such as spheres can be used to

achieve geometric or coupled resonances and therefore

simultaneous negative effective ε′ and μ′ [62]. A com-

monly used approach to obtain a negative permittivity

is to drive the charges in a wire or free charge in a
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Fig. 12. The regions of the permittivity-permeability space for

different metamaterial behaviors.
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semiconductor or plasma near resonance. Dielectric

resonance response occurs in semiconductors in the

terahertz to infrared range and in superconductors in

the millimeter range. The real part of the permittivity

for a plasma, according to the high-frequency Drude

model, can be negative (ε = ε0(1 – ω2
p / ω2)).

There are a number of metrology issues related to

NIM. These include the problem of whether the field

behavior should be modeled as the result of negative

intrinsic permittivity and permeability and negative

index or instead be treated as a scattering problem.

This problem is related to the wave length of the

applied fields versus the parameters of the embedded

resonators. Although the scatterers are generally

smaller than a wavelength of the applied field, they

are not always significantly smaller. When the lattice

spacing a between particles satisfies [142]

defined [62]. Even within these bounds the properties

are not intrinsic permittivity and permeability as

defined previously and are spatially dispersive. A

second issue is the determination of the NIM specimen

length and boundaries to be used to model the array of

macroscopic scatterers (see [69] and references therein

for an analysis of this problem). Another area of debate

is where in the resonance region is a permit-

tivity and permeability well defined.

14.2 Plasmonic Behavior

At the interface between a dielectric and metal an

EM wave can excite a quasiparticle called a surface

polariton (see Fig. 13). Plasmons are charge-density

waves of electron gases in plasmas, metals, or semicon-

ductors. Surface polariton plasmons travel on the

interface between a dielectric and a conductor,

analogous to the propagation of the Sommerfeld

surface wave on a conductor/dielectric interface.

Plasma polaritons decay exponentially away from the

surface. The effective wavelengths of plasmons are

much shorter than that of the incident EM field and

therefore plasmons can propagate through structures

where the incident radiation could not propagate

through. This effect has been used in photonics and in

microwave circuits through the use of metamaterials.

For example, thin metal films can be embedded in

dielectrics to form dielectric waveguides. Plasmonics is

commonly used for imaging where the fields are used

to obtain a sub-wavelength increase in resolution of

10 to 100 times. Colors in stained glass and metals are

related to the plasma resonance frequency, due to the

preferred reflection and absorption of specific wave-

lengths. High-temperature superconductors also have

plasmonic behavior and a negative ε′r due to the

complex conductivity [91]. If small metallic particles

are subjected to EM radiation of the proper wavelength,

they can confine EM energy and resonate as surface

plasma resonators. Plasmonic resonances have also

been used to clean carbon nanotubes and enhance other

chemical reactions by thermal or nonthermal activa-

tion. Plasmons have been excited in metamaterials by

use of a negative permeability rather than negative

permittivity [143].

Bulk Plasmons

Maxwell’s equations with no source-current densi-

ties can be used to obtain

(126)

If E ∝ e iωt−ikz , the dispersion relation is

(127)

For transverse plane waves k . E = 0, and therefore

k2 = εr (k,ω)ω2 /c2. For longitudinal waves εr (k,ω) = 0

[144] (this condition ε(ω) = 0) also implies the

Lyddane-Sachs-Teller relation [102] for the ratio of the

longitudinal to transverse phonon frequencies that
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From Eq.(62), in the time domain for the case of

no loss, and P(t) = – Nex (t), where N is the density

of electrons, we obtain the equation for a harmonic

oscillator for bulk longitudinal plasmon oscillations,

d 2
x /dt 2 = – ω2

p x . The permittivity of a plasmon can be

modeled as

(128)

Below the plasmon frequency

plasma is attenuative and follows the skin-depth

formulas of a metal.

Above the plasma frequency, the real part of the

permittivity becomes negative.

Surface Plasmons

Surface plasmon polaritons [144] can travel at the

interface of a metal and dielectric to produce surface

wave guiding. Plasmonic surface waves have fields that

decay rapidly from the surface interface. For example,

for a 1 μm excitation wavelength, the waves can travel

over 1 cm, leading to the possibility of applications in

microelectronics. Surface plasmonic EM waves can be

squeezed into regions much smaller than allowed by

the diffraction limit. Obtaining the negative effective

ε′rp for plasmons in the megahertz through MMW range

would require the use of NIM. Some applications of

plasmonic behavior can also be tuned by a dc external

magnetic field, and the applied magnetic field produces

a plasmon with a tensorial permittivity.

For surface plasmons, the effective wavelengths of

the plasmons can be much less than that of the exciting

EM fields due to the difference in sign of the permit-

tivities in a metal and dielectric. For example, for a

plasmon at an interface between a metal and a dielec-

tric substrate, if the permittivity of the plasmon is ε′rp

and that of the substrate is ε′rd , then the dispersion

When R (ε′rp) < 0 and ⏐R (ε′rp)⏐ is slightly larger than

ε′rd , then we see that the wavelength becomes very

short in comparison to that of the applied field. This is

also attained by application of laser light to nanoparti-

cles to obtain a resonant state. However, this can also

happen in coupled microwave resonant structures.

14.3 Transmission Through Subwavelength

Apertures

Under certain conditions, electromagnetic radiation

has been observed to pass through subwavelength

apertures [145-147]. In extraordinary optical (EOT) or

millimeter wave (EMT) transmission, free-space EM

waves impinging on a metal plate with small holes

transmits more energy than would be expected by a

traditional analysis [148]. At optical frequencies, this

transmission is mediated by surface plasmons. At MW

and MMW frequencies, plasmons are not formed on

homogeneous conducting metal plates. However,

plasmon-like behavior can be formed by an appropriate

selection of holes, metal plate thickness, or corru-

gations to produce a behavior that simulates surface

plasmons. These plasmons-like features that are some-

times referred by the jargon “spoof plasmons”, can be

the origin of extraordinary transmission through the

holes in metal plates at MW to MMW frequencies.

14.4 Behaviors in Structures Where ε′r(e f f ) → 0

There are applications where a material is construct-

ed in such a way so that the real part of the

“effective” permittivity is close to 0 (ENZ) (see Fig. 7

as ε′r → 0). This is closely related to plasmon-like

behavior. In this case, the EM behavior simulates static

behavior in that ∇ × H = 0 and ∇ × E = iωµH, which

implies ∇2E = 0. In this case, the phase velocity

approaches infinity and the guided wavelength

becomes infinite, which is analogous to cutoff in a

waveguide (λc) [47]. This type of behavior can be

achieved for a waveguide near cutoff. The equation

for the guided wavelength in a waveguide is

(129)

where λc is the cutoff wavelength of the guide. Due to

the long effective wavelength near cutoff, the phase of

the wavefront changes minimally. Because the effective

permittivity goes through zero near resonance, we

can think of ENZ as a resonance condition similar to

the propagation cutoff in a waveguide when there is

resonance in the transverse plane. This type of behavior 

is achieved, for example, if we have a low-loss dielectric 
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of length L that completely fills the cross section of a

waveguide (see Fig. 24). Near the cutoff frequency the

material could be thought of as having an effective per-

mittivity ε′r (e f f ) ≈ 0. This same behavior is reminiscent of

a cavity, because as the transmission attains a maximum,

reflection is a minimum, and the reactance goes to 0 near

resonance. The ε′(e f f ) in this model violates the condition

for an intrinsic permittivity since the applied field

wavelength (λ = 1/ f √εµ ), must be much larger than the

feature size. It has been argued that in ENZ, unlike in a

normal wire, the displacement current dominates over

the charge current in transporting the EM waves [146].

There could be analogous effective permeability going to

zero µ ′r (e f f ) → 0 (MNZ) behavior.

14.5 Modeling Electrical Properties to Produce

Cloaking Behavior

Recently, there have been many research papers that

examine the possibility of using the electrical properties

of artificial materials to control the scattering from an

object in such a way as to make the object appear invis-

ible to the applied EM field [129, 130, 149]. This is dis-

tinct from radar-absorbing materials, where the applied

field is absorbed by ferrites or layered, lossy materials.

Research in this area uses the method of transformation

optics [149, 150] to determine the material properties

that produce the desired field behavior. In order to exhib-

it a typical cloaking property, Shivola [151] derived

simple equations for a dielectric-layered sphere that are

assigned permittivities to produce a nearly zero effective

polarizability. Recently, complex arrangements of non-

resonant metamaterials have been designed by inverse

optical modeling to fabricate broadband electromagnetic

cloaks [129, 152].

