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The Interaction of Waves and Currents 
over a Longshore Bar 
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Abstract 

A two-dimensional model for waves and steady currents in the surf 
zone is developed. It is based on a depth integrated and time averaged 
version of the equations for the conservation of mass, momentum, and 
wave energy. A numerical solution is described based on a fourth order 
Runge-Kutta method. The solution yields the variation of wave height, 
set-up, and current in the surf zone, taking into account the mass flux 
in the waves. 

In its general form any wave theory can be used for the wave prop- 
erties. Specific results are given using the description for surf zone 
waves suggested by Svendsen (1984a), and in this form the model is used 
for the wave motion with a current on a beach with a longshore bar. Re- 
sults for wave height and set-up are compared with measurements by 
Hansen & Svendsen (1986). 

1. Introduction 

On a beach with a longshore bar the wave breaking over the bar is 
usually combined with a net shoreward mass flux which, in a three-dimen- 
sional flow situation, feeds longshore currents. 

Both field observations and experiments indicate that the longshore 
current is much stronger in the shore-parallel channel or "trough" be- 
hind the bar than on the bar itself. Thus for almost shore-normal waves 
the motion over the bar can be nearly two-dimensional, at least till a 
point somewhere around or after the bar crest. 

The net flow over the bar and in the trough behind was studied theor- 
etically by Bruun (1963) and later by Dalrymple (1978), who was able to 
determine the largest possible distance between two successive rip cur- 
rents. A similar analysis was made by Deigaard (1986). These consider- 
ations, however, apply to the creation of the rip over an, in principle, 
uniform and unbroken bar. Once the rip current has established an open- 
ing in the bar the position of the rip is locked to this opening, at 
least over times long enough for the flow pattern to be considered quasi- 
steady. Thus the question becomes: how much water flows over the bar with 
the waves, and how does the net flux influence waves, set-up, etc.? 
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In the present paper we approach these problems theoretically by con- 
sidering the above-mentioned two-dimensional situation of shore-normal 
incident waves and a shore-normal current with discharge Q. In an accom- 
panying paper by Hansen & Svendsen (1986) (denoted by I in the follow- 
ing) this situation is modelled experimentally. The net discharge Q is 
added to the waves well offshore of the slope and runs out through the 
permeable wave absorber which replaces the actual beach. Thus in this 
experiment the longshore flow in the trough is not represented. 

In choosing this arrangement we implicitly assume that in a prototype 
situation the magnitude of Q will be determined by the distance between 
the rips and by the position of our two-dimensional flow section relative 
to the position of the rip currents. 

The mathematical numerical model developed is based on the depth in- 
tegrated, time averaged equations of continuity, momentum, and energy as 
derived by, e.g., Phillips (1977). These equations apply for a very gen- 
eral combination of waves and currents. In the model, the wave properties, 
such as radiation stress, mass flux, and energy flux are represented by 
dimensionless coefficients chosen in a way which makes them depend only 
weakly on water depth, wave height, and wave period. 

The general form of the model allows these coefficients to be deter- 
mined by any chosen wave theory. In the present application, however, the 
coefficients are developed using the description of breaking waves sug- 
gested by Svendsen (1984a). In that paper, and in Svendsen (1984b) and 
Hansen & Svendsen (1984), wave height, set-up, and undertow were analysed 
for breaking waves with no net flow. This is now generalized to include 
the effect of currents following (or opposing) the waves. This also im- 
plies including the effect of the undertow in the wave-current interac- 
tion, although in the present form of the model it is only done in a 
depth-averaged sense. 

Finally is presented a comparison with the experimental results for 
wave heights and set-up over a barred profile described in more detail 
in I. This is combined with a discussion of the inaccuracies in the the- 
oretical approach as revealed by the comparison. 

