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Abstract 

Consider m queueing stations in tandem, with infinite buffers between stations, all 

initially empty, and an arbitrary arrival process at the first station. The service time 

of customer j at station i is geometrically distributed with parameter pi, but this is 

conditioned on the fact that the sum of the m service times for customer j is c,. 

Service times of distinct customers are independent. We show that for any arrival 

process to the first station the departure process from the last station is statistically 
unaltered by interchanging any of the p,'s. This remains true for two stations in 

tandem even if there is only a buffer of finite size between them. The well-known 

interchangeability of ./M/1 queues is a special case of this result. Other special cases 

provide interesting new results. 
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SECONDARY 90B22, 90B15 

1. Introduction 

Consider m queueing stations in tandem, with infinite buffers between stations, 
and an arbitrary arrival process at the first station. On completing service at one 

station a customer joins the queue for service at the downstream station. Suppose 
that the system is initially empty. It has been known for some time that if customer 

service times at each station are independent and exponentially distributed, but 

with different means for each station, then the distribution of the departure process 
from the final station does not depend on the order of the stations (Weber (1979)). 
This has been called the interchangeability of -/M/1 queues. This paper generalises 
that result to a model with dependent service times. For example, an interchange- 

ability result holds when each customer has a service time of 1 at precisely one 

station-where independently of other customers this is station i with probability 

pi-and service times of 0 at all other stations. 

Our model shall be in discrete time. Customers have arrival times at the first 

station and service times at stations 1, ... , m, that are all non-negative integers. 
Service at each station is first-come-first-served and a customer may not leave station 
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i until all customers who have previously arrived at station i have left it, even if the 

waiting customer has service time 0 at station i. The service times of distinct 

customers are independent, but service times at different stations for a given 
customer may be dependent. The dependency arises in the following way. Let xj,i 
denote the service time of customer j at station i. Suppose xj,i is a geometrically 
distributed random variable with parameter pi , (0, 1), but the joint distribution of 

xj,1,... Xj, , is conditioned on the fact that the sum of the xj,i's is cp. The joint 

probability distribution is then 

p 
1,, 

... pxj,- 
(1) P(x1,1, , X, m) 

"= 
k 

X 
j,1 

+ 
+Xj,m 

= C1. 

E 
pk.' .. 

- 

pkm'm 

k l," ,km 

kl +-+k, m=c 

It is the pi's that distinguish the stations from one another. If pi >Pk then each 

customer has a greater expected service time at station i than at station k. There is 

no restriction on the cj's. These may differ from customer to customer. They may be 

known numbers, or they may be random variables. It is for this model that we shall 

prove an interchangeability result: that the departure process from the final station 

is statistically unaltered by any interchange in the order of the stations. By this we 

mean that the pi's may be interchanged without altering the joint distribution of the 

departure times. 

The interchangeability of -/M/1 queues has been proved by a number of authors. 

Our original proof made use of a joint probability generating function for the 

departure times. Lehtonen's proof (1986) was through matching sample paths for 

both orders of two servers. Tsoucas and Walrand (1987) employed an interesting 
random walk identity, and Anantharam (1987) has used a filtering approach. 

Other authors have discussed the ordering of stations when service times are not 

exponential. Friedman (1965) showed that stations with deterministic service times 

are interchangeable. In general, stations are not interchangeable and the optimal 

ordering becomes a difficult question. For further discussion of this point see Tembe 

and Wolff (1974), Pinedo (1982) and Greenberg and Wolff (1988). 
It is interesting to consider two or more tandem stations when there are only finite 

buffers between stations. Avi-Itzhak and Yadin (1965) have found the Laplace 
transform of the distribution of the time that an arbitrary customer spends in a 

tandem system when service times are general and arrivals are Poisson. Chao and 

Pinedo (1990b) have generalized this to batch arrivals. In the case that service times 
are exponentially distributed Ding and Greenberg (1991) have shown that the order 
of the last two servers should be arranged so the faster of the two servers comes 

first. Chao and Pinedo (1990a) have shown that for three stations the output process 
is the same if the order of the servers is reversed. They have conjectured that this is 

true for any number of stations in tandem. 