15. Macroscopic to Mesoscopic Heating
and Electromagnetic-Assisted
Reactions

15.1 Overview of EM Heating

15.1.1 Dielectric and Magnetic Heating

In EM wave interactions with materials, some of the

applied energy is converted into heat. The heating that

takes place with the application of high-frequency

fields is due to photon-phonon processes modeled by

the friction caused by particle collisions and resistance

to dipole rotation. Over the RF spectrum, heating may

be volumetric at low frequencies and confined to

surfaces at high frequencies. Volumetric heating is due

to the field that penetrates into the material producing

dissipation through the movement of free ions and the

rotation of dipolar molecules. Nanocomposites can be

heated volumetrically by RF EM fields, lasers, and

terahertz applicators. Since the skin depth is long at

low frequencies, the heating of nanoparticles is not

efficient. In the microwave band the heating of very

small particles in a host material is limited by the loss

and density of particles in the material, the power level

of the source, and the diffusion of heat to the surround-

ings. Plasmon resonances in the infrared to visible

frequencies can be used to locally heat particles [153].

At high frequencies, heat may be absorbed locally in

particles in slow modes where there may be a time lag

for heat to dissipate into the phonon bath when the

fields are removed.

The history of practical RF heating started in the era

when radar was being developed. There are stories of

where engineers sometimes heated their coffee by

placing it near antennas. Also there are reports a

researcher working on a magnetron that noticed that the

candy bar in his pocket had melted when he was near

the high-frequency source.

In a microwave oven, water and bound water are

heated by the movement of free charge and non-

resonant rotation [154]. Because the water molecules at

these frequencies cannot react in concert with the field,

energy is transferred from the field energy into kinetic

energy of the molecules in the material. In dielectric

materials at low frequencies, as frequencies increase

into the HF band, the rotations of the molecules tend to

lag the electric field, and this causes the electric field to

have a component in phase with the current. This is

especially true in liquids with hydrogen bonding, where

the rotational motion of the bonding is retarded by the

interconnections to other molecules. This causes

energy in the electric and magnetic fields to be convert-

ed into thermal energy [155]. Some polymer molecules
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that have low friction, such as glycerol in solution, tend

to rotate without significant molecule-molecule inter-

actions and therefore produce little thermal energy.

The power dissipated in a bulk lossy material in a

time-harmonic field is

(130)

The total entropy produced per unit time at a temper-

ature T is P(ω,T ) /T. Equation (130) is modified for

very frequency-dispersive materials [116]. Dielectric

losses in ohmic conduction and Joule heating originate

in the frictional energy created by charges and dipoles

that are doing work against nonconservative restoring

forces. Magnetic losses include eddy currents,

hysteresis losses, and spin-lattice relaxation. Some of

the allocated heating frequencies are given in Table 3.

Heating originates from dielectric and magnetic loss

and the strength of the fields. For magnetic materials

the losses relate to µ″(ω) and σdc . In high-frequency

fields, magnetic materials will be heated by both

dielectric and magnetic mechanisms [104, 156]. If

applicators are designed to subject the material to

only magnetic or electric fields, then the heating will

be related only to magnetic or dielectric effects,

respectively.

When studying dielectric heating we need to also

model the heat transport during the heating process.

This is accomplished by use of the power dissipated as

a source in the heat equation [157]. The transport of

heat through a material is modeled by the thermal

diffusivity αh = κ /ρdcp , where ρd is the density and κ is

the thermal conductivity. In order to model localized

heating, it is necessary to solve the Fourier heat

equation and Maxwell’s equations with appropriate

boundary conditions. The macroscopic heat transfer

equation is

(131)

where κ↔ 
is the thermal conductivity dyadic. The mass

density is ρd and the specific heat is cp . For nano-

systems, the heat transfer is more complicated and may

require modeling phonon interactions. Also, the above

heat transfer expression is only approximate for

nanoscale materials. The temperature rise obtained by

application of EM energy to a material can be estimat-

ed by use of the power dissipation relation in Eq. (130).

When the temperature is changed by ΔT , the thermal

energy-density increase is Qh = ρdcp ΔT . The power

dissipated per unit volume by an electric field interact-

ing with a lossy dielectric material is Pd = (1/2)σ|E|2,

where σ is the conductivity. Therefore, the temperature

rise in a specimen with density ρm through heating with

a power Pd for a time Δt is

(132)

The heating rate is determined by the field strength,

frequency, and the loss factor. From the equations for

see that fields at lower frequencies will penetrate more

same dissipative power densities as those at higher

frequencies, the electric field strength at a lower fre-

quency would have to increase. For example, to obtain

the same power densities at two different frequencies

we must have (ε1″(ω1)ω1 / ε2″(ω2)ω2 = |E2|
2 / |E1|

2).

The unique volumetric heating capability by EM

fields over broader ranges of frequencies should

stimulate further applications in areas such as

recycling, enhanced oil recovery, and as an aid to

reactions.
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Table 4. Radiation Classes and Approximate Photon Energies 

Type Frequency (Hz) Photon energy (J)

γ-rays 3 × 10
20

1.9 × 10
– 13

X-rays 3 × 10
16

1.9 × 10
– 14

Ultraviolet 1 × 10
15

6.4 × 10
– 19

Visible light 6 × 10
14

4.0 × 10
– 19

Infrared light 3 × 10
12

2.0 × 10
– 22

Microwave 2 × 10
9

6.0 × 10
– 25

High frequency (HF) 1 × 10
6

6.4 × 10
– 28
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15.1.2 Electromagnetic-Assisted Reactions

When RF waves are applied to assist a chemical

reaction, or polymer curing, the observed rate enhance-

ment is due primarily to the effects of microscopic and

volumetric heating. Because chemical reaction rates

proceed in an Arrenhius form τ ∝ exp (E /kBT ), small

temperature increases can produce large reductions in

reaction times. The kinetics of chemical reaction rates

is commonly modeled by the Eyring equation,

(133)

where h is Planck’s constant, ΔG = ΔH – TΔS is the

Gibb’s free energy, H is Helmholtz’s free energy, ΔS

denotes changes in entropy, and R is the gas constant.

A plot of ln (keyr / T ) = – ΔH / RT + ΔS / R + ln (kB / h)

versus 1 /T can yield ΔS, ΔH, and possibly kB /h.

One would expect that heat transfer by conduction

would have the same effect on reactions as microwave

heating, but this is not always found to be true. Part of

the reason for this is that thermal conduction requires

strong temperature gradients, whereas volumetric

heating does not require temperature gradients.

Because it does not depend on thermal conduction, an

entire volume can obtain nearly the same temperature

simultaneously without appreciable temperature

gradients. In addition, some researchers speculate on

non-thermal microwave effects that are due to the

electric field interacting with molecules in specific

ways that modify the activation energy through

changes in the entropy [158, 159]. Avenues that have

been proposed for nonthermal reactions may be related

to dielectric breakdown that causes plasma of photons

to be emitted, causing photo-reactions. Another avenue

is related to the intense local fields that can develop

near corners or sharp bends in materials or molecules

that cause dielectric breakdown.

Typical energies of microwave through x-ray

photons are summarized in Table 4. Covalent bonds

such as C-C and C-O bonds have activation energies of

nearly 360 kJ /mol, C-C and O-H bonds are in the

vicinity of 400 kJ /mol, and hydrogen bonds are around

4 to 42 kJ /mol. Microwaves are from 300 MHz to

30 GHz and have photon energies from 0.0001 to

0.11 kJ/mol. Therefore, microwave photon bond-

breaking events are rare. Nonthermal microwave

effects, therefore, are not likely due to the direct inter-

action of microwave photons with molecules and, if

they occur at all, and must have secondary origins such

as the generation of intense local fields that produce

localized dielectric breakdown or possibly EM-induced

changes in the entropy. Most of the effects seen in

microwave heating are thermal effects due to the

volumetric heating of high-frequency fields [160].

Microwave heating can result in superheating where

the liquid can become heated above the typical boiling

point. For example, in microwave heating, water can be

heated above its boiling temperature. This is due to the

fact that in traditional heating, bubbles form to produce

boiling, whereas in microwave heating the water may

become superheated before it boils.

15.2 Heat Transfer in Nanoscale Circuits

In microelectronic circuits, higher current densities

can cause phonon heating of thin interconnects that can

cause circuit failure. This heating is related to both the

broad phonon thermal bath and possibly slow thermal

modes where thermal energy can be localized to

nanoscale regions [161, 162]. New transistors will have

an increased surface-to-volume ratio and, therefore, the

power densities could increase. This, combined

with the reduced thermal conductance of the low

conductivity materials and thermal contact resistance

at material interfaces, could lead to heat transport

limitations [162, 163].

