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Abstract

One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the
greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain
exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the
genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we
show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We
identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the
binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in
the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA)
was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural
progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor
pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen
didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates
human brain volume and reveals novel roles of IL3 in regulating brain development.
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Introduction

The greatly expanded brain size and highly developed cognitive

abilities are the most significant features that set humans apart from

other species. In addition, human brain size is also highly variable in

thegeneralpopulation,rangingfrom981 mlto1,795 ml (1,462 mlin

males and 1,266 ml in females, on average) [1]. Recent imaging

studies usingMRI techniqueshave revealed ahighheritability (0.82–

0.87) of brain volume and its correlation with general intelligence

[2,3], working memory, perceptual organization and processing

speed [4]. It has beenwell established that the enlarged brain volume

is the basis of our unique cognitive capacity, and a reduction of brain

volume has been reported in several brain diseases such as

schizophrenia [5] and Attention-Deficit/Hyperactivity Disorder
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(ADHD) [6]. As a complex quantitative trait with high heritability,

brain volume is likely regulated by many genes. But so far only a

handful of such genes have been reported by studying patients with

rare brain developmental defects, e.g.microcephaly [7]. Though the

reported microcephalin genes are important in explaining the

enlarged human brain during evolution [8], recent studies have

indicated that they only account for a small part of brain volume

variation in the general population [9,10]. Fortunately, recent

genome wide association studies have identified several promising

loci significantly associated with intracranial volume and head

circumference [11–13]. Nevertheless, all of these studies were

performed only in populations of European ancestry and some of

the variants (e.g., rs7890687 and rs9915547) identified in these

GWASwere fixed (monomorphic) inChinesepopulation, suggesting

that additional genes/variantsmaymodulatebrain volumevariation

in Chinese population.

Additionally, the genetic dissection of schizophrenia (SCZ), a

common mental disorder with high heritability provides opportu-

nities to identify genes associated with brain volume variation since

SCZ patients have decreased total brain volume compared to

normal controls [5,14,15]. This is consistent with the hypothesis

that the pathogenesis of SCZ is related to abnormal brain

development [16]. Though numerous linkage and association

studies, especially recent genome wide association studies have

identified many loci significantly associated with schizophrenia

[17–22], the etiology of schizophrenia remains poorly understood.

Among the hypotheses that explain the etiology of schizophrenia,

the neurodevelopmental hypothesis [23] has been supported by

the majority of the published data. This hypothesis predicts that a

disruption of brain development during early life underlies the

later emergence of psychosis during adolescence or early

adulthood. These evidences indicate that schizophrenia suscepti-

bility genes may regulate the unique features of human brain

development and dysfunction of these genes likely disrupted the

normal development of brain, which eventually lead to schizo-

phrenia susceptibility. In fact, recent studies demonstrated that

some schizophrenia susceptibility genes do regulate brain devel-

opment [24,25]. In light of these findings, we hypothesize that

schizophrenia susceptibility genes may regulate brain development

and affect the total brain volume.

To detect the relationship between schizophrenia susceptibility

genes and brain volume, we earlier systematically studied the

genetic association between schizophrenia susceptibility genes and

brain volume variation in a large cohort of healthy subjects. This

led to identification of a highly significant chromosomal region,

5q23.2–33.1, a region that has been well studied and shown strong

association with SCZ in multiple world populations [26–32].

Recently, Chen et al. systematically studied this region by using a

large sample (N= 3,422, including case-control and family-based

samples) and dense SNP markers. They found haplotypes

spanning SPEC2, PDZ-GEF2, LOC728637, and ACSL6 were

significantly associated with schizophrenia in five independent

samples [33,34]. We further replicated the associations in a

Chinese sample [35]. Collectively, these consistent results strongly

suggested genetic variants near these four genes (SPEC2, PDZ-

GEF2, LOC728637, and ACSL6) may contribute to schizophre-

nia susceptibility and brain development.

