
1536-1268/02/$17.00 © 2002 IEEE PERVASIVEcomputing 67

The Interactive Workspaces Project:

Experiences with
Ubiquitous Computing
Rooms

T
he interactive workspaces project

started at Stanford University in

1999 to investigate human interac-

tion with large high-resolution dis-

plays. The project initially operated

in a busy lab in which the display proved to be no

more than a curiosity since it could not be used for

long periods of time and offered little integration

with other devices. It became clear that the poten-

tial of a large display device would emerge only by

embedding it in a ubiquitous

computing environment that

could sustain realistic interactive

use. The interactive workspaces

project therefore began to design

and use rooms containing one or

more large displays that had the ability to integrate

portable devices.

The idea of ubiquitous computing1 encompasses

many different kinds of settings and devices. We

chose to narrow our focus by

• Investigating how to map a single defined

physical location to an underlying systems

infrastructure and a corresponding model of

interaction2

• Emphasizing the use of large interactive walk-up

displays, some using touch interaction

• Collaborating with other research groups, both

within and outside the field of computer science,

to construct nontoy applications

We constructed several versions of our prototype

interactive workspace, which we call the iRoom,

created a software infrastructure for this envi-

ronment, called iROS, and conducted experi-

ments in human-computer interaction in the

workspace. We also assisted outside groups in

using our technology to construct application

suites that address problems in their own

domains, and we deployed our software in pro-

duction environments.

Overview, goals, and contributions
As we began to construct the iRoom, we devel-

oped some guiding principles:

• Practice what we preach. From the beginning we

used the iRoom as our main project meeting room

and employed the software tools that we con-

structed. Much of our continuing research has

been motivated by our frustration at encounter-

ing something we could not accomplish in the

iRoom.

• Emphasize colocation. There is a long history of

research on computer-supported cooperative work

The interactive workspaces project explores new possibilities for people

working together in technology-rich spaces. The project focuses on

augmenting a dedicated meeting space with large displays, wireless or

multimodal devices, and seamless mobile appliance integration.

I N T E G R A T E D E N V I R O N M E N T S

Brad Johanson, Armando Fox,
and Terry Winograd
Stanford University

for distributed access (teleconferencing

support). To complement this work, we

chose to explore new kinds of support

for team meetings in single spaces, taking

advantage of the shared physical space

for orientation and interaction.

• Rely on social conventions. Many pro-

jects have attempted to make an inter-

active workspace smart.3,4 Rather than

have the room react to users, we chose

to focus on letting users adjust the envi-

ronment as they proceed with their task.

In other words, we set our semantic

Rubicon2 so that users and social con-

ventions take responsibility for actions

and the system infrastructure is respon-

sible for providing a fluid means of exe-

cuting those actions.

• Aim for wide applicability. Rather than

investigating systems and applications

just in our specific space, we decided to

investigate software techniques that

would also apply to differently config-

ured workspaces. We wanted to create

standard abstractions and application

design methodologies that apply to any

interactive workspace.

• Keep it simple. At both the interface and

software development levels, we tried to

keep things simple. On the human-inter-

face side, we faced a fundamental trade-

off in interaction design between the

necessity of supporting diverse hardware

and software and the need to provide an

interface simple enough so that people

would use it. On the software develop-

ment side, we tried to keep APIs as sim-

ple as possible, both to make the client-

side libraries easier to port and to

minimize the barrier-to-entry for appli-

cation developers.

The iRoom is our second-generation

prototype interactive workspace (see Fig-

ure 1). Several other iRooms have been cre-

ated at Stanford and elsewhere (see the

sidebar “The iRoom and Beyond: Evolu-

tion and Use of Deployed Environments”).

The iRoom contains three touch sensitive

white-board displays along the side wall

and a custom-built 9 megapixel, 6-foot

diagonal display called the interactive

mural. In addition, there is a table with a

3 × 4 foot display that was designed to look

like a standard conference-room table. The

room also has cameras, microphones,

wireless LAN support, and several wire-

less buttons and other interaction devices.