15.3 Heating of Nanoparticles

When a large number of metallic, dielectric, or

magnetic micrometer or nanometer particles in a host

media are subjected to high-strength RF EM fields,

energy is dissipated. This type of EM heating has been

utilized in applications that use small metallic particles,

carbon black, or palladium dispersed in a material to act

as chemical-reaction initiators and for selective heating

in enhanced drug delivery or tumor suppression [164,

165]. Understanding the total heat-transfer process in

the EM heating of microscopic particles is important. A

number of researchers have found that, due to the

thermal conduction of heat from nanoparticles and the

small volumes involved and the large skin depths of RF

fields, the nanoparticles rapidly thermalize with the

phonon bath and do not achieve temperatures that devi-

ate drastically from the rest of the medium [166]. Only

when there is an appropriate density of particles, is

heating enhanced. There have recently been reports

that thermal energy can accumulate in nanoscale to

molecular regions in slow modes, and it can take

seconds to thermalize with the surrounding heat bath

[166-169]. In such situations, regions may be unevenly
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heated by field application. However, thermal conduc-

tion will tend to smooth the temperature profile within

a characteristic relaxation time. Lasers can selectively

heat micrometer-size particles and by use of plas-

monics lasers can heat conducting nanoscale

particles.

15.4 Macroscopic and Microscopic

High-Frequency Thermal Run-Away

The dielectric loss and thermal conductivity of a

material may possess a temperature dependence so that

the loss increases as temperature increases [170]. This

is due to material decomposition that produces ions as

the temperature increases and results in more loss.

Thermal run away can lead quickly to intense heating

of materials and dielectric breakdown. The temperature

dependence of thermal run away has been modeled

with the dielectric loss factor as εr″ = α0 + α1 (T – T0 )

+ α2(T – T0 )2, where T0 is a reference temperature and

αi are constants [171].

16. Overview of High-Frequency
Nanoscale Measurement Methods

In the past few decades, a number of methods have

been developed to manipulate single molecules and

dipoles. Methods have been implemented to move,

orient, and manipulate nanowires, viruses, and proteins

that are several orders of magnitude smaller than cells.

These methods allow the researcher to study the electri-

cal and mechanical properties of biological compo-

nents in isolation. Molecules and cells can be mani-

pulated and measured in applied fields using dielec-

trophoresis, microwave scanning probes, atomic force

microscopy, acoustic devices, and optical and magnet-

ic tweezers. Some of the methods use magnetic or

electric fields or acoustic fields, others use the EM field

radiation pressure, and others use electrostatic and van

der Waals forces of attraction [139, 172]. Microfluidic

cells together with dc to terahertz EM fields are

commonly used to study microliter to picoliter volumes

of fluids that contain nanoparticles [173-175]. Surface

acoustic waves (SAW) and bulk acoustic waves (BAW)

can be used to drive and enhance microfluidic process-

es. Since there is a difference of wave velocities in a

SAW substrate and the fluid, acoustic waves can be

transferred into the fluid, to obtain high fluid velocities

for separation, pumping, and mixing.

Due to symmetry and charge neutrality, a polarizable

particle in a uniform electric field will experience no

net force. If a material with a permanent or induced

dipole is immersed in an electric field gradient, then a

dielectrophoretic force on the dipole is formed, as

indicated in Fig. 15 [176]. In a nonuniformelectric

field, the force on a dipole moment p is F = (p . ∇)E.

From this the following equation for the dielectro-

phoresis force on a small sphere of radius r of permit-

tivity εp in a background with permittivity εm has be

derived [177, 178]

(134)

This force tends to align the molecule along the field

gradient. The force is positive if εp > εm. For dispersive

materials, the attraction or repulsive force can be varied

by the frequency. Dielectrophoresis is commonly used

to stretch, align, move, and determine force constants

of biomolecules such as single-stranded and double-

stranded DNA and proteins [179]. Dielectrophoresis

can also be used to separate cells or molecules in a

stream of particles in solution. Usually, dielectro-

phoretic manipulation is achieved through micro-

fabricated electrodes deposited on chips. For dispersive 
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materials, where the permittivity changes over the

frequency band of interest, there is a cross-over

frequency where there is no force on the molecule.

The approximate force, due to diffusion forces from

particle gradients on a particle with a dimension d, is

Fb = kBT /d. For micrometer particles, the dielectro-

phoretic field gradients required to overcome this force

is not large. However, for nanoscale particles this field

gradient is much larger.

Spherical particles can be made to rotate through

electrorotation methods [177]. This motion is produced

by a rotating electric field phase around a particle. The

dipole induced in the particle experiences a net torque

due to the dielectric loss that allows the dipole forma-

tion to lag the rotating field, as shown in Fig. 16. The

net torque is given by N = p × E. For particles εp in a

matrix εm the torque is [177]

(135)

Optical tweezing originates from the EM field gra-

dient obtained from a laser source that produces a field

differential and results in a force on particles. This

effect is similar to dielectrophoresis. The strength of the

radiation pressure on particles is a function of the size 

of the particles and the wavelength of the laser light

[180]. Molecules can also be studied by magnetic tweez-

ers with magnetic-field gradients. By attaching magnetic

particles to molecules it is possible to stretch molecules

and determine force constants. Opto-plasmonic tweezers

use radiation from resonant electrons to create patterned

electric fields that can be used through dielectrophoresis

to orient nanoscale objects.

Atomic force microscopy (AFM) is based on

cantilevers. In AFM the force between the probe tip and

the specimen is used to measure forces in the

micronewton range. An AFM probe typically has can-

tilever lengths of 0.2 mm and a width of around 50 μm.

An AFM can operate in the contact mode, noncontact,

or tapping mode. Force information of the interaction

of the tip with a material is obtained by means of

cantilever bending, twisting, and, in the noncontact

mode, by resonance of the cantilever.

In the microwave range, near-field microwave

scanning probes are commonly used. These probes

have proved valuable to measure the permittivity and

imaging on a surface of a thin film at subwavelength

resolution. These needle probes usually use near-field

microwaves that are created by a resonator above the

probe, as shown in Fig. 17. A shift in resonance

frequency is then related to the material properties

under test through software based on a theoretical

model. Therefore, most of these probes are limited to

resonant frequencies of the cavity. Continuous-wave

methods based on microstrip tips have also been

applied.
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16.1 Properties and Measurement of Dielectric

Nanomaterials

Nanomaterials could consist of composites of

nanoparticles dispersed in a matrix or isolated particles.

A mixture of conducting nanoparticles dispersed into a

matrix sometimes yields interesting dielectric behavior

[23, 181]. Lewis has noted that the interface between the

nanoparticle and matrix produces unique properties in

nanocomposites [23]. Interfaces and surface charges are

a dominant parameter governing the permittivity and

loss in nanocomposites [23, 181, 182]. Double layers

(Sec. 8) near the particle surface can strongly influence

the properties [23]. In addition, conductivity in some

nanoparticles can achieve ballistic transport.

In order to model a single dielectric nanoparticle in an

applied field the local field can be calculated, as summa-

rized in Sec. 4.3. Kühn et al. [59] studied the local field

around nanoparticles, and they found that use of the

macroscopic field for modeling of a sphere containing

nanoparticles was not valid at below 100 nm. In order to

model small groups of nanoparticles, they found that the

effects of the interface required the use of local fields

rather than the macroscopic field.

When individual nanoparticles are subjected to EM

fields, the question arises of whether it is possible to

define a permittivity of the nanoparticle or whether an

ensemble of particles is required. Whether permittivity

of a nanoparticle is well defined depends on the

number of dipole moments within the particle. If we use

the analogy of a gas, we assume that the large number of

gas molecules together with the vacuum around the par-

ticles constitutes a bulk permittivity. This permittivity

does not apply to the individual gas molecules, but rather

to the bulk volume. When individual nanoparticles con-

tain thousands of dipoles, according to criteria of permit-

tivity developed in Sec. 4.6, long-wavelength fields

would allow defining a permittivity of the particle and a

macroscopic field. However, such a permittivity would

be  spatially varying due to interfacial effects, and the

definition would break down when there are insufficient

particles to perform an ensemble average [59].

