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The thermodynamics of stressed crystals that can change phase and composition is examined with particular 

attention to hypotheses used and approximations made, Bulk and surface conditions are obtained and for each 

of them practical expressions are given in terms of experimentally measurable quantities. The concept of 

open-system elastic constants leads to the reformulation of internal elastochemical equilibrium problems into 

purely elastic problems, whose solutions are then used to compute the composition distribution. The atmosphere 

around a dislocation in a cubic crystal is one of several examples that are completely worked out. The effects 

of vacancies and their equilibrium within a solid and near surfaces are critically examined, and previous formulas 

are found to be first order approximations. Consequences of the boundary equations that govern phase changes 

are studied with several examples. Finally, problems connected with diffusional kinetics and diffusional creep are 

discussed. 
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Introduction 

The literature of the thermodynamics of solids spans 

more than a century and has appeared in many fields. It 

has been marked by long controversies, some even re

garding the very existence of equilibrium under condi

tions of nonhydrostatic stress. The resulting concepts 

and relations have been used in applications to global 

equilibrium problems, and as local equilibrium condi

tions in nonequilibrium problems of diffusion, creep, 
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electrochemistry, and phase changes. The formulations 

have been gradually generalized to include multi

component anisotropic solids, containing vacancies and 

other defects, that are nonhYdrostaticalIy and non

uniformly stressed. Considerable attention has been 

given to multi-phase systems and to conditions of equi

librium at interfaces between phases that are in mechan

ical and thermal contact, that can exchange matter and 

under conditions of slip or no slip (incoherent and co

herent, resp.). In view of the importance of the field, a 

clarification of the controversies seems in order. 

Thermodynamics lends itself to many formulations 

based on different definitions, conventions and no

tations. When properly done, all these formulations 

should identify the same measurable quantities and give 

identical relationships among them. Discrepancies arise 

when the formulations differ in assumptions made about 

the behaviour of matter. There are also many sim

plifications that may not be valid or necessary. Invalid 

assumptions have been made about the laws of 
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thermodynamics and about the conditions for equi

librium. We will examine the main formulations for their 

assumptions to find their range of validity. Whenever 

possible we will identify the most general formulation 

and show how the other formulations follow as special 

cases, compare predictions, and identify sources of dis

crepancies. But since general formulations are often 

more cumbersome to apply, we will examine a set of 

simple applications to display how one uses the main 

results in this field. 

It may be worthwhile to categorize broadly the main 

controversies and to illustrate with one simple example 

how they arise. These center around: 1) the question of 

the existence of equilibrium if diffusion is permitted; 2) 

the various methods of distinguishing solids from fluids 

in a formulation, these involving models of solids and 

constraints on the variations that can occur in solids; 3) 

the definitions of chemical potential of species inside 

solids, since in some formulations one cannot arbitrarily 

add atoms to the interior of a crystal without removing 

other atoms or destroying vacancies; 4) how one formu

lates the conditions for equilibrium when the familiar 

minimum Gibbs-free energy which works only for con

stant hydrostatic pressure is inapplicable, and when so 

many different chemical potential conventions have 

been proposed; and 5) clear distinctions between the 

accretions that can occur at surfaces and at interior de

fects, such as climbing dislocations, and the addition of 

atoms to sites inside of crystals. 

In addition, there are a variety of simplifications with 

obvious limitations on the applicability of the results. 

Among them is one, homogeneity, which has led to 

major misconceptions. Many situations will lead to ho

mogeneous systems at equilibrium, but if one requires in 

tests for equilibrium that all variations keep the system 

homogeneous, one may constrain the system unneces

sarily. 

With these controversies in mind, let us examine the 

simple example of a solid cylinder containing one or 

more components and a straight axial dislocation. Let us 

first ignore surface effects and let the cylinder be infinite 

in all directions. Let there be no restriction on diffusion. 

If the solid is crystalline, an equilibrium will be reached 

with the dislocation retained in which the solid is het

erogeneously and nonhydrostatically stressed. If the 

solid is multi component, it will also be compositionally 

heterogeneous. The system can reach an equilibrium 

which of course means that all diffusional flow has 

ceased, in spite of the shear stresses and the hetero

geneity. 

If the cylinder had been a highly viscous liquid in 

which the dislocation had been introduced by a cutting, 

displacing, and welding procedure, the dislocation 

would disappear on annealing. Equilibrium would not 

be compatible with shear stress or heterogeneity. It is 

apparent that crystallinity imposes restrictions on the 

variations that lead to a different type of equilibrium. 

Even in a one component solid, there will be a gra

dient in the Helmholtz-free energy density at equi

librium. Any definition of a chemical potential, which 

for a one-component system reduces to the local free 

energy per atom, cannot subsequently be used by asser

ting that such chemical potentials must be constant at 

equilibrium or, if not constant, will lead to diffusional 

fluxes. Care must be exercised in the definition of chem

ical potentials in one or multicomponent systems to en

sure that they are useful. 

The constraint which crystallinity imposes in this ex

ample is that some of the atoms cannot be moved at will 

without a counterflux of some other species, including 

vacancies, to take their place in the crystal structure. At 

the surface and at the core of dislocations capable of 

climbing, this constraint does not apply and atoms can 

be inserted or removed at will. 

To illustrate the importance of separate equilibrium 

conditions at surfaces, let the cylinder in our example 

have a finite radius and permit surface rearrangement. 

An equilibrium shape could be reached where transfer 

of small amounts of any species of atoms from one sur

face location to another does not change the appropriate 

free energy. This would be a thermodynamically sta

tionary state in which all fluxes would cease, but it 

would be metastable or possibly unstable equilibrium 

because moving the dislocation out of the cylinder 

would lead to a lowered energy. 

2. What Is a Solid? 

Formulations of thermodynamics differ considerably 

in how the essential aspects of solidity are represented 

mathematically. Many authors purporting to deal spe

cifically with solids reach conclusions that are the same 

as for very viscous liquids that may take a long time to 

reach an equilibrium that does not support shears. 

Various models, composed of springs and dashpots, 

have been proposed to represent the viscoelastic behav

ior of matter. Whereas the Maxwell model creeps con

tinuously under load, the Meyer-Kelvin-Voigt [1]1 solid 

reaches a mechanical equilibrium when the load is en

tirely carried by the spring. The elements of these solids 

do not dissolve or diffuse, and Gibbs [2] devised a model 

of a solid that did both. 

Gibbs introduced the idea of a solid component which 

does not diffuse. Like Mayer-Kelvin-Voigt's solid, it 

I Figures in brackets indicate literature references at the end of this 

paper. 
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can deform elastically but it always retains its con

nectivity. In addition Gibbs considered surfaces, where 

he did permit the solid to grow by accretion or to shrink 

by vaporization, to melt or to dissolve into contacting 

fluids. He also incorporated the concept of a fluid com 

ponent which can diffuse and distort the solid. He fully 

developed the thermodynamic properties of such a 

solid, including its equilibria, and revealed a variety of 

surprising properties. Since the solid component was 

not involved in any chemical variations except at the 

surface, there was no need to define a chemical potential 

in the solid. When the solid was equilibrated with a 

fluid, the chemical potential of this solid component in 

the fluid was readily calculated. One important result 

was that the chemical potential in the saturated fluids in 

contact with a homogeneously stressed solid depends on 

the orientation of the surface. There is thus not only no 

need to define a chemical potential of the solid com

ponent, but it does not seem to be definable. The fluid 

component on the other hand has a defined chemical 

potential that is constant at equilibrium throughout all 

phases even if they are heterogeneously stressed. Gibbs' 

solid is therefore quite active chemically and yet it is 

different from a fluid. The key was the solid component. 

Even though this component can dissolve, essential 

solid properties are obtained. 

Gibbs was strongly influenced by the law of definite 

proportions and required his solid component to be a 

single element or a stoichiometric compound. If it was a 

compound, the chemical potential in the saturated fluids 

is calculated even if the compound dissociates or reacts 

with the solvent. Modern examples of Gibbs solids are 

polymer fibers which also can absorb solvent molecules, 

and silicate glasses in which the silicate network is the 

solid component while modifier ions can diffuse about. 

A very good example of the kind of equilibrium Gibbs 

was able to calculate is the bending of a damp wooden 

beam in which the water redistributes at equilibrium and 

affects the compliance. Li, Darken, and Oriani [3] 

pointed out that mobile interstitials in metals at tem

peratures where the substitutional atoms did not move 

was a valid metallurgical example of a Gibbs solid with 

a fluid component. An example of the equilibria of a 

dissolving Gibbs solid occurs in stressed electrodes. The 

equations predict the effect of elastic stress on the elec

trode potential [4]. 

Solid state diffusion of every component is counter to 

the strict definition of Gibbs' solid component. As a 

result most thermodynamic formulations that permit un

restricted diffusion to take place do not ascribe to the 

solid any property that differs from a viscous fluid. As 

the example in the introduction points out, unrestricted 

diffusion consistent with our knowledge of the solid 

does permit new kinds of equilibria. 

Gibbs' solid component, because it did not diffuse, 

served as network for defining displacement and hence 

strain, as well as the local composition of the fluid com
ponent. The local energy and entropy density were 

functions of the local strain and composition. What was 

needed was a network which continued to define un

ambiguously the same place in the solid even if all atoms 

were capable of diffusing. In crystalline structures, the 

lattice serves this function, and a thermodynamics has 

been developed. Robin [5] has simply let the lattice itself 

be the solid component, and has found that "component 

differences" become the exact analogues of Gibbs' fluid 

components. Instead of modifying Gibbs' concept we 

have defined a network solid as one in which there is an 

unambiguous method of locating the same place after 

diffusion, and where the thermodynamic properties are 

functions of the strain and local composition defined by 

this network [6]. Gibbs solid component is one example 

of such a network; the lattice is another example. 

Most of our work has been with simple crystal struc

tures in which there is one type of substitutional site and 

one type of interstitial side. Atoms ofa given species are 

assumed to be either substitutional or interstitial. The 

substitutional sites served as a network. Bravais solids 

where lattice sites are occupied by substitutional atoms 

are an example. Recently attention has focused on spe

cies which could occupy both interstitial or substi

tutional sites [7], and this has led to the generalization of 

structures in which many different sites are occupied in 

a unit cell and where a particular species can occupy 

several sites. One can even include the case where no 

species occupies the origin in the unit cell which serves 

as network marker. 

In crystal structures, the network imposes what we 

have called the network restriction. A site exists, regard

les of the species that occupies it, or even if it is empty. 

Atoms exchange among sites 

(2.1) 

where I and J are different types of sites: Sites that are 

mostly filled are occupied by what are called substi

tutional atoms, while sites that are mostly vacant are 

occupied by what are called interstitial atoms. 2 

'The term interstitial compound is an unfortunate term in which the 

interstitials are merely small atoms fully occupying a site in the struc

ture [8]. The usual definition of interstitials, that these are atoms oc

cupying sites that are mostly empty, has important consequences in 

thermodynamic formulations. An empty substitutional site is called a 

vacancy, while empty interstitial sites are usually ignored, since their 

concentration or activity in, e_g., the law of mass action, hardly differs 

from unity. 
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Vacancies are capable of diffusing or reacting with 

atoms on other sites. Letting B be a vacancy, (2.1) be

comes 

(2.2) 

where I and J are different sites. If I is an interstitial site, 

this can also be written 

(2.3) 

One of the main results of the network restriction is 

that there is no need to define separate chemical poten

tials of individual network species. Within the crystal 

only their differences are ever needed. 

The network is unambiguously defined only as long as 

the structure is not severely distorted. The network can 

be modified at surfaces and dislocations and these have 

led to special equilibrium conditions. Of particular inter

est is the fact that there are differences between solid

fluid interfaces and solid-solid interfaces regarding equi

librium c~mditions. Two types of solid-solid boundaries 

have been treated [10]: incoherent interfaces where 

there are two independent networks with no re

lationship between them and coherent interfaces where 

there is an exact correspondence between network sites 

in the two crystals, and a connectivity across the inter

face that survives the distortions of a phase change that 

transfers sites from one crystal to the other. Thus many 

restrictions in Gibbs' solid have been eliminated. Mod

ern understanding of solid solutions, crystalline defects, 

and diffusion have been incorporated. In addition, solid

solid equilibria, interfaces, and phase changes have been 
considered. 

3. Derivations of Usable 

Equilibrium Conditions 

3.1 Thermodynamic Formulation 

The basic two laws of thermodynamics are quite gen

eral and applicable not only to all equilibrium conditions 

but also in specifying what cannot happen in non

equilibrium conditions. They often are cumbersome to 

use, but from them special conditions have been derived 

(such as constant temperature at equilibrium) that are 

easier to apply. In addition, there are certain restrictions 

or constraints that occur commonly that permit even 

simpler specialized but rigorously applicable procedures 

to be developed. A good example is the Gibbs free en

ergy. Under the special restriction that temperature, 
pressure, and the mass of various species be held con

stant, it can be shown that the laws of thermodynamics 

reduce to the simple condition that the Gibbs free en-

ergy monotonically decreases to a minimum. For these 

common restrictions, it is not longer necessary to start 

from the basic laws. For equilibrium, one begins with 

the minimization of Gibbs free energy knowing that this 

is fully equivalent to the basic laws. The procedure is a 

general one, subject only to the easily verifiable re

strictions on temperature, pressure, and mass. The re

strictions are important. When temperature decreases 

(as in an endothermic reaction held adiabatically), pres

sure increases or mass is added, the Gibbs free energy 

can increase and has lost it usefulness as a simple condi

tion for equilibrium. 