We started our research by determining

the types of activities users would carry out

in an interactive workspace. Through our

own use, and through consultation with

collaborating research groups, we arrived

at the three following task characteristics:

1. Moving data. Users in the room need

to be able to move data among the

various visualization applications that

run on screens in the room and on lap-

tops or PDAs that are brought into the

workspace.

2. Moving control. To minimize disrup-

tion during collaboration sessions, any

user should be able to control any

device or application from his or her

current location.

3. Dynamic application coordination.

The specific applications needed to

display data and analyze scenarios

during team problem-solving sessions

are potentially diverse. One company

reported using over 240 software tools

during a standard design cycle. Any

number of these programs might be

needed during a single meeting. The

activities of each tool should coordi-

nate with others as appropriate. For

example, the financial impacts of a

design change in a CAD program

should automatically show up in a

spreadsheet program that shows

related information running elsewhere

in the room.

Based on our experiences with the

iRoom, we identified some key character-

istics to be supported by the infrastructure

and interfaces in an interactive workspace.

Multiple devices (PDAs, workstations, lap-

tops, and so forth) will be in simultaneous

use in a workspace, with each chosen for its

efficacy in accomplishing some specific

task. There will also be heterogeneous

software running on these devices, includ-

ing both legacy and custom-built applica-

tions. All of these must be accessible to one

another in a standard way so that the user

can treat them as a uniform collection. This

means that any software framework must

provide cross-platform support. From the

HCI perspective, interfaces must be cus-

tomized to different displays and possibly

to different input-output modalities, such

as speech and voice.

68 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D E N V I R O N M E N T S

Figure 1. A view of the interactive room

(iRoom).

Furthermore, unlike a standard PC, an

interactive workspace by its nature has mul-

tiple users, devices, and applications all

simultaneously active. On short time scales,

the individual devices might be turned off,

wireless devices might enter and exit the

room, and pieces of equipment might break

down for periods of minutes, hours, or

days. On longer time-scales, workspaces

will incrementally evolve rather than be

coherently designed and instantiated once

and for all. While providing for these

dynamic changes, interactive workspaces

must also work with a minimum of admin-

istration if they are to be widely deployed.

It is not realistic to expect a full-time sys-

tem administrator to keep a workspace run-

ning, so we need to anticipate failure as a

common case rather than as an exception.2

The system must provide for quick recov-

ery either automatically or through a sim-

ple set of user steps.

iROS meta-operating system
For any real-world system to support the

modalities and characteristics just described,

the system infrastructure must mirror the

APRIL–JUNE 2002 PERVASIVEcomputing 69

The iRoom project started with the first version of the Inter-

active Mural, a four-projector tiled display built in several

stages from 1998 to 1999. It included a pressure-sensitive floor

that tracked users in front of the display with one-foot accuracy.

The pressure sensitive floor was used in some artistic applications

but has not been duplicated in the iRoom. The first iteration of

the iRoom was constructed in Summer 1999. Like the current

version, it had three smart boards and the iTable, but it had a

standard front-projected screen instead of the interactive mural

at the front of the room.

Perhaps the biggest mistake we made in constructing the first

iRoom was in planning the cabling. It might seem like an obvi-

ous thing in retrospect, but the number of cables needed to con-

nect mouse, keyboard, video, networking, and USB devices

quickly escalated, leaving a tangle of cables that were not quite

long enough. For the second version of iRoom, we learned from

our mistakes and made a careful plan of cable routes and lengths

in advance. We made sure to label both ends of every cable with

what they were connecting.

In Summer 2000, we integrated the Interactive Mural at the

front of the iRoom, requiring a reconfiguration of the entire

workspace. During the remodel, we introduced more compact

light-folding optics for the projectors on the smart boards and

did a better job of running the cables for the room. We added a

developer lab adjacent to the room along with a sign-in area

that holds mobile devices and a dedicated machine that could

be used for room control. We configured the developer station

with a KVM (keyboard-video-mouse) switch so that all of the

iRoom PCs can be accessed from any of four developer stations.