16.2 Electrical Properties and the Measurement of

Nanowires

Nanowires are effectively one-dimensional entities

that consist of a string of atoms or molecules with a

diameter of approximately 10–9 meters. Nanowires may

be made of TiO2 , SiO2 , platinum, semiconducting com-

pounds such as gallium nitride and silicon, single

(SWNT) or multi-wall (MWNT) carbon nanotubes, and

inorganic and organic strings of molecules such as

DNA [183-188]. Because they are effectively ordered

in one dimension, they can form a variety of structures

such as rigid lines, spirals, or zigzag pattern. Carbon

nanotubes that have lengths in the millimeters have

been constructed [189].

At these dimensions, quantum-mechanical effects

cannot be totally neglected. For example, the electrons

are confined laterally, which influences the available

energy states like a particle in a one-dimensional box.

This causes the electron transport to be quantized and

therefore the conductance is also quantized (2e2 /h).

The impedance of nanoconductors is on the order of the

quantum resistance h /e2, which is 25 kΩ. For SWNTs,

due to band-structure degeneracy and spin, this is

reduced to 6 kΩ. The ratio of the free-space impedance

to the quantum impedance is two times the fine

structure constant 2α . This high impedance is

difficult to probe with 50 Ω systems [190], and deposit-

ing a number of them in parallel has been used to

minimize the mismatch [191].

The resistance of a SWNT depends on the diameter

and chirality. The chirality is related to the tube having

either metallic or semiconducting properties. For

device applications such as nanotransistors, the

nanowires need to be either doped or intrinsic semi-

conductors. Semiconducting nanowires can be connect-

ed to form p-n junctions and transistors [192].

Many nanowires have a permanent dipole moment.

Due to the torque in an electric field, the dipole will

tend to align with the field, particularly for metallic and

semiconducting nanotubes [193].

16.3 Charge Transport and Length Scales

Electrical conduction through nanowires is strongly

influenced by their small diameter. This constriction

limits the mean free path of conduction electrons [88,

194]. For example in bulk copper the mean free path is

40 nm, but nanowires may be only 1 to 10 nm in

diameter, which is much less than a mean free path and

results in constriction of the current flow.

Carbon nanotubes can obtain ballistic charge trans-

port. Ballistic transport is associated with carrier flow

without scattering. This occurs in metallic nanowires

when the diameter becomes close to the Fermi wave-

length in the metal. The electron mean-free path for a

relaxation time τe is le = ντe , and if le is much larger

than the length of the wire, then it is said to exhibit

ballistic transport. Carbon nanotubes can act as anten-

nas and can have plasmonic resonances in the low

terahertz range.
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The Landauer-Buttiker model of ballistic transport

was developed for one-dimensional conduction of

spinless/noninteracting electrons [195, 196]. This

model has been applied to nanowires.

Graphene has shown promise for construction of

transistors due to its high conductivity, but is hampered

by defects. The very high carrier mobility of graphene

makes it a candidate for very high speed radio-

frequency electronics [197].

16.4 Distributed Parameters and Quantized

Aspects

A high-frequency nanocircuit model may need to

include the quantum capacitance and kinetic and

magnetic inductance in addition to the classical para-

meters. The magnetic inductance per unit length

for a nanowire of permeability μ of diameter d and a

distance s over a ground plane is given by [189]

The kinetic inductance due to quantum effects is

16 (nH/μm). At gigahertz frequencies, the kinetic

inductance is not a dominant contribution to the trans-

mission line properties [189]. The electrostatic capaci-

tance between a wire and ground plane in a medium

typically, 400 (aF/μm). The electrostatic capacitance is

found to dominate over the quantum capacitance at

gigahertz frequencies. At terahertz frequencies and

above they are of the same order of magnitude, and

both should be included in calculations for nanowires.

Burke notes that the resistance and classical capaci-

tance dominates over the quantum inductance and

capacitance and are not important contributions at giga-

hertz frequencies, but may be important at terahertz

frequencies [189]. The wave velocity in nanowires is

approximated by

(136)

The quantum characteristic impedance is

(137)

If the noninteracting electrostatic and quantum

impedance are combined, we have

(138)

Whereas the free-space impedance is 377 Ω, the quan-

tum capacitance and inductance of carbon nanotubes

yields an impedance of approximately 12.5 kΩ.

The resistivity of nanowires and copper are generally

of the same order of magnitude. The ballistic transport

properties at small scales represents an advantage; how-

ever, the resistance is still quite high. Copper intercon-

nects have less resistance until the conductor sizes drop

below about 100 nm; currently the microelectronic

industry uses conductors of smaller size. This is an

origin of heating [14, 198]. Because the classical resist-

ance is calculated from R /L = ρ /A, where ρ is resistivi-

ty, L is length, and A is the cross-sectional area, the small

area of a SWNT limits the current and increases the

resistance per unit length and the impedance. Due to the

high impedance of nanowires, single nanowires have

distinct disadvantages; for example, carbon nanotubes

may have impedances on the order of 104 Ω. Bundles of

parallel nanowires could form an interconnect [191].

Tselev et al. [191] performed measurements on bundles

of carbon nanotubes that were attached to sharp metal

tips by dielectrophoresis on silicon substrates. Electron-

beam lithography was used to attach conductors to the

tubes. High-frequency inductance measurements from

10 MHz to 67 GHz showed that the inductance was

nearly independent of frequency. In modeling nanoscale

antennas made from nanowires, the skin depth as well as

the resistance are important parameters [189].

17. Random Fields, Noise, and
Fluctuation-Dissipation Relations

17.1 Electric Polarization and Thermal Fluctuations

As transmission lines approach dimensions of tens of

nanometers with smaller currents, thermal fluctuations

in charge motion can produce small voltages that can

become a significant source of noise [199]. The random

components of charge currents, due to brownian

motion of charges, produce persistent weak random

EM fields in materials and produces a flow of noise

power in transmission lines. These fields contribute to

the field felt by the device. Random fields also are

important in radiative transfer in blackbody and non-

blackbody processes.
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Thermal fluctuations in the dipole moments in dielec-

tric and magnetic materials influence the polarization

and are summarized in the well known fluctuation-dis-

sipation relationships. These relationships are satisfied

for equilibrium situations. Equilibrium is a state where

the entropy is a maximum and macroscopic quantities

such as temperature, pressure, and local fields are well

defined. Fluctuation-dissipation relationships can be

obtained from the linear-response formalism (Sec. 4.4)

that yields the susceptibility in terms of the Fourier

transform of the associated correlation functions. By

use of Eq. (30), an expression can be written for the

susceptibility in terms of the polarization

(139)

Equation (139) is a fluctuation-dissipation relationship

that is independent of the applied field. In this

approach, if the correlation function is known, then the

material properties can be calculated. However, in

practice most material properties are measured through

applied fields. The interpretation of this relationship

is that the random microscopic electric fields in a

polarizable lossy medium produce fluctuations in the

polarization and thereby induces loss in the decay to

equilibrium. These fluctuations can be related to

entropy production [44, 61]. We can obtain an

analogous relation for the real part of the susceptibility

by use of Eq. (29).This relation relates the real part of

the susceptibility to fluctuations

(140)

17.2 Magnetic Moment Thermal Fluctuations

Magnetic-moment fluctuations with respect to

signal-to-noise limitations are important to magnetic-

storage technology [200]. This noise can also be

modeled by fluctuation-dissipation relations for

magnetic response. The linear fluctuation-dissipation

relation for the magnetic loss component can be

derived in a way similar to the electric response:

(141) 

17.3 Thermal Fields and Noise

Due to thermal fluctuations, brownian motion of

charges produce random EM fields and noise. In noise

processes the induced current density can be related to

microscopic displacement D
→

and induction fields B
→

.

The cross-spectral density of random fields is

defined as [18]

(142)

The relationship to the time-harmonic correlation

function for the field components is

(143)

Thermally induced fields can be spatially correlated

[17] and can be modeled to first order as

(144)

(145)

(146)

where Θ(ω,Τ ) = (ω/2)coth(ω/2kBT ). Θ→ kBT for

kBT >> ω .
The voltage V and current I in a microscopic trans-

mission line with distributed noise sources νn and in that

are caused by random fields can be modeled by coupled

differential equations as shown in [199].

A special case of Eq. (144) is the well-known

Nyquist noise relation for voltage fluctuations from a

resistance R over a bandwidth Δf is

(147)
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17.4 Fluctuations and Entropy

17.4.1 Fluctuations

In thermal equilibrium macroscopic objects have a

well-defined temperature, but in addition there are

equilibrium temperature fluctuations. When the particle

numbers in a system decrease, the thermodynamic

quantities such as temperature and internal energy, have

a less precise meaning than in a large-scale system [61,

201]. In nanosystems, fluctuations in particle energy,

momentum, and local EM fields can be large enough to

affect measurements. These fluctuations translate into

fluctuations in the measured EM fields, internal energy,

temperature, and heat transfer. A system that is far from

thermal equilibrium or very small may not have a well-

defined temperature, macroscopic internal energy, or

specific heat [199, 202, 203]. When the applied driving

fields are removed, some polymers and some spin

systems have relaxation times of seconds to hours until

they decay from a nonequilibrium state to an equilibri-

um state. In these types of nonequilibrium relaxation

processes, equilibrium parameters such as temperature

have only a fuzzy meaning. Fluctuation-dissipation

relations that are used to define transport coefficients in

equilibrium do not apply out of equilibrium.