Whenever we encounter new restrictions or con

straints, it is necessary to return to the two basic laws to 
find new conditions for equilibrium that are general, 

subject only to the restrictions or constraints. It is im

portant that the restrictions or constraints are verifiable 

and that they be general enough to include many im

portant situations, but not so general as to lead to cum

bersome conditions. The procedures for finding simpler 

equilibrium conditions subject to new restrictions or 

constraints are straightforward and if done with mathe
matical rigor, need only be done once. Applications 

then follow from these derived conditions. The deri

vation often identifies the useful free energy. It is dan

gerous to assert conditions for eqUilibrium under new 

restrictions (some type of free energy to be minimized or 

some potential to be constant) without a derivation that 

begins with the basic two laws. 

There are various derivations in the literature. They 

differ in the model of "what is a solid" expressed in 

terms of restrictions on possible variations. They also 
differ on whetlier or not they require homogeneity. 

They differ on whether they begin with the basic two 

laws, or with some derived law. 

It is not difficult to start with the basic laws used by 

Gibbs: "For the equilibrium of any isolated system, it is 

necessary and sufficient that in all possible variations in 

the state of the system which do not alter its entropy, the 

variation of its energy shall either vanish or be positive" 

[9, p. 56]. It is quite straightforward to permit the system 

to be heterogeneous. 

Since the general state of a solid is heterogeneous, the 

energy, entropy and mass of its various components will 

be integrals over the volume, and the minimization pro

cedure is done by standard variational calculus. Such a 

formulation permits the solid to change its shape by 

elastic deformation or by a process of network mod

ification which we will call either accretion, dissolution, 

or phase change. 
These methods of variational· calculus were used by 

Gibbs every time the system under· consideration was 

not homogeneous; the influence of gravity [9, p. 144], 
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stressed solids [2], surfaces [9, p. 238), multiphase sys

tems [9, p. 64], etc. A variational statement of the first 

and second laws of thermodynamics for the multi

component network solid has been carried out (6]. It 

very neatly produces all the conditions for 

equilibrium-mechanical, thermal, and chemical-in 

the bulk and at the interfaces. There is usually no need 

to assume linearity, ideality, or isotropy. The derived 

equations identify and define important functions and 

usually can be manipulated to suggest methods of mea

surement. 

The imposed constraints are incorporated into the 

formulation as Lagrange multipliers and this introduces 

quantities which must be constant throughout the sys

tem at equilibrium. Since sites in a unit cell or a network 

exist whether occupied by atoms or not, vacancies ap

pear as a conserved species within a network. We for

mulated three different rules for the transfer of material 

across an interface [10]. Network sites could be added or 

subtracted to the solid at solid-fluid and at incoherent 

solid-solid interfaces. At a coherent solid-solid interface, 

a single network describes both solids, and during phase 

changes, sites are transferred but do not change their 

relative locations. 

3.2 State Variables and Notations 

The procedure outlined can be followed once the 

state variables have been identified. With network sol

ids, a strain can be defined. The energy density is as

sumed to be a function of that strain (either the usual 

small strain, or the deformation gradient to include the 

cases of large strains), of the entropy density, and of the 

density of the various atomic or molecular species. 

The choice of the strain or deformation gradient as a 

state variable that describes the mechanical state of the 

solid by no means exhausts the possible choices. Con

tinuum mechanicians and others [11-141 have described 

much more complex solids, where higher gradients of 

displacement or composition come in the picture. We 

feel that our choice is sufficient to describe many metal
lurgical materials. In any case, thermodynamics uses as 

input data the results of measurements of mechanical 

and thermal properties, and inadequate specification of 

state variables would become apparent. 

Only small strain theory will be explicitly used here. 

The relations that are valid without this approximation 

have been derived [10, 15], and effects that might mod

ify the small strain results will be mentioned and dis

cussed in the course of this article. 

The reference state for strain in the solid is quite arbi

trary. It can be at zero stress, or under hydrostatic pres

sure, and at any arbitrary constant composition. It 

merely serves to identify the same point,!' in a solid 

after composition change and strain. For many elastic 

energy equations, a convenient reference state is zero 

stress. There are also useful standard states for thermo

dynamic quantities. These are often at hydrostatic stress 

that is not zero and at definite compositions. As a result 

there are advantages to be flexible about the reference 

state for strain. We will try to point out in each applica

tion which reference state we have used. 

When the point ,!' of a solid is displaced by!:!., the 

small strain is defined by3 

(3.1) 

A change of reference state from ,!' to ,!" (x ') where 

,! " -,!' = E leads in the small strain approximation to a 

new strain E ij given by 

(3.2) 

The density of energy, entropy and component I are 

respectively denoted by €, s, and PI' Be~ause the elemen
tary volume of solid is affected by its state of strain, 

densities per unit volume in the deformed state always 

contain a strain effect. As such they are not very con

venient to use. Much better variables are the densities 

per unit volume in the reference state. These will be 

noted by primed symbols. The relations between primed 

and unprimed densities are 

€'/E=s'/s=pi/PI=PO/PO='" (3.3) 

= Vo/Vo= 1+Ekk (3.4) 

where Po is the molar density of lattice sites, and its 

inverse Vo is the molar volume of lattice sites. 

All of our chemical densities PI and pi will be atomic 

or molar densities (moles/volume). This is especially 

preferred to mass densities when we consider vacancies 

as a species. It is useful to introduce dimensionless com

position variables 

This is the classical mole fraction for single-site substi

tutional alloys. For an interstitial alloy with no va

cancies on the substitutional sites, CI given above is the 

1 All vectors and tensors are expressed in terms of components with 

respect to an orthonormal axis system. Small subscripts like i andj are 

understood to have value I, 2, or 3. Repeated indices are understood 

to be summed (Einstein convention) and subscripts preceded by a 
comma are derivatives, e.g. 

Eii=EII+E22+Ell 
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molal composition. The mole fraction c/ is then 

which reduces to c/at small concentration. We will drop 

the distinction between CI and c/. 

3.3 Lagrange Multipliers 

From the entropy constraint comes the standard con

dition that the temperature is everywhere equal to a 

Lagrange multiplier, and is therefore constant. It allows 

us to define a Helmholtz free energy density by a Leg

endre transform 

f'=€' -Os' (3.5) 

which we subsequently use because it is more con

venient in many practical applications. 

From the conservation of mass conditions come La

grange multipliers that differ substantially from stan

dard fluid equilibrium, a direct consequence of the net

work constraint. As with fluids, conservation of N 

chemical components lead to N Lagrange multipliers 

that are constants at equilibrium. Whereas for fluids they 

can be identified with N chemical potentials, for a sys

tem consisting of a network solid containing N substi

tutional species only N -1 quantities can be identified 

with physical processes replacing one specie with an

other on a site. The quantities thus identified with La

grange multiplier differences we have called diffusion 

potentials. The notation is M 1K, where K is the de

pendent species. Vacancies are considered a species that 

can be ignored in some applications. Because of their 

definition as Lagrange multipliers, the M 1K, like the tem

perature are constants, and take on a precise local mean

ing everywhere within the system 

M1K=constant everywhere within the system. 

(3.6) 

Since the Clare not independent, we have introduced the 

differential operator 

(3.7) 

for a unit composition increase of species I, an equal 

decrease in species K, holding the composition of all 

other substitutional species on that site fixed. For bin

aries we drop the subscripts and adopt the convention 

c =CI and (alacl2)=(alac). 

From this definition we have 

MIJ= -MJI; Mn=O. (3.9) 

In the case of equilibrium with a fluid, MIK is equal to the 

difference in chemical potential of I and K in the fluid 

(3.10) 

If the vacancy is chosen as K, we have 

(3.11) 

It might seem natural to use the M h , and keep the for

malism of hydrostatic thermodynamics. This has been 

done in a number of formulations [7]. However, it has 

practical drawbacks (see sect. 5.5), and we have found it 

preferable to keep the flexibility of choice for the de

pendent species K. 

The Nth Lagrange multiplier which we will call ILK 

cannot be identified in many problems. It is eliminated 

from all equilibrium calculations for internal equilibrium 

of a crystal away from surfaces and dislocations that can 

climb. It also is eliminated from all equilibrium calcu

lations at coherent boundaries. Only in fluids, at inco

herent boundaries and climbable dislocations can we 

identify IL K with the chemical potential of the K specie. 

The chemical potentials of interstitials are constant 

and equal to the chemical potentials of the correspond

ing species in the other phases, 

(3.12) 

We shall see in section 5, where multisite solids are 

considered, that there is no need to differentiate be

tween substitutional and interstitial sites. An increase of 

composition of the interstitial species I, holding the 

composition of all other interstitial species fixed, results 

in an equivalent decrease of vacancies on interstitial 

sites. But unlike vacancies on substitutional sites, va

cancies on interstitial sites always have a concentration 

close to the total number of possible sites and can be 

dropped from consideration. In order to standardize and 

simplify the notation, we also call these chemical poten

tials diffusion potentials, and in order to simplify the 

notation in the various expressions, MIK is understood to 

represent all diffusion potentials. 

(3.8) 

The restriction in the number of potentials necessary 

to calculate an equilibrium is a direct consequence of the 

crystalline nature of the solid and therefore should apply 

to the same solid under hydrostatic stress. In this case it 

can be shown (Appendix 1) that the previous equations, 

together with the boundary conditions to be discussed 

thereafter, are strictly equivalent to the standard condi

tions for equilibrium between fluids. 
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3.4 Mechanical Equilibrium 

The variational calculus gives us [6,10] the very stan

dard form of the mechanical equilibrium equation. It 

states that the divergence of the stress tensor is zero 

Tij,j=O. (3.13) 

This equation is also true for the large strain case, but the 

derivative is with respect to variables:! rather than:! I, a 

distinction that is not made in the small strain approxi

mation. Large strain forms involving:! I have been ob

tained [15]. 

3.5 Interface Conditions 

Along each interface, there are conditions for me

chanical equilibrium, and a condition for phase change 

equilibrium. They both depend on the nature of this 

interface. 

3.5.1 Solid-Fluid Interfaces 

For solid-fluid interfaces, the mechanical equations 

state that the normal is a principal direction of stress. 

The principal value associated with it is equal in mag

nitude to the pressure in the liquid and opposite in sign. 

The pressure is here the classical thermodynamic pres

sure, which is positive in fluids, and the convention for 

stress is such that the stress corresponding to a tension is 

positive. 

The phase change equation can be written 

(3.14) 

where /-LY are the chemical potentials in the fluid, while 

the PI and f pertain to the solid. Because of the (N -1) 

equalities (3.10) 

(3.15) 

Because MKK =0 the summation over all species is the 

same as the summation over all species but K. We can 

therefore drop the restriction and adopt the notation 

that L without any qualification means summation over 

all species I. To simplify notation it is convenient to 

define the w function as 

(3.16) 

where /-LK is the Lagrange multiplier associated with the 

Kth species. At this stage neither w nor ilK has physical 

meaning. Once all the equilibrium equations are written 

they will have a specific meaning, or are eliminated. In 

a fluid w is equal to minus the pressure, and thus because 

ILK = ILk eq (3.15) could be rewritten 

(3.17) 

We should emphasize that these equations are between 

unprimed quantities, that are usually not convenient to 

use for solids. The conversion follows eq (3.4) and gives 

(3.18) 

3,5,2 Incoherent Interfaces 

Along an incoherent solid-solid boundary, the equi

librium equations are 

(3.19) 

(3.20) 

(3.21) 

where nf (resp. n1) are the components of the normal to 

the interface oriented from a to /3 (resp. /3 to a). They 

all contain wand hence the Lagrange multiplier /-LK' 

Equations (3.19) and (3.20) imply that the normal is a 

principal stress axis and that in this case (r) is the value of 

that principal stress. Multiplication of (3.19) by nf and 

summation over i gives 

(3.22) 

From (3.20) we can obtain a similar expression for wp
• 

Therefore (r)a and (r)P are identified for this problem. 

Using the definition of (r) we obtain 

(3.23) 

Substituting this value of ILK in (3.21) and (3.19) gives the 

equivalent system of equations 

(3.24) 

(3.25) 

Equations (3.24) and (3.25) contain only known quan

tities and are the usable ones. Equation (3.23) can be 

interpreted as a definition for the chemical potential of 

the K species and this potential is constant along the 

interface. Along an incoherent interface we can then 

calculate a chemical potential for every specie, some

thing which is not possible at any other location within 
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the bulk of the a and /3 phase. Let us note that each side 

of eq (3.24) depends on what specie is chosen for K. 

Because the expression 

is independent of K, the equation itself is independent of 

this choice. A comparison of(3.23) and (3.15) shows the 

similarities between solid-fluid and incoherent solid

solid equilibria. 

3.5.3 Coherent Solid Interfaces 

In a coherent solid-solid equilibrium, the mechanical 

boundary conditions 

(3.26) 

indicate that the tractions (but not necessarily the stress 

tensor) are continuous across the interface. If the same 

reference state for strain is chosen for a and /3 the phase 

change equation (Appendix 2) reads 

v,'fa ~M a v,'( T,a'n 'a 2roaT,a 'a 'a) o -,.:. lKCl + 0 - ijni nj + Uij jkni nk 

4.1 Geometric Variables 

The lattice constants are readily-determined non

linear functions of composition, temperature, and stress. 