Figure A shows the floor plan of the second version of iRoom.

One of the big headaches in building the sec-

ond version of iRoom was dealing with projec-

tor alignment and color calibration.1

Since building the second version, Interactive

Workspaces technology has been deployed at

six more locations around our campus. Through

various collaborations, Interactive Workspaces

group software is now being used in iRooms in

Sweden and Switzerland. The i-Land2 group

has also done some work that uses the Event

Heap in conjunction with their own software

framework.

REFERENCES

1. M.C. Stone, “Color and Brightness Appearance

Issues in Tiled Displays,” IEEE Computer Graphics &

Applications, vol. 21, no. 5, Sept./Oct. 2001, pp.

58–66.

2. N. Streitz et al., “i-LAND: An interactive Landscape

for Creativity and Innovation,” Proc. ACM Conf.

Human Factors in Computing Systems (CHI 99),

ACM Press, New York, 1999, pp. 120-127.

The iRoom and Beyond:
Evolution and Use of Deployed Environments

Figure A. Floor plan and behind-the-scenes look at the second version of iRoom.

41’-0”

20’-4” 20’-3”

Smart board projectors

Tech support
stations

“Mural”
projectors

B3
.0

A
3.0 Sign-in

area

Meeting room

Wired utility cart

Flatscreen monitor

Mobile tech support station

Storage
benches

Floor-mounted power and
data sources, see 2.0

Developer
workstations

1
7
’-

1
0
”

2
0
’-

3
”

Stacking chairs

Scanning
station

applications and human-computer inter-

faces written on top of it. In addition,

human-computer interfaces must consider

the underlying system’s properties to ensure

that they are not too brittle for use in real-

world situations. We call our system infra-

structure the Interactive Room Operating

System (iROS). It is a meta-OS that ties

together devices that each have their own

low-level OS. In designing the system, we

kept the boundary principle2 in mind. The

boundary principle suggests that ubiquitous

computing infrastructure must allow inter-

action between devices only within the

bounds of the local physical space—in our

case, an interactive workspace.

The three iROS subsystems are the Data

Heap, iCrafter, and the Event Heap. They

are designed to address the three user

modalities of moving data, moving control,

and dynamic application coordination,

respectively. Figure 2 shows how the iROS

components fit together. The only system

that an iROS program must use is the Event

Heap, which provides for dynamic appli-

cation coordination and forms the under-

lying communication infrastructure for

applications in the interactive workspace.

iROS subsystems

Given the heterogeneity in interactive

workspaces and the likelihood of failure in

individual devices and applications, it is

important that the underlying coordina-

tion mechanism decouple applications

from one another as much as possible.

Doing so encourages applications to be less

dependent on one another, which tends to

make the overall system less brittle and

more stable. We derive the Event Heap5

coordination infrastructure for iROS from

a tuplespace model,6 which offers inherent

decoupling.

The Event Heap stores and forwards mes-

sages known as events, each of which is a

collection of name-type-value fields. It pro-

vides a central repository to which all appli-

cations in an interactive workspace can post

events. An application can selectively access

events on the basis of pattern matching fields

and values. One key extension we made to

tuplespaces was to add expiration to events,

which allows unconsumed events to be

automatically removed and provides sup-

port for soft-state through beaconing. Appli-

cations can interface with the Event Heap

through several APIs, including Web, Java,

and C++. The Event Heap differs from

tuplespaces in several other respects that

make it better suited for interactive work-

spaces.5

The Data Heap facilitates data move-

ment by allowing any application to place

data into a store associated with the local

environment. The data is stored with an

arbitrary number of attributes that charac-

terize it. By using attributes instead of loca-

tions, applications don’t need to worry

about which specific physical file system

stores the data. The Data Heap stores for-

mat information, and, assuming it loads the

appropriate transformation plug-ins, it will

automatically transform the data to the best

format supported by retrieving applica-

tions. If a device only supports JPEG, for

example, the Data Heap will automatically

extract and convert a retrieved PowerPoint

slide into that image format.