Results

Interleukin-3 is Strongly Associated with Brain Volume
Variation in Chinese
For the initial analyses in Chinese population, we performed a

genetic screening to detect the association of cranial volume (the

approximate of brain volume, which is highly correlated with

brain volume [36,37]) with sequence variations located in the

5q23.2–33.1 region. The cranial volumes of 1,013 healthy

individuals (460 males and 553 females) were measured (see

methods), followed by genotyping of 20 single nucleotide

polymorphisms (SNPs) in the 5q23.2–33.1 region spanning about

809 kb. To test whether schizophrenia susceptibility variants in

5q23.2–33.1 are associated with brain volume, we initially

genotyped 8 tagging SNPs covering the four genes (SPEC2,

PDZ-GEF2, LOC728637, and ACSL6). The single SNP associ-

ation was conducted using linear regression under an additive

model and the p-values were obtained by the Wald test as

implemented in PLINK [38]. The results showed that six of these

8 SNPs were significantly associated with cranial volume in

females, but not in males (Table S1). For fine-scale mapping, we

genotyped another 12 SNPs and identified a sharp signal in the

region containing IL3, showing a strong female-specific association

with cranial volume (Fig. 1a and Table S1). Among the 7 highly

significant SNPs (-logP.3.3) covering IL3, one was located in

exon 1 (rs40401, Ser to Pro), one in intron 2 (rs31481), one in the

promoter (rs31480), and four in the upstream region (rs3914025,

rs3916441, rs31400 and rs3846726) (Fig. 1a), clearly implicating

IL3 as the responsible gene. The associations between these 7

SNPs and brain volume were still highly significant (corrected

p,0.01) even using the most stringent Bonferroni correction for

multiple testing (Table S1). Further haplotype analysis combining

the 7 SNPs indicated strong linkage disequilibrium (LD) among

the SNPs (Fig. S1a) with only two major haplotypes, one showing

positive association (P= 461025), the other showing negative

association (P= 861024) with cranial volume in females (Table

S2). None of the described associations in females were observed

in males (Table S3), implying that the association of IL3 with

brain volume is sex-specific. To capture missing common SNPs,

we re-sequenced the IL3 gene region (4 kb) in 150 randomly

selected Chinese individuals and found no additional SNPs.

Replication of the Association between IL3 and Brain
Volume Variation in Europeans
To confirm our initial findings from the Chinese population, we

conducted a replication analysis in three independent samples of

European ancestry, for which total brain volume had been

determined based on magnetic resonance imaging (MRI). For the

seven SNPs showing strong association in Chinese sample, two

SNPs in different LD regions in Europeans (rs3916441 and

rs40401, Fig. S1) were included in the replication analysis. Only

the healthy controls of these samples were used. We found that the

most significant SNP in Chinese, rs3916441, was also significantly

associated with total brain volume in the BIG (Dutch Brain

Imaging Genetics study) sample (p = 3.561024; n = 486)

(Table 1). In CBDB/NIMH (Clinical Brain Disorders Branch/

National Institute of Mental Health Sibling Study) sample

(n = 188), rs3916441 also showed a trend of association

(p = 0.0516) (Table 1). We noticed the female specific association

of rs3916441 with brain volume in Chinese was not the situation

in European samples. Interestingly, rs3916441 was also signifi-

cantly associated with total gray matter volume in the CBDB/

NIMH and BIG samples (Table 2), which may point towards a

mechanism explaining the effects of IL3 on brain structure.

Impacts of rs31480 on Transcription Factor Binding and
IL3 Expression
To capture the causal variants of IL3 in Chinese population, we

performed bioinformatics analysis for the 7 highly significant SNPs

IL3 Contributes to Human Brain Development
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Figure 1. Genetic association of the 5q23.2–33 SNPs with brain volume and impacts of promoter SNP (rs31480) on the expression
of IL3. (a) The distribution of the –logP of the 20 SNPs tested across the 5q23.3–33.1 region (middle panel). The locations of the six known coding
genes are displayed. (b) The brain volume distributions of the three genotypes at rs31480, on average, TT genotype carriers have a brain volume of
1257 ml and CC genotypes have 1216 ml (***P,0.001, two tailed Student’s t-test). (c) C allele of rs31480 is completely conserved across a variety of
species. (d) The oligonucleotides for testing the binding activity of SP1. The predicted binding sequence is underlined containing the rs31480
variation site (red). (e) The result of electrophoretic mobility shift assay, showing that the probe containing T allele can bind SP1 (Lane 2) but the C
allele cannot (Lane 3). Similar results were obtained using HeLa or MCF7 nuclear extracts (Lane 6 and 7, 10 and 11). Competition experiments using a
100-fold excess of unlabeled probe (Lane 4 and 5, 8 and 9) confirm the specificity of the probe. Binding to the unknown protein/complex was also