From the lattice constants in the reference state we can 

compute po. From a comparison of the lattice shape in 

the actual state and the reference state, we can compute 

the strain, or, if the strain is large, the deformation gra

dient. Since the actual state and the reference state are 

usually chosen to be at the same temperature but not 
necessarily at the same composition, the strain Eij is a 

sum of a contribution due to composition change with 

no change in stress, Eij, and one due to stress. The gen

eral case when neither contribution is isotropic has been 

treated [15]. The tensor Eij is subject to the same crystal 

symmetry restrictions as the thermal expansion tensor 

[17]. For the present we will concentrate mostly on the 

isotropic case. Defining k such that 

(4.1) 

and assuming Hooke's law of linear elasticity we can 

write 

(4.2) 

(3.27) The dilatation Ekk is given by 

where .aij is the small rotation tensor 

1 
!l·=-(u· .-u··) 

'1 2 '·1 ,." 
(3.28) 

For this type of interface equilibrium, the Lagrange 

multiplier J.LK has disappeared from the equations. In 

contrast to the two cases treated before, no definition of 

individual chemical potentials for each species arises, 

even at the interface. As we will see none are needed to 

solve problems. This is a direct consequence of the re

strictions in a fully coherent phase change, where no 

network site is created or destroyed. 

4. The Data Base 

We have identified a number of important thermo

dynamic quantities that determine the state of a system, 

and a number of functions of these state variables that 

(4.3) 

In cubic crystals, Eij is also isotropic, so that the formula 

in eq (4.1) is still valid. 

The constant po appears repeatedly in various formu

las because elastic energy naturally appears as energy 

per unit volume, whereas other energies will be per 

mole. po is the conversion factor that transforms one into 

the other. Its inverse Va is the molar volume of the 

lattice sites. Combining (3..3), (3.4) and (4.3) we have for 
isotropic solids • 

(4.4) 

The derivative of Eij with respect to composition in 

binary allows also occurs commonly 

enterinto the equations of equilibrium. We now examine 1jij = dEi}ldc. (4.5) 

how one might determine these quantities from the usual 
quantities that are measured and available in com- For systems with orthogonal axes 

pilations. They turn out to be identical to those used in 
ordinary solution thermodynamics and elasticity. 1ju =(0 Ina,./oc) (no summation) (4.6) 
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where the aj are the lattice parameters. When Eij is iso

tropic 

(4.7) 

In binary isotropic and cubic systems 11 is also related to 

the partial molar volumes 

(4.8) 

If 11 is constant 

(4.9) 

where Co is the composition of the reference state chosen 

to measure the strain. It is to be emphasized that the 

anisotropic and nonlinear versions of these equations are 

readily available [15]. 

4.2 Thermochemical Quantities 

The two important quantities to be determined are!' 

and M 1K• There are several convenient paths of integra

tion from a hydrostatic state, where these quantities can 

be determined with standard thermodynamic methods, 

to the actual stressed state. We begin with the differ

entialof!' 

(4.10) 

The function </>', defined by a Legendre transform 

<f>'=/'-TijEij (4.11) 

proves to be useful. Its differential 

Chemical potentials are assumed known at a hydrostatic 

pressure P, and composition Cl, C2 , ... 

M1K(P,Ch C2, .•. . )=).L,(P,Ch C2, .... ) 

-j.tK(P,C" C2, .... ). (4.17) 

It is customary to define standard chemical potentials).L~ 

and activity coefficients such that 

(4.18) 

where 'Y~ is chosen for convenience. Depending on the 

problem, it is chosen to approach 1 either for dilute or 

concentrated solution. Vacancy potentials also are fit to 

this convention. Since J-Lv(P,cv) =0, where cv is the equi

librium vacancy concentration at P, 

(4.19) 

where 'Yv is the vacancy activity coefficient. If it is con

stant, the chemical potential of vacancies under pressure 
P can also be written 

(4.20) 

The expressions for the chemical potentials are intro

duced into eq (4.13) and the resulting expression inte

grated along a constant composition path to the stress 

Tij. For a binary solution 

v.' ..,.. V~ dSiiklT T V~ dSiikkp2 v.' P. 
- 011,jl ij- 2 dc ij kl+ 2 de - O'Y/kk' 

(4.21) 

(4.12) If the solid is isotropic, this expression becomes 

permits us to deduce the following Maxwell relation 

(4.13) 

Hooke's law at constant composition is 

(4.14) 

or 

(4.15) 

where the Cijkl are moduli of elasticity, and the Sijkl com

pliances. Both are composition and temperature de
pendent. From (4.15) we deduce 

(4.16) 
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+ Va ~(~)(Tkk)2- Va ~(1 +V)T..T .. -3V.o'''fIP 
2 dc E 2 dc E If lJ ./ 

(4.22) 

These expressions contain terms both linear and qua

dratic in stress. They simplify considerably when the 

elastic coefficients are not composition dependent. 

Equation (4.22) for instance becomes 

(4.23) 



To obtain!, we calculate cP' with eq (4.12). It is first 

integrated along a path of constant composition, from 

pressure P to stress Tij. Using Hooke's law (4.15), this 

gives 

(4.24) 

and using (4.11) 

(4.25) 

Since under hydrostatic stress, the familiar liquid ther

modynamics is valid, the Helmholtz free energy f '(P ,c) 

is known. It may be obtained from the more commonly 

tabulated molar Gibbs free energy Gm by subtracting 

PVo and dividing by Va. This gives 

j'(P,c)=poGm-Ppo/po. 

Since 

(4.27) 

one obtains, after replacement of Gm by its value as a 

function of composition 

!'(P,c)=pb{c [p,7(p) +R e In 'Y1c]+(l-c)[J-t~(P) 

+Re In 1'2 (l-c)]}-P(1+EZd+SjjkkP2. (4.28) 

Combination of (4.25) and (4.28) gives the final result 

!'(Tij,c)=Po{c[J-t7CP)+RO In 'Y1c]+(I-c)[J-t~(P) 

+R() In 'Yz(1-c)]}-P(l +Et;d 

(4.29) 

For an isotropic solid, this relation becomes 

l+v
T 

.. y .. 3(l-2v)p2 
+2E IJY 2E . (4.30) 

Because it always appears in the boundary conditions, 

the expression for the quantity Vo!' -M12c is useful. 

Combining (4.22) and (4.30) we get, in the isotropic case 

Va!' -Ml2c =J-t~(P)+R 0 In 'Y2(1-C)+ va[ -P(l +3k) 

- 2~ (Tkk)Z+ Iii; TijTij+cTJ(Tkk +3P) 3 (l;jV)p2 

; :C(~)(Tkk)2+ ~ :cC~V)T,jTij 

_;c !C~2V)p2]. (4.31) 

When the elastic coefficients are not composition de
pendent, this becomes 

Va!' -M12c =p,~(P)+R e In 'Y2(l-C)+ Va[ -PO +3k) 

-~(T 2 l+v 3(1-2v) 2 

2E kk) + 2E TijTij 2E P 

+C17(Tkk +3P)J. (4.32) 

In a crystal of arbitrary symmetry, this expression is 

(4.33) 

Expressions (4.21) to (4.23) apply to substitutional bi

nary solutions. For interstitial binary solutions the inte

gration along a constant composition path from the hy

drostatic stress to the stress Tij using (4.13) gives the 

elastic terms identical to those in (4.21) to (4.23). Be

cause there is no network constraint or interstitial con

centration we use (3.12) for M[ and obtain for dilute 

interstitial solutions 

_ Va dSijk'r..r _ Vi P+ Va dSUkk p 2 

2 dc Y kl OTJkk 2 dc . (4.34) 

Equations for the special cases of isotropy and constant 

elastic coefficients are like (4.34) except that the elastic 

terms take the forms they have in (4.22) and (4.23). We 

will see in section 5.7 that there is no need to distinguish 

between interstitial and substitutional solutions. Had we 

chosen the vacancy on the interstitial site as component 

2 we could have obtained (4.34) directly from (4.21) by 

noting that J-t~=0 for the vacancy. 

5. Internal Equilibrium 

The study of internal equilibrium requires the simulta

neous solution of the equations of elasticity and those of 

chemical equilibrium. The method we have found useful 
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recognizes that the strain is a function of stress and 

composition. But the composition at equilibrium with a 

given diffusion potential is determined by the local stress 

alone. Thus the strain at a given diffusion potential is a 

function of stress alone. If we obtain this stress-strain 

function, we can solve these problems as if they were 

ordinary elastic problems, without any further regard to 

chemical problems whose effects are now implicitly ac

counted for. 

There are several derivations. The simplest and most 

easily generalized for large strains and nonlinear effects 

parallels in its first steps the thermodynamic methods 

used to derive the relationships between isotropic (ad

iabatic) and isothermal elasticity. In the first section we 

review the main results and then apply them to various 

problems. 

5.1 Open-System Elastic Constants 

After a straightforward manipulation of partial deriv

atives, the following expression, valid for a two

component solid, is obtained (Appendix 3) 

(5.1) 

Making the usual small strain approximations, and an 

expansion of the strain around To =0 produces the con

stant chemical-potential form of Hooke's law 

(5.2) 

The coefficients of the stress have been called open

system compliances, S * and are related to the constant 

composition compliances S by 

S * -S Vo' /(ilM12) ijkl - ijkl + a 1) i(fJkl ac 
Tm, 

(5.3) 

where (aM12/ac)T
mn 

is evaluated at Tmn =0 and where all 

the quantities except Va are functions of c. The second 

order terms that are neglected in this expansion have 

been discussed [15]. Introducing the notation 

for substitutional binary solutions, the open systems 

compliances, for isotropic solids are given by 

E*=E/(1+X'I')2E) 

v*=(v-X1)2E)/(1 +X'I')2E) 

(K- 1)* =3(1-2v*)/E*=K- 1 +9X'I')2 (5.6) 

G*=G 

where K is the bulk modulus and G the shear modulus. 

Far away from spinodals and critical points, the ex

pression (5.3) is not very sensitive to the composition. It 

is then appropriate to use the values of the open-system 

constants, at a composition near the average com

position of the specimen. The elastic coefficients be

come constants, and the elastic part of the problem is 

now independent of the compositional part. For a closed 

system, the obvious choice is the average composition. 

For a system that is in contact with a chemical reservoir, 

the composition at equilibrium under zero stress is usu

ally a good choice. In the case of a very high average 

stress, the equilibrium composition at some high pres

sure may be more appropriate. With such replacement 

of the composition in (5.3) or (5.4) to (5.6), all the solu

tions of ordinary linear elasticity become directly appli

cable to elasto-chemical problems. 

5.2 Finding the Composition Field , 
Finally, even though we have eliminated the com

position to solve the elastochemical problem, the com

position field is easily obtained from the solution. At 

constant diffusion potential, composition is uniquely de

termined by the local stress. For a binary for example 

(4.21) can be solved for the composition 

(~IC ) constantxexp[elastic terms/ROJ (5.7) 
1'2 -c 

where constant=exp[{M12-(IL?-JL~}/RO]. (5.8) 

i.e., 

A useful linearized version of eq (5.7) is obtained by 

(5.4) linearizing the elastic terms of that equation or of (4.21) 

to (4.23) and differentiating at constant M 12, P, and O. 

Using (5.5) this gives 

1/ =pOR (} (1 + aln 'Yl) 
X caIn c 

(5.5) 
(5.9) 

or 
for interstitial solutions, and 

(5.10) 

1/ pOR (j (1 + aln 'Yl) 
X c(1-c) alnc where Co is a constant of integration and is the com-
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position that an element of unstressed solid would have or 

if it were in equilibrium with the system. 

For the isotropic case this becomes 

(5.11) 

Had we linearized about a hydrostatic pressure P the 

result would have been 

C -C(P)=Xl1(Tkk +3P) (5.12) 

There are several ways of evaluating the constants in 

(5.8) or (5.10), but basically they are all methods of 

evaluating MI2 at equilibrium. If the system is in contact 

with a materials reservoir with specified MI2 the answer 

is straightforward. Ifit is equilibrated with a fluid phase, 

eq (3.10) applies. If the composition and stress are speci

fied at some point in the system, eq (4.21) can be used. 

This occurs in some problems where almost all of the 

solid acts as a reservoir in the sense that most of it is 

homogeneous in composition and stress, and that trans

fer of components to small inhomogeneously stressed 

parts of the system hardly affects the composition of the 

homogeneous part. 

For the typical case of a closed heterogeneous system 

the overall composition is specified. At equilibrium the 

diffusion potentials become a constant whose value must 

be determined as part of the solution. This is a standard 

procedure in the method of Lagrange multipliers. Equa

tion (5.7) is a one-parameter family of composition pro

files. For each assumed value of the parameter M 12, we 

can determine the overall composition by integration. 

The one that satisfies the specified composition is the 

solution and this fixes M 12• 

This procedure is simplified if linearization of (5.7) to 

give (5.10) is valid. Using this to obtain Co from 

which we can obtain M 12• We use the conservation of 

mass for the entire solid of total volume fi' in the refer

ence state and average composition c 

J cdV'=fl' C. 
U' 

(5.13) 

Substituting (5.10) we obtain 

(5.14) 

which can be substituted into (4.21) to (4.23) to obtain 

M 12• Once Co is known we have the composition profile 

of the inhomogeneously stressed system 

(5.15) 

where 1'ij is a component of the volume averaged stress, 

and X and 11!i are evaluated at c. This is the linearized 

equation for composition in a closed system. 