In this paper we consider the discrete-time model and actually derive an explicit 
formula for the joint distribution of the departure times of the first n customers. 
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When service times are independent and geometrically distributed interchangeability 
follows from the construction that let to (1). The idea is to condition on the total 

service time for every customer and then apply the interchangeability result in this 

paper. This is the same as allowing cj to have the distribution of the sum of m 

independent geometric random variables, with parameters p 1, 
- - , p,. In fact, the 

main point of this paper is to make the observation that for tandem stations with 

memoryless service distributions interchangeability is a stronger property than 

previously realised. It holds after conditioning upon the sum of each customer's 

service times. A recent paper by Kijima and Makimoto (1990) has established a 

similar result for a two-station model with exponentially distributed service times; it 

also uses an approach that conditions upon the sum of the service times experienced 

by each customer. 

In Theorem 1 we prove that two stations with a finite intermediate buffer are 

interchangeable. The proof is as simple as any that has been given in previous 

papers for the special case of -/M/1 queues. Certainly, the number of formulae in 

this paper is pleasingly small. Theorem 1 generalises the result of Chao et al. (1989) 
for -/M/1 queues. There are other interesting applications, and before proceeding 
to the proofs in the next section we shall briefly mention two. 

The results in this paper might have been formulated and proved in continuous 

time with no greater difficulty. However, a desire to include one particularly 

interesting special case has been part of the motivation for preferring discrete time. 

Suppose that = 1 pi = 1, and cj = 1 for all j. This corresponds to a model in which 

each customer has a service time 1 at precisely one station, this being station i with 

probability pi, and service times of 0 at all other stations. Gideon Weiss has 

suggested that this might be viewed as a model of queueing in a cafeteria. Each 

customer moves along the cafeteria counter, pausing to collect those items he 

desires. Even when a customer has no further items to collect, courtesy prevents 
him from jumping ahead of anyone who precedes him. In our model, each customer 

wishes to collect precisely one item and takes time 1 to do so. Or we might mix 

different types of customer in the same system. Suppose, for example, that customer 

j has cj = 1 or cj = 2, with probabilities a and 1 - a respectively. Here each customer 

requires either one or two items from the cafeteria. 

Another result, to be further discussed in Section 3, is that if the service time xji is 

independently and exponentially distributed with parameter Yj + Ai, then the time of 

the nth departure from the mth station has a distribution that is unaltered by the 

interchange of any of the j's, 1 
_5j - 

n, or Ai's, 1 
_ 

i 
_ 

m. This is as if each 

customer is accompanied by a certain service capacity. Or we might think of two 

diplomatic legations, of m and n members, that are lined up in two sequences to 

exchange handshakes. The duration of each handshake depends on the sum of two 

parameters, one arising from each of the persons involved. 

We begin by considering the special case of a two-station system. This really tells 

the whole story. It will be an easy matter in Section 3 to extend the result to a 
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general number of stations. For two stations an interchangeability result holds even 

when the buffer space between stations is finite. 

2. Interchangeability for two stations 

Consider two stations in tandem, with a finite intermediate buffer of size b _0 to 

hold customers that are waiting to begin service. This means that if a customer 

completes its service at the first station and b customers are still waiting to begin 
service at the second station, then the buffer is full and that customer cannot enter 

the second station, and the first server cannot begin serving another customer, until 

a customer finishes service at the second station. This is known as manufacturing 

blocking. Suppose customer n arrives at station 1 at time an. These arrival times are 

completely arbitrary, and in general may be random variables. Let D",i denote the 

time at which customer n completes service at the ith station and x, denote its 

service time at station 1. The service time at station 2 is then cn - x,. We have 

(2) 
Dn,1 

= max {an, Dn-1,1, Dn-b-2,2} 
+ Xn, 

(3) Dn,2 = max {Dn,1, Dn -1,2} + cn - Xn 

The effect of blocking due to the finite waiting room is that customer n cannot begin 
service at station 1 until customer n - b -2 has left station 2. This accounts for the 

third term within the maximization on the right-hand side of (2). The main theorem 

of this section is the following 

Theorem 1. Consider two stations in tandem with a finite buffer between stations, 
and customer service times with the distribution (1). The departure process from the 

second station is statistically identical for both orders of the stations. This holds for 

any arrival process, even one that depends on the departure process from the last 

station. 

