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Abstract Perception is a product of evolution. Our perceptual
systems, like our limbs and livers, have been shaped by natu-
ral selection. The effects of selection on perception can be
studied using evolutionary games and genetic algorithms. To
this end, we define and classify perceptual strategies and al-
low them to compete in evolutionary games in a variety of
worlds with a variety of fitness functions. We find that verid-
ical perceptions—strategies tuned to the true structure of the
world—are routinely dominated by nonveridical strategies
tuned to fitness. Veridical perceptions escape extinction only
if fitness varies monotonically with truth. Thus, a perceptual
strategy favored by selection is best thought of not as a win-
dow on truth but as akin to a windows interface of a PC. Just
as the color and shape of an icon for a text file do not entail
that the text file itself has a color or shape, so also our percep-
tions of space-time and objects do not entail (by the Invention
of Space-Time Theorem) that objective reality has the structure
of space-time and objects. An interface serves to guide useful
actions, not to resemble truth. Indeed, an interface hides the
truth; for someone editing a paper or photo, seeing transistors
and firmware is an irrelevant hindrance. For the perceptions of
H. sapiens, space-time is the desktop and physical objects are
the icons. Our perceptions of space-time and objects have

been shaped by natural selection to hide the truth and guide
adaptive behaviors. Perception is an adaptive interface.

Keywords Bayesian inference and parameter estimation .
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Introduction

What is the relationship between perception and reality? This
question motivated Fechner in 1860 to launch the field of
psychophysics—and of experimental psychology more gen-
erally. Today, with the benefit of advances in experimental
psychology and evolutionary biology, a broad consensus has
emerged among perceptual scientists: Natural selection has
shaped our perceptions to be, in the typical case, accurate
depictions of reality, especially of those aspects of reality that
are critical for our survival.

This consensus is spelled out in a standard textbook on
vision: BEvolutionarily speaking, visual perception is useful
only if it is reasonably accurate.… Indeed, vision is useful
precisely because it is so accurate. By and large, what you
see is what you get.When this is true, we have what is called
veridical perception…perception that is consistent with the
actual state of affairs in the environment. This is almost al-
ways the case with vision…^ (Palmer 1999, emphasis his).

Marr (1982, p. 340) agrees: BWe…very definitely do com-
pute explicit properties of the real visible surfaces out there,
and one interesting aspect of the evolution of visual systems is
the gradual movement toward the difficult task of representing
progressively more objective aspects of the visual world.^

Pizlo and his collaborators (2014, p. 227) agree: BWe close
by restating the essence of our argument, namely, veridicality
is an essential characteristic of perception and cognition. It is
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absolutely essential. Perception and cognition without verid-
icality would be like physics without the conservation laws.^
(emphasis theirs.)

The evolutionary theorist Trivers (2011) also agrees: B…
Our sense organs have evolved to give us a marvelously de-
tailed and accurate view of the outside world—we see the
world in color and 3-D, in motion, texture, nonrandomness,
embedded patterns, and a great variety of other features.
Likewise for hearing and smell. Together our sensory systems
are organized to give us a detailed and accurate view of reality,
exactly as we would expect if truth about the outside world
helps us to navigate it more effectively.^

In mathematical models of perception, this theory often is
couched in the language of Bayesian estimation, the idea
being that evolution shaped our perceptual systems to estimate
accurately, on the basis of sensory information, the true state
of the environment. Yuille and Bülthoff (1996) for instance:
BWe define vision as perceptual inference, the estimation of
scene properties from an image or sequence of images…there
is insufficient information in the image to determine uniquely
the scene. The brain, or any artificial vision system, must
make assumptions about the real world. These assumptions
must be sufficiently powerful to ensure that vision is well-
posed for those properties in the scene that the visual system
needs to estimate.^

Geisler and Diehl (2003, p. 397) agree: BIn general, it is
true that much of human perception is veridical under natural
conditions. However, this is generally the result of combining
many probabilistic sources of information…Bayesian ideal
observer theory specifies how, in principle, to combine the
different sources of information in an optimal manner in order
to achieve an effectively deterministic outcome.^

Why should evolution favor veridical perceptions? The
intuition is that those who see more truly outcompete those
who see less truly and thus are more likely to pass on their
genes that code for truer perceptions. Thousands of genera-
tions of this process have spread the genes for veridical per-
ceptions throughout our species. We are thus the offspring of
those who, in each generation, saw a bit more truly, and
we can be confident that we too, in most situations, have
veridical perceptions.

Although this is considered a good argument for veridical
perception in humans, it is not considered so for simpler or-
ganisms, such as insects and amphibians. Marr, for instance,
argued that fly vision, unlike human vision, is nonveridical:
BVisual systems like the fly’s serve adequately and with speed
and precision the needs of their owners, but they are not very
complicated; very little objective information about the world
is obtained. The information is all very subjective…^ [empha-
sis added] and B…it is extremely unlikely that the fly has any
explicit representation of the visual world around him—no
true conception of a surface, for example, but just a few trig-
gers and some specifically fly-centered parameters.…^ (1982,

p. 34). In this quote, Marr explicitly states his view that for the
fly Bthe information is all very subjective.^ Marr’s whole
point in discussing the fly is to show that fly vision can suc-
cessfully control the flight of the fly without needing to com-
pute objective descriptions of the world.

Similarly, Marr thought that frog vision was nonveridical:
BIn a true sense, for example, the frog does not detect flies—it
detects small, moving, black spots of about the right size.
Similarly, the housefly does not really represent the visual
world about it—it merely computes a couple of parame-
ters…which it inserts into a fast torque generator and which
cause it to chase its mate with sufficiently frequent success^
(1982, p. 340). Marr explained why evolution might shape
nonveridical perceptions: BOne reason for this simplicity must
be that these facts provide the fly with sufficient information
for it to survive. Of course, the information is not optimal and
from time to time the fly will fritter away its energy chasing a
falling leaf or an elephant a long way away.…^ (1982, p. 34).

Marr’s point is well taken. Natural selection is a search
procedure that yields satisficing solutions, not optimal solu-
tions. This is evident, for instance, in the backwards structure
of the vertebrate eye, which forces light to pass through bipo-
lar and ganglion cells before being caught by photopigments
and which consequently requires a blind spot—a hole in the
retinal mosaic—to allow the optic nerve to exit the eye; ceph-
alopod eyes, which evolved separately, do not suffer these
problems (Land and Nilsson 2012). Thus, perceptual systems
that evolve by natural selection need not be optimal in struc-
ture and need not deliver optimal information, just informa-
tion sufficient for survival and reproduction.

There are many examples of satisficing perception in na-
ture. Dragonflies, for instance, have aquatic larvae and must
find water to lay their eggs. Dragonfly vision has a simple
trick to findwater: Find horizontally polarized light reflections
(Horvath et al 1998, 2007). Water strongly reflects horizontal-
ly polarized light, so this trick often guides successful ovipo-
sition. Unfortunately for the dragonfly, oil slicks and shiny
tombstones also reflect such light, sometimes more
strongly than water. Dragonflies are fooled by such
slicks and tombstones to lay eggs where they cannot
survive. In the niche where dragonflies evolved, their
perceptual strategy normally works, but where that
niche has been disturbed by H. sapiens with oil slicks
and tombstones, the same strategy can be fatal.

Male jewel beetles fly about looking for the glossy, dim-
pled, and brown wing-casings of females. When males of
H. sapiens began tossing out empty beer bottles that were
glossy, dimpled, and just the right shade of brown, the male
beetles swarmed the bottles and ignored the females, nearly
causing the extinction of the species (Gwynne and Rentz
1983). The beetles’ perceptions relied not on veridical infor-
mation but rather on heuristics that worked in the niche where
they evolved.
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Thus, natural selection has shaped the perceptual systems
of many organisms to rely on fallible heuristics. Yet there is
consensus among perceptual scientists that natural selection
has shaped the perceptions of H. sapiens to be, in the normal
case, veridical. This raises obvious questions: What precisely
are the conditions in which natural selection favors veridical
perceptions? Are we correct in assuming that H. sapiens, un-
like flies, frogs, and beetles, has been shaped to have veridical
perceptions? Is there really such a discontinuity between
H. sapiens and other animal species?

Fortunately, we aren’t forced to speculate about the an-
swers to these questions. Evolution by natural selection can
be studied using mathematical tools, such as evolutionary
game theory, evolutionary graph theory, and genetic algo-
rithms (Hofbauer and Sigmund 1998; Mitchell 1998;
Lieberman et al. 2005; Nowak 2006; Samuelson 1997;
Sandholm 2007). One can study competitions between per-
ceptual strategies and compute probabilities for strategies to
emerge, go extinct, coexist, or dominate.

The first step is to define perceptual strategies and classify
them by how informative they are about the objective world.
This yields an understanding of possible relationships be-
tween perception and reality that is more nuanced than a sim-
ple dichotomy between veridical or not. We can use evolu-
tionary games and genetic algorithms to study the relative
fitness of these perceptual strategies.

The collection of strategies considered must be exhaustive;
otherwise we might miss a winning strategy. In particular, we
must include strategies that see none of the true facts, some of
the true facts, and all of the true facts. Even if we suppose that
human perception is veridical today, we must consider all
possible strategies, veridical or not, in order to explore the
plausible hypothesis that we evolved from species whose per-
ceptions were not veridical. And we must entertain the hy-
pothesis that any one of these strategies, veridical or not,
might have evolved by natural selection, even for human
perception.

We will see that there are really two separate questions to
be answered. First, is the vocabulary of our perceptions iso-
morphic to aspects of objective reality so that our language of
perceptions could, in principle, describe the objective truth?
Second, if so, do our perceptual systems, using that vocabu-
lary, in fact succeed in describing the true state of affairs in the
world?

With this background, we now define the strategies that we
will study.

Perceptual strategies

We need a definition of perceptual strategy that’s broad
enough to include all relevant strategies—otherwise our evo-
lutionary games and genetic algorithms might inadvertently

overlook viable strategies. Some models of color perception,
for instance, posit a metric on color experiences and represent
perceptual differences among colors by distances in the metric
(Koenderink 2010; Mausfeld and Heyer 2003). This works
well for color, but might not for other perceptions. Perhaps,
for instance, no metric adequately models taste: Is a marinara
sauce closer in taste to apples or to blueberries? This question
might have no answer. Thus, it seems too restrictive to require
that all perceptual strategies have associated metrics.

But it always seems necessary to model the probabilities of
various perceptions and how these probabilities vary with
states of the world. If, for instance, one assumes that the world
contains surfaces and light sources, one must model how the
probability of perceiving different colors is related to the re-
flectance functions of surfaces and the spectral distributions of
the incident light sources. Or, if one assumes that the world
contains various odorant molecules, one must model how the
probability of perceiving different smells is related to
the distribution of odorant molecules. Thus, it seems
necessary to use so-called measurable spaces (i.e., prob-
ability spaces whose probability measure is not yet
specified) to model possible perceptions and possible
states of the world. And it seems necessary to require
that probabilities of perceptual events can be systemati-
cally related to probabilities of events in the world, i.e.,
that the mapping from the world to perceptions is a so-
called measurable mapping. (This is simply a generali-
zation of the familiar notion of a random variable. For
precise definitions of events, measurable spaces, measur-
able maps, and probability measures, see Appendix 1.)

These considerations lead us to define a perceptual strategy
as follows. We represent the possible perceptual experiences
of an organism by a measurable space (X,X ), where X is a set
of possible experiences and X is a collection of subsets of X
called events; in this case the events are perceptual events. The
elements of X denote, we emphasize, perceptual experiences
themselves and not, e.g., some kind of objects of perceptual
experiences, such as so-called sense data. We represent the
world by a measurable space (W, W ), where W is a set (of
world states) and W is again a collection of subsets of W
called events; in this case the events are in the world, but the
notion of event used here differs from the notion of event in
special relativity (i.e., a space-time point) and in particle phys-
ics (i.e., the results just after a fundamental interaction occurs
between subatomic particles). Then the definition of a percep-
tual strategy is straightforward if there is no dispersion (such
as noise), i.e., if each statew ϵW causes at most one perceptual
experience x ϵX.

Definition 1 A (dispersion-free) perceptual strategy, P, is a
measurable function P:W→X, where (W, W ) denotes a mea-
surable space of states of the world and (X, X ) denotes a
measurable space of perceptual experiences.
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If there is dispersion (or noise), i.e., if there are states w ϵW
associated to more than one perceptual experience x ϵX, then
the definition of a perceptual strategy requires a mapping that
gives, for each state w ϵWof the world, the probabilities of the
various perceptual experiences that the state wmight cause. In
the case whereW and X are finite, this mapping can be written
as a stochastic matrix, i.e., a matrix in which the values in each
row sum to 1. In the more general case, this mapping can be
written as a Markovian kernel P, which assigns to eachw ϵWa
probability measure, P(w,·), on X (Revuz 1984). In informa-
tion theory, such Markovian kernels are communication
channels (Cover and Thomas 2006). With this background
the definition of a perceptual strategy when there is dispersion
is as follows.

Definition 2 A perceptual strategy with dispersion is a
Markovian kernel P:W×X →[0,1], where W denotes a mea-
surable space of states of the world and X denotes the events
for a measurable space X of perceptual experiences.

In this paper, we focus on dispersion-free strategies;
the pattern of results we find also holds when there is
dispersion. We begin with the strongest kind of veridical
strategy, which we call the omniscient realist strategy,
which accurately sees all aspects of the objective world
and its structures. Thus, we define an omniscient realist
strategy as follows.

Definition 3 An omniscient realist strategy is a perceptual
strategy for which X = W and P is an isomorphism, i.e., a
one-to-one and onto map that preserves all structures on W
(e.g., topologies, partial orders, groups).

Omniscient realism is, for good reason, not taken seriously
by perceptual scientists or philosophers (except, perhaps, for
the odd metaphysical solipsist). In the case of vision, for in-
stance, it’s widely agreed that we see just a small fraction of
the electromagnetic spectrum, and only the front surfaces of
opaque solid objects. Thus, we see, at best, a small part of the
objective world, which contradicts the condition X = W of
omniscient realism. However, we include omniscient realism
for sake of completeness.