5.3 Internal Equilibrium of Vacancies 

We consider a single component solid with vacancies 

as the second component. If, as is often assumed [18J, 

there is no relaxation around a single vacancy at any 

level of applied stress and the elastic constants do not 

depend on vacancy concentrations, the diffusion poten

tial M.!> given by eq (4.23), is a function of composition 

only. Therefore a constant diffusion potential would 

imply a vacancy composition field that is constant re

gardless of the stress distribution. Even with these as

sumptions we will later see (sec. 6.2) that the local equi

librium vacancy concentration at the interface does 

depend on stress at the interface. 

A more reallstic model assumes relaxation. Let the 

partial molar volume of vacancies differ from the molar 

volume of the species. If the elastic constants do not 

depend on vacancy concentration, eq (4.23) yields with 

p=o 

o C. - -
M.I=M.I+RO In-

1
--(V.- VI) Tkk/3 (5.16) 
-C. 

At equilibrium, this is constant, leading to a vacancy 

concentration field given by (with cv<l) 

- (VV-VIT) c. =cv exp 3R 0 kk (5.17) 

where C. is the equilibrium concentration of vacancies at 

p=o. 

5.4 Dislocation Atmospheres 

5.4.1 Atmosphere Around a Dislocation 

in an Isotropic Solid 

Let us consieer a substitutional two-component in

fmite isotropic solid, with a negligible concentration of 

vacancies. A straight edge dislocation with a Burgers 

vector of magnitude b is located in the solid along the z 
axis. If the sizes of components 1 and 2 are different, 

there wiJ] be a segregation around the dislocation. This 

problem has been solved, considering one of the atoms 

as a defect [19]. This means that its concentration has to 

be relatively small. Indeed in many cases only vacancies 

or interstitials are considered. These are unnecessary 

restrictions as we shall see. 
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Far from the dislocation, the solid is at composition Co, 

and is stress-free. Therefore we can think of this far

away solid as a chemical reservoir. The solid with the 

dislocation and its atmosphere has the same diffusion 

potential as the stress-free solid at Co. For convenience, 

we choose the solid at Co as the reference for strain. Since 

we have shown that under small strain approximation, 

the elastic part of the problem is equivalent to a constant 

composition problem with the open-system elastic coef

ficients, eq (5.6), the stress field, with the atmosphere 

present, is given by 

_ _ -Gbsinp 
Trr - T<I><I>- 2?T(l- v*)r 

T _ GbcoscfJ 
nj>-2?T(I - v*)r 

-Gbv*sinp 

?T(1-v*)r 

(5.18) 

and the composition field is, to a first approximation, 

using eqs (5.11) and (5.18) 

A - (1 + v*)Gb sinp 
c - -X'Y/ (l-v*)?Tr . (5.19) 

(These equations correct an algebraic error in reference 

[6].) Replacing the open systems constant by their val

ues, we finally obtain 

- Gb (1 + X'Y/ 2 E)sinp 
2?T(l-v+2X'Y/2E)r 

Gb(1 +X'Y/2E)COSp 

T r4> 2?T(I-v+2X'Y/2E)r 

b.c 
-X'Y/(1 +v)Gbsinp 

?T(I-v+2X'Y/2E)r 
(5.20) 

where the subscript 0 has been dropped from all the 

variables since all of them have to be evaluated at com

position Co, including the Burgers vector magnitude. In 

our case (substitutional solution), X is given by eq (5.5) 

and 'Y/ by (4.7) and (4.8). 

We first note that, since X is positive for a stable solid 

solution, the stresses are decreased, by a fraction of the 

order ofX'Y/2E. This factor tends to zero for highly dilute 

solutions. But for a concentrated solution, it can be sig

nificant. Taking an ideal solution, co=O.5, po= 105 mol 

m- 3
, RO=104Jmol-1, E=10 11 Nm- 2

, and 'Y/=0.1 gives 

a value of 0.25 for XTJ2 E. This change in the stress field, 
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which is readily obtained here, has, to our knowledge, 

not been calculated within the framework of the defects 

model. 

At low concentration, the following approximation 

holds 

and 

and we can neglect 2X'Y/2 E in comparison to (I-v) 

obtaining thereby the classical point-defect solution 

b.c- -COevl- V2)(1 + v)Gbsinp. 
3?TRO(I-v)r 

But it is to be emphasized that the composition eq (5.7) 

can be solved exactly by numerical methods. Our result 

is more general in that it includes in a self-consistent way 

all the interactions that may be present, specifically in 

concentrated solutions, between the defects themselves 

and the defects and the matrix. In particular, it takes into 

account the nonideality of the solid solutions in a phe

nomenological way that is model independent. If no 

measured value is available for the activity coefficient 

function "lit specific statistical mechanical models 

[20-22] can of course be used and the result directly 

introduced in the value of X. 

5.4.2 Dislocation Atmosphere in a Cubic Crystal 

Analytic expressions are rarely known for the elastic 

fields caused by point-forces in a medium of arbitrary 

symmetry [23]. Hence the usual integral methods for 

calculating atmospheres cannot be used. On the other 

hand the introduction of open system compliances is not 

restricted to isotropic solids, and formulas have been 

developed for the most general elastic solids [15]. Be

cause the elastic field has been found for several cases of 

dislocations in these non-isotropic single-component 

crystals, the concept is most valuable. 

By a simpfe substitution of the open-system elastic 

coefficients, the same elastic calculations are valid for 

solid solutions equilibrated to constant diffusion poten

tials. The composition fields are given to first order by 

eq (5.10) or more exactly from the solution of eq (5.7). 

We shall treat the case of a [llIJ screw dislocation in a 

cubic crystal. The X3 axis is along the dislocation, the X2 

axis is along [1IOJ and XI along [112]. The stress field has 

been given by Steeds [24]. Because the equations are 

rather long, we shall derive only the composition field. 



In cubic crystals, the change in composition with stress 
is given to first order by 

(5.21) 

as for the isotropic case. At constant composition, Tkk 

has the value 

_ Gb 8s44 sin 34> 
Tkk - 4Y27Tr(I-8 cos3 34»(1-8Y12S(3sll-2S) (5.22) 

with 

a factor which is zero for isotropic crystals, 

and the S,] are the standard two indices compliances, 

referred to the cube axis. For cubic crystals, the open 

system compliances are 

i andj <3 (5.23) 

i andj>3 

therefore 

S*=S 

and 

8* 

Combining (5.21), (5.22), and (5.23), we obtain the com

position field 

where all the constants that depend on the materiaL have 

to be taken at Co, the composition far away from the 

dislocation. This result, obtained by a simple algebraic 

manipulation, has, to our knowledge, never been ob
tained by other methods. 

5.4.3 Dislocation Atmospheres: Nonlinear Effects 

At constant diffusion potentials, when the com

position changes from the unstressed to the stressed 

state are small, we have shown that the strain is linearly 

related to the stress, as in the usual theory of elasticity. 
But this law has a smaller range of applicability than in 

the constant composition case. The thermodynamics of 

solutions introduce nonlinear terms in the stress-strain 

law. When the strain is expanded as a function of stress, 
we have identified four second-order effects [15]: (a) 

non-linear stress-strain laws at constant composition, 

due, for instance, to rearrangement of interstitial atoms 

into sites that become nonequivalent under stress; (b) 

change of compliances with composition; (c) deviation 

from Vegard's law; and Cd) non-linearity of the solution 
thermodynamics. The first two effects have been con

sidered within the framework of defects theories. It does 

not seem that the two others have been treated [25]. 

Since solutions of non-linear elastic problems have been 

found [26J, they can be used, with the second-order 

open-system compliances, to find second-order effects 

on dislocation atmospheres. 

5.5 Internal Equilibrium of a Binary Substitutional 

Solid With Vacancies 

We have seen in section 4 that, for a binary substi

tutional solid with vacancies, in equilibrium with a fluid, 

the following is true 

(5.25) 

(5.26) 

where.uf and,tt~ are the chemical potentials of species 1 

and 2 in the fluid. It seemed therefore rather natural to 

use these equations, which have the same form as those 

for fluid equilibrium, rather than the mathematically 

equivalent 

(5.27) 

(5.28) 

From a theoretical point of view, there is no difference. 

Although these equations are valid for nonlinear in

homogeneous and anisotropic solids, we give as an ex

ample expressions for constant elastic coefficients and 

isotropy 

_ 0 011l£!. VI-Vv 
Mlv-M lv +R n - 3V,' Tkk 

I'v c, a 
(5.29) 

(5.30) 

The concentration of vacancies is small compared to CI 

and C2' Measurement of c" 1', and Vvare therefore sub 
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ject to potentially large errors. These affect eqs (5.25), 

(5.26), and (5.28) but not (5.27). For computational pur

poses, it is then better to use the second formulation. 

Besides, if we are only interested in the composition CI 

and C2, we can neglect the vacancies and use only eq 

(5.30) for equilibrium calculations. By keeping the flex

ibility of choice for the dependent substitutional species, 

we can eliminate species whose concentration has been 

found to have a negligible effect on the chemical behav

ior of the solid solutions, including vacancies, even if 

they are essential to the mechanisms by which chemical 

equilibrium is attained. 

5.6 MuItisite Solids 

Up to this point, we have focused our attention on 

crystalline solids that are most common in the metal

lurgical world, where there is only one substitutional 

site, that is highly occupied, and an interstitial site that is 

lightly occupied. But in many instances crystals have 

several non-equivalent sites, occupied by mixed species 

of atoms or molecules or vacancies. The fraction of 

empty sites can vary for each type of site from 0 to 1. In 

the description we can of course eliminate sites that are 

and remain empty. They don't contribute to the energy 

or entropy of the system. For all other sites, we can 

describe their status by the densities of the atoms and the 

densities of vacancies on each of them. As for the substi

tutional site with which we have been dealing in the 

preceding section, there will be a constraint condition: 

the total density of atoms and vacancies is constant for 

each site. Using the method described in section 4, it can 

be shown that at equilibrium, the diffusion potentials are 

constant, equal on all sites, and equal to the correspond

ing difference in chemical potentials when equilibrated 

with a fluid 

(5.31) 

where the superscripts label the different sites. There are 

cases where there is no species K that is present on all 

sites, or where it is not convenient to use the same K

species for all sites. The formulas can easily be trans

formed, using eqs (3.8) and (3.9) 

(5.32) 

If a species is not present on one site, it cannot be used 

as the dependent species on that site, and its diffusion 

potential equation drops from the set of eqs (5.31). The 

vacancies are to be considered as a species, since an 

exchange of an i -site vacancy for a j -site vacancy pro-

duces no change of state, exactly as the exchange of a K 

atom on an i -site with a K atom on a j -site. 

Equations (5.31) govern the equilibrium partitioning 

of I atoms on the different sites. If only the total density 

is of interest, one can interpret eqs (5.31) differently. 

They state that along an equilibrium path, the Helmoltz 

free energy density is only a function of the total density 

of the (N-I) independent species.4 Calling MIK the com

mon value of the diffusion potential for each site, we 

have 

(5.33) 

Equation (5.33) shows that the formulas developed in 

the preceding section can also be applied, with the total 

density of each species as composition variables (or the 

ratio pi/po, po being a chosen total density, like the total 

density of sites, or the density of sites I, (I = 1, ... , v) 

whatever is most useful). 

In the equations used in section 5, the interstitial site 

was sparsely occupied, and we used eq (4.34) for the 

diffusion potential of this species. But rigorously its dif

fusion potential is 1111v , where v represents the vacancies 

on interstitial sites 

Mlv=MPv +Re In I'ICI +elastic terms. (5.34) 
I'v c, 

If there are v interstitial sites per substitutional site, I've, 

tends to one as Cv tends to v. Therefore, in dilute inter

stitial solutions 

(5.35) 

which is the expression we have used. In almost all 

cases, site occupancy is either high or low. Phase trans

formations occur before intermediate occupancy is 

reached. But hydrogen in metals is an important case 

where the occupancy can span all the possible com

position field without a phase change. In such cases, the 

rigorous diffusion potential has to be used. Equations for 

the internal equilibrium between sites have been given, 

with the preceding approximation by Li et al. [27]. It is 

clear that there is no need to make the distinction be

tween interstitial and substitutional atoms. A single for

malism with multisite occupation is possible and avoids 

the confusion that can arise if a specie occupies both 

substitutional and interstitial sites [7]. For most metal-

'When a function F(Xl' Xl> .•. , xn) is such that, for all values of the 

then F is a function only of the sum (XI +Xz+ . .. xn). 
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lurgical examples, species do seem to occupy only one 

site. 

We next turn to phase change equilibrium at solid

fluid interfaces. The case of a stoichiometric compound 

already illustrates the principal features. Let species A 

completely occupy a equivalent sites a per unit cell, 

species B b equivalent sites {3, etc. Because there is only 

one species on each site we cannot define a diffusion 

potential. In the liquid each species has a well defined 

chemical potential. The equation for equilibrium is 

f -(a/-Li+b/-L~+c/-L~ .. ·)Po=-P (5.36) 

where po is the total density of sites in a unit cell. This is 

a straightforward expression of chemical equilibrium for 

the dissolution of the compound A.BbC •... , which 

continues to hold under stress. It is Gibbs' eq (393) [9] 

since he quite clearly considered solids to be compounds 

(CP) and defined a single chemical potential /-Lcp for 

them in the fluid even if they dissociated 

(5.37) 

In defining /-Lcp there is a rigid adherence to a law of 

definite proportions dictated by the numbers of equiv

alent sites fully occupied in the crystal structure. 