The truth of Theorem 1 under the assumption that there is only a finite buffer 

between stations is actually a consequence of the fact that Theorem 1 holds even 

when the arrival process depends on the departure process. To model the effect of a 

finite buffer we just consider a modified arrival process, for which the arrival of 

customer n occurs at time max {an, Dn-b-2,2}. This remark means that it suffices to 

prove Theorem 1 for the case that the intermediate waiting room is infinite. In a 

similar manner one may take into account the other generalisations that have been 

addressed by Chao et al. (1989). For example, we might suppose that any customer 

who arrives to find more than a certain number of other customers in the system is 

lost. Theorem 1 is a consequence of the following lemma. 

Lemma 1. Consider the model with an infinite buffer between two stations. 

Suppose that feasible realizations of the arrival times and the departure times from the 
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second station are a,, 
? ? 

, a, and D1,2 = dl, 
? 

, Dn,2 = dn respectively and 

(4) dj 
> aj + cj, for all j = 

2,. . . , n. 

Let C, = n 
=1 

c1. Then the following is the only way these departure times can be 

realised. For every s {C, - dn, , d } there exists a unique corresponding set of 
service times at station 1, x(s) = (xl(s), 

- -, x,n(s)), such that these departure times 

are realised, and EI 
= xj(s) = s. Furthermore as s increases from its minimum to its 

maximum value, x(s) changes in just one component at a time, this being first x1(s), 
then x2(s), and so on. Once s is large enough that the increasing component is of 
index j or more, the corresponding set of service times is such that station 1 is never 

idle while it is serving the first j customers. 

Note that (4) is the condition that all customers experience some queueing delay. 
Let us explain how this lemma implies Theorem 1. 

Proof of Theorem 1. To prove the theorem it suffices to show that the probability 
distribution of the departure times of the first n customers is a symmetrical function 

p, and P2. The proof is by induction on n. Clearly it is true for n = 1. Suppose for 

the moment that the arrival times, a, - - - , an, are deterministic. Consider a choice 

of possible values for the departure times, dl, ---, d,. Assume (4) holds and 

consider a feasible realisation of service times at the first station as x1(s), - , x,(s), 
where E= 1 xj(s) 

= s. Then the probability of these service times at station 1 is 

(5) P(di, 
", 

dn;x1(s), - -, Xn(s)) == 
H 'p 

P-2l 

> p sC1 
j=1 k=O 

where 

/n in - P2i 
0(c) = 1 H 2pp-k 

l--1 
P+1 

j=1 k=O j=1 -P2 

is a normalizing constant and is symmetrical in p, and P2. Since d, - - - , dn 
can 

occur in precisely one way for each s E {C, - d, d - , dn} we need only sum over s 

in (5) to obtain 

d, 

(6) P(dl, , d) = (c) : pp,2-s. 
s=CP,-d, 

Because this expression is symmetrical in p, and P2 it follows that the theorem is 

true. 

In the case that (4) does not hold, let j be the smallest index for which it does not 

hold. If aj 
= 

d_-1 then customer j arrives to an empty system and there is an obvious 

decoupling of customers j, -- - , n from 1, ---,j - 1. It suffices to have proved the 

theorem for a smaller number of customer departures. Finally, consider the 

alternative, a1 < dl. The fact that (4) does not hold implies d =a + c; and so 

customer j waits for service at neither station. This means we must have both of the 
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events A = 
[Dj-1,1 

a1 and di, 
" 

, dj_1 are realised] and B = [dj_ 1 aj + xj], where 

xj denotes the service time of customer j at the first station. It follows from the 

lemma that for each s e{Cj--dj_,..., aj} there is exactly one choice of 

Xl(s), 
? 