Nanosystems operate in the region between quantum-

mechanical and macroscopic description and between

equilibrium and nonequilibrium states. Whereas

Johnson noise is related to fluctuations in equilibrium

voltages, there is a need for theoretical work that yields

results that compare well to measurements in this

transition region. As an example, Hanggai et al. showed

that the theoretical bulk definitions for specific heat and

entropy in some nanosystems break down in the high or

low temperature limits [204]. Noise also occurs in non-

equilibrium systems and the theoretical foundations are

not as well developed as in thermal equilibrium.

17.4.2 Fluctuations and Entropy Production

For reliable operation, microelectronic interconnects

require a stable thermal environment because thermal

fluctuations could potentially damage an interconnect

or nano-transistor [205]. An understanding of thermo-

dynamics at the nanoscale and the merging of electro-

magnetism and non-equilibrium thermodynamics is

important for modeling small systems of molecules.

Modeling of thermal fluctuations can be achieved by

relating Nyquist noise to fluctuations in thermal energy.

Another approach away from equilibrium is to use the

concept of entropy production [44]. Entropy can be

increased either by adding heat to a material,

ΔS = ΔQh /T, or by spontaneous processes in the

relaxation of a system from nonequilibrium to an

equilibrium state. In EM interaction with materials, we

can produce entropy either through the dissipation of

the fields in the material or by relaxation processes.

Relaxation processes are usually spontaneous process-

es from nonequilibrium into an equilibrium state.

The entropy is defined as S = kB ln(W), where W is

the number of accessible states. Entropy is a corner-

stone of thermodynamics and non-equilibrium thermo-

dynamics. In thermodynamics the free energy is defined

in terms of the internal energy U as F = – kBT lnZ, where

Z is the partition function. The entropy is also defined in

terms of the free energy as

(148)

In thermodynamics, temperature is defined as

(149)

A very general evolution relation for the macro-

scopic entropy production rate Σ(t) in terms of micro-

scopic entropy production rate s
.
(t) was derived from

first principles by use of a statistical-mechanical theory

[19, 44, 61, 89, 206]:

(150)

where s
.
(t) satisfies (< s

.
(t) > = 0), Σ(t) is the net macro-

scopic entropy production in the system, and T and P

are evolution operators and projection operators,

respectively. The Johnson noise formula is a special

case of Eq. (150) near equilibrium, when Σ(t) = I2R /T

and s
.

(t) = (1/2)Iν(t) / T, (with < ν(t) > = 0) is a

fluctuating voltage variable, and I is a bias current.

18. Dielectric Response of Crystalline,
Semiconductors, and Polymer
Materials

18.1 Losses in Classes of Single Crystals and 

Amorphous Materials

A class of dielectric single-crystal materials have

very low loss, especially at low temperatures. The low

loss is related to the crystal order, lack of free charge,
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and the low number of defects. Anomalously low

values of the dielectric loss in single-crystal alumina at

low temperatures were reported in 1981 [14, 207]. In

this study, dielectric resonators were used to measure

the loss tangent because cavity resonators do not have

the required precision for very-low-loss materials.

Since then, there has been a large body of research

[208, 209] performed with dielectric resonators that

supports these results. Braginsky et al. [207] showed

that the upper bound for loss in high-quality sapphire

was 1.5 × 10–9 at 3 GHz and at T = 2 K. These reports

were supported by Strayer et al. [210]. These results are

also consistent with the measurements by Krupka et al.

[209], who used a whispering-gallery mode device to

measure losses. Very low loss is obtained in sapphire,

diamond, single-crystal quartz, MGO, and silicon. Low

loss resonators have been studied at candidates for

frequency standards.

The whispering-gallery mode technique is a particu-

larly accurate way of measuring the loss tangent of

materials with low loss [14]. These researchers claim

that the loss tangent for many crystals follows roughly

a f 2 dependence at low temperatures.

In nonpolar materials, dielectric loss originates from

the interaction of phonons or crystal oscillations with

the applied electric field. In the absence of an applied

electric field, the lattice vibrates nearly harmonically

and there is little phonon-phonon interaction. The

electric-field interaction modifies the harmonic elastic

constant and thereby introduces an anharmonic

potential term. The anharmonic interaction allows

phonon-phonon interaction and thereby introduces loss

[73]. Some of the scattering of phonons by other

phonons is manifested as loss.

The loss in many crystals is due to photon quanta of

the electric field interacting with phonons vibrating in

the lattice, thereby creating a phonon in another branch.

Dielectric losses originate from the electric field

interaction with phonons together with two-, three-, and

four-phonon scattering and Umklapp process [73]. The

three- and four-quantum loss corresponds to transitions

between states of the different branches. Crystals with

a center of symmetry have been found to generally

have lower loss than ones with noncentrosymmetry.

The temperature dependence also depends on the

crystal symmetry. For example, a symmetric molecule

such as sapphire has much lower loss than noncentro-

symmetric ferroelectric crystals such as strontium

barium titanate. Quasi-Debye losses correspond to

transitions, which take place between the same branch. 

In centro-symmetric crystals three- and four-quantum

processes are dominant. In noncentro-symmetric

crystals the three-quantum and quasi-Debye processes

dominate.

Gurevich and Tagantsev [73] studied the loss tangent

for cubic and rhombohedric symmetries for tempera-

tures far below the Debye temperature TD = 1047 K.

For these materials, the loss tangent can be modeled as

(151)

where ε is permittivity, ρ is density, ν is speed of sound

in air. For hexagonal crystals, without a center of

symmetry,

(152)

and with symmetry,

(153)

For many dielectric materials with low loss, Gurevich

showed that there is a universal frequency response of

the form tan δ ∝ ω.

The loss tangent in the microwave band of many

low-loss ceramics, fused silica, and many plastics and

some glasses increases nearly linearly as frequency

increases [211]. For materials where the loss tangent

increases linearly with frequency, we can interpolate

and possibly extrapolate microwave loss-tangent

measurement data from one frequency range to another

(Fig. 6). This approach is, of course, limited. This

behavior can be understood in terms of Gurevich’s

relaxation models [73] or by the moment expansion in

[212].

This behavior is in contrast to the model of Jonscher

[213] who has stated that χ″ /χ′ is nearly constant with

frequency in many disordered solids.

18.2 Electric Properties of Semiconductors

Excellent reviews of the dielectric properties of

semiconductors in the microwave range have been

given by Jonscher and others [14, 213-217]. The dc

conductivities of semiconductors are related to holes
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and free charge. In the gigahertz region, the total loss in

most semiconductors decreases significantly since the

effects of the dc conductivity decreases; however, the

dielectric component of loss increases. For gallium

arsenide and gallium nitride the conductivity is

relatively low. Figure 18 shows measurement results on

the permittivity of high-resistivity gallium arsenide as a

function of frequency. These measurements were made

by a mode-filtered TE01 X-band cavity. Silicon

semiconductors can exhibit low to high loss depending

on the level of dopants in the material. There are

Schottky barriers at the interface between semicon-

ductors and metals and at p-n junctions that produce

losses.

The conductivities of semiconductors at low

frequencies fall between those of metals and

dielectrics. The theory of conductivity of semiconduc-

tors begins with an examination of the phenomena in

intrinsic (undoped) samples. At temperatures above

0 K, the kinetic (thermal) energy becomes sufficient to

excite valence band electrons into the conduction band,

where an applied field can act upon them to produce a

current. As these electrons move into the conduction

band, holes are created in the valence band that effec-

tively become another source of current. The total

expression for the conductivity includes contributions

from both electrons and holes and is given by

σdc = q (nµn + pµp ), where q is charge, n is the electron

density, p is the hole density, and µn and µp are the

electron mobility and hole mobility, respectively.

In intrinsic semiconductors, the number of charge

carriers produced through thermal excitation is relative-

ly small, but σdc can be significantly increased by

doping the material with small amounts of impurity

atoms. These additional carriers require much less

thermal energy in order to contribute to σdc . This

results in more carriers becoming available as the

temperature increases, until ionization of all the

impurity atoms is complete.