If we now let the a sites be occupied by several spe

cies I, J, K including vacancies we obtain diffusion po

tentials. Choosing species K as the counterspecies the 

equilibrium equation is 

The term in the parenthesis is the chemical potential for 

the stoichiometric compound KaBbC. . . .. There are 

obvious advantages to choosing K to be the major spe

cies on site a. If site a is a lightly occupied interstitial site 

the compound is BbC •... and /-LK is set to zero. 

If several sites are each occupied by more than one 

species the equations are not changed if a different spe

cies is chosen as counter species for each site. If the same 

species is chosen as counter species of several sites the 

terms combine. In particular if the same counter species 

K is used for all sites we obtain 

Summing over all sites we obtain 

This is identical with eq (3.15) if we redefine po in terms 

of atom site density instead of unit cell densities. 

6. Interface Equilibria 

In this section we illustrate various aspects of equi

libria involving three kinds of interfaces that stressed 

solids can have but ignoring capillary effects. Most of 

our examples will be uniformly stressed, and have only 

as many components as are necessary to illustrate the 

points to be made. When the solid is multicomponent 

and non uniformly stressed, the interior equilibria can be 

solved by the methods of the open-system elastic con

stants of the previous section. This converts a multi

component elastic and thermochemical problem into an 

elastic problem alone, although possibly a nonlinear 

one. 

6.1 Change of Solubility With Stress 

Our first example is a Gibbs solid-a pure substance 

for instance-in equilibrium at pressure P with a fluid in 

which it can dissolve along a flat interface. Forces are 

applied to the solid so that its state of stress is now Tij. 

To maintain mechanical equilibrium, one of the prin

cipal values of Tij is -P, and the corresponding prin

cipal direction of stress is normal to the fluid-solid inter

face. What is the change in the chemical potential of the 

fluid necessary to keep the system in chemical equi

librium? The only equation, besides mechanical equa

tion, is the boundary conditions, eq (3.18) which be

comes for a one component linear elastic solid 

(6.1) 

Following Gibbs [9, p. 196], we compare this equi

librium with that of the same solid phase equilibrated 

under hydrostatic stress with the same fluid. Using bars 

to indicate the values of the thermodynamic quantities 

in this equilibrium we write 

(6.2) 

Subtracting these two equations, we obtain 

if' -I') is the elastic energy stored in the solid on going 

from pressure P to stress state Tij and P(Ekk -Ekk) is the 

work done on the solid by the liquid. The l.h.s. of eq 

(6.3) is thus the work that has to be done to bring a 

hydrostatically stressed solid to the nonhydrostatic state 

while surrounded by the liquid. It is necessarily positive, 

and the fluid in equilibrium with a nonhydrostatically 

stressed solid is always supersaturated with respect to 

precipitating a hydrostatically stressed solid by the 
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amount given in (6.3). If we let CL and CL be the concen

tration of the solid component in the fluid in equilibrium 

with respect to the nonhydrostatically and hydro

statically stressed solid, we can use eq (4.32) to obtain 
As usual, this system of equations can be solved numer

ically, or, if the changes are small, we can linearize the 

equations and solve with Gramer's rule. 

3(1-2v)p2 1-2v
T 

P 
+2E +E kk· 

(6.4) 6.2 Vacancies Equilibrium in a One- Component Solid 

Let tl> 12, and -P be the principal values of stress. If 

the change in solubility is small, and the solution is dilute 

or ideal, we get 

CL-CL= 1 

CL 2pOR fJE 

Because -1 <v< 112, the right hand side of eq (6.5) is 

positive, except of course when tl =t2= -P, where it is 

zero. The solubility of the solid in the liquid is always 

increased when a stress is applied to the solid. The solu

tion is supersaturated with respect to a hydrostatically 

stressed solid at pressure P, a classical result that was 

derived by Gibbs. 

We now turn to the case of a two-component solid in 

equilibrium with a melt. We have two conditions for 

equilibrium 

(6.6) 

(6.7) 

We compare again to the equilibrium of the solid with 

the fluid under pressure P. 

(6.9) 

Subtraction of (6.8) from (6.6) and (6.9) from (6.7) gives 

two equations for the change of composition in the fluid 

and the solid to maintain equilibrium under stress. 

Assuming for simplicity (i) P = 0, (ii) terminal solu

tions (i.e., both solid and liquid are dilute solutions), (iii) 

no change in elastic coefficients with composition, we 

get 

(6.10) 

Consider a cylinder of isotropic hydrostatically 

stressed solid in contact with a fluid in which it cannot 

dissolve at pressure P, with an equilibrium concen

tration of vacancies cV ' A load is applied that produces a 

stress whose components are Tzz> Trr = Teo. We want to 

calculate the equilibrium concentration of vacancies 

along the surfaces Sr and Sz. Since the components of the 

solid don't appear in the fluid, there is no equation like 

(3.12). But the phase change eq (3.15) applies, and in this 

case since J1.K is identified with J1.~ =0, the equation be-

comes 

(6.12) 

where -P is the normal traction. Let us first adopt 

Herring's simplifying assumptions that (a) there is no 

volume relaxation around vacancies, (b) there is no 

change in elastic constants with vacancy concentration, 

and (c) the solid obeys the law of dilute solutions. Using 

(4.32) we get (i) under pressure P 

(ii) under stress, along Sz 

J1.0(p)+R8lnc~+vo[ -P-i~(2Trr+Tzz)2 

1 +V(2T 2 T 2) 3(l-2V)j>2] 
+2E rr+ zz + 2E 

(iii) under stress, along Sr 

o - r ,[ - 1 v 2 
fLv(P)+R 8 lnc v + V(} -P-2 'B(2T" + Tzz } 

1+V(2T 2 T 2)+3(1-2V)p 2 ] 
+2E rr+zz 2E 

, [1-2V ] = VoTrr 1 +--g-(2Trr + Tzz ) . 

(6.13) 

(6.14) 

(6.15) 
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It is quite clear that c~ and c; are different, unless 

Tn = Tzz> i.e., when the system is under hydrostatic 

stress. Since we have assumed no relaxation around va

cancies, 7]=0, and therefore according to eq (4.23), Mh 

is different on Sz and Sr. As a result, a vacancy flux will 

appear. This is further discussed in section 8.4. 

Making the further assumption that P = 0, and ne

glecting quadratic terms in stress, subtraction of (6.13) 

from (6.14) and (6.15) gives 

In (c~/c,)= V~Trr/R () (6.16) 

This is Herring's [18, 28] well-known formula: to first 

order in stress, only the normal pressure affects the equi

librium vacancy concentration at an interface. We will 

get the same results, whether this interface is a solid

fluid interface or an incoherent solid-solid interface. 

The order of magnitude of the quadratic terms can be 

easily obtained by making Trr =0 so that linear terms 

disappear in (6.15). We obtain, along Sr 

(6.17) 

Within the small strain approximation, this effect is less 

than 1 % of the effect on Sz' But there are cases where it 

might be significant (cf. sec. 8.4). 

Conditions (a), (b), and (c) can easily be removed 

through the use of the general formulas developed in 

section 4. As an example we treat the case where there 

is a volume relaxation around a vacancy. Using (4.32), 

assuming P = 0, and following the above procedure, we 

get, to first order in stress 

(6.18) 

(6.19) 

The corrective term, proportional to 7], contains the 

trace of the stress tensor. As such other components 

than the normal pressure influence the vacancy concen

tration at.a particular interface, if elastic relaxation 

around vacancies are taken into account. 

6.3 Using Open-System Elastic Constants for 

Multicomponent Phase Equilibrium 

For the general multicomponent phase-equilibrium 

under stress, the fact that the MIK are constant gives 

(N -1) relationships between stress and composition. As 

shown earlier, it is possible to solve these equations for 

composition as a function of stress and obtain the strain 

Eij that results from composition changes. The result is 

a stress-strain relation at constant M 1K • This relationship 

was used to solve elastic problems within a single phase 

as if it were composed of a single component. 

These same relationships apply to each individual 

phase in a multiphase equilibrium, but the phase change 

boundary conditions of section 3.5 contain a similar cou

pling between stress and composition. In the present 

section we shall demonstrate that by using open-system

elastic constants, the compositional part of these equa

tions can also be eliminated. In fact this method allows 

us to treat multicomponent equilibrium as if each phase 

were a one-component purely elastic part of the system, 

and that for such a solid, the (U function is equal to the 

elastic energy apart from a constant (cf. eq (3.16». Fi

nally once the elastic problem has been solved, the com

position field is obtained by the methods of section 5.2. 

We will use as an example binary isotropic linear sol

ids, although the proof can be made for a multi

component anisotropic system. We shall f~rther assume 

constant elastic coefficients, and that, at zero stress and 

potential M 12, the composition is c. Let .6.c be the change 

of composition due to a change of stress. Expanding f I 

around the unstressed state we find using (3.6) and (5.4) 

(6.20) 

Let us consider the function 

f'* =f'(O,c)- 2~f,.(Tkk)2 + 12~~* TijTij (6.21) 

where we have added to the free energy of the solid 

under zero stress and at potential M 12, an elastic energy 

computed with open-system elastic constants at M 12• Re

placing these constants by their values (5.6) we obtain 

But the change in composition .6.c is given by (5.11) so 

that (6.22) can be written 

The function [f' - p~(c + t::..c )M12J that appears repeat

edly in the phase change boundary equations (cf. (3.24) 

and (3.27» is thus obtained as 

f ' - p~(c +.6.c )M12 = f ,* - pbcM12 (6.24) 
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Or, if we replace M12 and! '(O,e) 

(6.25) 

Thus the various phase change boundary conditions are 

expressed in terms of an open-system Helmholtz free 

energy for each phase. This free energy has the same 

form as a Helmholtz free energy of a one-component 

phase. Its elastic constants are the open-system elastic 

constants of section 5.1. The reference state of each 

phase is the unstressed multicomponent phase with the 

same value of M. Its composition is e in (6.24) and (6.25), 

its lattice parameter is used to define strain, and its con

stant composition elastic constants are to be used in eqs 

(5.3) or (5.6) to calculate the open-system constants. 

By examination of (6.25), we can see that the use of 

these open-system constants allows us to treat, as far as 

the stress is concerned, any multicomponent system just 

as if it were a one-component system. Thus elastic solu

tions developed for one component inclusions, for in

stance [23], can now be used for similar muiticomponent 

inclusions. 

After finding the stress field, the results of section 5.2 

can be used to obtain the composition field. 

An interesting consequence of the preceding results 

occurs in a binary system in which both phases have the 

same conventional elastic constants. In an infinite single 

component system the Bitter-Crum theorem [16] holds. 

There is no elastic interaction between particles. The 

system is degenerate with respect to particle shape and 

dispersion. In a binary system if the X or 1/'s differ, the 

open system elastic constants would differ even if the 

conventional elastic constants did not. As a result there 

is now elastic interaction between particles that is en

tirely the result of the compliance due to composition 

changes. 

7. Partial Equilibrium-Local Equilibrium 

When the general conditions for equilibrium are not 

satisfied, the system will tend to equilibrium. The rates 

of various processes are usually so different that in the 

time scale of an experiment we may often assume that 

some processes have reached equilibrium while others 

have not occurred at all. In this section we briefly dis

cuss these partial equilibria. When processes are too fast 

for thermal and chemical relaxation, we obtain the re

sults of classical adiabatic elasticity. The relation be

tween isothermal constant composition elastic coeffi-

dents Stkl and adiabatic elastic coefficients Sijkl is a well 

known thermodynamic result [17] 

(7.1) 

Qij is the thermal expansion coefficient, and C T the heat 

capacity, both at constant stress. 

When thermal and elastic equilibration occur but 

without diffusion or interface motion, we have classical 

isothermal elasticity. Comparing eqs (5.3) and (7.1) we 

note that they are quite similar except that temperatures 

instead of compositional derivatives are used. Thus the 

relationship between adiabatic, isothermal, and open

system elastic constants is one of increasing equi

libration first with thermal and then with materials res

ervoirs. 

Diffusion of some species, e.g., interstitials, often is 

orders of magnitude faster than that of other species. 

Such a partial equilibrium, called paraequilibrium [29], 

is often reached in phase transformations of multi

component alloys. Only hydrostatic cases seem to have 

been treated. When stresses are important the mod

ification from corresponding binary interstitial alloy 

problems seems straightforward. 

Interface processes, crystal growth or dissolution and 

grain growth all involve network modification pro

cesses that may be quite slow. Grain boundary sliding 

may not occur. For calculation of such partial equilibria, 

the corresponding equilibrium equations must be sup

pressed. Polycrystalline averages of the properties can 

be used to obtain corresponding averages for stress and 

composition fields. 

The most common partial equilibrium occurs when 

all processes except diffusion have relaxed to equi

librium. The only suppressed condition is that MIK need 

be constant, but MIK remains continuous across all inter

faces that have reached equilibrium. This partial equi

librium is called local equilibrium at interfaces. 

Many experiments are done under conditions where 

partial equilibrium is maintained while some or all of the 

remaining variables are observed while they relax to 

equilibrium. The laws of most of the relaxation pro

cesses have been studied. Interface relaxation is compli

cated and often nonlinear. On the other hand, heat flow 

in response to thermal gradients is coupled with elas

ticity and constitutes the subject of thermoelasticity. 