- , xj_-(s) with sum s such that A occurs. Thus 

aj 
j- 

1 c; 

P(A)= 
pdi_,-aj 12 1-d,_+a-s • pkpcl-k 

s=Cj--dj-1 /1=1 k=O 

Similarly, given that A occurs, B occurs for xj e {dj_1 - aj, 
- - - , cj} and thus 

Cj cj 

P(B I A) = p 

a-d_-1, 

x c,+d,-I-a,-x 1kPcy-k 
xj=dj-1-aj 

2 
k= 

2 

The probability with which d1, ---, dj is realized is the product of P(A) and 

P(B I A). From the way these have been written it is easy to see this product is 

symmetrical in p, and P2. By considering the distribution of xj conditional on B we 

see that the departure times of customers j, - - - , n are distributed as if customer j 
had arrived to an empty system at time 

dj_• 
and had its cj modified to cj - dj-_ + aj. 

This also gives a decoupling of customers j, - --, n from 1, ---, j - 1 and it suffices 

to have proved the theorem for a smaller number of customer departures. 
Consider now a more general arrival process. Note that the above proof holds for 

any sequence of arrival times. Therefore it holds pathwise when the arrival process 
is stochastic. Furthermore, so far as the truth of interchangeability goes, the arrival 

process may be allowed to depend on the departure process. Simply observe that the 

argument above is equally valid if we consider a, - - - , a, and d1, - - - , d, to be 

mutually feasible realizations of the arrival and departure processes, and the arrival 

process depends upon the departure process, as well as the other way around. This 

proves Theorem 1. 

Remark 1. Of course in the final paragraph of the proof we restrict the arrival 

process to depend on the departure process in a way that leads to sensible 

realizations of arrival and departure times. For example, we do not allow aj > dj, 
since a customer cannot depart before it arrives. It is not strictly necessary to require 
it, but the event [aj > t] should depend only on what can be observed of the 

departure process up to time t, unless we suppose some clairvoyance. However, one 

allowable and interesting case, noted in Weber (1979) is a cycle of stations in which 

a finite number of customers cycle around the stations, the departures from station 2 

being the arrivals to station 1. 

Remark 2. There is an interesting consequence of Equation (6). Suppose 
d,, a, 

--- 
, a, and c, --- , c,, are known and are such that (4) holds. (A special case 

of (4) is when all customers are present at time 0.) The distribution of d, is obtained 

by summing over those 
dl, " 

- , 
d,,l 

that are feasible and hence 

P(di, 
" ",da-1 

Id,, 
al, " ", 

a- , Ca , 
" "" 

, c,)= 1/M, 
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where M is the number of ways that d, -- , 
dn-• 

might be chosen. Thus, knowing 
the time of the nth departure and the values of a, - - - , a, and c, - - - , cn, the 

distribution of previous departure times is uniform over feasible possibilities. 

It only remains to prove Lemma 1. 

Proof of Lemma 1. The lemma is to be proved for a given set of feasible 

departure times, d, - - - , dn. Therefore, we may condition on the values of 

a,, - - -, an. For the reason explained above, it is sufficient to prove the theorem for 

the case that there is an infinite buffer between stations. The proof is by induction 

on n. Clearly it is true for n = 1. Take as an inductive hypothesis that the lemma is 

true for n - 1. This hypothesis states that d1, - - - , dn-1 may be realized uniquely by 
some (xl(s), 

- - 
, x,n_(s)) for every s E (C_ -dn-1, - - - , dn-1}. Let Dj,I(s) denote 

the departure time of customer j from the first station when the service times of the 

first n - 1 customers at the first station add up to s, and the departure times of the 

first n - 1 customers from the second station are d, -- , dn-1. Now from (2) we 

have 

Sn-1 
(7) Dn-1,1(s) = max 

aj 
+ 

, 
xk(S) 

lnj-n-1 
k =j 

(8) = max an+x, 1max 
D,(s)+ xk(S) 

1a ,+ l,15jn-2 " 

k=j+l 

Also, by substituting (2) into (3) and using (4) 

(9) d, 
= max 

{Dn-1,1(s) 
+ 

c,, dn,-1 
+ 

c, - x, }. 