Naïve realist strategies model a weaker version of veridical
perception in which the perceiver accurately sees all aspects
and structures of a subset of the objective world. In philoso-
phy, naïve realism is roughly the view that what you see is
really there even in the absence of any perceiver, that Bobjects
of awareness are actually the mind independent objects that
inhabit the world^ (Fish 2010). Versions of naïve realism have
long been debated and are defended to this day (e.g., Brewer
2011; Campbell and Cassam 2014; Chemero 2009; Fish 2009;
Gibson 1986;McDowell 1996; Noë 2012; Searle 2015; Travis
2013). Searle (2015), however, prefers the term Bdirect
realism^ rather than naïve realism, to distinguish his view
from disjunctivist accounts.

Gibson (1986), for instance, says BThe environment con-
sists of the earth and the sky with objects on the earth and in
the sky, of mountains and clouds, fires and sunsets, pebbles
and stars. Not all of these are segregated objects, and some of
them are nested within one another, and somemove, and some
are animate. But the environment is all these various things—
places, surfaces, layouts, motions, events, animals, people,
and artifacts that structure the light at points of observation.^
According to Gibson’s ecological theory of vision, we directly
and truly see those aspects of the world that are affordances,
i.e., those aspects relevant to Bwhat it offers the animal, what it
provides or furnishes, either for good or ill^ [emphasis his].
Gibson’s theory of vision also is motivated by evolution but,
as we will see, his conclusions about how evolution shapes
perception differ dramatically from ours.

We mathematically define a naïve realist strategy as
follows.

Definition 4 A naïve realist strategy is a perceptual strategy
for which X ⊂ W and P is an isomorphism on this subset that
preserves all structures on W.

One argument against naïve realism cites the phenomenon
of metamers, in which illuminants with different spectra look
the same color, or surfaces with different reflectance functions
look the same color. This is sometimes taken to show that
color is not part of the objective world. Hardin (2008, p.
143), for instance, says BPerceived colors are therefore two
removes from the occurrent bases of the dispositions to see
them. Many different mechanisms can produce the same SPD
[spectral power distribution], and many different SPDs can
cause us to see the same color. It is also important to note that
animals with different receptoral sensitivities are unlikely to
experience the same colors that we do under the same circum-
stances. It is little wonder that color categories have been
described as ‘gerrymandered’ and ‘anthropocentric.’^

Hardin goes on to note that Ba color realist’s appeal to
‘normal’ or ‘standard’ conditions to determine the ‘true’ or
‘actual’ colors of objects is mere hand-waving unless there
is some clear reason for preferring one set of illumination or
background conditions to another. So far, nobody who has
held a realist position has been prepared to propose and defend
such a set of conditions. What is to be said about the other half
of the equation, the ‘normal’ observer to whom philosophers
so casually refer?^

Not everyone agrees, however; some philosophers claim
that color is indeed part of the objective world (e.g., Byrne
and Hilbert 2003).

Examples, such as metamers, suggest the need to consider
critical realist strategies, in which the perceptions need not be
a subset of the objective world, but in which relations among
perceptions nevertheless preserve relations between states in
the objective world. Thus, we define a critical realist strategy
as follows.
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Definition 5 A critical realist is a perceptual strategy for
which X need not be a subset of W, but P is nevertheless a
homomorphism that preserves all structures on W.

Many scientists and philosophers today are critical realists
but of a special type that we will call hybrid realists. They
claim that some of our perceptual experiences, such as color
and taste, are not part of the objective world, but that other
perceptions, such as object shapes and motions, are part of the
objective world (Pizlo 2010; Pizlo et al. 2014). Among phi-
losophers this view is sometimes expressed as a variant of
Locke’s distinction between primary and secondary qualities
(Locke 1690). This gets a bit tricky because, according to
Locke, secondary properties, such as color, are strictly speak-
ing, dispositions of mind-independent objects, i.e., disposi-
tions to trigger perceptual experiences in us that we describe
with terms such as colors; but these perceptual experi-
ences, according to Locke, do not resemble any objec-
tive properties of the mind-independent objects. Thus,
one must be careful when interpreting the writing of
hybrid realists to determine when they are discussing
properties, such as dispositions, of mind-independent
objects and when they are discussing perceptual experi-
ences that are the consequences of such properties.
Exegesis on this point can be controversial.

Hybrid realism dates back at least to the early years of
science. Galileo, for instance, said BI think that tastes, odors,
colors, and so on are no more than mere names so far as the
object in which we locate them are concerned, and that they
reside in consciousness. Hence if the living creature were
removed, all these qualities would be wiped away and
annihilated^ (1623/1957, p. 274).

We define hybrid realism as follows.

Definition 6 A hybrid realist strategy is a critical realist strat-

egy that requires that there exists a strict subset X̂⊂X that

satisfies X̂⊂W and requires that P is an isomorphism on this
subset that preserves all structures.

Most vision researchers who use Bayesian models of per-
ception assume hybrid realism (Knill and Richards 1996).
They assume, for instance, that our perceptions of object
shapes are normally veridical and that Bayesian techniques
illuminate how we estimate true shapes from images. They
typically assume, however, that color is not an objective prop-
erty of the world but that Bayesian methods can model the
relationship between perceived colors and, say, equivalence
classes of surface reflectances.

However, there is a class of perceptual strategies
even more general than critical realist and hybrid realist.
This class of strategies, which we call interface
strategies, does not require any perceptions to be verid-
ical or to reflect any structures of objective reality, such
as orders or metrics. Therefore, we define interface
strategies as follows.

Definition 7 An interface perceptual strategy is a perceptual
strategy that does not require X to be a subset of W and for
which the mapping P has no restrictions other than being
measurable (so that the probabilities of perceptions are sys-
tematically related to probabilities of events in W).

Thus, an interface strategy is simply a dispersion-free per-
ceptual strategy, with no additional constraints. However, the
new name is useful for understanding these strategies.
Consider a strict interface strategy, i.e., an interface strategy
that is not a critical realist strategy. For such a strategy, no
perceptions are veridical (X⊄W) and no structure ofW is pre-
served other than measurable structure (P is not a homomor-
phism). It is natural to ask for such a strategy how it could
possibly be useful to an organism. If none of its perceptions
are veridical, and none of its perceptions reflect the structure
of the world, then aren’t its perceptions completely useless?

It turns out that they can, in fact, still be quite useful, and a
familiar metaphor helps to see this. Consider the desktop of
the windows interface on your laptop computer. Suppose that
there is a blue rectangular icon in the upper right corner of the
desktop for a text file that you are editing. Does this mean that
the text file itself is blue, rectangular, or in the upper right
corner of the laptop? Of course not. Anyone who thinks so
misunderstands the purpose of the desktop interface. No fea-
tures of the icon are identifiable with any features of the file in
the computer. Moreover, one would be hard pressed to find a
natural sense in which the icon is a veridical representation of
the file. However, the icon is intended to guide useful behav-
iors. If, for instance, you drag the blue icon to the trash you can
delete the text file; if you drag it to the icon for an external
drive, you can copy the file.

So if our perceptions are in fact strict interface perceptions,
then none of our perceptions are veridical and none of our
perceptions reflect the structure of the world. This would
mean that our perceptions of physical objects and even of
space-time itself are not veridical. Instead, space-time would
be our desktop and physical objects would be the icons on the
desktop. If natural selection has appropriately shaped our per-
ceptions of space-time and physical objects, then they could
still be useful guides to behavior even though they are not
veridical. It is for this reason that the most general perceptual
strategies are called interface strategies.

The interface metaphor is offered merely as an aid to intu-
ition. Like most metaphors, it suffers weaknesses. One might
for instance argue that—contrary to the Bsimplify and hide^
hallmark of interfaces that we have touted—the nesting of
folder icons on a desktop is an accurate guide to the nesting
of real folder hierarchies in the computer. This critique is well
taken. However, it is the interface strategy as precisely de-
fined, not as metaphor, which lives or dies by the sword in
our evolutionary games. Moreover, the strength of the meta-
phor is what it highlights: The simplicity of a desktop, which
hides the complexity of the computer, and the nonveridicality
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of a desktop, which allows it to be tailored instead to the needs
of the user, are in fact huge advantages that promote efficient
interactions with the computer.

The relationships among strategies are shown in Fig. 1.
One sees from the diagram, for instance, that all hybrid realists
and naive realists are critical realists but that no hybrid realist
is a naive realist; some critical realists are neither hybrid real-
ists nor naive realists.

Evolutionary games

Does natural selection favor veridical perceptions? The five
classes of perceptual strategies defined in the previous section
allow us to ask this question with greater precision: Which of
the five perceptual strategies are favored by natural selection,
and under what conditions are they favored?

Fortunately, we need not speculate about the answer. We
can devise evolutionary games and genetic algorithms to ob-
tain precise answers in precise contexts, and from these we
can extrapolate general principles.

Using evolutionary games, we compel perceptual strategies
to compete in a variety of environments and under a variety of
selection pressures, and discover which will coexist, disap-
pear, and dominate.

Evolutionary games have the power to model frequency-
dependent selection, in which the fitness of strategies is not
fixed, but instead varies with the proportion of individuals in
the population that employ each strategy (Allen and Clarke
1984; Hofbauer and Sigmund 1998; Nowak 2006; Samuelson
1997; Sandholm 2007).

For instance, frequency-dependent selection governs the
strategies of hunter-gatherers who share their daily haul.
Some are Bproducers^ and work hard to hunt and gather,
whereas others are lazy Bscroungers^ and simply eat what
others provide (Barnard and Sibly 1981). If most are pro-
ducers, then scroungers do well; but as the proportion of

scroungers increases, the fitness of their strategy declines un-
til, in the limit where everyone scrounges, everyone starves.

A perceptual example is Batesian mimicry, in which a be-
nign species avoids predation by resembling a dangerous spe-
cies. In regions where the dangerous species is frequent, even
poor mimics avoid predation; but where the dangerous species
is infrequent, only goodmimics enjoy this benefit (Harper and
Pfennig 2007).

Evolutionary games assume infinite populations of players,
each having a fixed strategy. Players are chosen at random to
interact in games—a situation called complete mixing, be-
cause all interactions are equally likely. Each player receives
a payoff from each of its interactions and, critically, this payoff
is interpreted as fitness, and thus as reproductive success. This
leads to natural selection: strategies that excel in games repro-
duce more quickly and thus outcompete other strategies.

Formally, natural selection is modeled by a differential
equation called the replicator equation (Bomze 1983; Taylor
and Jonker 1978). If n strategies interact, we let aij denote the
payoff to strategy iwhen interacting with strategy j; we let [aij]
denote the n×n Bpayoff matrix^ for all such interactions; and
we let xi denote the frequency of strategy i. Then, the expected

payoff for strategy i is f i ¼ ∑
n

j¼1
x jai j and the average payoff is

ϕ ¼ ∑
n

i¼1
xi f i. The replicator equation follows by equating pay-

off with fitness: xi ¼ xi f i−ϕð Þ, where i=1,…,n and denotes
the xi: time derivative of the frequency of strategy i.

In the case of two strategies one finds the following:
Strategy 1 dominates if a11 > a21 and a12 > a22; Strategy 2
dominates if a11 < a21 and a12 < a22; Strategies 1 and 2 are
bistable if a11 > a21 and a12 < a22; Strategies 1 and 2 coexist if
a11 < a21 and a12 > a22; Strategies 1 and 2 are neutral if a11 =
a21 and a12 = a22 (Nowak 2006).

In the case of three strategies, there also can be cyclic dom-
ination among the strategies, much as in the children’s game
of Rock-Paper-Scissors. In the case of four or more strategies,
there can be limit cycles and chaotic attractors (Nowak 2006).

The evolution of perceptual strategies has been studied in
games that force players to compete for resources that are
distributed over a set of territories (Marion 2013; Mark et al.
2010; Mark 2013). On each trial, quantities of resources are
distributed at random (e.g., uniformly) to each territory. For
each quantity of resources in a territory there is an associated
payoff specified by a fixed payoff function. In each interac-
tion, each player looks at each territory and decides which
territory to seize. Each player receives the payoff for the re-
sources in the territory it nabs.

These games have many variations, including the
number of territories, the number and distributions of
resources per territory, the payoff function, the order
in which players choose, the perceptual strategies of
the players, the number of distinct perceptions each

Fig. 1 Venn diagram of the relationships among the different perceptual
strategies
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player can have, and the costs for computation and
storage of information.

To see how an interface strategy differs from a critical
realist strategy, consider the case where each territory has
one resource that varies in quantity from 0 to 100, and where
the perceptions of each player are limited to just four colors—
e.g., red, yellow, green, and blue. Let the order on colors be the
Benergy order^: red < yellow < green < blue. Let the payoff
function be a (roughly) Gaussian function of the resource
quantity: the greatest payoffs are associated with quantities
near 50, and fall off for quantities greater or smaller than 50.
Such a nonlinear payoff function is quite common: Not
enoughwater and one dies of thirst; too much and one drowns;
somewhere in between is just right. Similarly for salt and a
variety of other resources. Indeed, for organisms that must
maintain homeostasis of a wide variety of variables, one can
expect many nonmonotonic payoff functions.

In this case, a critical realist whose perceptions veridically
represent the quantity of resources is illustrated in Fig. 2. On
the horizontal axis is the resource quantity, varying from 0 to
100. The translucent Gaussian depicts the payoff function
(which is equated with fitness), having a maximum around
50. The colored rectangles indicate how resource quantities
map to perceived colors. For instance, resource quantities be-
tween 0 and 25map to red. This perceptual strategy is a critical
realist because (1) the perceived colors are not a subset of the
resources and (2) the mapping from resources to colors is an
order-preserving homorphism, i.e., every resource quantity
that maps to red is less than every resource quantity that maps
to yellow, and so on.