Diffusion in response to non uniformity of the MIK is also 

well understood, regardless of whether the origin of the 

gradients in MIK are from composition gradients, stress 

gradients or interface conditions. The next section ex 
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amines a set of problems involving diffusional equi

libration under isothermal conditions with local equi

librium assumed. 

8. Diffusional Kinetics and Creep 

Many problems of diffusion involve stress. In dif

fusional creep the applied stress is the motivating force 

for the diffusion. Compositional heterogeneity results in 

a self-stress that affects diffusion in a way that is too 

often ignored in the diffusion calculation. As we have 

seen, stress affects the diffusion potential and interface 

equilibrium conditions. It has an effect both on the rate 

and direction of the diffusional flux within each grain 

and on the boundary conditions to the diffusion equa

tions at each interface. 

Often only some of the effects of stress have been 

considered, or approximations have been made that ig

nored effects of the same order or larger than the effects 

considered. In this section we will examine the effects of 

stress on ·.diffusion and creep, inside the grains and at 

interfaces, and with both applied stresses and the self

stresses that arise from the compositional in

homogeneity. 

We begin with a formulation for multicomponent dif

fusion that is consistent with our thermodynamic formu

lation and has the proper in variances with respect to 

arbitrary choices of the species K. We then examine 

problems of inhomogeneous stress when the network is 

unaltered. Much of this was the subject of a recent over

view [30] in which a hierarchy of increasingly difficult 

problems was discussed. We next turn our attention to 

diffusional network alteration phenomena, such as creep 

and phase change, both under applied stress and self

stress. Because of the importance of vacancies in this 

problem, interesting phenomena occur even in one

component systems. We reformulate and simplify the 

general equations to examine a few problems of dif

fusional creep in a one-component system with va

cancies. 

8.1 Multicomponent Diffusion in Isothermal 

Network Solids 

As shown in [31] the invariant formulation of substi

tutional multi component diffusion flux J ( in an iso

thermal isotropic or cubic network solidS is given by 

.IV 

-J(= "'2:.BIJ grad MJK 
- J=( 

1= I, .. .N. (8.1) 

SThe reference geometry for diffusion is usually the unstressed state. 

With the notation we have used. the fluxes should be noted with a 

prime. Since there is no confusion possible, we shall drop it here. 

BIJ is a mobility, function of composition and stress at a 

given temperature. It has been shown that the Bu are 

independent of the choice of the species K. There are 

(N -I) chemical species plus vacancies. There are 

(2N-1) independent network restrictions on the BIJ 

"'2:.B[I=O 
( 

"'2:.Bu=O 
J 

J=I, ... N 

I=l, ... N. 

(8.2) 

(8.3) 

As a result there are (N -1 Y independent coefficients 

which is the expected number of phenomenological co

efficients for the diffusion of (N -1) interacting species 

without a network constraint. It is also the number ex

pected for (N-I) interstitial species. For a one

component solid with vacancies there is only one term 

(8.4) 

Similarly for the diffusion of a single interstitial species 

there is one term 

(8.5) 

For a two-component substitutional solution there are 

four independent B. With vacancies as the K species the 

M" terms disappear and we have 

with the restrictions that 

Using species 2 as the K species we have the same coef

ftcients in different combinations with the diffusion po

tential M 

(8.7) 

The knowledge that B remains the same in various 

formulations should permit flexibility both in gathering 

data and in formulating and applications. 

Stress affects both Band M in the flux equations. B is 

affected by the level of stress alone. We expand about a 

stress state which can be either zero 
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(8.8) 

or some other convenient state TO 

(8.9) 

The gradient of 1W depends on the stress and the stress 

gradient. From the Maxwell eq (4.13) the coefficient of 

the stress gradient is the strain produced by a unit com

position change 

(8.10) 

which is precisely defined and readily estimated from 

lattice parameter-composition data. For cubic or iso

tropic cases 

(8.11) 

and 

Strictly this should be at the actual stress, but in most 

cases data for unstressed crystals should be adequate, 

and lead to a linear formulation. Combining (8.1) with 

(8.12) and retaining only terms linear in Twe obtain for 

cubic or isotropic cases 

(8.13) 

The factor pb needs to be introduced since the care 

defined to be dimensionless rather than molar densities, 

where 

(8.14) 

Because diffusion fluxes and gradients are independent 

of the choice of K, AI and the BIJ can be shown also to 

be independent of that choice, but to be consistent the 

DIJ(K} must depend on the choice in the way shown in 

(8.14). To avoid large uncertainties in the DIJ(K} it is 

again clearly advantageous to choose K to be the major 

species, rather than vacancies. 

8.2 Diffusion Without Network Changes 

Conservation of matter is expressed by the equation 

/ aCI d' J 0 
Po-+ tv r= . 

at -
(8.15) 

Compositional heterogeneity produces a long-range 

stress field and changing compositions change this field. 

Since stress and stress gradients affect Band M, the 

stress and diffusion equations have to be solved simulta

neously. It has been common to ignore this mutual inter

action and to study either the stress resulting from dif

fusion or the effect of stress on diffusion alone. When the 

ignored effects are small, this is valid, but for most cases 

it is not. 

A straightforward technique for solving the stress and 

diffusion equations has been developed [30]. As in sec

tion 5 the relationship between elastic stress and an arbi

trary composition field often remains solvable and can 

be used to eliminate stress from the diffusion equation. 

Plastic stress accommodation would render this tech

nique invalid. 

A hierarchy of increasingly complicated problems 

was examined for cases of diffusion in binary alloys in 

which there was no applied stress. All stress was due to 

compositional heterogeneity alone. 

The mutual interaction in most cases is a major factor. 

In the case of spinodal decomposition, it can change the 

sign of the diffusional flux and is responsible for the 

metastability between the chemical and coherent spin

odal [32]. The stress effect is so long ranged that com

positional heterogeneity can affect diffusion elsewhere. 

Fick's law which states that the flux depends only on 

local gradients is often not valid. Because this stress 

effect is proportional to the local concentration it can be 

neglected in dilute solutions. 

Interface boundary conditions for diffusion in inter

stitial solutions have been examined for cases in which 

the network is chemically inactive. The boundary con

dition is a simple continuity of M at a fixed location in 

the reference state. It depends on the level of stress at 

the boundary. For local equilibrium eq (5.7) is applica

ble. 

8.3 Diffusion with Self-stress and Phase-change at the 

Boundary 

In our previous work [30] on the effect of self-stress 

on diffusion the network was conserved at the bound

ary. There are many metallurgical problems, such as 

diffusion controlled phase growth, where the network is 

not conserved, but where equilibrium prevails at the 

interface. This equilibrium is governed by eq (5.7) and a 

phase-change equation that depends on the nature of the 

boundary. 

Self-stress is what we call the stress that is the result 

of sample heterogeneity. Generally its value at a point is 

a function of the composition distribution everywhere. 

For special geometries its value becomes a simple ex

pression involving principally the local composition, 
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and the effects of self-stress on the thermodynamic vari

ables can be expressed in terms of the local composition 

only reducing self-stress problems to composition prob

lems. 

One such geometry is the semi-infinite solid with con

centration fields that are functions only of the distance 

from the surface. We will consider the case of a semi

infinite couple, with diffusion in a and {3, and an inco

herent boundary. Under pressure P, the equilibrium 

compositions are ea and cP. When diffusion takes place, 

the compositions are Co and d far away from the bound

ary, and ea and cP at the boundary (fig. 1). We shall 

further assume, for simplicity, that the pressure P is zero, 

and that the diffusing sample is under zero external pres

sure. This implies that the tractions are zero at the a-{3 

boundary. We also assume no change of elastic constant 

with composition for either phase. Under these hypoth

eses, the mechanical equilibrium at the interface, eq 

(3.25), is always fulfilled. Equations (5.7) and (3.24) be

come, using (4.22) and (4.32) 

and 

l+v
a
T aT a -a uTa] 

+ 2Ea ij ij +C 1') kk 

r,"fJ[ ! vfJ(TfJ)2 1 +v
fJ
T fJT fJ -fJ fJ fJ ] + "0 -2 EfJ kk + 2EfJ ij ij +C 1') Tkk . (8.17) 

At equilibrium under zero pressure, these equations 

become 

(8.18) 

We first have to find the stress field. In a half-space 

specimen, we have found [30] that its trace depends only 

on the local composition 

(8.20) 

(8.21) 

Where Y =E/(I- v). Introducing these values in 

(8.16) and (8.17), and after subtraction of (8.18) from 

(8.16) and (8.19) from (8.17), we obtain the system of 
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Figure I-Compositions in a self

stressed diffusion couple with an 

incoherent interface. The com

positions far away from the in

terface are cg and cg. The self

stress generated by the 

composition gradient has shifted 

the equilibrium composition at 

the boundary to ca, i..Jl from·their 

unstressed phase diagram values 

ofca , cPo 



equations to solve for eU and (:i3 .As we have seen before, 

it can be solved numerically or, if (eU-co) and (e/3 -d) 
are small, it can be linearized, and the resulting system of 

equations solved by Cramer's rule. 

Under the assumption that there is no normal stress 

across the a-{3 interface, a common tangent construc

tion is possible (see Appendix 4 for the demonstration). 

To the Helmholtz free energy per mole we have to add 

the elastic energy per mole, which is just a function of 

the local composition. Its value is 

f- VaE 2(-U U)2 
el= I- v 'YJ c -co (8.22) 

where Va is the molar volume at composition Co. The 

construction is shown in figure 2. This type of construc

tion has been used by Hillert (33] for the case of massive 

transformation, in which it is proper to assume that the 

phase which is forming is homogeneous, and by Purdy 

et al. [34] for diffusion-induced grain boundary mi

gration. 

8.4 Effect of Vacancies: General Formulation 

When vacancies, in addition to providing a mech

anism for diffusion, also interact with the stress, and 

provide a means for creating or destroying network at 

>
<..') 

0:: 
W 
Z 
W 

W 
W 
0:: 
LL 

an interface, new phenomena appear, in particular dif

fusional creep. In this section, we consider only one

component systems, where these effects are not ob

scured by the phenomena previously described in this 

chapter. We first formulate the creep as a boundary 

value problem and then turn our attention to specific 

creep problems. 

The Partial Differential Equation 

The flux of vacancies I is given by 

(8.23) 

where Bij is a tensor function of the temperature 8, Cv (the 

concentration of vacancies) and the stress. An expansion 

around T =0 gives 

(8.24) 

The coefficient of order 0 is given by 

BZ =D~v(1-cv)IR 8pb (8.25) 

where Dij is the self-diffusion matrix. Usually it is not 

very much dependent on the vacancy concentration. 

The tensors B~ and B ~ being properties of a crys

talline material follow the rules of crystalline sym-

Figure 2-Common tangent con

struction that gives the com

position of figure 1. The un

stressed free energies (heavy 

lines) are shifted by an amount 

equal to the elastic energy 

VoE'1)' (c -co)2/(l-V) to give 

the light curves. The common 

tangent construction gives c· 
and cPo 

cg ea en e'B cB c§ 
COMPOSITION 
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me tries. For isotropic materials 

(8.26) 

and 

BO=c,(I-c,)DIR 0po. (8.27) 

The tensor B I~kl has the same form as an elastic tensor 

for an isotropic material 

(8.28) 

where {3 and 'Yare two constants. This equation reveals 

that if the tensor Bij is stress dependent. it introduces a 

stress-coupled anisotropy in an otherwise isotropic dif

fusion coefficient. 

Neglecting second order effects in stress in Mvh that is 

assuming that the elastic coefficients do not depend on 

vacancy concentration, the gradient of the vacancies 

diffusion potential can be written 

If dilute solution laws apply. this equation simplifies into 

(8.30) 

which, for isotropic material becomes 

dC, DV'2 at=s+ c,. (8.35) 

Initial Conditions. The initial conditions consist in a 

given vacancy concentration field. For steady state. 

these conditions are not needed. They are unimportant 

at long times, as long as a steady state can be reached. 

Boundary Conditions. The boundary conditions depend 

of course on the problem that is treated. The most useful 

seems to be given by an equilibrium condition along all 

surfaces of the solid. Written for an isotropic solid. con

stant elastic coefficients, a reference pressure P = 0 (with 

an equilibrium vacancy concentration c,), dilute solu

tion behavior, and a reference composition c, =0 for 

strain, this reads (eqs (3.18) and (4.31» 

(8.36) 

or 

R e In(c.lc,)= -PVo( 1 + 1 ~2VTkk +3C.'l').) 

- Vo[ -~ ~(Tkk)2+ I i;TijTij -(l-c,)'f/vTkk ]. (8.37) 

V'MI" =(R Olc,)V'c. - V~"f)V'(trT). (8.31) Since c, ~ 1, these equations can be simplified into 

The conservation equation is expressed as usual 

,ac, J ' 
P0at + i,i =spo· (8.32) 

The source and sink terms. which is the number of va

cancies created per unit volume, come, for instance, 

from the vacancy source at a moving dislocation. The 

complete diffusion equation for vacancies is obtained by 

combining [8.23] with [8.32] 

(8.33) 

In an isotropic solution, one gets 

ac, ,,2 DVo"f)" " 
-=s+Dv c --Rll vCv'VTkk at '17 

(8.34) 

where we have neglected the stress dependence of By. 