Consider the possibility that the maximum is achieved by the second term within the 

right-hand side in (9). Since (4) implies dn < dn-1 + c,, the value of x, for which the 

maximum is achieved, say k = dn-1 - dn + c,, is positive and no more than c,. By 

(7) and the inductive hypothesis, Dn-1,1(s) is non-decreasing in s. We have assumed 

that (9) has a solution, so Dn-1,l(s) + cn must be no more than 
dn 

when s takes its 

minimal value of Cn-1 - dn,1. Imagine increasing s in unit steps from this value until 

Dn-1,1(s) + c, reaches the value dn. This must occur before s reaches its maximal 

value of dn-1 since at that point we would have Dn-,1,(dn-1) + 
c,n - dn-1 + c, > d,, 

by (4). So let s be the maximal s for which D,,1, (s) + 
cn _ dn 

holds. Now suppose 
we increase s from S to 9 + 1. This comes about by xj(g + 1) = xj(Q) + 1, for some 

j 5 n - 1. By the last part of the inductive hypothesis for the lemma, it follows that 

for service times x (&), 
- - - , xj(Q) 

station 1 is never idle while serving the first j 
customers. However, from (8), (9) and the fact that 9 is maximal, it follows that 

station 1 must also not be idle while serving customers j, 
- - - , n. So Dn-,1() 

= 

7--1 

xx(&) = &. Thus &= d, - c,,. Therefore, we can satisfy (9) either by taking x,, = 
. and any s EC,- {C - d,_l- , , &}, or by taking s = and any x, E {, 

" " 
, c,,}. This 

means that when x,, = 
" 

and s takes its minimum value of C,_1 - 
d,,-1, 

then s + x,, 

takes its least possible value, namely s + x,, = (C,_1 - d,,-1) 
+ 

(d,,-1 
- d, + c,) = 
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C,, - d,, and when s = 9, and x,, takes its maximum value of c,,, then s + x,, takes its 

greatest possible value, namely s + x,, = (d, - c,) + c,, = d,. Using the inductive 

hypothesis it follows that the possible values of s + x,, are C,, - d,,, 
? ? 

, d,, and each 

value is achieved by a unique x1, - --, x,,. As s + x, is the notation for 
E=I x1, 

this completes the proof of the lemma. 

3. Discussion and conjecture 

The generalization to more than two stations is clear. Suppose m stations are in 

tandem, with infinite buffers between stations and service times distributed as (1). 
Consider the interchange of station i with the immediately succeeding station, say k. 

For each customer j, we condition on the value of x,,i + Xj,k, say Cj,k. Then xj,i and 

Xj,k are jointly distributed as two geometric random variables that have been 

conditioned on having sum Ci,k. The arrival process to the system of two tandem 

stations, i and k, is the departure process from the upstream stations. By Theorem 

1, the departure process from i and k is unaltered when these stations are 

interchanged. This process is also the arrival process to the system of tandem 

stations downstream of i and k. In this manner, we see that the departure process 
from the final station is also unaltered by interchanging i and k. This observation 

still holds when we remove the conditioning. Therefore by interchanges of adjacent 

stations, any interchange of stations does not alter the distribution of the departure 

process. The departure process is statistically identical for all orders of stations. This 

holds for any arrival process, even one that depends on the departure process from 

the last station. 

A number of authors have shown that in the case that service times at station i are 

independent and exponentially distributed with parameter Ai, the departure process 
is stochastically faster if, given a constraint on E, A , the Ai's are made equal. The 

corresponding result for the model in this paper is that the pi's should be equal. 