If the resources are uniformly distributed then this critical
realist, given its perceived color, can optimally estimate the
true quantity of resources. If, for instance, it sees green, then it
knows that the resource quantity lies between 50 and 75 with
an expected value around 62.5. However, it cannot optimally
estimate the payoffs. If it sees green, then the payoff could
range from nearly 100 to less than 25; if it sees yellow, it’s
exactly the same—green and yellow are redundant. Thus this
strategy is an efficient communication channel for information
about the true value of the resource quantity but a poor chan-
nel for payoffs.

An interface strategy tuned to payoffs is illustrated in
Fig. 3. It’s a strict interface strategy, because the mapping
from resource quantities to colors is not a homomorphism.
For instance, some resource quantities that map to green are
smaller than all resource quantities that map to blue (green bar
on the left), but other resource quantities that map to green are
greater than all resource quantities that map to blue (green bar
on the right).

However, although this strategy is not a homomorphism
for information about resources, it is for payoffs: All resource
quantities that map to blue have higher payoffs than all re-
source quantities that map to green, and so on. This strategy
is an efficient communication channel for information about
payoffs but a poor channel for truth.

In evolution by natural selection, whenever payoffs and
truth differ it is payoffs, not truth, that confer (indeed, are
identified with) fitness and reproductive success.

From Monte Carlo simulations of many versions of this
game the pattern is clear: strict interface strategies that are
tuned to fitness routinely drive naïve realist and critical realist
strategies to extinction (Marion 2013; Mark et al. 2010; Mark
2013). Adding more complexity to the environment, either by
greatly increasing the number of territories or the number of
resources per territory, doesn’t help the realist strategies, in
part because increasing complexity just saddles realist strate-
gies with the burden of representing a greater quantity of ir-
relevant information; this extra burden reduces their fitness
relative to the interface strategies, and thus pushes them to
swifter extinction. Increasing costs for information and com-
putation, or adding dispersion to the perceptual maps, gener-
ally makes matters worse for naïve realists and critical realists.
The only situation in which realists have a chance against
interface strategies is when payoff varies monotonically with
resource quantity, i.e., when truths and payoffs are roughly the
same thing.

The key insight from these evolutionary games is this:
Natural selection tunes perception to payoffs, not to truth.
Payoffs and truth are different, unless payoff functions happen
to vary monotonically with truth. But we cannot expect, in
general, that payoff functions vary monotonically with truth,

Fig. 2 A critical realist. The payoff function is approximately Gaussian.
Any resource quantity between 75 and 100 maps to blue

Fig. 3 An interface strategy. The resource quantities with the highest
payoffs map to blue, and those with the lowest payoffs to red
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because (1) monotonic functions are a (unbiased) measure
zero subset of the possible payoff functions, and (2) even if
they weren’t, the ubiquitous biological need for homeostasis
militates against them. Thus, we cannot expect, in general,
that natural selection has tuned our perceptions to truth, i.e.,
we cannot expect our perceptions to be veridical. This is per-
haps shocking news to perceptual scientists who assume that
Bmuch of human perception is veridical under natural
conditions^ and that Bveridicality is an essential characteristic
of perception and cognition.^

Is it possible that this result—viz., that natural selection
generically drives veridical perceptions to extinction—is an
artifact of unrealistic assumptions in evolutionary game theory
itself? In particular, is it an artifact of the assumptions of infi-
nite populations and complete mixing?

Possibly, but unlikely, because the core reason that inter-
face strategies dominate realist strategies is that, when payoffs
are not monotonic with truths, interface strategies can be tuned
entirely to the right information whereas realist strategies are
necessarily tuned to the wrong information. Such mistuning
will continue to cripple realist strategies even if the popula-
tions are finite and even if complete mixing is replaced with
plausible networks of interactions. This claim should of
course be checked using, e.g., simulations based on evolution-
ary graph theory.

What might prove interesting are spatial games, in which
players interact with only nearest neighbors on a 2D grid. In
this case it might be possible for groups of individuals having
realist strategies to survive together in small enclaves.

Can this result be dismissed as an artifact of the overly
simplistic and high-level example of perception that was stud-
ied? Could more realistic examples, say of shape perception or
color perception, favor realist strategies? Again, it’s possible,
but unlikely. Monte Carlo simulations indicate that greater
complexity does not, in general, favor realist strategies.
Instead the mistuning of realists exacts a greater toll as the
complexity of the situation increases. Indeed, with increasing
complexity the need for simplification and abstraction is only
accentuated.

Genetic algorithms

With evolutionary games we find that veridical perceptions
fare poorly against interface perceptions when both are on
the same playing field. But there is a prior question to be
asked: Will veridical perceptions even get on the playing
field? Or are they so unfit that evolution is likely to pass them
over completely?

To study this question we turn to genetic algorithms, which
are search heuristics based on features of natural evolution in
sexually reproducing species, features such as mutation,

inheritance, selection, and crossover (Hoffman et al. 2013;
Mark 2013; Mitchell 1998; Poli et al. 2008).

The genetic algorithms we explore are variants of one in-
troduced by Mitchell (1998) that evolves, over many genera-
tions, a robot named Robby who can efficiently gather soda
cans that are randomly distributed on a 10×10 grid of squares.
Surrounding the grid is a wall, which we can model as a
perimeter of squares. Thus the world, call it W, that Robby
inhabits can be represented as a 12 × 12 grid of squares. We
denote the state of square (i, j) byW (i, j) and stipulate that its
value is 0 if the square has no cans, 1 if it has one can, and 2 if
it is a wall. Because the wall is fixed, and the state of each
square of the inner 10 × 10 grid is either 0 or 1, the possible
states of W are 210×10 = 2100.

Robby can only see the state of the square he occupies and
of the four immediately adjacent states. For instance, if Robby
is at location (i, j) then he sees the world states (W(i,j),W(i,j +
1),W(i,j − 1),W(i + 1,j),W(i − 1,j)) . Because there are at most
three states at each of these five locations, the space of
Robby’s possible perceptions, call it X, is no larger than 35 =
243; in fact it’s a little smaller because, for instance, if the
square to Robby’s right is a wall, then the square to his left
is not. Robby does not know which square (i, j) he is in, or
even that he is in a 12 × 12 grid; he only sees the states of the
squares, but not the locations or structure of the squares.

The goal of the genetic algorithm is to evolve a version of
Robby that efficiently gathers soda cans, despite his ignorance
of the structure of the grid. To this end, Robby has a set, call it
G, of seven primitive actions he can take: stay where he is,
pick up a can, step north, step south, step east, step west, or
step randomly. What must be learned phylogenetically (i.e.,
over many generations of the genetic algorithm) is a foraging
strategy that specifies which of the seven actions in G to take
for each possible perception of the roughly 240 in X that
Robby can have. The set of possible foraging strategies is thus
approximately of cardinality 7243≈2.3 × 10205, a large search
space in which to evolve good strategies.

The payoff function that provides the selection pressures
for Robby’s evolution is as follows: Robby gets 10 points for
each can he picks up, but loses 1 point each time he tries to
pick up a can where there is none, and loses 5 points each time
he tries to walk into a wall.

There are roughly 240 Bgenes^ that the genetic algorithm
evolves, each having seven possible values, corresponding to
the seven actions that can be taken in response to each poten-
tial perceptual state. Mitchell starts the genetic algorithm with
an initial generation of 200 robots, each having randomly
chosen values for each gene. Each robot is forced to forage
through 100 randomly chosen worlds, taking 200 actions in
each world. The fitness of a robot is the average number of
points it collects over its 100 foraging runs. The fitter robots
are preferentially chosen to be parents for the next generation.
The genes for two parents are randomly split into two parts,
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and the parts swapped to create two new genomes. A small
amount of mutation is applied. In this way a new generation of
200 robots is created, and their fitness again measured by their
success at foraging. This process is repeated for 1000
generations.

The first generation is comically stupid, bumping into
walls, grabbing for cans in empty squares, perseverating in
obvious mistakes. But the last generation sports expert for-
agers, racking up impressive point totals with surprising clev-
erness and methodical efficiency.

In this genetic algorithm, only the foraging strategies
evolve, while the perceptual strategy remains fixed. All robots
are naïve realists, seeing the true state of the world in their
immediate vicinity. To take the next step, to study the coevo-
lution of foraging and perceptual strategies, Mark (2013)
modifies Mitchell’s genetic algorithm in several ways. He
allows each square to have up to 10 cans, and stipulates the
following payoff function: (0,1,3,6,9,10,9,6,3,1,0). For in-
stance, a robot gets 6 points for grabbing the cans in a square
having 3 or 7 cans, and 0 points for a square having 0 or 10
cans. However, each robot cannot see the exact number of
cans in each square, but instead sees just two colors, red and
green. Each robot thus has a perceptual strategy, namely a
mapping that assigns the percept red or green to each of the
11 possible numbers of cans. Perhaps, for instance, it sees red
if a square has 0 cans and green otherwise. There are 211=2048
possible perceptual strategies. To allow for perceptual strate-
gies to coevolve with foraging strategies, each robot has 11
more genes in its genome, which code the color that the robot
sees for each quantity of cans. In the first generation the as-
signment of colors to the 11 genes is random.

In Mark’s genetic algorithm, the first generation is again
comically stupid. But after 500 generations there are again
many skilled foragers, and all wield one of two perceptual
strategies. In the first, squares are seen as red if they contain
0, 1, 9, or 10 cans, and as green otherwise. In the second, it is
the reverse, with squares seen as green if they contain 0, 1, 9,
or 10 cans, and as red otherwise.

These robots have evolved a strict interface strategy, tuned
to payoffs rather than truths. A strategy tuned to truths would
see squares having between 0 and 5 cans as, say, red and
squares having between 6 and 10 cans as green, so that the
perceived color would be as informative as possible about the
true number of cans. But such a realist strategy would provide
no information about payoffs (since red squares would have
the same expected payoff as green squares) and would thus
fail to guide effective foraging.

Instead, the robots wield a strategy that sees high payoff
squares as green, and low payoff squares as red, or vice versa.
This perceptual strategy provides the information required for
effective foraging and is favored by the genetic algorithm.
Given that Mark’s simulation explored a space containing
only 2048 perceptual strategies, it’s likely that realist strategies

were randomly tried and discarded during the 500 generations
of evolution. But in a slightly more complex case, say where
there are 30 genes and 10 possible colors, then the search
space has 1030 possible perceptual strategies, and it’s likely
that a realist strategy, with no selection pressures in its favor,
would never appear in any generation, because it could only
appear by chance. Thus, it’s likely that veridical strategies
never enter the playing field. They’re so unfit that they’re
not worth trying.

Interface theory of perception

Studies of perceptual evolution using evolutionary games and
genetic algorithms render a clear verdict: Natural selection
discards veridical perceptions and promotes interface strate-
gies tuned to fitness. This motivates the interface theory of
perception, which we now discuss (Fields 2014; Hoffman
1998; 2009; 2011; 2012; 2013; Hoffman and Prakash 2014;
Hoffman and Singh 2012; Hoffman et al. 2013; Koenderink
2011; 2013; Mark et al. 2010; Mausfeld 2002; Singh and
Hoffman 2013; see also von Uexküll (1909; 1926; 1957) for
his related idea of an Umwelt).

Informally, the interface theory of perception says that the
relationship between our perceptions and reality is analogous
to the relationship between a desktop interface and a
computer.

A desktop interface makes it easy to use the computer. To
delete or copy files, for instance, one simply needs to drag
icons around on the desktop.

But a desktop interface does not make it easy to know the
true structure of a computer—its transistors, circuits, voltages,
magnetic fields, firmware, and software. Indeed, it’s in part by
hiding this complex structure that the desktop makes it easier
to use the computer. Why? Because if you were forced to be
aware of the true facts about circuits, voltages, and magnetic
fields, when your goal was simply to edit a photo or write a
paper, you would be wasting time, memory, and energy on
truths of no relevance to accomplishing your goal.

In similar fashion, says the interface theory of perception,
our perceptions have been shaped by natural selection tomake
it easier for us to act effectively in the world, so that we can
survive and reproduce (or, more accurately, so that our genes
can survive and reproduce). Our perceptions have not been
shaped to make it easy to know the true structure of the world
but instead to hide its complexity.

Our perception of space-time is analogous to the desktop,
and our perception of objects and their properties is analogous
to the icons on the desktop. Just as the language of desktops
and icons is the wrong language for describing the true struc-
ture of the computer, so also the language of space-time and
physical objects is the wrong language for describing the true
structure of the objective world.
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A blue and rectangular icon on a desktop does not represent
that something in the computer is blue and rectangular. Not
because the icon is false or misleading or illusory, but because
the icon is there to help you use the computer, not to distract
you with irrelevant details about its innards.

This might seem odd. We’re claiming that our normal per-
ceptions are not veridical and yet not illusory. Isn’t this self-
refuting? After all, the standard definition of illusory percep-
tions is that they are perceptions that are not veridical.

The standard definition of illusory perceptions is, however,
based on an incorrect understanding of perception and its evo-
lution. It assumes that evolution has shaped our perceptions to
be, in the normal case, veridical. But evolution has done no
such thing. Instead, it has shaped our perceptions to be, in the
normal case, adequate guides for adaptive behaviors. No per-
ceptions are veridical. But it would be wrong to conclude that
therefore all perceptions are illusory. They are not. They usu-
ally guide our behaviors quite well. It is only when we mis-
understand the evolution of perception that we identify illuso-
ry perceptions with nonveridical perceptions.

For instance, when one sees a long, brown rattlesnake, this
perception does not mean that something in the objective
world is long and brown. Not because the perception is mis-
leading or illusory but because the snake perception is there to
adaptively guide your behavior, not to distract you with irrel-
evant details about the true structure of the world.