2. The Basic Equations 

The type of model in question belongs to the group of models which 
consider only the depth integrated equations averaged over a wave period. 
Thus the effect of the waves on the conservation equations is represented 
by depth integrated, time averaged quantities, such as (in the continuity 
equation) the mass (or volume) flux created by the waves, the radiation 
stress, and (in the energy equation) by the energy flux and the mean en- 
ergy dissipation per unit of time and area of the bottom. 

2.1. Conservation of Mass 

Following Phillips (1977) (although with a different notation) we use 
the definitions shown in Fig. 1. An x,z-coordinate system has its origin 
in the undisturbed water surface SWL, and the instantaneous water surface 
elevation r|(x,t) is measured from the local mean water surface MWS so 
that the temporal mean of n is zero. 



1582 COASTAL ENGINEERING-1986 
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Figure 1.  Definitions used. 

The horizontal particle velocity u(x,z,t) is divided into two parts 
u^ (wave) and U (current) defined so that 

u = u (x,z,t) + U(z)   ;   u = 0 (2.1) w '        w *   ' 

where — means average over a wave period. 

We define a depth mean value of U(z) by 

1 lb+n 
U = -    U(z)dz 

~hn 
(2.2) 

and the volume flux due to the wave part u of the motion then becomes 

rb+n 

" J-h.Uw 
dz 

•b+n 
u dz 
w 

\ 

(2.3) 

where n^  is the (negative) surface elevation in the wave trough. The 
total mean volume flux Q can then be written 

,b+n 

J. u dz = Q Uh (2.4) 
h„ 

Eq. (2.4) is the equation for the conservation of mass. 

2.2. Conservation of Momentum 

In the present study we will consider only the quasisteady problem 
of a time-independent current. We also assume that in the depth-inte- 
grated and time-averaged momentum and energy equations U(z) can be re- 
placed by U. We can then use the momentum and energy equations given 
by Phillips (1977). 

Following Phillips we define the radiation stress by 

*) Notice that this definition of Qs differs slightly from that by 
Svendsen (1984b), who used u instead of u in (2.3). 
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S
xx=   I        PK-w^dz+fpg^--^ (2-5) 

•'-ho 

where w is the vertical velocity, and ' in S'  indicates the inclusion of 
the Qs-term. This term is actually 0(H"), which is small in ordinary Stokes 
waves, and it was omitted by Mei (1983). I turns out even in surf zone 
waves, where H/h = 0.6, to be rather unimportant. 

With these definitions and simplifications the horizontal momentum 
equation can then be written in the following form 

-f- | p22+ s' 1 + pgh ^ + 7 = 0 (2.6) 
dx [ h   xx J   ^  dx   b 

which, except for the -F^-term, is the same as Phillips' expression (3.6.11). 

2.3. Conservation of Energy 

We define the energy flux E^ due to the waves only by 

Jo+r] 
=
  J\  {

P
D 

+
 I 

p(U
w 

+
 
w2)

} 
U
w 

dZ Ef = I    {^ + 5  p(u2 + w2)|> u, dz (2.7) 

where p^ is the dynamic pressure defined as 

PD = P + P9(z -b) (2.8) 

The energy density E in the waves is 

•b+n. 

2 HV"w ' • '"' ' 2 
1 p(u2 + w2)dz + i pgTf (2.9) 

'"ho 

and the total mean dissipation per m2 bottom and per second is termed«. 

The energy equation for the wave motion then becomes 

f fE_ + UE - f pof^yi + s- f -  T- U = » 
dx [ f      2 *\ h J  )   xx dx   b (2.10) 

This form also corresponds to Phillips' Eq. (3.6.19) except for the 
term TbU, which is the dissipation at the bottom due to.the current*'. In 
the surf zone, however, this contribution is very small relative to the 
total dissipation 9, and hence we shall omit it in the numerical compu- 
tations. S}  also includes the dissipation in the bottom boundary layer 
due to the oscillatory motion, and also that contribution will be ig- 
nored in this paper. This implies thatS  simply is assumed to equal the 
breaker disspation. 