For temperatures above the full ionization range of

the dopants, σdc is increasingly dominated by µn and µp.

In semiconductors such as silicon, the mobility of the

charge carriers decreases as the temperature increases,

due primarily to the incoherent scattering of the

carriers with the vibrating lattice. At a temperature Ti ,

intrinsic effects begin to contribute additional charge

carriers beyond the maximum contributions of the

impurity atoms, and σdc begins to increase again [215,

216, 219-222].

19. Overview of the Interaction of RF
Fields With BiologicalMaterials

19.1 RF Electrical Properties of Cells, Amino

Acids, Peptides, and Proteins

In this section, we will overview the dielectric relax-

ation of cells, membranes, proteins, amino acids, and

peptides [97, 223-229]. This research area is very large

and we summarize only the most basic concepts as they

relate to RF fields.

Dielectric response of biological tissues to applied

RF fields is related to membrane and cell boundaries,

molecular dipoles, together with associated ionic fluids

and counterions [230]. The ionic solution produces

low-frequency losses that are very high. As a conse-

quence of these mobile charge carriers, counterions

adhere to molecular surfaces, interface charge causes

Maxwell-Wagner capacitances, and electrode polariza-

tion is formed at electrode interfaces. All of these

processes can yield a very high effective ε′r at low

frequencies. Some of the effects of the electrodes can

be corrected for by use of standard techniques [230,

231] (Sec. 8).

Some biological tissues exhibit an α relaxation in the

100 Hz to 1 kHz region due to dipoles and Maxwell-

Wagner interface polarization, another β relaxation in

the megahertz region due to bound water, and γ relax-

ation in the microwave region due to the relaxation of

water and water that is weakly bond.

Amino acids contain carboxyl (COOH) groups,

amide (NH2 ) groups, and side groups. The side groups

and the dipole moment of the amino and carboxyl

groups determine most of the low-frequency dielectric

properties of the acid. Some of the side groups
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Fig. 18. Relative permittivity ε′r of gallium arsenide measured by an

X-band cavity [218]. Start, middle, and terminus refer to different

specimens taken from the same boule. For these measurements

the Type B expanded relative uncertainty at 10 GHz in ε′r was

U = kuc = 0.02 (k = 2), where k is coverage factor.
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are polar, while others are nonpolar. When ionized, the

amino and carboxyl groups have positive and negative

charges, respectively. This charge separation forms a

permanent dipole (Fig. 5). α amino acids have an

amino group and carboxyl group on the same carbon

denoted Cα and α-amino acids have a dipole moment

of 15 to 17 debyes (D) (1 debye equals 3.33 × 10–30

coulomb-meter). β amino acids have a CH2 group

between the amino and carboxyl groups, which

produces a large charge separation and therefore a

dipole moment on the order of 20 D. For a very good

overview see Pethig [223]. Peptides are formed from

condensed amino acids. A peptide consists of a collec-

tion of amino acids connected by peptide bonds.

Peptide bonds provide connections to amino acids

through the CO-NH bond by means of the water mole-

cule as a bridge. The peptide unit has a dipole moment

on the order of 3.7 D. Chains of amino acids are called

polyamino acids or polypeptides. These are terminated

by an amide group on one end and a carboxyl group on

the other side. Typical dipole moments for polypeptides

are on the order of 1000 D.

Polyamino acids can be either in the helical or

random-coil phase. In the helical state, C = O bonds are

linked by hydrogen bonds to NH groups. The helix can

either be right-handed or left-handed; however, the

right-handed helix is more stable. Generally, polyamino

acids have permanent dipole moments and dielectric

relaxation frequencies in the kilohertz region [232].

The origin of relaxation in proteins has been debated

over the years. Proteins are known to be composed of

polyamino acids with permanent dipole moments, but

they also have free and loosely bound protons. These

protons bind loosely to the carboxyl and amino groups.

Kirkwood et al. hypothesized that much of the

observed relaxation behavior of proteins is due to

movement of these nearly free protons in the applied

field or the polarization of counterion sheaths around

molecules [233]. Strong protonic conductivity has also

been observed in DNA. At present, the consensus is

that polar side chains and both permanent dipoles and

the proton-induced polarization contribute to dielectric

relaxation of proteins.

In the literature three dielectric relaxations in

proteins have been identified [231]. These are similar

to that in DNA. The first is the α relaxation in the

10 kHz to 1 MHz region and is due to rotation of the

protein side chains. The second minor β relaxation

occurs in the 100 MHz to 5 GHz range and is thought

to be due to bound water. The third γ relaxation is

around 5 GHz to 25 GHz and is due to semi-free water.

Nucleic acids are high-molecular mass polymers

formed of pyrimidine and purine bases, a sugar, and

phosphoric-acid backbone. Nucleic acids are built up of

nucleotide units, which are composed of sugar, base,

and phosphate groups in helical conformation.

Nucleotides are linked by three phosphates groups,

which are designated α, β, and γ . The phosphate groups

are linked through the pyrophosphate bond. The

individual nucleotides are joined together by groups of

phosphates that form the phosphodiester bond between

the 3′ and 5′ carbon atoms of sugars. These phosphate

groups are acidic. Polynucleotides have a hydroxyl

group at one end and a phosphate group on the other

end. Nucleosides are subunits of nucleotides and

contain a base and a sugar. The bond between the sugar

and base is called the glycosidic bond. The base can

rotate only in the possible orientations about the

glycosidic bond.

Watson and Crick concluded through x-ray diffrac-

tion studies that the structure of DNA is in the form of

a double-stranded helix. In addition to x-ray structure

experiments on DNA, information has been gleaned

through nuclear magnetic resonance (NMR) experi-

ments. Types A and B DNA are in the form of right-

handed helices. Type Z DNA is in a left-handed confor-

mation. There is a Type B to Z transition between

conformations. A transition from Type A to Type B

DNA occurs when DNA is dissolved in a solvent [234].

The Watson-Crick conception of DNA as a uniform

helix is an approximation. In reality, DNA exists in

many conformations and may contain inhomogeneities

such as attached proteins. In general, double-stranded

DNA is not a rigid rod, but rather a meandering chain.

Once formed, even though the individual bonds

composing DNA are weak, the molecule as a whole is

very stable. The helical form of the DNA molecule

produces major and minor grooves in the outer
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Table 5. Approximate dipole moments

Material Dipole Moment (D)

H2O 1.85

CO 0.12

NaCl 9.00

Typical protein 500

Peptide 3.7

Amino acid 20

Polypeptide 1000
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outer surface of the molecule. There are also bound-

water molecules in the grooves. Many interactions

between proteins or protons with DNA occur in these

grooves.

The helix is formed from two strands. The bases in

adjacent strands combine by hydrogen bonding, an

electrostatic interaction with a pyrimidine on one side

and purine on the other. In DNA, the purine adenine

(A) pairs with the pyrimidine thymine (T). The purine

guanine (G) pairs with the pyrimidine cytosine (C). A

hydrogen bond is formed between a covalently bonded

donor hydrogen atom that is positively charged and a

negatively charged acceptor atom. The A-T base pair

associates by two hydrogen bonds, whereas C-G base

pairs associate by three hydrogen bonds. The base-pair

sequence is the carrier of genetic information. The

genetic code is formed of a sequence of three base

pairs, which determine a type of amino acid. For

example, the sequence of TTT AAA AAG GCT

determines an amino acid sequence of phenylalanine-

lysine-lysine-alanine.

The DNA molecule has a net negative charge due to

the phosphate backbone. When dissolved in a cation

solution, some of the charge of the molecule is neutral-

ized by cations. The double-stranded DNA molecule is

generally thought to have little intrinsic permanent

dipole moment. This is because the two strands that

compose the helix are oriented so that the dipole

moment of one strand cancels the other. However,

when DNA is dissolved in a solvent, such as saline

solution, an induced dipole moment forms due to

reorganization of charge into a layer around the

molecule called the counterion sheath.

The interaction of the counterions with biomolecules

has been a subject of intensive research over the years.