The iCrafter system7 provides a system

for service advertisement and invocation,

along with a user interface generator for

services. iCrafter services are similar to

those provided by systems such as Jini,8

except that invocation happens through the

Event Heap. The interface manager service

lets users select a service to control and then

automatically returns the best interface for

the user’s device. iCrafter communicates

directly with the services through the Event

Heap. When a custom-designed interface

is available for a device-service pair, the

iCrafter system sends it. Otherwise, a more

generic generator renders the interface into

the highest quality type supported on the

device. Generation happens with interface

templates that are automatically cus-

tomized according to the local environ-

ment’s characteristics. If room geometry is

available, for example, a light controller

can show the actual positions of the lights

on a graphical representation of the work-

space. Templates also let users combine

multiple services in a single interface.

General principles

iROS applications do not communicate

directly with one another; instead, they use

indirection through the Event Heap. This

helps avoid highly interdependent applica-

tion components that could cause each other

to crash. All of the iROS systems decouple

applications referentially with information

routed by attribute rather than recipient

name. Attribute-based naming is also used,

among other places, in the Intentional Nam-

ing system.9 The Event Heap and Data

Heap also decouple applications temporally,

allowing applications to pick up messages

generated before they were running or while

they were crashed and restarting.

In our design, we treat failure as a com-

mon case. When something breaks, the sys-

tem can simply restart it. Clients automat-

ically reconnect, so the Event Heap server,

interface manager, and Data Heap server

can all be restarted without interfering with

applications other than during the period

when connectivity is lost. Thus, any sub-

set of machines malfunctioning in the

workspace can be restarted. Any impor-

tant state that might be lost during this

process is either stored in persistent form in

the Data Heap or is beaconed as soft-state

as the clients come back online.

Because the Web is popular, a great deal

70 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D E N V I R O N M E N T S

Interactive workspace applications

= Standard iROS = Other infrastructure

iCrafter

Service
discovery

Data
Heap

Service
invocation

State
manager

Event HeapPersistent store File stores Other APIs

Key:

Figure 2. The iROS component structure.

of technology has been developed and

deployed that uses browsers and HTTP. We

tried to leverage this technology wherever

we could in the iROS system. The system

supports moving Web pages from screen to

screen, event submission through URLs and

forms, and automatic HTML UI generation

through iCrafter.

Human-computer interaction
In designing the interactive aspects of the

iRoom, our goal has been to let the user

remain focused on the work being done

rather than on the mechanics of interac-

tion. The HCI research has included two

main components: developing interaction

techniques for large wall-based displays

and designing “overface” capabilities to

provide access and control to information

and interfaces in the room as a whole.

Our primary target user setting is one that

we call an open participatory meeting. In

this setting, a group of 2 to 15 people works

to accomplish a task, usually as part of an

ongoing project. People come to the meet-

ing with relevant materials saved on their

laptops or on file servers. During the meet-

ing there is a shared focus of attention on a

primary display surface, with some amount

of side work that draws material from the

shared displays and can bring new material

to it. In many cases, a facilitator stands at

the board and is responsible for overall

activity flow. Other participants might also

present something during the meeting.

These meetings can at times include con-

ventional presentations, but our goal is to

facilitate interaction among participants.

Examples of such meetings conducted

in the iRoom include our own project

group meetings, student project groups in

courses, construction management meet-

ings, brainstorming meetings by design

firms, and training-simulation meetings for

school principals.