The two equations (2.6) and (2.10) may be considered generalised 
versions of the momentum and energy equations often considered in the 
surf zone 

ds         . dE£ xx       db - f  a , _ ,. . 
—-— = - pgh -:  T, ,    —— = X                                                          (2.11) 
dx      ^ dx b dx 

*) See Christoffersen & Jonsson (1980). 
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Like these two equations, (2.6) and (2.10) can be solved for b and H2 

provided the wave properties are described in terms of h, b, and H2. 
Notice, however, that since 

h = h0 + b (2.12) 

even Eqs. (2.11) are complicated. 

3. Diraensionless Wave Quantities 

As mentioned in the introduction the wave quantities Q„, S' , E^, 
and E must all be determined by some wave theory- This also applies to 
the energy dissipation f)  and the mean bottom shear stress TL. To facili- 
tate a rational approach to this problem we define dimensionless forms 
of these quantities. 

For Qs, S^x, Ef, and E we introduce the following dimensionless quan- 
tities 

BQ = Qsh/CrH2 (3"1) 

P' = S^/pgH2 (3.2) 

B = Ef/pgcH
2 (3.3) 

BE = E/pgH
2 (3.4) 

We see that for linear theory these four quantities would depend 
only on h/L (L being local wave length defined as cT). In nonlinear 
waves, and particularly breaking waves, the dimensionless quantities 
will depend also on the wave height, but only weakly so. 

The energy dissipation * is non-dimensionalized by defining D as 

D = 4 hT /pgH3 (3.5) 

which is inspired by the idea that the dissipation in breaking waves 
resembles that in a bore. 

The same definitions (except Bg) were used by Svendsen (1984a), who 
suggested simple expressions for their form for surf zone waves. Before 
actually limiting the computations to a particular way of describing 
the breaking waves we first develop the numerical scheme used for the 
solution. Thus in the following we simply assume that 

(B , P\ B, B£, D) = f(x) (3.6) 

where f(x) includes dependence on wave height H, set-up b, and more de- 
tailed wave properties such as shape of surface profile, velocity, and 
pressure distributions, etc. Hence also results for linear theory could 
be used (although it may not be expected to represent the wave details 
well) . 

In the present formulation of the problem we consider Q as known 
(equal to the discharge supplied by the pump). Hence the net current vel- 
ocity U can be determined from the continuity equation (2.4) as 
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Q-SL 
(3.7) 

The mean bottom shear stress T^ will be discussed in Sect. 6. 

4. The Numerical Procedure 

Christoffersen & Jonsson (1980) showed that for Stokes waves the en- 
ergy equation for the wave motion corresponding to (2.10) can be written 
as an equation for conservation of wave action, namely for the steady 
case considered here as 

_d_ f J_ 
dx l^oo 

(U + c  ) 
gr 

U 
= 0 (4.1) 

where c  is the Stokes group velocity. This version of the energy equa- 
tion, however, was derived utilizing the special properties of linear 
waves and hence cannot be used for the general nonlinear waves considered 
in this paper. We therefore choose to solve (2.6) and (2.10) directly 
for b and H2 respectively. 

The numerical solution is obtained by a fourth order Runge-Kutta 
method. This requires that the two differential equations (2.6) and 
(2.10) with (3.1) through (3.5) substituted are written on the form 

i=fb(*,b,H*) 
dH2 

dx 
= f„(x,b,H2 

n 
(4.2) 

Since, however, the dimensionless coefficients in general are unknown 
functions of b and H2 the form (4.2) cannot be obtained in a strict 
manner. 