When the relaxation of the lattice around a vacancy can 

be neglected, the last two terms of the r.h.s. disappear, 

and one obtains the simple equation 

Because it is the dominant term linear in stress, the 

r.h.s. is usual1y-PVo. Only this term was taken into 

account in Herring's theQry of diffusional creep. We 

shall see in the next section cases where the quadratic 

terms are important for new effects. 

Network modification along the surfaces due to the 

vacancy flux is simply given by 

, (ax: V. J) 0 
ni a,+ ° i = (8.39) 

where the x: are the coordinates of a point of the inter

face. This equation tells us that the shape of the speci

men changes as diffusion takes place. due to the vacancy 

creation and annihilation at the surfaces. 

Stress Equilibrium. Up to now we have been concerned 
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with the diffusion equation. Stress equilibrium in this 

quasi-static model obeys the partial differential equation 

(3.13) 

(8.40) 

with proper boundary conditions. In most problems 

they will be given in terms of tractions along the surface. 

It is important to note that, because of the network 

modifications there, they are specified on a changing 

(and usually unknown) surface. 

To specify the problem fully in term of stress, we need 

the Beltrami-Mitchell equations [11,30]. For isotropic 

materials, the expression is 

8.5 Some Creep Problems 

8.5.1 Herring's Classical Problems: 

Diffusional Viscosity of a Polycrystalline Solid 

Let us first show that with Herring's assumptions and 

approximations [18] the equations presented in section 

8.4 become identical to his starting equations. Only 

steady state is considered. There is no volume change 

associated with a vacancy (i.e., the average volume of a 

vacancy is equal to the atomic volume). This implies 

1]=0; therefore the interactions between stress and com

position appear only in the boundary condition per

taining to network modification. Furthermore all terms 

nonlinear in stress are neglected, and the reference pres

sure is zero. The solution of atoms and vacancies is ideal 

(i.e., there is no interaction with vacancies and their 

concentration is very small). Finally, there is no source 

term within a grain. 

With these approximations, the diffusion eq (8.33) be-

comes 

(8.42) 

The expression for the diffusion potential is 

Ml,=J.t~(O)-J.t~(O)+Re In[(l-c,)!c,] (8.43) 

and the boundary condition (8.29) becomes 

J.t~(O)+R e lnc,= -PVo. (8.44) 

Subtracting (8.44) from (8.43), and neglecting In(I -c,), 

one gets 

This is the boundary condition used by Herring (his eq 

(2» for the partial differential eq (8.42) since our P 

equals his -Pzz • The stress equilibrium equation is the 

same, and he implicitly used condition (8.37) to get the 

rate of displacement of the interface (e.g., to go from (3) 

to (4) in his paper). Thus within the assumptions explic

itly spelled out at the beginning of this section, we re

cover Herring's equations and boundary conditions. 

His solutions combined a mean field (the average of 

the stress tensor within a grain is equal to the applied 

stress) and a perturbation analysis (the shape of the grain 

does not change as diffusion proceeds). 

The formulation of the problem with fewer assump

tions is possible using the equations of the previous sec

tion which contains important additional terms in the 

diffusion eq (8.33) and boundary conditions (8.29). We 

next explore a few problems chosen to illustrate the 

physical consequences of these additional terms. 

8.5.2 Quadratic Effects 

Usually the linear term of the r.h.s. of (8.36) is the 

dominant one, but, whenever the specimen surfaces are 

all immersed in a fluid of constant pressure, this term is 

constant and at steady state does not contribute any 

gradient. Under these conditions the higher order terms 

are the only ones present. We consider two examples in 

which we approximate condition for which P is constant 

over the surfaces of interest. 

The first treated by Roitburd [35] is a pore in a speci

men under uniaxial stress in which he examined the 

shape change by vacancy fluxes that redistributed mate

rial around the pore. Other vacancy sinks and sources 

were assumed so far away that fluxes between them and 

pores could be neglected. Because P in the pore is con

stant, the effects depend entirely on the quadratic terms. 
The result of the calculation is that a spherical pore will 

distort to an oblate spheroid with the minor axis along 

the stress axis. Because this conclusion arises from qua

dratic terms the same result is obtained regardless of 

whether the specimen is under tension or compression. 

A closely related problem is a long single crystal rod 

of nonuniform cross section under a uniaxial load ap

plied at the ends. If the characteristic length of the non

uniformities is short compared to the specimen length, 

we may examine the redistribution of material along the 

lateral surfaces by vacancy flux and ignore the fluxes 

between these surfaces and the specimen ends. Along 

the surface P is again constant. If we assume 'l']v =0 and 

that the elastic constants are independent of c., (8.36) 

becomes 

(8.45) J.t~(0)+R8 lnc y = - Vo[ -~ ~ (Tkd+ I~VTijTij]. (8.46) 
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The r.h.s. is minus the elastic energy of the solid. Let us 

note that the rod is unstable to necking. A small inden

tation (or any change in cross section) will produce a 

higher stress at its root (or at the minimum cross sec

tion). Vacancy flux will remove material from the root 

(or at minimum cross section) and deposit it nearby at a 

place of lowered elastic energy. The rod is unstable to 

necking by diffusion creep regardless of whether it is 

under tension or compression. This is the same result as 

Roitburd's pore,which can be considered an internal 

notch. 

This counterintuitive result is consistent with thermo

dynamics. Consider the work done by the loading sys

tem, applied force times distance moved. The compli

ance of a rod with nonuniform cross section increases if 

the rod necks down, and thus the load system does work 

on the specimen. Conversely if the rod were to become 

more uniform under load, its compliance would de

crease and it would have to do work On the load system. 

This would be in violation of thermodynamic principles. 

Another interesting result of eq (8.46) is the case of a 

uniform rod, in which we again can ignore the ends as 

vacancy sources or sinks. The equation states that for 

1/v =0 and elastic constants independent of Cv the equi

librium vacancy concentration is a maximum at zero 

stress, and is lowered equally by tensile and compressive 

stresses. This result is again understood if we realize that 

the cross-section will be reduced if vacancies leave the 

system, increasing the specimen's compliance. The re

sult will be modified if we assume that the elastic con

stants are a function of Cv and if we let 1/, differ from 

zero, but for small changes it will not affect the sign. 

8,5.3 Balancing Quadratic and Linear Effects. 

The 21T Wedge Disclination 

Linear effects do not automatically dominate qua

dratic effects. An interesting example where both are 

present and cancel identically is a hollow tube com

posed of a 21T wedge disclination in which there is a 

pressure difference between the inside and outside of the 

tube. 

To form the 21T wedge disclination we take a rectan

gular sheet of a perfect single crystal, bend it into a tube 

and weld the seam to insure perfect matching of lattice 

planes (fig. 3). 

At this stage there are tangential compressive stresses 

at the inner surface and tensile stresses at the outer sur

faces. MI. at the two surfaces is the same because the 

stresses at the two surfaces have the same magnitude. 

Because of this the system reaches a vacancy equi

librium in this heterogeneously stressed system in which 

vacancy gradients and stress gradients combine to give 

a constant MI v throughout. 

Now apply a pressure difference between the inside 

and outside and permit vacancy flow. It is readily shown 

that in spite of the pressure difference the value of IVl lv at 

the inner surface equals that at the outer surface. In the 

presence of the higher pressure at the inside there is a 

change in elastic free energy density, a reduction at the 

inner surface and an increase at the outer surface, and 

vice versa if the sign of the pressure difference is 

changed. The elastic energy is quadratic in the stress, 

but the change in stress due to the imposed pressure 

difference is linear in liP. The result is that the linear 

terms in P in Mh cancel identically the changes in the 

quadratic terms in the tangential stresses. The linear and 

quadratic terms balance identically to give the same M I , 

at the two surfaces. Again an equilibrium is reached in 

which MI. is constant throughout and vacancy concen

tration gradients compensate for stress gradients. 

This surprising result that the 21T wedge disclination 

will not creep by vacancy flow even when there is a 

pressure difference can also be understood by consid

ering the consequence of the transfer of an entire plane 

of atoms from the inside to the outside. If we start with 

either of the flat single crystal plates and create the 

disclination we see that the tube is the same whether the 

atom layer is transferred or not (fig. 3). 

9. Summary and Conclusions 

We have reviewed and applied the thermodynamics 

that has been developed for multicomponent mUltiphase 

stressed crystalline solids. We h;ive found equilibria in 

which the solids were neither homogeneous in stress nor 

in composition. We have considered equilibria for three 

types of multiphase contact: solid-fluid, incoherent, and 

coherent solid-solid. We have also examined simple non

equilibrium cases where potential gradients determine 

diffusion. Diffusional creep in particular was used to 

illustrate the importance of a full thermodynamic treat

ment. 

Crystalline solids differ fundamentally from liquids in 

that they posses long range three-dimensional trans

lational order. This implies that we can define a lattice 

and site occupancy. The number density and type of 

sites is known, and a local change in composition can 

only be made by redistributing atoms and vacancies 

among these sites. This fundamental restriction in the 

interior of a crystalline solid introduces important dif

ferences between the thermodynamics of solids and 

those of liquids. Because these restrictions apply at co

herent boundaries but not at other boundaries, we find 

different equilibrium conditions at the various bound

aries. 
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Figure 3 - Radial vacancy fluxe, 

that remove layers from the in

ner surfaces and deposit them on 

the outer surface of a 2'1T wedge 

disclination do not enlarge the 

disclination and therefore no 

work is done by any pressure dif

ference. To see this, consider the 

cross section (c) of 2'1T wedge 

disclination made by elastically 

bending the perfect crystal (a) 

into a circular cylindrical shell 

and joining the ends. The 2'1T 

wedge disclination after radial 

diffusion is unchanged because it 

can be made from (b) which is 

identical to (a) except for trans

lation of bottom layers to top. It 

will therefore reach the same 

equilibrium geometry in the 

presence of the pressure differ

ences. 

c 

The equations that result from the thermodynamics 

consists of a set of coupled partial differential equations, 

algebraic equations and boundary. conditions for stress 

and composition. For the kinetics, the diffusion equa

tions are added. Although full nonlinear and large strain 

formulations exist, we have concentrated on examples 

where the essential features were displayed with small

strain approximations and linearized thermodynamics. 

The thermodynamics has resulted in identifying and 

precisely defining the important phenomenological 

quantities needed for predictive calculation. The defini-

p=o 

tions in particular are important and much of the contro

versy in the literature is judged to be the result of inad

equate definitions of quantities. Furthermore the 

necessary data needed for evaluating the equations turn 

out to be computable from classically measured quan

tities, such as free energies of hydrostatically stressed 

solid solutions, elastic coefficients, and lattice parame

ters. 

One important method for solving the equilibrium 

equations uses the notion of open-system elasticity. This 

method eliminates the compositiol1' variable from the 
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system of equations, and leaves a purely elastic problem 

to be solved. Central to the method are the open-system 

elastic constants, and in this paper we show that the 

same technique applies to multiphase solid equilibria. 

With this technique a large number of elastochemical 

problems are now solved because they become identical 

to solved problems of chemically . homogeneous elastic 

solids. Once the stress field is known, only algebraic 

equations have to be solved to obtain the composition in 

the solid. As an example of the use of this concept, we 

have solved the dislocation atmosphere (stress field and 

composition field) in an isotropic and a cubic solid, auto

matically taking into account in a self-consistent way the 

thermodynamics of the solid solutions. Another exam

ple is the inclusion problem, although we have not 

found in the literature the shapes that satisfy the phase 

equilibrium boundary condition other than sphere, cir

cular rod, and plate. 

The question of the need for defining separate chem

ical potentials for each chemical species inside the solid 

has been a subject of controversy ever since Gibbs. We 

hope that wehave shown that problems of equilibria can 

be solved without defining or using them. Gibb's famous 

example of a homogeneously stressed solid which gave 

three different chemical potentials when equilibrated 

with three fluids each at a pressure equal to minus a 

principal stress should alert everyone to the danger of 

attempting a definition. Of course our MI. could be con

strued to be a chemical potential of the Ith specie, but 

we prefer for clarity to retain the vacancy as the counter 

specie. 

Questions of species that occupy more than one site 

needed to be addressed. As our section 5.6 shows, the 

classical notion of chemical reactions among species on 

different sites very nicely resolves any confusion. Treat

ing interstitials as atoms occupying sites that are mostly 

empty resulted in a unified treatment and clearly demon

strated the principle. From this more general treatment 

we showed it is possible to develop a treatment in which 

interstitials require a different and more convenient for

mulation. 

We have supplemented an earlier overview on the 

effect of self-stress on diffusion by adding boundary con

ditions that permit phases to grow or shrink at the inter

face. 

Diffusional creep is an important field in which the 

linearized and simplified treatment of Herring was an 

important first step. However Herring's definitions 

were not precise and this has led to much later con

fusion. We have presented a detailed derivation of a 

fuller treatment in which each term is fully defined and 

related to the data base. To emphasize the importance of 

the nonlinear terms, which Herring alluded to, but dis-

carded, we gave two examples each of which seems 

counterintuitive but thermodynamically correct: a long 

rod which in compression is unstable to necking by 

diffusional creep, and a tube composed of a perfect 27T 

wedge disclination which does not bulge by radial va

cancy flux even when there is a pressure difference be

tween the interior and exterior. The former is a case 

where Herring's linear term is zero and we must resort 

to the quadratic terms, and the latter is a case where the 

linear term identically cancels changes in the quadratic 

terms. The fuller equation contains several other terms 

usually ignored in creep theories that also can become 

important. 