Some of the counterions bind to the phosphate back-

bone with a weak covalent bond. Other counterions are

more loosely bound and some may penetrate into the

major and minor grooves of DNA [235]. Ions are

assumed to be bound near charges in the DNA mole-

cule, so that a double layer forms. The ions attracted to

the charged DNA molecule forms a counterion sheath

that shields some of the charge of the DNA. The

counterion sheath around a DNA molecule is composed

of cations such as Na or Mg, which are attracted to the

backbone negative phosphate charges. These charges

are somewhat mobile and oscillate about phosphate

charge centers in an applied electric field. A portion of

these counterions is condensed near the surface of the

molecule, whereas the vast majority are diffusely

bound. Double-stranded DNA possesses a large

induced dipole moment on the order of thousands of

debye, due to the counterion atmosphere. This fact

is gleaned from dielectric relaxation studies, birefrin-

gence, and dichroism experiments [236], and other

light-scattering experiments [237]. The induced dipole

moment µ→ in an electric field E is defined in terms of

the polarizability µ→ = αE .

Because the individual strands of double-stranded

DNA are antiparallel and the molecule is symmetrical,

the transverse dipole moments should cancel. However,

a number of researchers have measured a small perma-

nent dipole moment for DNA [238]. In alternating

fields, the symmetry of the molecule may be deformed

slightly to produce a small permanent dipole moment

[231]. Another origin of the small permanent dipole

moment is attached charged ligands such as proteins or

multivalent cations [239]. These ligands produce a net

dipole moment on the DNA molecule by breaking the

symmetry. The question of how much of the relaxation

of the DNA molecule is due to induced dipolemoment

versus permanent moment has been studied by Hogan

et al. [236]. The response of permanent vs. induced

dipole moment differs in terms of field strength. The

potential energy of a permanent dipole moment at

an angle θ to the electric field is U = – µ E cos θ,

whereas the induced dipole moment in the electric field

is quadratic, U = – (Δα /2)E 2 cos2 θ , where Δα is the

difference in polarizability along anisotropy axes of the

molecule. Experiments indicate that the majority of the

moment was induced rather than permanent. Charge

transport through DNA can be ballistic.

19.2 Dielectric Properties of BoundWater and

Polyelectrolytes

Knowledge of the permittivity of the water near the

surface of a biomolecule is useful for modeling. The

region close to a biomolecule in water has a relatively

low real part of permittivity and a fixed charge. The

region far from the molecule has a permittivity close

to that of water. Lamm and Pack [240] studied the

variation of permittivity in the grooves, near the sur-

face, and far away from the DNA molecule. The effec-

tive permittivity depends on solvent concentration,

distance from the molecule, the effects of the boundary,

and dielectric field-saturation. The variation of permit-

tivity with position significantly alters the predictions

for the electric potential in the groove regions. Model

predictions depend crucially on knowing the dielectric

constant of water. Numerical modeling of the DNA

molecule depends critically on the permittivity of
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water. When the permittivity of water varies in space,

numerical models indicate that small ions such as hydro-

gen can penetrate into the minor and major grooves [235,

241]. These predictions are not obtained for models that

use spatially independent permittivity for water. From

modeling results it was found that the real part of the

effective permittivity around the DNA molecule varies

as a function of distance from the center of the mole-

cule and as a function of solvent concentration in moles

per liter (mol / l) [240].

The molecular structure of water is not simple.

Besides the basic H2O triad structure of the water

molecule, there are also complicated hydrogen-bonded

networks created by dipole-dipole interactions that

form hydroxyl OH– and hydronium H3O
+ ions. The

dielectric constant of water at low frequencies is about

80, whereas biological water contains ions, which

affect both the real and imaginary parts of the permit-

tivity. Water bound in proteins and DNA has a

decreased permittivity. This is due to constraints on the

movement of the molecules when they are attached to

biomaterials.

19.3 Response of DNA and Other Biomolecules in

Electric Driving Fields

The low-frequency response of DNA is due primarily

to longitudinal polarization of the diffuse counterion

sheath that surrounds the molecule. This occurs at

frequencies in the range of 1 to 100 Hz. Another relax-

ation occurs in the megahertz region due to movement

of condensed counterions bound to individual phos-

phate groups. Dielectric data on human tissue is given

in Figs. 19 and 20. A number of researchers have

studied dielectric relaxation of both denatured and

helical conformation DNA molecules in electrolyte

solutions both as a function of frequency and applied

field strength. Single-stranded DNA exhibited less

dielectric relaxation than double-stranded DNA [98,

243-246]. Takashima concluded that denatured DNA

tended to coil and thereby decrease the effective length

and therefore the dipole moment. Furthermore, a high

electric field strength affects DNA conductivity in two

ways [244]. First, it promotes an increased dissociation

of the molecule and thereby increases conductivity.

Second, it promotes an orientation field effect where

alignment of polyions increases conductivity.

There are many other types of motion of the DNA

molecule when subjected to mechanical or millimeter

or terahertz electrical driving fields. For example,

propeller twist occurs when two adjacent bases in a pair

twist in opposite directions. Another motion is the

breather mode where two bases oscillate in opposition

as hydrogen bonds are compressed and expanded. The

Lippincott-Schröder and Lennard-Jones potentials are

commonly used for modeling these motions. These

modes resonate at wavelengths in the millimeter

region; however, relaxation damping prevents direct

observation. Other static or dynamic motions of the

base pairs of the DNA molecule are roll, twist, and

slide.

Single-stranded DNA, in its stretched state, possess-

es a dipole moment oriented more or less transverse to

the axis. The phosphate group produces a permanent

transverse dipolemoment of about 20 D per 0.34 nm

base-pair section. The Debye (D) is a unit of dipole

moment and has a value of 3.336 × 10–30 C . m.

Because the typical DNA molecule contains thousands

of base pairs, the net dipole moment can be significant.

However, as the molecule coils or the base pairs twist,

the dipole moment decreases. If single strands of

DNA were rigid, since there is a transverse dipole

moment, and relaxation would occur in the megahertz

to gigahertz frequencies.
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Fig. 19. Measurements of the relative permittivity of various body

tissues by Gabriel et al. [242] (no uncertainties assigned).

Fig. 20. Loss tangent of human tissues by Gabriel et al. [242].
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19.4 Dynamics of Polarization Relaxation in

Biomaterials

In order to study relaxation of polypeptides and

DNA in solution, we first consider the simplest model

of a dipolar rigid rod.

The torque on an electric dipole moment p is

(154)

For cases where the dipole moment is perpendicular

to the rod axis, rotations about the major axis can occur.

The longitudinal rotation relaxation time for a molecule

of length L is given in [247]. The relaxation time varies

with the molecule length. Major axis rotation could

occur if the molecule had a transverse dipole moment;

for example, in a single strand of DNA.

When the dipole moment is parallel to the major

axis, end-over-end rotation may occur. This is the type

of relaxation at low frequencies that occurs with the

induced dipole moment in the counterion sheath or a

permanent dipole moment parallel to the longitudinal

axis of the molecule. The relaxation time varies as L3.

Because length of the molecule and molecular mass are

related, the responses for the two relaxations depend on

molecular mass. Also, the model presented in this

section assumes the rod is rigid. In reality, DNA is not

rigid, so a statistical theory of relaxation needs to be

applied [247-249].

Takashima [98] and Sakamoto et al. [243] have

derived a more comprehensive theory for counterion

relaxation and found that the relaxation time varies in

proportion to the square of the length of the molecule

[249, 250]. Most experimental evidence indicates a L2

dependence. This is in contrast to the rigid-rod model

where the relaxation time varies as L3.

19.5 Counterion Interaction With DNA and Proteins

The real and imaginary parts of permittivity depend

on the concentration and type of cations [250]. As the

concentration of the solvent increases, more of the

phosphate charge is neutralized and the dielectric

increment (difference between the permittivity of the

mixture and solvent by itself) decreases.

Many types of cations compounds have been used

in DNA solvents; for example, NaCl, LiCl, AgNO2 ,

CuCl2 , MnCl2 , MgCl2 , arginines, protamine, dyes,

lysine, histones, and divalent metals such as Pb, Cd, Ni,

Zn, and Hg [243, 251-253]. The simple inorganic-

monovalent cations bind to the DNA molecule near

the phosphate backbone to form both a condensed and

diffuse sheath. There is evidence that strong concen-

trations of divalent metal cations destabilize the DNA

helix [254]. Sakamoto et al. [252] found that the dielec-

tric increment decreased for divalent cations.

On the other hand, histones and protamines tightly

bind in the major groove of the DNA molecule. They

produce stability in the double helix by neutralizing

some of the phosphate charge. Dyes can attach to DNA,

neutralize charge, and thereby decrease dielectric

increment.

20. Methods for Modeling Electro-
magnetic Interactions With Bio-
molecules, Nanoprobes, and
Nanowires

Modeling methods for EM interactions with materi-

als include solving mode-match solutions to Maxwell’s

equations, finite-element and molecular dynamics 

simulations, and finite-difference time-domain models.