We therefore utilize the assumption that the dimensionless coef- 
ficient depends only weakly on H. To further simplify the problem we 
also assume that the additional terms in (2.6) and (2.10) due to the 
current are small too. For the numerical computations we therefore iso- 
late db/dx and dH2/dx from the main terms in (2.6) and (2.10), that is 
the terms included in (2.11). We then accept that derivatives of the di- 
mensionless coefficients, the current, and the Q -terms contain db/dx 
and dH2/dx. In the computations these db/dx and dH2/dx are then evalu- 
ated only at each grid point, not at intermediate points in each inte- 
gration interval as the Runge-Kutta method prescribes. 

The equations for db/dx and dH2/dx derived according to these as 
sumptions may be described by introducing the following definitions 

a    = c //gh 
r 

D SiS L^ 
h h 4T a/g/h B   P9cB 

(4.3) 

(4.4) 

fi £Lh -Js. 
gh3 x  pgh HI) (4.5) 

s-  *] _ _d_ 
xx dx  dx 

(EU) 
(4.6) 
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We then get: 

db 
dx 

=
 

F
b 

dx 
=
  

F
H 

(4.7) 

(4.8) 

where 

P'  B   .   h 

1
   2 

p
 UJ 

P1        I p    B   -  „ , 
F, = - —  i 7-V2 <  + fl (4.9) 

^h    F, ,.   B 
D " [%— 

+
 -) 

+ T> + 9i F
H = 

D
' " N— 

+
 —I 

+
 — !

H
 

+
 9i <

4
-
10

> 

fx and gx represent the small terms mentioned above. We see that, in 
addition to contributions that vanish with the net flow Q, there are 
terms associated with T^ or U which for Q = 0 represents the undertow. 
Except for the i^-term all these terms are calculated by differentiating 
analytically the expressions given in the following Section 5. In the com- 
putations we assume that dB0/dx = da/dx = 0 (see I), and for computation of 
b +, and H^+» at points x +,, fl  and gx  are evaluated only at x . 

The fourth order Runge-Kutta scheme for two simultaneous equations 
is given in, e.g. Hildebrand (1974, 2nd ed.) p. 291. 

5. Determination of the Wave Quantities 

The mathematical-numerical description presented so far does not pre- 
sume anything about how the wave properties Qs, S' , E^, E, and 9)  are de- 
termined. As mentioned a description of the phase motion of the waves 
must be involved, and most often sinusoidal waves have been used to de- 
termine the radiation stress and the energy flux for a wave with a given 
height and period. Examples are Huang & Wang (1980), Dally et al. (1984), 
Izumiya & Horikawa (1984). But also solitary waves and cnoidal wave the- 
ory have been used. 

For the present applications we determine Q , S' , E^, and E by using 
the model for surf zone waves suggested by Svendsen (1984a). 

The basic assumption is that the actual horizontal particle velocity 
in the oscillatory motion shown in Fig. 2a can be approximated by a con- 
stant velocity u0 everywhere except in the surface roller (Fig. 2b). 
Here the velocity is assumed to be equal to the phase velocity c, since 
the roller represents a body of water which is carried with the wave. It 
is furthermore assumed that the pressure is hydrostatic. 

Following Svendsen (1984a) we also assume that u can be approximated 
by 

u * c n/h (5.1) 
w   r 

where c  is the wave speed relative to the water. 
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Figure 2.  Actual and assumed velocity profiles. 

The inaccuracies this leads to are analysed in some detail in I. 

c , U, and the wave speed c observed from a fixed point are related 
by 

+ U (5.2) 

From the definition (2.3) for the volume flux Q due to the waves we 
then get the following for BQ (defined by (3.1)) 

Q 

where 

B„ 

B„ + B_ 2h 

(3J 
B  = — — 
r  H2 gT 

(5.3) 

(5.4) 

(5.5) 

Here A is the vertical cross-sectional area of the roller. Svendsen 
(1984a) found A/H2 ~ 0.9. T is the relative wave period which is related 
to the absolute period Tg through (5.2) by L = c T  = c T . (Notice 
that owing to the different definition of Q , the result for Qs differs 
by a factor h/d^ from the result given by Svendsen (1984b). dt is the 
water depth under the wave trough, Fig. 1.) 