Large high-resolution displays

We were initially motivated to take

advantage of interaction with large high-res-

olution displays. In a meeting, the presenter

or facilitator focuses on the board’s contents

and on the other participants. Using a key-

board is distracting, so we designed methods

for direct interaction with a pen or with

direct touch on the board. The interactive

mural is too large for today’s touch-screen

technologies, so we tested both laser and

ultrasound technologies10 as input devices.

The current system uses an eBeam ultrasonic

pen augmented with a button to distinguish

two modes of operation, one for drawing

and one for commands. The eBeam system

does not currently support multiple simul-

taneous users.

We wanted to combine the benefits of

two research threads in our interface:

whiteboard functionality for quick sketch-

ing and GUI functionality for applications.

We developed the PostBrainstorm inter-

face11,12 to provide a high-resolution dis-

play that has the ability to intermix direct

marking, image control, 3D rendering, and

arbitrary desktop applications. Our key

design goal was to provide fluid interac-

tion that would not divert user focus from

person-to-person interaction. This goal led

to developing several new mechanisms:

• FlowMenu is a contextual pop-up menu

system that combines the choice of an

action with parameter specification in a

single pen stroke, which makes it possi-

ble to avoid interface modes that can dis-

tract users not devoting their full atten-

tion to the interface.13 Because the menu

is radial rather than linear, multilevel

operations can be learned as a single

motion path or gesture; in many cases

the user does not even need to look at

the menu to select an action.

• ZoomScape is a configurable warping

of the screen space that implicitly con-

trols an object’s visible scale. The object

retains its geometry while being scaled

as a whole. In our standard configura-

tion, the top quarter of the screen

reduces the object size. An object can be

moved out of the main area of the screen

and reduced, providing a fluid mecha-

nism to manage screen real estate with-

out requiring explicit commands.

• Typed Drag-and-Drop is a handwriting

recognition system that runs as a back-

ground process, leaving the digital ink

and annotating it with the interpreted

characters. Through FlowMenu com-

mands, you can specify a sheet of writing

to have a desired semantic and then drag

it onto the target object to have the

intended effect. This provides a crossover

between simple board interaction and

application-specific GUI interactions.

Several groups of industrial designers from

two local design firms (IDEO and Speck-

Design) tested the system. Their overall

evaluation was positive11 and alerted us to

specific areas needing improvement. In

addition to experimenting with these facil-

ities on the high-resolution interactive

mural, we ported them to a standard Win-

dows systems and used them on the nor-

mal touch screens in the iRoom.

Room-based cross-platform interfaces

One obvious advantage of working in a

room-based environment is that people

share a common model of where devices

are positioned, which they can use as a con-

venient way of identifying them. Our room

controller (see Figure 3) uses a small map of

the room to indicate the lights, projectors,

and display surfaces. We use simple toggles

and menus associated with objects in the

map to switch video inputs to projectors

and to turn lights and projectors on or off.

Initial versions of this controller were

built as standard GUI applications, which

could only run on some systems. We broad-

ened their availability to a wider range of

devices by providing them as Web pages

(using forms) and as Web applets (using

Java). Our later research generalized the

process with iCrafter.7 The room-control

system stores the geometric arrangement of

screens and lights in the room in a config-

uration file and will automatically provide

controllers on any device supporting a UI

renderer available through iCrafter. Figure

3 shows examples for several devices.

In addition to providing environment

control, the same room control interface

serves as the primary way to move infor-

mation onto displays. The user indicates an

information object (URL or file), the appro-

priate application to display it, and the dis-

play on which it should appear using the

interface on their device. The user actions

generate an event that is picked up by a dae-

APRIL–JUNE 2002 PERVASIVEcomputing 71

mon running on the target machine, which

then displays the requested data.

Room-based input devices

In an interactive workspace, physical

input devices belong to the space rather

than a specific machine. We implemented

an overhead scanner based on a digital

camera. This scanner lets users digitize

sketches and other material placed in a cer-

tain area of the table. This provided an

alternative to sketching on tablet comput-

ers, which had the wrong feel when used

by a team of brainstormers. The overhead

scanner provides a method to bring tradi-

tional media into the space in a manner

that has low cognitive overhead.