There is an obvious rejoinder: BIf you think that snake is
just an icon, why don’t you pick it up? You’ll soon learn that
the snake is not just an icon, it’s part of objective reality, and
reality bites.^

Of course, I won’t pick up the snake. For the same
reason I wouldn’t carelessly drag a blue rectangular icon
to the trash. Not because I take the file icon literally—
the file isn’t blue and rectangular. But I do take the
icon seriously. If I drag the icon to the trash, I could
lose many hours of work.

And that is the point. Natural selection has shaped our
perceptions in ways that help us survive. We had better take
our perceptions seriously. If you see a snake, don’t grab it. If
you see a cliff, avoid it. But taking our perceptions seriously
doesn’t entail that we must take them literally. To think other-
wise, to think that BI must take my snake perception
seriously^ entails BI must take my snake perception to be
literally true of the objective world,^ is an elementary error
of logic but one that seems to enjoy a strong grip on the human
mind, even the brightest of minds. Samuel Johnson, for in-
stance, famously claimed to refute the idealism of George
Berkeley by kicking a stone and exclaiming, BI refute it thus^
(Boswell 1791). Kicking a stone can hurt; one must take the
stone seriously, or risk injury. From this Johnson concludes,
against Berkeley, that one must take the stone literally.
Berkeleyian idealism may be false, but Johnson’s argument
against it is based on a logical fallacy.

We must take our perceptions seriously not because they
reveal the true structure of the world, but because they are
tuned, by natural selection, to fitness. The distinction between
fitness and truth is elementary, and central to evolutionary
theory. Fitness is a function of the objective world.
However, a fitness function depends not just on the objective
world but also on the organism, its state, and an action. For a
hungry fly, a pile of dung conveys substantial fitness. For a
hungry human, the same pile conveys no fitness.

Fitness is, in general, a complicated function of the objec-
tive world that depends on an organism, its state, and its ac-
tion. There’s no simple relation between fitness and truth,
although many perceptual researchers assume otherwise.
Geisler and Diehl (2002), for instance, assert BIn general,
(perceptual) estimates that are nearer the truth have greater
utility than those that are wide of the mark.^ This would be
convenient, but unfortunately it’s not true. Fitness functions
are more complex and versatile than that and rarely track truth.

Formally, the interface theory of perception proposes that
the perceptual strategies of H. sapiens and, indeed, of all or-
ganisms are, generically, strict interface strategies. Recall that
this means, in the dispersion-free case, that the perceptual
function, P:W→X, that maps states of the external world W
onto perceptual experiences X, is not veridical in the following
two senses. First, X is not a subset of W, so that none of our
perceptual experiences are literally true of the world. Second,
P is not a homomorphism of any structures intrinsic to W,
other than the event structure required for probability, so that
no structural relationships among our perceptions are literally
true of the world.

The interface theory of perception certainly runs counter to
our normal intuitions about the relationship between our
perceptions and reality. It runs counter, for instance, to what
Bertrand Russell (1912) took to be obvious: BIf, as science and
common sense assume, there is one public all-embracing
physical space in which physical objects are, the relative po-
sitions of physical objects in physical space must more or less
correspond to the relative positions of sense-data in our private
spaces. There is no difficulty in supposing this to be the case.^

The interface theory of perception is counterintuitive, but it
can be seen as a natural next step along an interesting path of
the intellectual history of H. sapiens.

The pre-Socratic Greeks, and other ancient cultures, be-
lieved that the world is flat, in large part because it looks that
way. Pythagoras, Parmenides, and Aristotle, and soon many
others, came to believe that our perceptions are misleading
here and that the earth is in fact spherical. But they still be-
lieved that the earth is the center of the universe, because it
certainly looks like the earth doesn’t move and that the sun,
moon, stars, and planets orbit around it. Kepler and
Copernicus discovered that, once again, our perceptions have
misled us, and the geocentric theory is false. This was difficult
to accept. Galileo was forced to recant, and Giordano Bruno
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was burned at the stake. Eventually we accepted the counter-
intuitive fact that, in this specific case, reality differs from our
perceptions and the earth is not the center of the universe.

The interface theory of perception takes the next step. It
says that reality differs from our perceptions not just in this or
that specific case but in a far more fundamental way: our
perception of physical objects in space-time no more reflects
reality than does our perception of a flat and stationary earth.
The space-time and physical objects of our perceptions are a
species-specific adaptation, shaped by natural selection,
which allow H. sapiens to survive long enough to reproduce.
They are not an insight into the nature of objective reality.
Quite simply, perception is about having kids, not seeing truth.

The argument for the interface theory is not an inference
based on epistemological assumptions—that we can only be
sure of our perceptions and so, for all we know, the world
differs dramatically from our perceptions. Nor is it an argu-
ment for idealism—that to be is to be perceived, and that
something not perceived by my mind exists only if perceived
by another (Berkeley 1710/2012; 1713/1979).

Instead, the argument is that evolution by natural selection,
one of the best-confirmed theories of contemporary science,
applies not just to bodily traits but also to perceptual and
cognitive traits. This entails that, for a perceptual strategy,
the ticket to the next generation, indeed the only ticket other
than dumb luck, is reproductive success. Reproductive suc-
cess and veridicality are entirely distinct concepts. Whenever
they diverge, reproductive success trumps veridicality. They
diverge if the relevant payoff functions are nonmonotonic;
indeed they diverge with unbiased probability one. Thus, it
is almost certain that our perceptions have not been shaped to
be veridical.

It is no surprise, then, that evolution has shaped beetles that
are fooled by bottles, dragonflies that mistake gravestones for
water, gull chicks that prefer red disks on cardboard to their
real mothers, frogs that die of starvation when surrounded by
mounds of unmoving edible flies, and birds that prefer bright-
ly speckled rocks or the eggs of cowbirds to their own eggs.
These are not shocking outliers but exactly what one expects
from a careful understanding of evolutionary theory. The rea-
son it seems counterintuitive that our own perceptions of
space-time and objects are not veridical is that we are blind
to our own blindness—we cannot step outside our perceptions
and look back to make the shocking discovery that they are
just a satisficing interface, not an insight into truth. For that
discovery, for the realization that once again there is no fun-
damental divide between us and other animals, we need the
aid of the mirror view provided by the theory of evolution. In
retrospect, we should have expected all along what that mirror
reveals.

Steven Pinker (1997) portrays well the view from the mir-
ror: BWe are organisms, not angels, and our minds are organs,
not pipelines to the truth. Our minds evolved by natural

selection to solve problems that were life-and-death matters
to our ancestors, not to commune with correctness.^

Robert Trivers (1976/2006, p. xx; also 2011) has peered
into the mirror and seen the same view: BIf deceit is funda-
mental to animal communication, then there must be strong
selection to spot deception and this ought, in turn, to select for
a degree of self-deception, rendering some facts and motives
unconscious so as not to betray—by the subtle signs of self-
knowledge—the deception being practiced. Thus, the conven-
tional view that natural selection favors nervous systems
which produce ever more accurate images of the world must
be a very naïve view of mental evolution.^ (emphasis ours).

The standard Bayesian framework for vision

The standard contemporary framework for vision research
takes vision to be fundamentally an inductive problem of in-
ferring true properties of the objective world: any image on the
retina is consistent with many different scene interpretations;
that is to say, the same image could in principle have been
generated by many (usually infinitely many) distinct 3D
scenes. This raises the natural question of how the visual sys-
tem converges upon a single interpretation, or small number
of interpretations. The fundamental ambiguity inherent in per-
ception can be resolved only by bringing to bear additional
biases or constraints, e.g., concerning how probable different
scene interpretations are a priori. The environment in which
our species evolved is a highly structured place, containing
many regularities. Light tends to come from overhead, there is
a prevalence of symmetric structures, objects tend to be com-
pact and composed of parts that are largely convex, and so on.
Over the course of evolution, such regularities have been in-
ternalized by the visual system (Feldman, 2013; Geisler, 2008;
Shepard, 1994). Thus, they help to define probabilistic biases
that make some interpretations of an image much more prob-
able than others.

Formally, given an image input y0, the visual system must
compute and compare the posterior probabilities p(x|y0) for
candidate scene interpretations x. By Bayes’ Theorem, this
posterior probability is proportional to the product of the like-
lihood of the scene x, p(y0|x), and its prior probability, p(x):

p x
���y0

� �
∝p y0

���x
� �

p xð Þ

The likelihood of the scene x corresponds to the probability
of obtaining the image y0 from scene x; it is therefore a mea-
sure of the extent to which scene x is consistent with—or Bcan
explain^—image y0. In vision applications, the likelihood
p(y0|x) often is defined in terms of a projective or rendering
map from 3D scenes to projected images (possibly with
noise). The prior probability captures the visual system’s im-
plicit knowledge, based on phylogenetic and ontogenetic
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experience, that certain scene interpretations are more proba-
ble a priori than others. This knowledge is Bprior^ in the sense
that it exists in the system prior to obtaining the current image
input. Given the fundamental ambiguity of perception noted
above, the likelihood is often equally high for many different
scene interpretations (i.e., many different 3D interpretations
can in principle explain the given image). However, these
scenes are not equally probable a priori. The product of the
likelihood and prior—the posterior distribution over scenes,
given the image y0—thus strongly favors some scene interpre-
tations over others (Kersten, Mamassian & Yuille, 2004; Knill
& Richards, 1996; Mamassian, Landy & Maloney, 2002).

The scene interpretation with the highest posterior proba-
bility often is taken to be the Bbest^ scene interpretation, given
the image. More generally, however, the selection of a single
Bbest^ interpretation based on the posterior distribution re-
quires the application of a loss function. A loss function de-
fines the consequences of making errors, i.e., of making inter-
pretations that deviate from the Btrue,^ although unknown,
value of the relevant variable to different extents.
Technically, the maximum-a-posteriori (or MAP) decision
rule noted above follows if the loss is equally Bbad^ for all
non-zero errors, and 0 when the error is effectively 0. A qua-
dratic loss function—where loss increases as the square of
error magnitude—leads to a decision rule that picks the mean
of the posterior distribution as the single best interpretation
(Mamassian et al. 2002). Other decision rules used in models
of vision include using maximum-local-mass loss (Brainard &
Freeman, 1997) and sampling from the posterior (or probabil-
ity matching; e.g., Wozny, Beierholm, & Shams, 2010).

Figure 4a summarizes pictorially the standard Bayesian
approach to vision. In this framework, space X corresponds
to states of the world (generally taken to be B3D scenes^), and
Y to the set of projected images. The likelihood map L corre-
sponds to the projective, or rendering, map from 3D scenes to
2D images—possibly with noise.1 Given a particular image y0
in Y, the Bayesian posterior B defines a probability distribution
on scene interpretations in X. The choice of a loss function
then allows one to pick a single best interpretation based on
this full posterior distribution on X.

Limitations of the standard Bayesian framework

Given the two probabilistic sources of information embodied
in the likelihood and the prior, Bayes’ Theorem provides a
provably optimal way to combine them (Cox 1961; Jaynes,
2003). Hence, once a likelihood map and a prior distribution
have been specified on a given space of possible interpreta-
tions (or scene hypotheses), there is principled justification for
using Bayes to make perceptual inferences. However, as we
clarify below, the standard Bayesian framework for vision
makes certain key assumptions that make it much too limiting.

Note, in particular, that in the standard Bayesian frame-
work summarized above, space X plays two distinct roles.
First, X corresponds to the set of objective world states.
Second, X corresponds to the space of interpretations (or hy-
potheses) from among which the visual system must select. In
other words, in the standard Bayesian framework for vision,
the observer’s hypothesis space is implicitly assumed to be
identical with the objective world. This dual role played by
X is consistent with the conceptualization of vision as inverse
optics, according to which the goal of vision is essentially to
Bundo^ the effects of optical projection (Adelson & Pentland,
1996; Pizlo, 2001). It also is consistent with the historical
roots of Bayesian methods as providing ways of estimating
Binverse probability.^ Laplace (1774), for instance, consid-
ered the problem of estimating underlying causes C from an
observed event E: What one would like to estimate is the
probability p(C|E) of a particular underlying cause C given
observation E, but what one actually knows is the probability
p(E|C) of observing any particular event E given cause C.
Bayes’ Theorem, of course, provides a means of inverting
these conditional probabilities.

The dual role played by space X clarifies the way in which
the standard Bayesian framework for vision embodies the as-
sumption that the human visual system (and perception more

Fig. 4 (a) Standard Bayesian framework for vision. (b) Our CEP
framework. In this framework, the interpretation space X in
probabilistic inference is not assumed to be identical to the objective
world W. Importantly, there is a fitness function f on W. The perceptual
channels from W to the perceptual representational spaces X and Y are
Btuned^ to increase expected-fitness payout to the organism

1 In other words, in the general case, given a scene x in X, L(x)
defines a probability distribution on Y, i.e., L(x|y) = p(y|x).
Note that L is in fact a function of two variables, x and y;
but in different contexts one or the other of these is assumed
fixed. In the current discussion (the Bforward mapping^), we
are considering a situation where x is fixed and we compute L
for different values of y. Whereas, in the discussion above (the
Binverse map^), we considered the situation where y0 was
fixed and we were comparing the likelihood for different
scenes, x.
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generally) has evolved to perceive veridically. Clearly, it is not
the case that a Bayesian observer always makes veridical in-
ferences. Given the inherently inductive nature of the prob-
lem, that would be impossible. Specifically, because a
Bayesian observer must rely on assumptions of statistical reg-
ularities in the world (e.g., light tends to come from overhead),
it will necessarily make the wrong scene interpretation when-
ever it is placed in a context where its assumptions happen to
be violated (say in a scene where light happens to come from
below; e.g., Kleffner & Ramachandran, 1992).

There is a more fundamental sense, however, in which the
standard Bayesian framework assumes veridicality: it assumes
that the hypothesis space X—the observer’s representational
space, which contains the possible scene interpretations from
which it must select—corresponds to objective (i.e., observer-
independent) reality. In other words, it assumes that the ob-
server’s representational language of scene interpretations X is
the correct language for describing objective reality. Even if
the observer’s estimate might happen to miss the Bcorrect^
interpretation in any given instance, the assumption is never-
theless that the representation space X contains somewhere
within it a true description of the world. It is in this more
fundamental sense that the standard Bayesian framework em-
bodies the assumption that vision has evolved to perceive
veridically.