Similarly, we get from the definition (2.5) 

••a * a * •. - a*)* 
(2.7)   yields  for B 

B = + K 
and finally, (2.9) yields 

c2 

BE = \  M
1
 
+
 t)  

+
 
B
r} 

(5.6) 

(5.7) 

(5.8) 
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Equations (5.3) - (5.8) together with (3.1) - (3.4) determine Q , 
Sxx' Ef' and E ^

n
  
the momentum and energy equations ((2.6 and (2.10) re- 

spectively) for a wave of given height H and phase velocity c at depth h. 

As in Svendsen (1984a) we will assume that a in (4.3) is constant 
throughout the surf zone. This is further discussed in I. An alternative - 
and perhaps more natural - choice would be to assume that c equals the 
speed of a bore with height H. However, in I it is found that the dif- 
ference is small, and a constant is much simpler to use in the deriva- 
tions. 

Following Svendsen (1984a) we assume that the energy dissipation 
can be determined as the dissipation in a bore of the same height as the 
wave. This results in 

t c 

where dt and dc are instantaneous water depths below the wave trough and 
the wave crest respectively. In establishing this analogy to the bore 
it is assumed that adding a uniform current to the wave or the bore 
does not change the breaking process. Therefore, the phase velocity in 
(5.9) is the relative velocity c . 

Eq. (5.9) is substituted into the definition (3.5) and we utilize 
that (5.2) implies 

Tr = Ta(1 + U/ccrl (5-10) 

This then yields 

D = - did" rrivc- <5-
n) 

t c      r 

This expression illustrates that for a current U > 0 following the 
wave the dissipation decreases relative to a wave of the same absolute 
period T and vice versa for a wave on an opposing current, as one would 
expect from the corresponding change in wave steepness. 

6. The Mean Bottom Shear Stress 

The mean bottom shear stress T^ occurs in the time-averaged momentum 
equation (2.11). Svendsen et al. (1987) showed how x^ can be determined 
from the undertow, which is patched to the flow in the (oscillatory) 
bottom boundary layer to satisfy the no-slip condition at the bottom. 
This implies that to determine T^ we must first determine the velocity 
distribution over depth of the undertow (which here means the current 
velocity profile U(z)). Their results for t^ are equivalent to 

7, = ~  pf u ,  U, (6.1) 
b  2  w wbm b 

where f  is the wave friction factor, uw^  is the particle velocity am- 
plitude at the bottom, and UV the current velocity at the bottom (i.e. 
outside the boundary layer). 
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In the present version of the model we will approximate (6.1) by 

T, = i pf u ,  U (6.2) 
b  2  w wbm 

(U given by (2.2)). As the measurements in I show, this is not always a 
good approximation and may for small U even lead to (small) -r^ values 
of the wrong sign. The total error on b, however, is estimated not to 
exceed 20% of this already very small contribution (in numbers less 
than 0.2-1.2 mm of a total set-up of -15 mm for the experiments in I). 

For uwk we have used the forward velocity amplitude 

nc H ,c   „ u ,  = c — - (6.3) 
wbm    H h 

and f  is found from Jonssons's diagrams to be -2-10"2. 

7. Comparison with Experimental Results for Waves and Currents Over a 
Longshore Bar 

Numerical experiments have been carried out with the model for the 
wave-current flow over the longshore barred profile investigated experi- 
mentally in I. 

In these experiments the still-water depth h0 is given by (all units 
in m) 

x < 14.78 h0 = 0.340 

14.78 < x < 22.96 h0 = 0.340 - (x - 14.78) • 0.0280 

22.96 < x h0 = 0.0705 + (X - 25.70)2 • 5.53 10"3 

This corresponds to a plane bottom with slope hx = 0.0280 = 1 : 35.7 
between x = 14.78 and x = 22.96, succeeded by a parabola with summit 
(bar crest) at x = 25.70. 