In addition to the overhead scanner, we

introduced other devices, such as a bar-

code scanner and simple wireless input

devices, such as buttons and sliders. We

used the bar-code scanner, for example, to

implement a system similar to the Blue-

Board system.14 When the bar-code scan-

ner posts an event, the application checks

a table of codes registered to individual

iRoom users; if there is a match, it posts

the user’s personal information space to

one of the large boards. We can associate

handheld wireless iRoom buttons with any

actions through a Web-form interface. For

example, a push on a particular button can

bring up a set of predesignated applications

on multiple devices in the room.

Distributed application control

One aspect of the moving-control

modality for interactive workspaces is a

need for both direct touch interaction with

the GUIs on the large screens and the abil-

ity for users standing away from the

screens to control the mouse and enter text.

While it is possible to walk up to the screen

to interact or to request that the person at

the screen perform an action on your

behalf, both of these actions disrupt the

flow of a meeting. Several previous systems

have dealt with multiuser control of a

shared device, often providing sophisti-

cated floor-control mechanisms to manage

conflicts. In keeping with our keep-it-sim-

ple philosophy, we created a mechanism

called PointRight,15 which provides key

functionality without being intrusive.

With PointRight, any machine’s pointing

device can become a superpointer whose

field of operation includes all of the display

surfaces in the room. When a device runs

PointRight, the edges of its screen are asso-

ciated with other corresponding displays.

The user simply continues moving the cur-

sor off the edge of the local screen, and it

moves onto one of the other screens, as if

the displays in the room were part of a large

virtual desktop. In addition to allowing this

control through laptops, the room has a

dedicated wireless keyboard and mouse that

is always available as a general keyboard

and pointer interaction device for all of the

surfaces. For each active user, their key-

strokes go to the machine on which their

pointer is currently active.

Through calls to the Event Heap, inter-

face actions in one application can trigger

actions in another running on any of the

machines in the workspace. The Center for

Integrated Facility Engineering16 employed

this technique in a suite of applications

developed for use in construction-manage-

ment meetings. Figure 4 shows some of the

application viewers that they constructed.

All applications communicate through

the Event Heap and emit events in a com-

mon format and watch for events to which

they can respond. Users can coordinate the

applications by bringing them up on any

of the displays in an interactive workspace.

As users select and manipulate informa-

tion in one of the viewers, corresponding

information in the other viewers updates

to reflect changes. Because the components

are loosely coupled, the absence or disap-

pearance of an event source or event

receiver does not affect any of the applica-

tion components currently in use.

The Smart Presenter system lets users

construct coordinated presentations across

the displays in an interactive workspace.

Users create a script that determines the

content to display. PowerPoint and Web

pages are two of the supported formats,

but we can also use any other format that

the Data Heap supports. In addition to

content, we can send any arbitrary event

so it is easy to trigger lighting changes or

switch video inputs to a projector during a

presentation. Smart Presenter leverages the

Data Heap to insure it can show any dis-

play in the workspace. In the iRoom, for

example, the high-resolution front display,

which only supports JPEG images, can still

display PowerPoint slides because they are

extracted and transformed for that display.

Future directions
Several topics require additional inves-

tigation, including security, adaptation,

and bridging interactive workspaces. While

providing many important attributes, the

loose coupling model introduces some

security concerns. The indirect communi-

cation makes all messages public, which

makes it easy to adapt programs to work

with one another through intermediation

at the expense of privacy. For now, we have

72 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D E N V I R O N M E N T S

Figure 3. Examples of iCrafter-generated

control interfaces: (a) Java Swing,

(b) Palm handheld, and (c) HTML.

(a) (c)(b)

a firewall between the iRoom and the rest

of the world and assume that users work-

ing together in a room have implicitly

agreed to public communication. We are

investigating the types of security that users

need in interactive workspaces, with the

hope of developing a social model for secu-

rity that will in turn help us to define the

appropriate software security protocols.