Finite-element modeling software can solve Maxwell’s

equations for complicated geometries and small-scale

systems.

Traditionally, mode-match solutions to Maxwell’s

equations meant solving Maxwell’s equations in each

region and then matching the modal field components

at the interfaces and requiring, by the boundary

conditions, all the tangential electric fields go to zero

on conductors. On the nanoscale, the microwave and

millimeter wavelengths are much larger than the

feature size; the skin depths are usually larger than the

device being measured. Therefore modes must be

defined both outside the nanowire and inside the wire

and matched at the interface. Also, the role of the near

field is more important.

The EM model for a specific problem must capture the

important physics such as skin depth, ballistic

transport, conductor resistance, and quantized capaci-

tance, without including all of the microstructural

content. Modeling nanoscale electromagnetics is

particularly difficult in that quantum effects cannot

always be neglected; however, the EM field in these

models is usually treated classically. In the case of near-

field probes the skin depths are usually larger than the

wire dimensions, and therefore the fields then need to be

determined in both the wire and in the space surrounding

the wire. Sommerfeld and Goubau surface waves and

plasmons propagate at the interface of dielectric and

finite conductivity metals and need to be taken into

account in modeling probe interactions. The probe-

material EM communication is often transmitted by the

near field.
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Recently, simulators for molecular dynamics have

advanced to the stage where bonding, electrostatic

interactions, and heat transfer can be modeled, and

some now are beginning to include EM interactions.

21. Metrology Issues

21.1 Effects of Higher Modes in Transmission-Line

Measurements

In this section we describe various common difficul-

ties encountered in measurements of permittivity and

permeability using transmission lines.

The definition of dielectric permittivity becomes

blurred when the particle size in a material is no longer

much smaller than a wavelength. To illustrate this

problem, consider the permittivity from a transmission-

line measurement of a PTFE specimen, which was

reduced using the common Nicolson-Ross method [13]

as shown in Fig. 21. Typical scattering parameters are

shown in Fig. 22. The permittivity obtained from the

scattering data is plotted as a function of frequency. The

intrinsic relative permittivity is seen to be roughly

2.05, the commonly accepted value. However, when

dimensional or Fabry-Perot resonances (see example in

Fig. 22) across the sample occur at multiples of one-

half wavelength, the specimen exhibits a geometrical

standing-wave behavior at frequencies corresponding

to nλ /2 across the sample. So if the sample is treated as

a single particle at these standing wave frequencies,

then the “effective” permittivity from this algorithm is

no longer the intrinsic property of the material, but

rather an artifact of geometric resonances across the

sample. Geometrical resonances are sometimes used by

metamaterial researchers to obtain effective negative

permittivities and permeabilities that produce negative

index response.

Homogeneous solid or liquid dielectric and mag-

netic materials have few intrinsic material resonances

in the RF frequencies. The intrinsic resonances that do

occur are primarily antiferromagnetic, ferromagnetic,

water vapor and oxygen absorption bands, surface

wave and plasma resonances, and atomic transitions.

Dielectric resonances or standing waves that occur in

solid and liquid dielectrics in RF frequencies are

usually either a) geometric resonances of the funda-

mental mode across the specimen, b) an artifact of a

higher mode that resonates across the length of the

specimen, c) resonances or standing waves across the

measurement fixture, or d) due to surface waves near

interfaces between materials.

In the measurement of inhomogeneous materials in a

transmission line or samples with a small air gap

between the material and the fixture, higher modes may

be produced and resonate across the specimen length

in the measurement fixture. For example, in a coaxial

line, the TE0n or TE11 mode may resonate across the

specimen in a coaxial line measurement. These higher

modes do not propagate in the air-filled waveguide

since they are evanescent, but may propagate in the

material-filled guide. Because these modes are not

generally included in the field model, they produce a

nonphysical geometric-based resonance in the reduced

permittivity data, as shown in Fig. 25. These higher

modes usually have low power and are caused by slight

material or machining inhomogeneities. When these

modes do propagate and resonate across the length of

the specimen, it may appear as if the molecules in the

material are under going intrinsic resonance, but this is

not happening. In such cases, if the numerical model

used for the data reduction uses only the fundamental

mode, then the results obtained do not represent the

permittivity of the material, but rather a related fixture
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Fig. 21. Permittivity calculation on a polytetrafluoroethylene

(PTFE) material in a coaxial line that exhibits geometric resonance.

Fig. 22. Scattering parameters |S11| and |S21| as a function of

frequency for nylon in a coaxial line showing one-half wavelength

standing waves.
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specific geometric resonance of a higher mode

(Fig. 25). These resonances are distinct from the

fundamental-mode resonances obtained when the

Nicolson-Ross-Weir reduction method is used [11] in

transmission lines for materials at frequencies corre-

sponding to nλg /2, where n is an integer and λg is the

guided wavelength, as indicated in Fig. 21. The funda-

mental-mode resonances are modeled in the transmis-

sion-line theory and do not produce undue problems. 

However, in magnetic materials where there are both a

permeability and permittivity, half wave geometric

resonances and produce instabilities in the reduction

algorithms [12].

21.2 Behavior of the Real Part of the Permittivity

in Relaxation Response

For linear, homogeneous materials that are relaxing

at RF frequencies, the permittivity decreases as

frequency increases. The permittivity increases only

near tails of intrinsic material resonances that only

occur for frequencies in the high gigahertz region and

above. To show this, we will analyze the prediction of

the DRT permittivity model [90, 212].

We know that the behavior of the orientational polar-

ization of most materials in time-dependent fields can,

as a good approximation at low frequencies, be charac-

terized with a distribution of relaxation times [53].

Typical numerical values of dielectric relaxation times

in liquids are from 0.1 µs to 1 ps.

We consider a description that has a distribution

function y(τ), giving the probability distribution of

relaxation times in the interval (τ,τ + dτ). The DRT

model is summarized in Eq. (69). There are funda-

mental constraints on the distribution y(τ). It is non-

negative everywhere, y(τ) ≥ 0 on τ ∈ [0,∞), and it is

normalized,

(155)

From Eq. (69) we have

(156)

This shows that ε′ is a decreasing function for all

positive ω where the DRT model is valid (low RF

frequencies), with a maximum only at ω = 0. The result

of Eq. (156) holds for any distribution function y(τ).
This model assumes there is only a relaxational

response. If resonant behavior occurs at millimeter to

terahertz frequencies, then the real part of the permit-

tivity will show a slow increase as it approaches the

resonance. In the regions of relaxation response, the

real part of the permittivity is a decreasing function of

frequency. Therefore, ε′(ω) attains a minimum at some

frequency between relaxation and the beginning of

resonance.
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Fig. 23. A typical coaxial line with a specimen inserted.

Fig. 24 Cross-sectional view of a specimen in a coaxial line.

Fig. 25 Higher non-TEM resonant modes in a coaxial fixture and

anomalous behavior of the permittivity.
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22. Permittivity Mixture Equations

We can readily estimate the permittivity of a mixture

of a number of distinct materials. The effective permit-

tivity of a mixture εe f f of constituents with permittivi-

ties ei and volume fractions θi can be approximated in

various ways. The Bruggeman equation [256] is useful

for binary mixtures:

(157)

or the Maxwell-Garnett mixture equation [256] can be

used:

(158)

where ε′1 is the permittivity of the matrix and ε′2 is

the permittivity of the filler [257]. The formula by

Lichtenecker is for a powerlaw dependence of the

real part of the permittivity for –1 ≤ k ≤ 1, and where

the volume fractions of the inclusions and host are

νp and νm :

(159)

This equation has successfully modeled composites

with random inclusions embedded into a host. An

approximation to this is

(160)

23. Discussion

The broad area of RF dielectric electromagnetic

interactions with solid and liquid materials from the

macroscale down to the nanoscale materials was

overviewed. The goal was to give a researcher a broad

overview and access to references in the various areas.

The paper studied the categories of electromagnetic

fields, relaxation, resonance, susceptibility, linear

response, interface phenomena, plasmons, the concepts

of permittivity and permeability, and relaxation times.

Topics of current research interest, such as plasmonic

behavior, negative-index behavior, noise, heating,

nanoscale materials, wave cloaking, polariton surface

waves, biomaterials, and other topics were covered.

The definition and limitations of the concept of permit-

tivity in materials was discussed. We emphasized that

the permittivity and permeability are well defined when

the applied field has a wavelength much longer than the

effective particle size in the material and when multiple

scattering between inclusions is minimal as the wave

propagates through the material. In addition, the use of

the concept of permittivity requires an ensemble of

particles that each have dielectric response.
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