The numerical experiments described here were made with the following 
(fixed) parameter values (see I): 

ft/H2 = 0.9 Bo = 0.090 

n /H = 0.60 c a = 1.0 

Ax  =0.1 

Formally, A/H2 represents the roller, and the value of 0.9 was ob- 
tained from deep water measurements (see Svendsen, 1984a). 

The choice of B0 constant and a = 1 may be refined on the basis of 
the experimental results in I. The formulas for the coefficients show 
that changes in B0 or a will effect results in much the same way. 

The discussion is mainly restricted to the wave height and the set- 
up variations. Fig. 3 shows a comparison of wave heights for the four 
Q-values for which measurements are reported in I, and Fig. 4 shows the 
set-up. Two sets of computations are shown: 
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Figure 3. Comparison of measured 
and computed wave heights. 

Figure 4. Comparison of measured 
and computed set-up values. 
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a) Computations starting at hQ = 0.8 hQg. This point was found by 
Svendsen (1984a) to correspond to the end of the transition region, in 
which the collapse of the wave creates an almost constant S  in spite 
of the decrease in wave height. 

b) Computations starting from the breaking point. In this case the 
dissipation has artificially been made to grow gradually from 0 at the 
breaking point and asymptotically approach the value given by (5.9). 
The expression used is 

0: = tanh(o.4^-^)0 (7.1) 
oB 

which implies that at a distance of five times hoB 9}  has reached 96% of 
the full value. This modification does not model the simultaneous tran- 
sitions in S'  and Ej, and hence (7.1) is combined with the assumption 
b = 0 in x„ < x < xt (x^. representing the transition point) . For a more 
detailed discussion of the transition region reference is made to Basco 
(1986). 

7.1. General Comparison 

It is seen from Fig. 3 that the wave height variation is quite accu- 
rately predicted by the model with a slight tendency to too low values. 
It may also be noted that, in spite of the fact that computation a) 
starts at the transition point with a wave height which is somewhat dif- 
ferent from the height obtained by computation scheme b) at that point, 
the wave heights obtained near the bar crest by the two schemes are 
nearly the same. 

Also the set-up values over the bar crest are in reasonable agree- 
ment with the measurements, whereas there is a general tendency to too 
high b-values in the region between the transition point and the bar 
crest. In particular, it is noticed that immediately after the transi- 
tion point the computations have db /dx significantly larger than the 
measurements. 

As should be expected, the set-up variation depends strongly on the 
wave heights. This can be seen by comparing the set-up variations from 
a) and b) in the four cases and noting that in some cases the wave 
heights from computation b) are larger than those from a), in some not: 
the computed set-up variations follow the same pattern. The coupling 
from set-up to wave height is simply represented by the fact that the 
set-up represents an increase in depth, which for sufficiently small h0 
may be appreciable. 

7.2. The Influence of the Currents 

The computations all use measured values of H and b as initial values, 
and it is seen that in the experiments there are small differences in 
the mean water level at the breaking point for the four cases. These 
are caused by small variations in the total amount of water in the flume 
required to obtain the same mean water depth with the current only. 
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Computations with the model show that these small differences in the 
mean water depth do not influence the wave heights and the set-up in the 
region studied. Therefore, we may get an estimate of the actual effect 
the current has on the set-up by comparing the set-up variations rela- 
tive to a common starting point. This is done in Fig. 5, which also shows 
the wave height variations (see also I, Table 2). 

Both wave height and set-up are seen to be almost unaffected by the 
current. 

Figure 5. Wave heights (a) and set-up (b) measured 
for four different values of Q. 

From these results one might jump to the conclusion that the currents 
have only a negligible effect on the wave conditions. A closer inspection 
and numerical experiments show that this is too much of a simplification. 
The extra terms in the equations are important. They just happen nearly 
to balance each other for the conditions studied. 