Capillary effects (surface strain and surface free en

ergy) are not included. A formulation exists for some 

types of interfaces or specific geometries [36,37]. The

ories of equilibrium of stressed solids with capillarity 

effects for the three types of interfaces considered here 

are being developed [38]. 

Although the elastic energy is usually small compared 

to the free energy change resulting from a composition 

change, there are domains where the interactions of 

composition and stresses are likely to be important. Self

stresses resulting from the presence of defects or hetero

geneity of the material can have sizable consequences. 

The depression of the consolute critical point and the 

spinodal is a well known example. In systems without 

critical points coherent equilibrium is also strongly af

fected. Coherent phase diagram features have recently 

been found [39,40] that differ markedly from incoherent 

phase diagrams. The equations that could be used to 

calculate these phase diagrams have been obtained in 

sections 3 and 4. 

Interesting consequences originate from the long 

range nature of the elastic forces. For instance this intro

duces non-local effects in the diffusion equation. Under 

hydrostatic pressure, a multi-phase incoherent dis

persion at equilibrium is degenerate with respect to the 

shape of the phases, i.e., the equilibrium is independent 

of the shape of the precipitates. Under a more general 

state of stress (coherent precipitates, for instance), this 

simple result is no longer valid. The equilibrium equa

tions have to be solved on an unknown boundary and 

the equilibrium shape is to be determined as part of the 

solution (a so-called free boundary problem). With the 

use of the open-system elastic constants such problems 

can be expressed as a purely elastic problem. The phase 

equilibrium boundary condition is the one that makes 

the problem different from classical elastic inclusion 

problems for which a shape is imposed. The solutions of 

the elastic equation of general shape will not be consis

tent with the phase equilibrium boundary condition. 

The catalog of the shapes that produce an elastic field 
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that in turn satisfies this condition has not yet been 

found. The introduction of capillarity would modify this 

condition. Work has been done on the subject [41]. 

We are grateful to W. C. Johnson and R. F. Sekerka 

for helpful discussions and criticism. We are especially 

grateful to M. Hillert for questioning the need to treat 

interstitials differently from other species. Out of our 

discussion with him the ideas of section 5.6 evolved. J. 

Hirth kindly called our attention to misprints in [37] 

which have been corrected in this article. 

References 

[I] Truesdell, C., and R. A. Toupin, The Classical Field Theories, 

in Encyclopedia of Physics, S. Flugge, ed. III/I, Springer

Verlag (1960). 

[2] Gibbs, J. W., Scientific Papers, I, pp. 184-218, Longman (1906). 

[3) Li, J. C. M.; R. A. Oriani and L. S. Darken, Z. Phys. Chern. 

Neue Folge 49, 271 (1966). 

[4] Yang, L.; G. T. Horne and G. M. Pound, Proceedings of a 

Symposium on Physical Metallurgy of Stress Corrosion 

Cracking, Pittsburgh, Interscience (1959), p. 29. 

[5] Robin, P.-Y. F., American Mineralogist, 59, 128.6 (1974). 

[6] Larche, F. c., and J. W. Cahn, Acta Metall. 21, 1051 (1973). 

[7] Mullins, W. W., in Proceeding of an International Conference 

on Solid-Solid Phase Transformations, Pittsburgh, Met. 

Soc. AIME (1982), p. 49. 

[8] Bennett, L. H.; A. J. McAlister and R. E. Watson, Physics 

Today, 30, 34 (1977). 

[9] Gibbs, J. W., Scientific Papers, I, Longman (1906). 

[10] Larche, F. c., and J. W. Cahn, Acta Metall. 26, 1579 (1978). 

[11] Malvern, L. E., "Introduction to the Mechanics of a Continuous 

Medium," Prentice-Hall (1969). 

[12] Van der Waals, J. D., translated by J. S. Rowlinson, J. Stat. 

Phys. 20, 197 (1979). 

[13] Cahn, J. W., and J. E. Hilliard, J. Chern. Phys. 28, 258 (1958). 

[14] Hart, E. W., Phys. Rev., 113,412 (1958). 

[15] Larche, F. C., and J. W. Cahn, Acta Metall. 26, 53 (1978). 

[16] Bitter, F., Phys. Rev. 37, 1527 (1931). Crum, M. M., as cited by 

F. R. N. Nabarro, Proc. Roy. Soc. A175, 519 (1940). 

[17] Nye, J. F., Physical Properties of Crystals, Clarendon Press, 

Oxford (1957). 

[18] Herring, C. J., App!. Phys. 21,437 (1950). 

[19] Cottrell, A. H., "Report of a Conference on Strength of Solids," 

Univer~ity of Bristol, The Physical Society, London (1948). 

[20] Louat, N., Proc. Phys. Soc. 869,459 (1956). 

[21] 8eshers, D. N., Acta Metall. 6, 521 (1958). 

[22] Johnson, R. A., Phys. Rev. B24, 7383 (1981). 

[23] Eshelby, J. D., Adv. Solid State Phys. 3, 79 (1956). 

[24] Steeds, J. W., Introduction to Anisotropic Elasticity Theory of 

Dislocations, Clarendon Press, Oxford (1973). 

[25] Balluffi, R. W_, and A. V. Granato, in "Dislocations in Solids," 

F. R. N. Nabarro, ed., Vo!. 4, p. 2, North-Holland, Am

sterdam (1979). 

[26] Gairola, B. K. D., in "Dislocations in Solids," F. R. N. Nabarro, 

ed., Vo!' I, p. 223, North-Holland, Amsterdam (1979). 

[27] Li, J. C. M.; F. V. Nolli and C. A. Johnson, Acta Metall. 19,749 

(1971). 

[281 Herring, C., in "The Physics of Powder Metallurgy," W. E. 

Kingston, ed., McGraw-Hill (1951). 

[29] Hillert, M., in "Alloy Phase Diagrams," L. W. Bennett, T. B. 

Massalski, and B. C. Giesen, eds., North-Holland (1983). 

[30] Larche, F. C., and J. W. Cahn, Acta Metal!. 30, 1835 (1982). 

[31] Cahn, J. W., and F. C. Larche, Scripta Met. 17, 927 (1983). 

[32] Cahn, J. W., Acta Met. 9, 795 (1961). 

[33] Hillert, M., Met. Trans. 15A, 411 (1984). 

[34] Tashiro, K., and G. R. Purdy, Scripta Met. 17,455 (1983) 

[35) Roitburd, A. L., Sov. Phys. Solid State 23, 622 (1981). 

[36] Cahn, 1. W., Acta Metal!. 28, 1333 (1980). 

[37] Cahn, J. W., and F. C. Larche, Acta Metall. 30, 51 (1982). 

[38] Alexander, J. 1., and W. C. Johnson, to be published. 

[39J Williams, R. 0., Met. Trans., A, 11, 247 (1980). 

[40] Cahn, J. W., and F. C. Larche, Acta Metall. 32,t915 (1984). 

[41] Johnson, W. c., and J. W. Cahn, Acta Metall. 32.1925 (1984) 

Appendix 1. Solid-Liquid Equilibrium Under Hydrostatic Stress 

We consider the case of a substitutional binary solid. In equilibrium with a fluid under hydrostatic 

stress (for instance if it is entirely surrounded by the fluid), the mechanical equilibrium eqs (3.13) and 

(3.14) implies that the stress is equal to 

Tij=-Poij (AU) 

where P is the pressure in the fluid. The stress being uniform, the constancy of the diffusion potential 

implies that the composition is uniform. Therefore the solid is uniform. The boundary condition 

(Al.2) 

can be combined with the equation for the diffusion potential 

(A 1.3) 
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to give 

JLf=if +p +P2M 12)VO 

[.LI= if + P - PIM 12) Va 

(Al.4) 

(AU) 

Because the solid is uniform, these expressions are valid everywhere. The quantities on the right hand 

side of (A 1.4) and (Al.5) depend only on the value of the state variables. Let us call them p..f and p..i. 

Elimination of M12 between these two equations gives 

(A 1.6) 

(Al.7) 

and. because of the uniformity. we can multiply by Vo to get the total Helmholtz free energy 

where NI and N2 are the total number of moles of components 1 and 2 respectively. The differential 

off' is 

MI2 is replaced by its value obtained from (A 1. 6) and (A 1.7). Using the definition of p;. and after 

multiplication by Vo• one obtains 

Therefore 

, (aF) J.L2= --
- aN2 V.N[ 

We have recovered all the classical formula for fluid-fluid equilibrium. Despite network constraints. 

a solid under hydrostatic stress behaves as if it were a fluid. 

Appendix 2. The Boundary Conditions for Coherent Phase Change: 
Small Strain Approximation 

The full large strain boundary condition for coherent phase change is [15] 

(A2.1) 

where the same reference state is chosen for both phases. The superscript T stands for transpose and 

F is the deformation gradient. (al '/aF) is the first Piola-Kirchofftensor TR• It is related to the Cauchy 

stress tensor T by 

(A2.2) 
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where J is the determinant of F. In the small strain approximation, the displacement tensor is given, 

to first order in the derivatives Uti, by [11] 

(A2.3) 

where E is the small strain tensor, (eq (3.1)), n the small rotation tensor, and I the unit tensor. To the 

same approximation, its inverse is given by 

(A2.4) 

Using these equations we get 

(A2.5) 

Dropping terms of order U 7,J' and since, for an arbitrary 3 X 3 tensor 

n'-A-n' =n'-AT-n' 

we finally obtain 

(A2.6) 

Since the same reference state has been chosen for a and {3, the following equalities hold 

(A2.7) 

Using (A2.7), (A2.6), and (A2.1) we finally obtain 

(A2.8) 

V,'f'/3 "'M /3+ v,' [ T /3 '/3 '/3 21"\ /3T /3 '/3 '/3] = 0 -~ IKe I 0 - ij ni nj + Uij jk ni nk 

The various terms are seen to be energies per mole of lattice sites. It is then easy to make a change 

of reference volume (like the stress free state for each phase). To the level of approximation used in 

linear elasticity this won't affect the V~ f' terms. But it does affect the terms linear in Tij. 

Appendix 3. Derivation of the Open-System Elastic Stiffness and Compliance Tensor 

All the calculations are done at constant temperature, so that all the partial derivatives are 

understood to be at constant temperature. We first treat the case of a binary solid, then generalize to 

a multicomponent solid. 

A3.1 Binary Solid 

To simplify the notation we take p' to be pl. The differential of the stress can be written 

dTij=(oTij) dEkl+(~) dp' 
oEk[ p' op Ekl 

(A3.1) 

or 
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(aT.) ( aT.) dTij= ..::...::..JLE' dEkJ + M' dM12 
a kJ .If 12 a 12 Ek/ 

(A3.2) 

The differential of the diffusion potential is 

dM =(aMI2) dP,+(iJM12
) dE. 

12 ap' aE.. , I} 
Eij Ij P 

(A3.3) 

Replacing dp' from (A3.3) into (A3.I) yields 

dT.-[(ili) _(~) (oMI2) j(aM12) ]dE 
lj - aEkJ p' iJp' E,I aEy p' iJP/ EO' kJ 

[( ~) j(iJM12) }dM + iJP/ Ekl ap' Ekl 12 

(A 3.4) 

and the coefficient of the term dEkl is the (ijkl) component of the open-system stiffness tensor. 

Using the stress-strain relationship (4.14) and the Maxwell relation 

(A3.5) 

one gets 

(iJMI2) C dCijkl(E Ee) 
aEy p' = - ykJ'1lkJ + dp' kl- kJ (A3.6) 

The value of MI2 as a function of Eij rather than Tij is obtained from (4.14) by using 

(A3.7) 

Neglecting strain dependent terms, we finally get 

(A3.8) 

Because of the linearity, we have 

(A3.9) 

where SijkJ are the open-system compliances. Combining (A3.8) and (A3.9) gives 

(A3.10) 

where '1lij are defined by (4.4). 

A3.2. Multicomponent Solids 

We follow the same derivation as above. The differential of the stress tensor is 

(A3.11) 

The differentials of the potentials are 

(A3.12) 
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dpJ can be obtained from this system of linear equation by Kramer's rule 

(A3.13) 

where D is the determinant 

and All is the minor of the (aM1K/apJK) term of D. Replacing dp; by its value in (A3.11) and using the 

Maxwell relation 

(A3.14) 

we get 

(A3.15) 

Using (A3.9), Hooke's law, and neglecting strain dependent terms we finally get 

(A3.16) 

where X is the determinant 

_ 'laMIKI X-po (le] 

and All the minor of the (IJ) term of Xlpb. 

Appendix 4. A Common Tangent Construction 

Let ~k be three unit vectors normal to each other, such that e is the normal to the interface, with 

components ~7. The vectors A k are defined by 

(A4.1) 

Since the determinant I gJ I has the value 1 the system of equations (A4.1) constitute a valid linear 

change of variable. Using the chain rule, we obtain, considering the ~k as fixed 

(A4.2) 

After multiplication by ~J and summation onj one gets 

(A4.3) 

Let us define the free energy r by 
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and it is easy to show that 

The conditions for equilibrium at an incoherent interface (eq (3.24)) can be written 

where quantities such as f are just f I Va, i.e., quantities per mole of lattice sites. 

If the normal pressure is zero, so that Tij nj = 0 it becomes equivalent to 

which together with 

which can then be written 

(A4.4) 

(A4.5) 

(A4.6) 

(A4.7) 

(A4.8) 

(A4.9) 

- -
show that elK can be obtained by a tangent construction to ',which, in this case is just equal to f. 
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