Unfortunately, we have not been able to make the argument as simple as that for 

the interchangeability result alone. However, in the special case that all customers 

are present at the start, and therefore that (4) holds, we can use (6) to show that for 

any two feasible realizations of the departure times, such that (d', ---, d') 
- 

(dl, - -, d,,) componentwise, P(d, ... , d')/P(d, 
- - - , d,) is minimized by p, = 

P2. To do this, let Pl/P2 = co, and note that 

P(d, ... , d,') 
twC-dn 

+... + od 
(10) 

P(dl, 
- - , 

d,,) 
Cn-d-n 

... 
+ 

dn 
" To show (10) is minimized by to = 1 it is sufficient to prove this for d' = d,, + 1, and 

then think of multiplying together expressions similar to (10). An identity that is 

useful in verifying that w = 1 minimizes (10) is that for i + 2 
_j 

- 2, 

i+ 
1 

. . 

? ? ? .•_ (D/'-- 
1i 

: 
t 

1" -- 
toi+ 

1 
.•_ 

. 

C_ 

•-2 
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The remaining details are straightforward. The fact that 

P(d', . , 
d')/P(dl, . 

, dn,) 

is minimized by Pi =P2 implies that for any (d, -- , d,) the probability that the 

departure times exceed (d, 
- - - , d,) in every component is minimized by p = P2, 

and thus the distribution of the departure times is stochastically minimized. For the 

special case mentioned in the introduction, for which ci = 1 for all i, there is a simple 

proof even with arrivals (see Weber and Weiss (1991)). 
A significant new result is obtained by supposing that ci has the distribution of the 

sum of m independent geometric distributions, with parameters O1p1, 
. 

Y , Ojpm, 
0 < Oj < 1. By multiplying (1) by the probability 

m 

P(ci) = 
E (Ojpl)k.. (OjPm)km 1H (1 - Ofpi) 

kl,'"-,km i=1 

kl +-+km =cj 

we find that the distribution of the service times for customer j are now 

independent, and geometrically distributed with parameters 01pi. The implication is 

that if for all j and i, xj,i is independent of all other service times and distributed 

geometrically with parameter Ojpi, then the departure process is unaltered by 

interchange of any pi's, provided the order of the customers is not changed. 
The continuous-time version of this model is one in which xj,j is distributed 

independently of other service times as an exponential random variable with 

parameter yj + )i. (In fact, we move to continuous time by setting p, = exp 
(-~A•/N), 

j- 
= exp (-Mj/N), replacing cj by Ncj, and letting N-- oo.) The result is that the 

departure process is unaltered by interchanging the stations provided the order of 

the customers is not changed. Kijima and Makimoto (1990) have also established 

this result for the case of two stations in tandem and an infinite intermediate buffer. 

They also use an argument that conditions on the sum of the two service times that 

each customer experiences. 

Interchanging the notion of a customer and a station leads to a dual view of the 

tandem queue process in which we think of the stations working their way through 
the customers. From this viewpoint the times at which the first, second, and 

successive stations finish serving the last of n customers have a distribution that is 

independent of the order of those customers. In particular, the time of the nth 

departure from the mth station is independent of interchanges of any of 
01, - , O,,, 

and simultaneous interchanges of any of pl, 
- 

? 
, pm. 

Consider the continuous-time version of this result, in which xj,i is distributed 

independently of other service times as an exponential random variable with 

parameter 
/z 

+ ),. Assume all customers are present at the start. The time at which 

the nth customer departs the mth station is 

(11) max 
xj,,i 

+ 
? ? 