For the wave heights the behaviour is quite different from a situation 
with non-breaking waves. The mechanism seems to be that an increase in 
wave height will also cause an increase in the dissipation and in the 
energy flux. Hence there is a strong conservatism built into the system 
at this point, as computations a) and b) also indicated. 

For the set-up the mechanism is different: There is no stabilizing ef- 
fect which parallels that of the dissipation. It is found that the inter- 
action terms in the momentum equation decrease the set-up slightly for 
all Q-values, and the bottom shear stress amplifies this by causing a 
similar decrease in the set-up (up to about 1.2 mm for Q = 8 £/s). A some- 
what stronger effect, however, of the current is caused by the (seeming- 
ly) small changes of the wave height described above. That this is the 
case can be verified in the numerical model by running experiments with 
the current effect suppressed in one equation and not in the other. 

It is particularly interesting to notice that the total set-up Ab at 
the bar crest measured relative to the water level at the breaking point 
varies only slightly with the current condition. The measured and com- 
puted values are shown in Table 1 below. Considering the many approxima- 
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tions which the model represents, the very good agreement with the measured 
values for Ab must be considered fortuitous, as is also suggested by the 
deviations for the set-up at other x-values. 

Notice that the integrated effect of Tr changes sign when the current 
increases. This is because shortly after breaking the undertow dominates 
the (nearbottom) flow (7, < 0). For large values of Q this situation is 
reversed further shorewards for continuity reasons. 

Table 1.  Total difference Ab between water level at breaking and over 
the bar crest. 

Discharge Q (8./s) Computation b), 
7b = o 

Computation b), 
7b from (6.2) 

Measured 

0 1.52 cm 1.57 cm 1.55 cm 

2.5 1.52 cm 1.51 cm 1.61 cm 

5 1.49 cm 1.43 cm 1.42 cm 

8 1.39 cm 1.27 cm 1.45 cm 

7.3. Inaccuracies in the Predicted Set-Up 

The set-up is a direct measure of the variation in shore-normal radi- 
ation stress, and the variation of the radiation stress in general is 
closely associated with the generation of surf zone currents (also in 
the 3D case). It must therefore be considered an essential condition for 
a surf zone model that it is able accurately to predict the set-up. At 
the same time, the set-up is fairly easy to measure and hence a conveni- 
ent quantity to test models against. 

As mentioned earlier Fig. 5 shows that for all Q-values there is a 
tendency that the model overestimates the growth rate of the set-up im- 
mediately after the transition point (where the momentum equation is 
switched on in the computations). This inaccuracy was not observed when 
a model based on the same principles (but without a current) was ap- 
plied to waves on a plane slope (Svendsen, 1984a). Although the general 
agreement with measurements might be considered acceptable, and better 
than other surf zone models, the deviation in db/dx is important. It will 
cause rather significant discrepancies when db/dx is applied as input 
for determination of the vertical velocity distribution for the current 
(see, e.g. Svendsen et al., 1987). 

A closer analysis of the situation in the region around the transition 
point indicates that a major reason for the deviations is related to the 
abrupt switch between S'  constant in the transition zone and the rapid- 
ly changing S'  following from the bore description for the inner region. 
In real waves this transition will of course be gradual. 

8. Conclusions 

A two-dimensional model for the wave-current interaction in the surf 
zone has been established. It is based on depth-integrated time-averaged 
equations of continuity, momentum, and energy. As a description of the 
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breaking waves is used a generalized form of the method developed by 
Svendsen (1984a). In principle, however, any wave theory can be used for 
determination of the coefficients describing the wave properties in the 
model. The effect of the bottom shear stress is included. 

Numerical results for wave heights and set-up are compared with measure- 
ments for a bar-type profile. In general, the agreement is found to be 
quite good although there is a region shortly after the transition point 
with less accuracy for the set-up. 

Finally, the effects of the different elements of the model are dis- 
cussed. 
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