While our system tries to minimize the

amount of time required to integrate a

device into an interactive workspace, there

is still overhead in configuring room

geometries and specifying which servers to

use. We plan to make it simpler to create

and extend a workspace and to move

portable devices between them. Users

should only have to plug in a device or

bring it into a physical space for it to

become part of the corresponding software

infrastructure. User configuration should

be simple and prompted by the space. For

example, the user might have to specify

where in the room the device is located.

The logical extension of this is to allow ad

hoc interactive workspaces to form wher-

ever a group of devices are gathered.

Allowing project teams in remotely

located workspaces to work with one

another is both interesting and useful. The

main issues here include how to facilitate

coordination between desired applications

while insuring that workspace-specific

events remain only in the appropriate loca-

tion. For example, sending an event to turn

on all lights should probably remain only

in the environment where it was generated.

As we extend our research to multiple

linked rooms and remote participants, we

will use observations of users working in

these linked-spaces to determine how

much structure we need to add. We are dri-

ven not by what is technically possible, but

by what is humanly appropriate.

A
key design philosophy for our

project has been that the user

should have a minimum of spe-

cific controls and modes to

learn and remember, which means that the

interface should take advantage of natural

mappings to the physical structure. Al-

though it would be an overstatement to say

that the interface has become completely

intuitive and invisible, we continue to make

steps in that direction. As with all systems

built in relatively new domains, and par-

ticularly with systems that involve user

APRIL–JUNE 2002 PERVASIVEcomputing 73

Figure 4. Some of the viewers in the suite that the Center for Integrated Facility Engineering developed for construction-

management settings. Each would typically be run on its own display.

interaction, it is difficult to come up with

a quantitative measure of success.

We ran several experimental meetings,

including brainstorming sessions by pro-

fessional designers, construction of class

projects built on the iROS system, training

sessions for secondary school principals,

construction-management experiments for

a civil engineering research project, group

writing in an English course, project groups

from an interaction design course, and, of

course, our own weekly group meetings.

The overall results have been positive, with

many suggestions for further development

and improvement.

Comments from programmers who

have appreciated how easy it is to develop

applications with our framework are also

encouraging. The adoption and spread of

our technology to other research groups

suggests that our system is meeting the

needs of the growing community of devel-

opers for interactive workspaces. For more

information on the Interactive Workspaces

project and to download the iROS soft-

ware, visit http://iwork.stanford.edu.

ACKNOWLEDGMENTS

We thank Pat Hanrahan, one of the founders of the

project, for his support and efforts. The accom-

plishments of the Interactive Workspaces group are

due to the efforts of too many to enumerate here,

but you can find a complete list on the Interactive

Workspaces Web site. DoE grant B504665, NSF

Graduate Fellowships, and donations of equipment

and software from Intel, InFocus, IBM, and Microsoft

have supported the work described here.

REFERENCES

1. M. Weiser, “The Computer for the 21st Cen-
tury,” Scientific American, vol. 265, no. 3,
1991, pp. 66–75.

2. T. Kindberg and A. Fox, “System Software
for Ubiquitous Computing,” IEEE Perva-
sive Computing, vol. 1, no. 1, Jan./Feb.
2002, pp. 70–81.

3. B. Brumitt et al., “EasyLiving: Technologies
for Intelligent Environments,” Proc. Hand-
held and Ubiquitous Computing 2nd Int’l
Symp. HUC 2000, Springer-Verlag, New
York, 2000, pp. 12–29.

4. M.H. Coen et al., “Meeting the Computa-
tional Needs of Intelligent Environments:
The Metaglue System,” Proc. 1st Int’l Work-

shop Managing Interactions in Smart Envi-
ronments, 1999.