When viewed in light of our earlier discussion on possible
relationships between X and W (recall the section on
Perceptual Strategies), it becomes clear that the standard
Bayesian framework for vision essentially assumes that X =
W (or that X is isomorphic to W). This is a strong assump-
tion—essentially a form of naïve realism—that makes it im-
possible to truly investigate the relation that holds between
perception and the objective world. A genuine investigation
must begin with minimal assumptions about the form of this
relation. This is especially true if one’s goal is to have a math-
ematical model of the evolution of perceptual systems.
Clearly, as perceptual systems evolve, their representational
spaces can change, as can the mapping from the world W to
a given representational space X. Thus a framework that sim-
ply assumes that X = W, or X is isomorphic to W, will (by
definition) be unable to capture this evolution.

Consideration of perceptual systems in simpler organisms
makes the simplistic nature of this assumption especially clear.
As mentioned in the Introduction, in discussing simpler visual
systems such as those of the fly and the frog, Marr (1982)
noted that they B…serve adequately and with speed and pre-
cision the needs of their owners, but they are not very com-
plicated; very little objective information about the world is
obtained. The information is all very subjective.…^ He clar-
ified what he meant by subjective by adding that B…it is
extremely unlikely that the fly has any explicit representation
of the visual world around him—no true conception of a sur-
face, for example, but just a few triggers and some specifically

fly-centered parameters…^ (p. 34). Marr was acknowledging
that visual systems that do not compute objective properties of
the world can nevertheless serve their owners well enough for
them to survive. This should not be surprising. Clearly, what
matters in evolution is fitness, not objective truth; and even
perceptual systems that compute only simple, Bsubjective^
properties can confer sufficient fitness for an organism to
survive—even thrive.

As also noted in the Introduction, when it comes to human
vision, Marr held a different position (as do most modern
vision scientists). He believed that the properties computed
by human vision are, or correspond to, observer-independent
properties of the objective world. Such a sharp dichotomy
between the visual systems of Bsimpler^ organisms on the
one hand, and human vision on the other, seems implausible.
After all, the evolution of Homo sapiens was governed by the
same laws that govern the evolution of other species. Nor is it
viable to assume that evolution is a Bladder of progress^ that
leads perceptual systems to compute incrementally more and
more objective properties of the world. So what justification
do we have to believe that the representational spaces
employed by human perceptual systems correspond to objec-
tive reality?

As always, what matters in evolution is fitness, not objec-
tive truth. One must examine the role that fitness plays. As we
noted in the Interface Theory of Perception section, the first
thing to note about fitness is that it depends not only on the
objective state of the world but also on the organism in ques-
tion (e.g., frog vs. tiger), the state of the organism (e.g., starv-
ing vs. satiated), and the type of action in question (e.g., mat-
ing vs. eating).2 Thus, one’s formal framework must be broad
enough to include the possibility that the representations com-
puted by human vision also do not capture objective truth (in
the more fundamental sense noted above—namely, that the
interpretation space X does not contain anywhere within it a
true description of the objective world). Moreover, if such a
framework is to be sufficiently general to model the evolution
of perceptual systems, it must clearly allow for different pos-
sible relations between X and W.

Computational Evolutionary Perception

We generalize the standard Bayesian approach to a new
framework that we call Computational Evolutionary
Perception or CEP (Hoffman & Singh, 2012; Singh &
Hoffman, 2013). Given the intrinsically inductive nature of
perception, CEP incorporates probabilistic inference in a

2 For this reason, evolutionary fitness cannot be incorporated
into the standard Bayesian framework for vision simply by
identifying it with the loss function of Bayesian Decision
Theory.
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fundamental way. Importantly, it places the objective worldW
outside of the Bayesian inferential apparatus (Fig. 4b). In CEP,
X and Y are simply two representational spaces—neither is
assumed to correspond (or be isomorphic) to W. In any given
context, Y may be a lower-level visual representational space
(say a representation of some 2D image structure), and Xmay
be a higher-level representation (say one that involves some
3D structure). The more complex representation X may, for
example, have evolved subsequently to the simpler represen-
tation Y; however, there is no assumption in our framework
that X = W, i.e., that X contains somewhere within it a true
description of the state of the objective world. Nor do we
assume that X is in any objective sense Bcloser^ to W than is
Y. X is simply a representational space that has evolved, pre-
sumably because it has some adaptive value for the organism
within its ecological niche. We cannot assume that the prop-
erties of X correspond to properties of the objective world W.
In other words, if we find some structure on X, it does not
follow from this thatW necessarily has that structure as well.3

(For a proof of this, see theMeasuredWorld section, where we
state and prove an Invention of Symmetry Theorem).

For each representational space, say X, there is a perceptual
channel fromW to that representational space, i.e., PX:W→X.
We previously used the term perceptual strategy to refer to
such channels (see Definitions 1 and 2). These channels define
the correspondence between the objective world W and the
representational spaces (X and Y). Recall that, in the general
case (i.e., with dispersion), these perceptual channels are
Markovian kernels (see Definition 2). That is, for each w in
W, PX specifies a probability measure on X, and PY specifies a
probability measure on Y. Recall also, that we make no as-
sumptions of any structure onW, except for probability struc-
ture—namely, that it is meaningful to talk of probabilities on
W. Specifically, we assume there is a space of eventsW onW,
and a probability measure μ on this space. This probability
measure μ on W induces, via the channel PX , a so-called
Bpushdown^ measure μX on X, and similarly it induces, via
PY, a probability measure μY on Y. One implication of this is
that the prior probability distribution on X, used in making
Bayesian inferences from Y to X, is not the Bworld prior^ in
our framework, but rather its pushdown probability mea-
sure—via the perceptual channel PX—onto the representation-
al space X.

Fitness of course plays a fundamental role in CEP, with the
high-level idea being that evolution Btunes^ the perceptual
channel PX (including the representational space X itself) so
as to increase the expected-fitness payout to the organism. In
other words, fitness is the key signal that the perceptual

channels are Btuned^ to communicate. In order to bring fitness
into the framework, we view organisms as gathering Bfitness
points^ as they interact with the world. As noted earlier, fitness
depends not only on the objective state of the world, but also
on the organism in question, its state, and the type of action
under consideration. We thus define a global fitness function
f:W × O × S × A→ℝ+ where O is the set of organisms, S their
possible states, and A their possible action classes. Once we fix
a particular organism o inO, its state s in S, and action class a in
A, we have a specific fitness function fo, s, a :W→ℝ+ that
assigns fitness points (nonnegative real numbers) to each w
in W (e.g., to a starving lion eating a gazelle).

The CEP framework thus differs from the standard
Bayesian framework for vision in three key respects: (1) it
separates the objective world W from the interpretation space
X (used in the Bayesian inference from Y to X); (2) it intro-
duces perceptual channels PX and PY from W to the spaces X
and Y, respectively; and (3) it introduces a fitness function on
W (Fig. 4b). Fitness is in fact the key signal that the perceptual
channels are tuned to communicate. Given a specific fitness
function fo,s,a, evolution shapes a source message about fitness
and a channel to communicate that message, in such a way so
as to hill-climb toward greater expected-fitness payout for the
organism. Thus, the perceptual channel PX :W→X can be
expressed as the composition of two Markovian kernels: (1)
a message construction kernel PCX : W→M , where M is the
set of messages, and (2) a message transfer kernel PTX : M→
X that transmits the messages. The construction kernel is
needed because the message to be transmitted depends not
only on W and X, but also on the specific fitness function fo,
s,a. Thus, if we consider a different specific fitness function on
W, the set of messages to be transmitted may be very different.

Consider again an interface game on a simple example of a
Bworld^ W involving a single variable that ranges from 0 to
100 (so that each value in this range is a particular Bworld
state^; a similar example is discussed in the section on
Evolutionary Games). Now consider a nonmonotonic fitness
function on W with two peaks—a slight complication of the
fitness function in Figs. 2 and 3—as shown in Fig. 5a. As is
clear from this plot, world state values near 25 and 75 are
associated with the most fitness, whereas values near 0, 50,
and 100 are associated with the least fitness. Let’s assume that
we’re given a representational space X, containing exactly 4
elements, X = {A,B,C,D}. If we want to construct an efficient
perceptual channel for the above fitness function to this rep-
resentational space, a natural way to proceed is to construct a
message set,M = {B,G,Y,R}, and map values ofW intoM by
clustering their fitness values into four classes. Specifically,
world states in W with very high fitness values are mapped
onto B (Bblue^); those with somewhat high fitness values onto
G (Bgreen^), those with somewhat low values into Y
(Byellow^), and those with very low values into R (Bred^;
Fig. 5b). In this case, the representation activated in X (based

3 If X bears no simple relation toW, it is natural to ask: How is
perception (and cognition) then grounded in the objective
world? We address this question in the next section where
we introduce the Perception-Decision-Action (or PDA) loop.

Psychon Bull Rev (2015) 22:1480–1506 1493



on the received message) will be highly informative about
fitness. So if an organism has to choose between two world
states based on the knowledge that one was B and the other Y,
it would always be able to pick the world state with the higher
fitness value. Note, by contrast, that this perceptual channel is
poor at conveying the actual state of the worldW. A message
of R, for instance, could be indicative of a world state near 0,
50, or 100; there is no way to tell—similarly for the other
possible received messages. For the same reason, this percep-
tual channel also will be poor at conveying information about
a (different) fitness function that increased monotonically with
world-state values.

The above example clarifies that the notion of Btuning^ a
perceptual channel depends critically on the specific fitness
function. We propose the following general definitions:

Definition 8 Given a specific fitness function fo,s,a, a
Darwinian ideal observer consists of a representational space
X, and a perceptual channel PX :W→X that maximizes the
expected-fitness payout to the organism.

We term such an observer ideal, because natural se-
lection does not, in general, produce perceptual channels
that maximize expected-fitness payout. It produces
satisficing solutions, rather than optimizing solutions.
This more typical satisficing-type of solution defines a
Darwinian observer:

Definition 9 Given a specific fitness function fo,s,a, a
Darwinian observer consists of a representational space
X, and a perceptual channel PX :W→X that has been
shaped by natural selection as a satisficing solution to
the problem of increasing expected-fitness payout to the
organism.4

Evolution of perceptual channels
and representations

While incorporating the role of probabilistic inference in a
fundamental way, CEP generalizes the standard Bayesian
framework for vision by: (1) allowing for different possible
relationships between the worldW and perceptual representa-
tions X (e.g., in evolving perceptual systems); (2) introducing
fitness into the framework in a way that does not simply re-
duce it to the Bayesian loss function; and (iii) modeling the
evolution of perceptual systems as hill-climbing towards
greater expected-fitness payout for the organism. We next
consider some different ways in which such hill-climbing
can occur.

Evolution of perceptual channels

An obvious way to increase the expected-fitness payout is to
Btweak^ a perceptual channel PX appropriately while keeping
the representational space X fixed. A key component of such
tweaking is the crafting of a set of messagesM, and a message
construction kernel PCX : W→M that is highly informative
about the fitness function on W. As we saw in the example
in Fig. 5 above, it is possible to have a perceptual channel (a
composition of a message construction kernel and a transfer
kernel) that is good at communicating information about fit-
ness but bad at communicating information about truth, and
vice versa.

Evolution of representational spaces

In the situation considered above, the representational space X
remained fixed, only the channel PX evolved. However, in
biological evolution, it is clear that perceptual representations
themselves evolve. If a representational space X has little rel-
evant structure (say), even with the perceptual channel PX

tuned optimally (i.e., to maximize expected-fitness payout),
the amount of information carried about expected fitness
may still be quite limited. In such cases, there would be

Fig. 5 (a) A nonmonotonic fitness function on a range of world states.
(b) Constructing an efficient message for a representational space with
four elements. World state values are mapped onto these four elements
based on a clustering of their fitness values (Bvery high,^ Bsomewhat

high,^ Bsomewhat low,^ and Bvery low^). The resulting channel is
highly informative about expected-fitness payout but uninformative
about objective world states

4 Of course, what counts as a satisficing solution, or
Bsufficient^ increase in expected-fitness payout, depends on
a number of factors, including the characteristics of the eco-
logical niche of the organism, and of its competitors.
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evolutionary pressure to evolve the representational space X
itself, rather than just the perceptual channel to the fixed rep-
resentational space X. At one point in the course of its evolu-
tion, for example, an organism’s visual systemmight represent
only some rudimentary 2D image structure, whereas much
later in its evolution, it may acquire representations that seg-
ment the perceptual world into objects, and represent some 3D
structure. Note that this is a more dramatic change—one that
alters the qualitative format of a representation—compared
with a situation where a parameter value within a fixed repre-
sentational space (such as the peak of a spectral sensitivity
function) is tweaked by evolutionary pressures.

In the CEP diagram above (Fig. 4b), we considered repre-
sentational spaces X and Y. These are of course just two of
many such possible representations. In studying the evolution
of representations, one must consider evolutionary sequences
of perceptual representat ions, X 1;PX 1h i→ X 2;PX 2h i
→ X 3;PX 3h i→….5 It is then natural to consider whether,
and under what conditions, such a sequence might converge
to the objective world structure. Given our arguments so far,
and our review of results with evolutionary games (see the
sections on Evolutionary Games and Genetic Algorithms), it
seems unlikely that a sequence of perceptual representations
resulting in monotonically increasing expected-fitness payout
would generically result in monotonically increasing capacity
to transmit the Btruth^ signal (i.e., information about objective
world structure). The advantage of our formal framework is
that it permits one to pose and address such questions in a
mathematically precise manner.