+ Xjn+min+m' 
j1,il,"", 

n+m, in+m 
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where (jl, il) = (1, 1) and 
(jk+1l, k+l) is either (jk + 1, ik) or 

(jk, ik + 1), subject to 

jk 5 n and ik 5 m. Think of a rectangular lattice in which a positive unit step may be 
taken in one coordinate direction at a time. If we say that passing through lattice 

point (j, i) costs xj,i, then (10) is the maximum-cost path from (1, 1) to (n, m). Our 

result is that the cost of the maximum-cost path has a distribution independent of 

the interchange of the pj's on the rows, or Ai's on the columns. Of course this 

suggests the conjecture that there is an interchangeability result in higher dimen- 

sions. It is questionable whether this deserves further exploration unless it can be 

related to some real-life problem. Nonetheless one could consider all paths, in say 
a three-dimensional lattice, from (1, 1, 1) to (1, m, n), that make only a unit positive 

step in one coordinate direction at a time, and suppose that the cost of passing 

through node (i, j, k) is Xi,j,k, distributed independently of other costs and 

exponentially with parameter ai + f + yk. The conjecture would be that the 

distribution of the cost of the maximum-cost path is independent of rearrangements 
within any of the ai's, the A3 's and the yk'S. 

Acknowledgements 

I am grateful to Gideon Weiss for discussion of tandem queueing models in 

which all service times are 0 and 1 and for commenting on an early proof of 

interchangeability for that special case. For further details of work on tandem 

queues with 0-1 service times, including a simple proof of interchangeability for that 

case, see Weber and Weiss (1991). 

References 

ANANTHARAM, V. (1987) Probabilistic proof of interchangeability of /M/1 queues in series. QUESTA 

2, 387-392. 

AVI-ITZHAK, B. AND YADIN, M. (1965) A sequence of two servers with no intermediate queue. 

Management Sci. 11, 553-564. 

CHAO, X. AND PINEDO, M. (1990a) On reversibility of tandem queues with blocking. In preparation. 

CHAO, X. AND PINEDO, M. (1990b) Batch arrivals to tandem queues without an intermediate buffer. 

Stoch. Models 6, 735-749. 

CHAO, X., PINEDO, M. AND SIGMAN, K. (1989) On the interchangeability and stochastic ordering of 

exponential queues in tandem with blocking. Prob. Eng. Inf. Sci. 3, 223-236. 

DING J. AND GREENBERG, B. S. (1991) Bowl shapes are better with buffers--sometimes. Prob. Eng. 

Inf. Sci. 5, 159-169. 

FRIEDMAN, H. D. (1965) Reduction methods for tandem queueing systems. Operat. Res. 13, 121-131. 

GREENBERG, B. S. AND WOLFF, R. W. (1988) Optimal order of servers for tandem queues in light 
traffic. Management Sci. 34, 500-508. 

KIJIMA, M. AND MAKIMOTO, N. (1990) On interchangeability for exponential single-server queues in 

tandem. J. Appl. Prob. 27, 690-695. 

LEHTONEN, T. (1986) On the ordering of tandem queues with exponential servers. J. Appl. Prob. 23, 
115-129. 

PINEDO, M. (1982) On the optimal order of stations in tandem queues. In Applied Probability- 

Computer Science: The Interface, ed. R. L. Disney and T. J. Ott, pp. 307-326, Birkhauser, Boston, MA. 



Interchangeability of tandem queues 737 

TEMBE, S. V. AND WOLFF, R. W. (1974) The optimal order of service in tandem queues. Operat. Res. 

30, 148-162. 

TSOUCAS, P. AND WALRAND, J. (1987) On the interchangeability and stochastic ordering of */M/1 

queues in tandem. Adv. Appl. Prob. 16, 515-520. 

WEBER, R. R. (1979) The interchangeability of tandem -/M/1 queues in series. J. Appl. Prob. 16, 

690-695. 

WEBER, R. R. AND WEISS, G. (1991) The cafeteria process--tandem queues with dependent 0-1 

service times and the bowl shape phenomenon. Submitted. 


	Article Contents
	p. 727
	p. 728
	p. 729
	p. 730
	p. 731
	p. 732
	p. 733
	p. 734
	p. 735
	p. 736
	p. 737

	Issue Table of Contents
	Advances in Applied Probability, Vol. 24, No. 3 (Sep., 1992), pp. 509-759
	Letters to the Editor