5. B. Johanson and A. Fox, “The Event Heap:
An Coordination Infrastructure for Interac-
tive Workspaces,” to be published in Proc
4th IEEE Workshop Mobile Computer Sys-
tems and Applications (WMCSA 2002),
IEEE Press, Piscataway, N.J., 2002.

6. N. Carriero and D. Gelernter, “Linda in
Context (Parallel Programming),” Comm.
ACM, vol. 32, no. 4, 1989, pp. 444–458.

7. S. Ponnekanti et al., “ICrafter: A Service
Framework for Ubiquitous Computing
Environments,” Proc. Ubicomp 2001,
Springer-Verlag, New York, 2001, pp.
256–272.

8. J. Waldo, “The Jini Architecture for Net-
work-Centric Computing,” Comm. ACM,
vol. 42, no. 7, 1999, pp. 76–82.

9. W. Adjie-Winoto et al., “The Design and
Implementation of an Intentional Naming
System,” Operating Systems Rev., vol. 33,
no. 5, Dec. 1999, pp. 186–201.

10.X.C. Chen and J. Davis, “LumiPoint: Multi-
User Laser-Based Interaction on Large Tiled
Displays,” Displays, vol. 22, no. 1, Mar.
2002.

11.F. Guimbretière, Fluid Interaction for High
Resolution Wall-Size Displays, PhD disser-
tation, Computer Science Department, Stan-
ford Univ., Calif., 2002.

12.F. Guimbretière, M. Stone, and T. Winograd,
“Fluid Interaction with High-Resolution
Wall-Size Displays,” Proc. of the ACM
Symp., ACM Press, New York, 2001, pp.
21–30.

13. J. Raskin, The Humane Interface: New
Directions for Designing Interactive Sys-
tems, Addison Wesley, Reading, Mass.,
2000.

14.D. Russell and R. Gossweiler, “On the
Design of Personal & Communal Large
Information Scale Appliances,” Proc. Ubi-
comp 2001, Springer-Verlag, New York,
2001, pp. 354-361.

15.B. Johanson, G. Hutchins, and T. Winograd,
“PointRight: A System for Pointer/Keyboard
Redirection Among Multiple Displays and
Machines,” tech. report CS-2000-03, Stan-
ford Univ., 2000; http://graphics.stanford.
edu/papers/pointri ht.

16.K. Liston, M. Fischer, and T. Winograd,
“Focused Sharing of Information for Multi-
disciplinary Decision Making by Project
Teams,” Proc. ITcon, vol. 6, 2001, pp.
69–81.

For more information on this or any other comput-

ing topic, please visit our digital library at http://

computer.org/publications/dlib.

74 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D E N V I R O N M E N T S

Brad Johanson is a PhD candidate in the electrical engineering department at Stan-

ford University and is one of the student leads in the interactive workspaces project.

His research interests include genetic programming, computer networking, and

computer graphics. He received a BA in computer science and a BS in electrical engi-

neering and computer science from Cornell University, an MS in computer science

from the University of Birmingham in England, and an MS in electrical engineering

from Stanford University. Contact him at bjohanso@graphics.stanford.edu.

Armando Fox is an assistant professor at Stanford University. His research interests

include systems approaches to improving dependability and system software sup-

port for ubiquitous computing. He received a BS in electrical engineering from MIT,

an MS in electrical engineering from the University of Illinois, and a PhD in electrical

engineering from the University of California at Berkeley. He is a member of the

ACM and a founder of ProxiNet (now a division of PumaTech), which commercial-

ized the thin client mobile computing technology he helped develop at UC Berkeley.

Contact him at fox@cs.stanford.edu.

Terry Winograd is a professor of computer science at Stanford University, where he

directs the interactivity laboratory and the program in human-computer interaction

design. He is one of the principal investigators in the Stanford digital libraries project

and the interactive workspaces project. His research interests include human-com-

puter interaction design, with a focus on the theoretical background and conceptual

models. Contact him at winograd@cs.stanford.edu.

the AUTHORS