Dedicated vs. general-purpose representations

Both possibilities considered above—evolving the perceptual
channel PX for a fixed X versus evolving X itself—assume a
context where a specific fitness function is given, and the
perceptual channel and/or representational space is tuned to
increase the fitness-payout for that specific fitness function.
Recall that a specific fitness function fo,s,a presupposes not
only a particular organism o, but also a particular state s, and
particular action class a. Because organisms engage, of
course, in a wide variety of action classes, and each action
class is associated with its own specific fitness function fo,
s, a:W→ℝ+, one must consider not just one but many such
specific fitness functions. However—importantly—

optimizing (in the ideal case) a perceptual representation and
channel to maximize the expected-fitness payout for one spe-
cific fitness function does not guarantee that this representa-
tion and channel will be optimized for other fitness functions
(associated with other action classes). This raises the problem
of how best to tune the perceptions of an organism to a variety
of different fitness functions.

There are, broadly speaking, two ways in which the above
problem can be addressed—both of which evolution seems to
have employed. The first is to evolve distinct perceptual rep-
resentations that are dedicated to different types of tasks or
actions. In this case, each dedicated representation/channel
allows for high expected-fitness payout for the specific fitness
function associated with a particular action class. When con-
sidering a different action class, a different representation/
channel would be dedicated to communicating information
about its expected-fitness signal. Although there is some evi-
dence of such dedicated representations in the evolution of
vision (e.g., dorsal versus ventral pathways in the primate
cortex), adopting this strategy indiscriminately can lead to
quickly proliferating representational spaces—which would
quickly become untenable.

At the other end of the spectrum, one can imagine a single
general-purpose representation/channel being Btuned^ to in-
crease simultaneously expected-fitness payout for a large
number of specific fitness functions (associated with different
action classes). In this case, it is unlikely that the perceptual
channel can be tuned optimally for all of those specific fitness
functions. However, if the specific fitness functions are suffi-
ciently similar, it is certainly possible that the general-purpose
channel can increase expected-fitness payout sufficiently to
make this strategy feasible—especially because doing so
avoids the Bcosts^ associated with producing multiple repre-
sentational spaces.

Although neither strategy is feasible in its extreme form
(i.e., using a single strategy throughout), a compromise based
on a mixture of the two strategies seems reasonable. Given a
large number of specific fitness functions, group them into
clusters based on their similarity. Now dedicate a different
representational space and channel to each cluster. So, all spe-
cific functions within a cluster are subserved by a single rep-
resentation/channel. This mixed-strategy allows the different
representational spaces and channels to do a reasonable job of
increasing expected-fitness payout for all specific fitness func-
tions in a particular cluster, while keeping the total number of
distinct representations relatively low.

Perception-Decision-Action (PDA) loop

The basic claim of Interface Theory is that our representation-
al spaces need not be isomorphic or homomorphic to the ob-
jective worldW (or to a subset ofW). Hence when we observe

5 We do not imply, of course, that there is single, linear evo-
lutionary sequence of perceptual representations. Such se-
quences can branch out, with possibly multiple representa-
tions evolving more or less in parallel while emphasizing dif-
ferent aspects of the original representation (e.g., color, mo-
tion, and shape in the context of vision). We can nevertheless
meaningfully consider ascending sequences within this larger
lattice of evolving representations.
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some structure in a representational space X (e.g., three dimen-
sionality), we cannot simply infer from this observation thatW
must also have that same structure. However, this raises
a natural question: In the absence of a homomorphic
relation, how is it possible for perception to guide ac-
tions in the world?

Successful interaction with the world requires, at least, that
an organism be able to predict how its perceptions will change
when it acts. When we perceive the 3D shape of an object, we
can predict—based on its various forms of perceived symme-
tries, for instance—what the object might look like if we were
to pick it up and rotate it in a certain direction. Similarly, when
we toss an object in a certain way, we can predict the trajec-
tory, spin, and other behaviors we are likely to observe. Our
success in interacting with the world in many different ways
might suggest that our representations of the objective world
W are veridical (Pizlo et al. 2014). In other words, it might
suggest that our representations must include an accurate
model of the objective world. How else could we account
for such successful interactions?

Thus, a natural question that the Interface Theory must
address is: If we can assume no simple (e.g., isomorphic or
homomorphic) correspondence between our representations
and the objective world, how can we explain our successful
interactions with the world?Wewill flesh out an answer to this
question in formal terms below, but in short the answer is that
this is possible, because we do not simply passively view the
world, but also act on it, and moreover we perceive the con-
sequences of those actions. In other words, it is possible to
interact with a fundamentally unknown world if (1) there are
stable perceptual channels; (2) there is a regularity in the con-
sequences of our actions in the objective world; and (3) these
perceptions and actions are coherently linked. Although the
role of action is emphasized in sensorimotor and enactive
approaches to perception as well (Noe 2006; Chemero
2009), our position differs in a crucial respect. In our view,
having a perceptual experience does not require motor move-
ments. Our claim is rather that, over the course of evolution,
perceptual-motor interactions have played an important role in
shaping perceptual mechanisms.

To return to the metaphor of the desktop interface on a PC,
even though visible characteristics of the file icons (their
shape, color, etc.) do not reflect their objective properties
(the computer files themselves are not inherently shaped or
colored), the interface nevertheless allows us to interact suc-
cessfully with the computer because of the coherence between
the Bperceptual^ and Baction^ mappings. By its very design,
the desktop interface allows us to interact successfully with
the computer even if we are fundamentally ignorant of its
objective nature. Similarly, the claim of Interface Theory is
that perceptual properties of space-time and objects simply
reflect characteristics of our perceptual interface; they do not
correspond to objective truth. They are simply perceptual

representations that have been shaped by natural selection to
guide adaptive behavior.

Action plays a crucial role in the evolution of perceptual
representations because fitness, to which perceptual channels
are tuned, depends on the actions of an organism. Recall that
specific fitness functions depend not just on the organism and
its state, but also on the action class under consideration. Thus
different action classes correspond to different expected fit-
nesses. Because perceptual channels are tuned to efficiently
communicate information about expected fitness, one can ex-
pect a coupling between the evolution of perceptual channels/
representations and the actions they inform.

Recall that, in the CEP framework, we have representation-
al spaces (X, Y) and perceptual channels (PX, PY) from the
world W to these representational spaces. Let us focus on
one of these representational spaces, say X. (We can therefore
drop the subscript X from the perceptual channel for the re-
mainder of this section.) To introduce action into the frame-
work, we add a space G of possible actions, as shown in
Fig. 6. (G may have, as a subset, a group that acts on the
world W, but even so, the action of this group on the world
may not technically be a group action. See Appendix.)

Given a perception x in X, the perceptual system must de-
cide which action g to take (including the possibility of taking
no action). Once an action g has been selected, the observer
must then act on the world W: if the action g is deterministic
(as in, e.g., a group action), then the previous state w of the
world is moved to a new state w ′ denoted g.w. However, in
general we want to allow the possibility that the action on the
world is stochastic, so we think of g acting via a Markovian
kernel A, called the action kernel, as follows. For each g ϵG
and w∈W, A(g,dw) defines a probability distribution on states
of W.

As a result, we have three Markovian kernels—for percep-
tion, decision, and action respectively. P is a kernel fromW to
X,D is a kernel from X toG, and, given the previous statew of
the world, A is a kernel fromG back toW (strictly speaking, A
is a kernel from G×W to W; similarly, mutatis mutandis, for
the other kernels). These three kernels therefore form a loop
that we call the PDA loop. Because, in our framework, the

Fig. 6 Perception-Decision-Action, or PDA, loop. Note that we have
added a space of possible actions G to the CEP framework. This now
yields threeMarkovian kernels: the perception channel P fromW to X, the
decision kernel D from X toG, and the action kernel A fromG back toW
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observer does not know W, it cannot know the perceptual
channel P (from W to X), nor the action kernel A (from G to
W). In other words, just as the observer does not know the true
source of its perceptions in the objective world, similarly it
does not know the true effects that its actions are having in the
objective world. Importantly, however, the observer does
know the perceptual consequences of those effects, i.e., the
results those effects have, via perceptual channel P, back in its
perceptual representation X.

In other words, even though the observer cannot know
kernels P and A individually, it can know the composition
kernel AP from actions in G to perceptual representations in
X. Similarly, it can know the composition kernel DAP from
perceptual representations X back to X. This is what allows the
observer to interact withW, even though it is in a fundamental
sense ignorant of it. By trying various actions, and observing
their perceptual consequences, it can tweak its decision kernel
(the one that picks actions) so that the resulting perceptual
consequences of its actions more consistently enhance fitness;
note that this logic applies both phylogenetically and
ontogenetically.

We should note that the PDA formalism just described
applies not just to humans, but also to all organisms.
Moreover, a given organism can have many PDA loops, and
its PDA loops can be nested and networked in an endless
variety of ways. Thus, the PDA formalism provides a power-
ful abstract framework for cognitive modeling (Hoffman and
Prakash 2014; Singh and Hoffman 2013).

Measured world

Despite the evidence from evolutionary games and genetic
algorithms that militates against veridical perceptions, a
hard-nosed critique might still be unfazed: BLook, it’s still
the case that what you see is what you get. If it looks to me
that a rock is round and 5 feet away, I can verify this with
rulers, laser rangefinders and a host of other instruments, and
then confirm it with other observers endowed with similar
instruments. So my perceptions are in fact veridical.^

This argument is prima facie plausible and has two key
parts. The first part, themeasured world argument, claims that
our perceptions of the world are veridical because they gener-
ally agree with our careful measurements of the world. The
second part, the consensus argument, claims that our percep-
tions are veridical because human observers normally agree
with each other about their perceptions and the results of their
measurements.

Both arguments fail. One problemwith the measured world
argument is that there are obvious cases where our perceptions
radically disagree with our careful measurements. The sun,
moon and stars, for instance, all look far away, but they all
look about equally far away. Nothing in our perceptions

prepares us to expect that the sun is almost 400 times further
away than the moon, or that the nearest star, Proxima Centauri,
is more than 250,000 times further away than the sun. Even at
close distances our perceptions differ from our careful mea-
surements (Kappers 1999; Cuijpers et al. 2003; Koenderink
et al. 2010; Pont et al. 2012), leading Koenderink (2014) to
conclude BThe very notion of veridicality itself, so often
invoked in vision studies, is void^ and BIt is a major obstacle
on the road to the understanding of perception.^

A second problem with the measured world argument
arises even if the results of measurements agree with our per-
ceptions. We express our measurements in terms of predicates
that our perceptual representations use. For example, we ar-
rive at a notion of Euclidean space (in Newtonian physics) by
extending our perceptual representations using symmetry as-
sumptions, such as translation and rotation invariance. In this
sense, our measured world is simply an extension of our per-
ceptual representations. Ameasurement of depth, for instance,
like our perception of depth, is described using spatial predi-
cates (e.g., using centimeters or relative distances). It is these
very predicates themselves that, according to the results of the
evolutionary games, have no correspondence with objective
reality. Natural selection instead favors predicates tuned to
fitness functions.

The consensus argument fares no better, for the simple
reason that agreement among observers does not entail the
veridicality of their perceptions or measurements.
Agreement can occur if, for instance, the perceptions and
measurements of observers are all nonveridical in the same
way. Indeed, if the interface theory of perception is correct,
and natural selection has shaped H. sapiens to share a
nonveridical interface, then that is precisely why we agree.
But that entails nothing about reality. All flies agree: dung
tastes great. We might beg to differ.

Another argument that our perceptions match the measured
world is given by Bertrand Russell (1912): BIf a regiment of
men are marching along a road, the shape of the regiment will
look different from different points of view, but the men will
appear arranged in the same order from all points of view.
Hence, we regard the order as true also in physical space,
whereas the shape is only supposed to correspond to the phys-
ical space so far as is required for the preservation of the
order.^ The idea is that certain aspects of our perceptions are
invariant under changes in viewpoint, and this entails the ve-
ridicality of these aspects.

This argument also fails, but the reason is deeper. Our per-
ceptions of space and time can be extended systematically
using symmetry groups, e.g., Euclidean, Galilean, Lorentz,
Poincare and supersymmetry groups (Cornwell 1997). The
measured worlds that result share the same predicates of space
and time as our perceptions but don’t suffer the same myopia:
the Euclidean extension, for instance, easily handles the huge
difference in distance between the moon and the stars.
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Changes in an observer’s viewpoint or frame of reference can
then be modeled by actions of these groups (e.g., translations
and rotations) on the appropriately extended space-time.
Russell claims that if a feature of our perceptions is invariant
under these group actions, then it can be taken as veridical.

This claim is false. The following theorem shows that the
world itself may not share any of the symmetries that the
observer observes. The world need not have the structure the
observer perceives, no matter how complex that structure is
and no matter how predictably and systematically that struc-
ture transforms as the observer acts.

Invention of Symmetry Theorem. Let an observer have at
its disposal a group Gof actions on the world W, such that its
own perceptual space Xis aG-set. This means thatG acts onX
via the kernel PA = P(A(g)) = ∫P(w,dx)A(g,dw), i.e., the action
of A followed by that of P; moreover G acts on Xby a transi-
tive group action, so that G is a symmetry groupof X(see
Appendix). Moreover, let Gact on Win such a way that the
observer’s perceptual channel mediates this action: P(g.w) =
g.P(w), where the dot signifies the action of Gon each set.
Then,the perceptual experiences X of this observer will admit
a structure with Gas its group of symmetries.

Proof Let Sx be the fiberof Pover x∈X. (The points, w,w ′∈W,
are in the same fiber if the probability measure P(w, ⋅) on
X ; Xð Þ is the same as the probability measure P(w ′, ⋅).)
Then, we may view W = ∪x∈XSx and think of each element
ofWas a pair (x,s) with s∈Sx. Because the functionP is ontoX,
we can view P as a projection: P(x,s) = x.

WhenG acts onW, it will take each element (x,s), where s∈
Sx, to an element (g.x,s ′) with s ′∈Sg.x. This preserves the
fibers of P. Also, we see that when Gacts onW via the group
element g, it automatically acts on X by the same element,
because g.x = g.P(w) = P(g.w). □

Meaning An observer’s perceptual experiences can have a
rich structure, e.g., a 3D structure that is locally Euclidean,
and that transforms predictably and systematically as the ob-
server acts, but this entails absolutely nothing about the struc-
ture of the objective world. This is wildly counterintuitive. We
naturally assume that the rich structure of our perceptual ex-
periences, and their predictable transformations as we act,
must surely be an insight into the true structure of the objective
world. The Invention of Symmetry Theorem shows that our
intuitions here are completely wrong.

Note that the action ofGon the world need not be a group
action: the coordinatesin the fiber could go to any s ′ at all in
Sg.x. Also, there is no requirement on the nature of the different
Sx: they could be anything at all.So,Gneed not be a symmetry
group of the world: the world need not have the structure the
observer sees. All that is required is that the observer’s action
on theworld faithfully flows back to a groupaction on itself via

its own perceptions: the observer’s actions and its own per-
ceived symmetries are compatible. That this is mediatedin
the world does not imply that the world shares the symmetry:
that the world has this symmetry could be merely a conceit of
the observer (see also Terekhov and O’Regan (2013)
and Laflaquiere et al. (2013) for how Euclidean perceptions
could be learned by interacting with a non-Euclidean world).
An important special case of the Invention of Symmetry
Theorem arises when the symmetry group is the Lorentz or
Poincare group (or super-symmetries which include these). In
this case, we have the corollary that an observer can success-
fully invent space-time even if the objective world has no
space-time or has only local versions of space-time. We call
this corollary the Invention of Space-Time Theorem.

Perhaps this theorem seems artificial: Why in the world
would an observer’s perceptions carve upW into such strange
subsets Sx? Well, one good reason would be a fitness function
onW that happened to be constant, or roughly constant, within
each subset Sx but differed between subsets. Then selection
pressures would tend to shape precisely this strange carving of
the world. In this case, we see the world as Euclidean not
because this perception is veridical, but because it suitably
represents what matters in evolution: fitness. For example,
our perception of space might simply be a representation of
the fitness costs that we would incur for locomoting and sim-
ilar actions.

Taking this a speculative step further, because the observer
itself is part of the worldW which is the domain of the fitness
function, it follows that, as the structure of the observer
evolves, the fitness function itself is likely to change. In this
sense, the observer and its fitness functions coevolve. If, as
seems plausible, observers that are less costly in their require-
ments of information and computation are, ceteris paribus,
fitter, then we might find it to be a theorem that the coevolu-
tion of observer and fitness function leads inexorably to group
structures and actions. If so, this result would show how the
groups that appear in physical theories might in fact arise from
evolutionary constraints.

Illusion and hallucination

Perceptual illusions have been subjects of interest for
millennia (see Wade 2014, for a review). The modern text-
book account of perceptual illusions treats them as rare cases
in which perception fails to be veridical. The textbook Vision
Science, for instance, says B…veridical perception of the en-
vironment often requires heuristic processes based on assump-
tions that are usually, but not always, true. When they are true,
all is well, and we see more or less what is actually there.
When these assumptions are false, however, we perceive a
situation that differs systematically from reality: that is, an
illusion^ (Palmer 1999, p 313).
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Gregory (1997) agrees with the textbook account, but ad-
mits BIt is extraordinarily hard to give a satisfactory definition
of an ‘illusion.’ It may be the departure from reality or from
truth; but how are these to be defined? As science’s accounts
of reality get ever more different from appearances, to say that
this separation is ‘illusion’ would have the absurd conse-
quence of implying that almost all perceptions are illusory. It
seems better to limit ‘illusion’ to systematic visual and other
sensed discrepancies from simple measurements with rulers,
photometers, clocks, and so on.^

The interface theory of perception claims, on evolu-
tionary grounds, that we should expect none of our
perceptions to be veridical. This entails that the text-
book theory of illusions as departures from truth can’t
be right. If we concede that there is a vital divide be-
tween perceptions deemed normal and illusory (which,
e.g., Rogers 2014 does not), then we must find new
grounds for that divide and construct a new theory of
illusions.

The obvious place to seek new grounds is the theory of
evolution. The basic mistake of the textbook theory is its claim
that selection shapes perceptions to be true. This forces illu-
sions to be departures from truth. The correct claim is that
selection shapes perceptions to guide adaptive behavior. This
forces the interface theory of illusions to identify illusions as
perceptions that fail to guide adaptive behavior (Hoffman
2011).

Is this plausible? Let’s check a couple of cases. Consider
the Necker cube in Fig. 7. The textbook theory says that what
we see is illusory, because it’s untrue: we see a 3D cube when
in truth it’s flat, and we see it flip in depth when in truth
nothing changes. The interface theory says that what we see
is illusory, because it fails to guide adaptive behavior: we see a
3D shape that we normally could grasp (or avoid, etc.) but
here cannot, and we see flips in depth that normally require a
change in grasp but here do not. In other words, our perception
is illusory because it invites us to initiate behaviors or make
categorizations that don’t work.

Of course, we’re not fooled by the figure or tempted to grab
in vain at thin air. The textbook theory explains this by

claiming that some of our perceptions of this figure are verid-
ical: Stereovision reports the truth that the page is flat, and our
hands confirm this. The interface theory explains that
stereovision invites behaviors at odds with those appropriate
for a cube. This mismatch in behavioral advice, and our con-
fidence in, e.g., the advice of stereovision, keeps us from
being fooled.

But doesn’t the textbook theory also say that normal per-
ceptions guide adaptive behavior whereas illusory perceptions
do not? So what’s the difference, and what’s new about the
interface theory? Indeed, the textbook theory does say this and
even points to evolution as the reason. The difference is that
the textbook theory, but not the interface theory, claims that
perceptions guide adaptive behaviors because, and only if,
they are veridical. This claim is stronger than that of the inter-
face theory and is in fact false. It gets evolution wrong.

Changing modalities from vision to taste, a striking gusta-
tory illusion can be induced by miraculin—a protein found in
the red berries of Richadella dulcifica (Koizumi et al. 2011).
For more than an hour after eating these berries, sour sub-
stances taste sweet. The textbook theory of illusions would
say that the sweet taste is illusory, because it’s not veridical.
But this sounds odd. What can we possibly mean by the
veridical taste of a molecule? What objective standard tells
us its true taste? Couldn’t taste vary across species? Onemight
hope, for instance that dung tastes different to coprophagic
creatures, such as pigs, rodents, and rabbits, than it does to
us (Hübner et al. 2013).

The interface theory of illusions does not require implausi-
ble claims about the true taste of a molecule. It simply says
that the sweet taste induced by miraculin is illusory, because it
does not guide adaptive behaviors. An animal with low blood
sugar, for instance, that needed quick carbs, would eat the
wrong foods. Thus, according to the interface theory, illusory
perception cannot be defined in terms of nonveridicality: in-
deed all perceptions are fundamentally non-veridical, but only
some of them are illusory.

Discrepancies between perception and the measured world
may provide a distinct way of defining illusions (cf. Gregory,
1997).We consider this a weaker form of Billusion^; it is more
a lack of consistency between the results of two different mea-
surement procedures.

The textbook account of hallucinations claims that they are
nonveridical perceptions. They differ from illusions in a key
respect: whereas most normal people report seeing an illusion
if placed in the right context, hallucinations are idiosyncratic
perceptions seen by just one, or perhaps a few, individuals,
and need not depend on the context. The interface theory of
hallucinations simply modifies the textbook account in one
respect: it replaces the claim that hallucinations are
nonveridical perceptions with the claim that hallucinations
are perceptions that do not guide adaptive behavior. The inter-
face theory still says that hallucinations differ from illusions inFig. 7 Necker cube
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that an illusion is seen by most normal people if placed in the
right context, but a hallucination is an idiosyncratic perception
seen by just one, or perhaps a few, individuals, and need not
depend on the context.

Conclusion: objections and replies

Numerous objections have been raised against the interface
theory of perception. We conclude by canvassing some objec-
tions and offering replies.

Objection 1 What’s new here? Of course perception is adap-
tive. We can go back to Gibson and see the same point. But
how could it be anything else?

Reply Indeed, Gibson and others recognized that perception is
adaptive. But Gibson’s theory differs from the interface
theory on three key points. First, Gibson got evolution
wrong: He claimed that evolution shapes veridical per-
ceptions of those aspects of the world that have adap-
tive significance for us. Thus Gibson proposed naïve
realism, not the interface theory. Koenderink (2014)
takes Gibson to task for this, noting that he B…holds
that a stone of the right size has the affordance of being
throwable, even in the absence of any observer. His
affordance is like a property of the stone, much like
its weight, or shape. This is quite unlike von Uexküll,
who holds that a stone can indeed appear throwable—
namely, to a person looking for something to throw.
Here, the affordance is not a property of the stone but
of an observer in a certain state. Gibson’s notion derives
from his reliance on the All Seeing Eye delusion.…^

Second, Gibson denied that perception involves informa-
tion processing. The interface theory does not. Evidence for
information processing is now overwhelming.

Third, in place of information processing Gibson pro-
posed direct perception: We directly perceive, for in-
stance, that something is edible; we do not use infor-
mation processing to infer from visual and tactile cues
that it is edible. But this raises a problem for Gibson:
Are illusions direct misperceptions? What could one
possibly mean by direct misperception? How could a
theory of direct perception explain illusions? Gibson
never solved this problem (Fodor and Pylyshyn 1981).
Instead, as Gregory (1997) notes: BTo maintain that per-
ception is direct, without need of inference or knowl-
edge, Gibson generally denied the phenomena of
illusion.^ The interface theory does not deny the phe-
nomena of illusion. Instead, one of its strengths is that
it offers a new theory of illusions that seems far more
plausible than the textbook account.

Objection 2 The interface theory of perception makes science
impossible. If our perceptions are not veridical, then we can
never have reliable data to build our theories.

Reply The interface theory poses no problem for science. It
claims that our perceptions are not veridical reports of reality.
If this claim is correct, then we can discard a particularly
simple theory of perception. But that is not to discard the
methodology of science. We can continue in the normal fash-
ion to propose scientific theories and make falsifiable predic-
tions about what we will observe. If our theory attributes some
structure to the world W, and posits some functional relation
P:W→X between the world and our perceptions that is not
veridical, we can still deduce fromWand Pwhat measurement
results we should expect to find in X. The methodology of
science is not so fragile that it fails entirely if P happens not
to be some simple function, such as an isomorphism.

Objection 3 You use the theory of evolution to show that our
cognitive faculties are not reliable guides to the true nature of
objective reality. But if our faculties are not reliable, then the
theories we create are not reliable, including the theory of
evolution. Thus, you are caught in a paradox.

Reply We use evolutionary games to show that natural selec-
tion does not favor veridical perceptions. This does not entail
that all cognitive faculties are not reliable. Each faculty must
be examined on its own to determine how it might be shaped
by natural selection.

Perhaps, for instance, selection pressures favor accurate
math; one who accurately predicts that the payoff for eating
an apple today when hungry, combined with the payoff for
eating an apple yesterday when equally hungry, is roughly
twice the payoff obtained on either day, might have a selective
advantage over his math challenged neighbor. Perhaps selec-
tion favors accurate logic; one who combines estimates of
payoff in accord with probabilistic logic might avoid having
nature and competitors make fitness Dutch books against
him.6 This is not to predict that natural selection should make
us all math whizzes for whom statistical inference is quick and
intuitive. To the contrary, there is ample evidence that we have
systematic weaknesses and rely on fallible heuristics and
biases (Kahneman 2011). Whereas in perception the selection
pressures are almost uniformly away from veridicality, per-
haps in math and logic the pressures are not so univocal, and
partial accuracy is allowed. The point is that we don’t know

6 Recall that a Dutch book in gambling is a set of odds and bets
that guarantee one person a profit regardless of the outcome of
the gamble. One can show that if one’s degrees of belief don’t
satisfy the axioms of probability and Bayes rule, then one can
be the victim of a Dutch book (e.g., Jeffrey 2004).
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until we study the implications of natural selection for these
specific mental faculties.

Objection 4 You say in the abstract, and elsewhere, that our
perceptions have been shaped to hide the truth. This is a fal-
lacy. Adaptation doesn’t work that way. Our perceptions have
been shaped to improve fitness wherever possible—where
Bfitness^ could be nonveridical or veridical—so there is no
Bhiding^ which implies an intentionality that evolution can’t
and doesn’t have.

Reply Yes, of course. We use Bhide,^ because it powerfully
and succinctly makes an important point, and we’re not terri-
bly worried that readers might be taken in by any connotations
of intentionality.

Objection 5 Isn’t the interface theory of perception just the
utilitarian theory of perception proposed earlier by Braunstein
(1983) and Ramachandran (1985; 1990)?

Reply Not at all. The utilitarian theory of perception claims
that evolution has shaped perception to employ a set of heu-
ristics or Bbag of tricks^, rather than sophisticated general
principles. It claims that these tricks are employed to recover
useful information about an objective physical world (a claim
which the interface theory explicitly denies). Accordingly,
when these tricks are sufficiently successful (which some-
times they’re not), our perceptions are thus veridical about
useful aspects of reality. The utilitarian theory is a naïve realist
theory, not an interface theory.

Objection 6 The interface theory says that our perceptions of
objects in space-time are not veridical, but are just species-
specific icons. Doesn’t it follow that (1) no object has a posi-
tion, or any other physical property, when it is not perceived,
and (2) no object has any causal powers? If so, isn’t this a
reductio of the interface theory? It entails, for instance, that
neurons, which are objects in space-time, have no causal pow-
ers and thus cause none of our behaviors.

Reply The interface theory indeed makes both predictions. If
either proves false, then the interface theory is false. No one
can claim that the interface theory makes no falsifiable
predictions.

But neither prediction has yet proven false. Moreover, both
predictions are made by the standard BCopenhagen^ interpre-
tation of quantum theory and by more recent interpretations,
such as quantum Bayesianism (Allday 2009; Fuchs 2010).
According to these interpretations an electron, for instance,
has no position when it is not observed and the state of the
electron does not, in general, allow one to predict the specific
position one will find when making a position measurement,
i.e., no causal account can be given for the precisemeasurement

obtained. Thus, both predictions of the interface theory are
compatible with current physical theory and experimental data.

Both predictions are, of course, deeply counterintuitive.
Our intuitions here are the result of evolutionary pressures to
interact successfully with the world, e.g., tracking objects be-
hind occluders and predicting where they’re likely to reappear.
Hence, they are innate as far as an individual child is consid-
ered. Belief in Bobject permanence,^ the belief, e.g., that a doll
still exists and has a position even when it’s hidden behind a
pillow, begins as early as 3 months postpartum and is well-
ensconced by age 18 months (Bower 1974; Baillargeon and
DeVos 1991; Piaget 1954). Rich causal interpretations of
physical objects are evident in children by age 6 months
(Carey 2009; Keil 2011). We have been shaped by evolution
to believe early on that objects exist unperceived and have
causal powers.

The interface theory predicts that these beliefs are adaptive
fictions.

Objection 7 The interface theory is nothing but the old sense-
datum theory of perception—which claims that we see curious
objects called sense data and do not see the world itself—that
philosophers rightly discarded long ago.

Reply The short reply is: No, the interface theory is not a
sense-datum theory and does not entail the existence of the
sense data, or sensibilia, posited by such theories.

The longer reply is: BSense-datum theory^ covers a diverse
set of philosophical ideas about perception. Precursors to the-
se ideas can be found in the notion of sensory impressions or
ideas proposed by the British empiricists, Locke, Berkeley
and Hume. The origin of the modern conceptions of sense
data can be traced to the writings of Moore (1903) and
Russell (1912; 1918).

According to the act-object theory of sense data originated
by Moore, each sense datumis a real concrete object with
which an observer has a primitive relation in an act of percep-
tual awareness, but which nevertheless is distinct from that act
of awareness. The act of perceptual awareness is a kind of
knowing, and the sense datum thus known has exactly the
properties it appears to have. Moreover, some philosophers
propose that sense data have exact and discernible properties
(if a sense datum is speckled, the sense datum has a precise
number of speckles), and that they are objects that are private
to each subject and distinct from physical objects.

The sense datum theory has been criticized by philosophers
for, inter alia, conflating nonconceptual phenomenal con-
sciousness with the physical events that are perceived
(Coates 2007; Sellars 1956), for getting wrong the phenome-
nology of ordinary perceptual experience (Austin 1962; Firth
1949; Merleau-Ponty 1945), for requiring determinate phe-
nomenal properties (Barnes 1944), and for breeding epistemo-
logical issues, such as skepticism or idealism. Logical
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positivists and logical empiricists conscripted sense data into
service as the incorrigible foundation for a verificationist pro-
gram of knowledge, and when this program was discredited,
e.g., by Quine’s (1951) attack on the analytic/synthetic divi-
sion and Hanson’s (1958) attack on the theory neutrality of
observation data, the theory of sense data suffered similar
decline.

Sense data also run afoul of current theory and empirical
data in vision science. The shapes, lightness, colors, and tex-
tures of sense data were claimed to be seen directly and with-
out intervening inferences. It is now clear that these visual
properties are the end products of computations of such so-
phistication that they are still not fully understood (Frisby and
Stone 2010; Knill and Richards 1996; Marr 1982; Palmer
1999; Pizlo et al. 2014).

The interface theory does not entail that perception is an act
whose objects are sense data or that sense data are an incorri-
gible foundation for an edifice of verified knowledge. The
interface theory is metaphysically neutral, in that it does not
posit anything about the world W other than measurability (in
the probability-theory sense, rather than the scientific mea-
surement sense). In particular, in addition to not entailing the
existence of sense data, the interface theory does not entail
idealism. However, it can be embedded in a mathematically
rigorous theory of idealism (Hoffman 2008; Hoffman and
Prakash 2014).

The interface theory is a general, but mathematically pre-
cise, theory of perception and action. It says that in a world
represented by the probability space W ; W; μð Þ, a perceiving
agent,A, is a six-tupleA ¼ X ; G; P; D; A; Nð Þ, whereX and
G are measurable spaces, P : W �X→ 0; 1½ �, D : X � G→
0; 1½ � and A : G�W→ 0; 1½ � are Markovian kernels, and N
is an integer. X denotes the agent’s possible perceptions, G its
possible actions, P its perceptual mapping, D its decision pro-
cess, A its action on the world, andN its counter of perceptions
(as described more fully in the section on the PDA Loop).
Perceiving agents can be combined, in several mathematically
precise ways, to create new perceiving agents that are not
reducible to the original agents (Hoffman and Prakash 2014).

When the evolution of a perceiving agent is shaped by a
(suitably normalized) fitness function f :W→ℝ+, then that
agent is shaped towards an X and P that maximize the mutual
information I(μf;μfP) and not the mutual information
I(μ;μP); this is the formal way to state that perception is tuned
to fitness rather than to veridicality.

This, in a nutshell, is the mathematical structure of the
interface theory. The proper philosophical interpretation of
this structure is a separate and interesting question. In response
to this question we, as the authors of the theory, can opine but
are not final authorities. When Schrodinger, for instance, first
proposed his famous equation, he mistakenly interpreted its
wave functions as waves of matter; Born later corrected that
interpretation to waves of probability amplitudes.

With this proviso, we interpret X as the possible phenom-
enal states of the observer, and we interpret a specific x∈X not
in terms of an act-object relation as proposed by the sense-
datum theory, but as a specific phenomenal aspect or constit-
uent of the observer’s mind; ours is a one-place account rather
than the two-place account of the sense datum theory. In this
regard, our interpretation is much like the critical realist inter-
pretation of Coates (2007). Also like Coates, we take phenom-
enal qualities to carry information about the environment that
normally triggers them. However, whereas Coates takes this
information to be about mind-independent physical objects,
we take it to be information about fitness and the fitness con-
sequences of possible actions; there is a mind-independent
world, but it almost surely does not consist of physical objects
in space-time that are the targets of intentional content pro-
posed by Coates.

Objection 8 The interface theory entails that there are no
public physical objects. But this is absurd. Even our legal
system knows this is absurd. My car is a public object, and
if you steal it you break the law.

Reply The interface theory denies that there are public phys-
ical objects, but it does not deny that there is an objective
reality that exists even if not perceived by a specific observer.
When you and I both look at your car, the car I experience is
not numerically identical to the car you experience. We both
interact with the same objective reality, and we both represent
our interaction with a species-specific set of experiences that
we refer to as a car. But the objective reality is not a car and
doesn’t remotely resemble a car; moreover, the car of your
experience is distinct from the car of my experience.

This might seem puzzling or logic chopping, but it’s quite
straightforward. Consider, for instance, the Necker cube of
Fig. 4. Sometimes you see a cube with corner A pointing
forward (call it Bcube A^), and other times a cube with corner
B pointing forward (Bcube B^). Your cube A experience is not
numerically identical to your cube B experience. If you and a
friend are both looking at Fig. 4, and she experiences cube A
while you experience cube B, then clearly your cube experi-
ences are not numerically identical. Even if you both see cube
A at the same time, your cube A experiences are not numer-
ically identical. And yet we have no problem talking about
Bthe cube,^ because we both assume that the experience of the
other, although numerically distinct from our own experience,
is nevertheless similar enough to permit communication. In
the same way, we can discuss our migraine headaches, even
though there are no public headaches; we assume that the
headaches of others are similar enough to our own to make
communication possible.

When I see your car, I interact with an objective reality, but
my experience of that reality as a car is not an insight into that
reality, but is merely a species-specific description shaped by
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natural selection to guide adaptive behaviors. The adaptive
behaviors might include complimenting you on your car or
offering to wash it, but not stealing it. If I do steal it, I’ve
changed objective reality in a way that injures you and rightly
puts the law on your side, but the reality that I’ve changed
doesn’t resemble a car.

Similarly, if I’m in California and you’re in New York and
we’re competing in an online video game trying to steal cars, I
might find Bthe Porsche^ before you do and steal it. But the
Porsche on my screen is not numerically identical to the
Porsche on your screen. What is behind my screen that trig-
gers it to display a Porsche is a complex tangle of code and
transistors that does not resemble a Porsche. I assume that the
Porsche on my screen is similar to the Porsche on yours, so
that we can discuss genuinely and compete for the Porsche.
But there is no public Porsche.

We understand that our denial of public physical objects—
our claim that physical objects are simply icons of one’s per-
ceptual interface—appears, to almost everyone, as not just
counterintuitive but prima facie false. To many it’s not worth
dignifying with a response. That’s how deeply H. sapiens as-
sumes the existence of public physical objects. This assump-
tion is an adaptive fiction shaped by natural selection, because
it’s helpful in the practical endeavors required to survive and
reproduce. This fiction becomes an impediment when we turn
to scientific endeavors, such as solving the mind-body prob-
lem. Here the assumption that neurons are public physical
objects that exist unperceived and have causal powers is the
starting point for almost all theories, and is, we propose, the
reason for the (widely acknowledged) failure of all such the-
ories to solve the mind-body problem.

Objection 9 You say that evolution drives veridicality to ex-
tinction only when it conflicts with fitness. In general, truth is
useful and indeed optimal within the everyday human scheme:
e.g., my chances of rendezvousing with you are better if I
know the truth about where you are.

Reply Yes, my chances of rendezvousing with you are better
if I know the truth about where you are, just as my chances of
deleting a text file are better if I know the truth about where the
icon of the text file is on my desktop interface. However, a
truth about the state of the interface is not ipso facto a truth
about objective reality. Knowing that the icon is in the
center of the desktop does not entail that the file itself
is in the center of the computer. Similarly, knowing where
in space-time to rendezvous with you does not entail any
knowledge of objective reality; indeed it does not even
entail that space-time itself is an aspect of objective reality
(as we proved above in the Invention of Space-Time
Theorem). An interface can be an accurate guide to be-
havior without being an accurate guide to the nature of
objective reality.
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Appendix 1: measure theory and group actions

Measure theory

The minimal commonly accepted structure for probability
spaces and their appropriate mappings is as follows. A mea-
surable space is a set X together with a distinguished collec-
tion of subsets (the collection of events) X In order to be able
to assign probabilities to events, this collection needs to satisfy
the following three properties: (1) X ϵX , (2)X is closed under
countable union, and (3) X is closed under complement. We
say that X is a σ-algebra on X, and then any function μ
assigning values between 0 and 1 to the events in X is a
probability measure if it satisfies: (1) μ(ϕ) = 0, where ϕ is
the empty set, (2) μ is σ-additive on X : If {Ei}i=1

N is a disjoint

collection of events in X (i.e., Ei∩Ej = ϕ, i≠ j), then μ

∪Ni¼1 Eif g� � ¼ ∑
N

i¼1
μ Eið Þ; for N either finite or ∞ Once this is

done, all the usual rules of probability obtain.
Finally, the collection of Bappropriate^ mappings f:X→Y

between measurable spaces (X, X ) and (Y, Y ) are called,
again, the measurable mappings: f is measurable if all its
values in an event F in Y came precisely from an event E in
X . Technically, the measurability of the function f can be

written as: ∀F∈Y; f −1 Fð Þ∈X (Revuz 1984). In statistics,
measurable mappings on X are the familiar random variables
on X, taking values in Y.

Group actions

DefinitionA groupG acts on a set X if there is a mappingG ×
X→X, which we will denote by (g, x)→ g, x such that, if e is
the identity element inG, e,x = x,∀x∈X and ∀g,h∈G,g(h.x) =
(gh).x,∀x∈X.

The group action is transitive if, given any pair of points x,
y∈ X there is an element g ∈G with g.x = y. A set X acted on
transitively by the group G is said to be a G-set.

In terms of geometry, suppose the G-set X is a differentia-
ble manifold and G is a Lie group with a smooth action on X.
In this instance we say that G is the symmetry group of the
geometry on the homogeneous space X. We do not address
this situation in this paper.

Examples The action of G in the PDA loop onW, relevant to
the IOS Theorem
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Example 1 Suppose that all fibres Sx (see the proof of the
Invention of Symmetry Theorem) are the same set, S say.
Then W=X×S: the world is a Cartesian product. If X is a G-
set, let the action of g∈G on (x,s) be given by g .(x,s) = (g.x,s).
This is a group action onW, but it is trivial on the fibers and is
certainly not transitive on the whole ofW, which is thus not a
G-set.□

Example 2 Here is a toy example of an agent’sG acting onW
in such a way that there is a bona-fide group action of G on X
and we always have g.s∈Sg.x whenever s∈Sx, yet there is no
group action on W as a whole: W is not a G-set.

Let X = {x,x ′} be a set with two elements and letG = {e,a},
with a2 = e; this group is denotedℤ2. Let S = {y,y′} andW =X ×
S. LetG act onWas follows: e.w =w, ∀w∈Wand a.(x,y) = (x′,
y′); a.(x,y′) = (x′,y′); a.(x′,y) = (x,y); a.(x′,y′) = (x,y′). Then G
acts transitively on X, but its effect on W as a whole is not a
group action. We have a2=e but a.(a.(x,y)) = a.(x′,y′) = (x,y′)
and this does not equal (x,y), as would have been required for a
group action.

The reader can see how easy it is to generate further exam-
ples of this behavior, because we have not specified any struc-
ture on the action mappings A, other than that they are func-
tions. The world is much richer than the agent, so it is clear
that no A can be onto the world. In this example, A is not 1:1,
but it is not at all hard to generate examples where Ais 1:1, as
the next example shows.

Example 3 Let X = {x,x′} and S = ℕ, the natural numbers.
Again, let the group be ℤ2. Leta . (x,s) = (x ′,s+3) and
a.(x ′,s) = (x,s). Then a.a.(x,s) = (x,s+3)≠e.(x,s) = (x,s).
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