IL3 Contributes to Human Brain Development

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e50375



according to their genomic locations and allelic differences in

transcription factor binding affinities, and we found SNP rs31480

showing potential functional effects. rs31480 is located in the IL3

promoter (216 bp upstream of the transcription start site (TSS),

Fig. S2), within a putative binding site of the transcription factor

SP1. Interestingly, there is a significant difference of 41 ml in the

average cranial volume between individuals carrying the two

homozygotes at rs31480 (1,257 ml for TT carriers and 1,216 ml

for CC carriers, p = 4.761024, two tailed student t-test) (Fig. 1b
and Table S4), suggesting that rs31480 could regulate brain

volume variation. In addition, we noticed the C allele (ancestral

allele, determined by comparison with the chimpanzee homolo-

gous sequence) of rs31480 is completely conserved across a wide

variety of species (Fig. 1c and Fig. S2), also suggesting a

functional conservation of rs31480. The T allele (derived allele) is

prevalent in East Asian populations (0.556 in Chinese and 0.568 in

Japanese), but relatively rare in Europeans (0.198) and Africans

(0.136) (http://www.hapmap.org).

The C to T change at rs31480 could change the binding affinity

of SP1 and influence the expression of IL3. Electrophoretic

mobility shift assay (EMSA) with purified recombinant human SP1

protein (Fig. 1d) showed that SP1 binds to the sequence

containing the T allele (Fig. 1e, lane 2) but not the C allele

(Fig. 1e, lane 3). Similar results were observed when using HeLa

(Fig. 1e, lane 6 and 7) and MCF-7 (Fig. 1e, lane 10 and 11) cell

nuclear extracts as the source of SP1 protein (Fig. 1e). Finally,
competition experiments using unlabeled oligonucleotides corrob-

orated the SP1 binding specificity to the T allele (Fig. 1e, lane 4

and 5, lane 8 and 9). These data suggest that rs31480 has an ‘‘on’’

or ‘‘off’’ effect on SP1 binding to the IL3 promoter.

To test whether rs31480 also influences IL3 promoter activity,

we performed transactivation assays using the luciferase reporter

gene. The promoter region encompassing nucleotides 2436 to

+164 (relative to the ATG start codon at +1) of IL3 was amplified

by PCR from genomic DNA of two individuals homozygous with

respect to the corresponding genotypes (TT and CC) for rs31480.

Sequencing analysis of the amplified promoter fragments did not

detect other sequence differences except for rs31480. As shown in

Fig. 1f and Fig. S3a–c, the transcriptional activity of the IL3

promoter containing the T allele was indeed significantly higher

than that of the C allele in all cell lines tested (Hela, CHO, SK-N-

SH, and COS-7). The T allele of rs31480 thus enhances the IL3

promoter activity through the binding of transcription factor SP1.

For the most significant SNP rs3916441, since our functional

prediction analysis did not give any hint for the functional role of

this SNP, whether it plays any functional role for IL3 is yet to be

determined.

It should be noted that, rs31480 was not significantly associated

with brain volume in the BIG sample of Europeans, and it was not

available in the ANDI and CBDB/NIMH samples. Another SNP

rs40401 in high linkage with rs31480 was also not significant in

these samples. The differences in association for this SNP

(rs31480) are likely due to the genetic heterogeneity between

Chinese and Europeans as shown in Fig. S1.

IL3 and its Receptors are Mainly Expressed in Neural
Progenitors and Mature Neurons
IL3 exerts its biological effects through a receptor that is

composed of a ligand-specific a (IL3RA) subunit and a signal

transducing b subunit (IL3RB) common to IL3/IL5/GM-CSF.

The mouse IL3 receptor has two distinct b subunits, one that

functions only in IL3-mediated cell signaling (bIL3) and a second

that is shared with IL5 and GM-CSF (IL3RB or CSF2RB). We

studied the expression of IL3 and its receptors in the developing

mouse brain and found that IL3 and its receptors were

continuously expressed in mouse brain from embryonic day (E)

12.5 to adult life as revealed by RT-PCR (Fig. 2a), with a peak

expression level at postnatal day (P) 1 to 4 (Fig. 2b), a stage with

active neural proliferation and neurogenesis. We also noticed that

bIL3 is only expressed from E14.5 to P7 (Fig. 2a), a stage

accompanied by the dramatic increase of the neocortex volume

[39]. Immunostaining revealed that IL3 and its receptors were

mainly expressed in the neocortex region of the mouse brain

(Fig. 2c–n and Fig. S4 and S5). We also detected weak

expression of IL3RA in the CA1 and CA3 regions of hippocampus

(Fig. S6), hilus of the dentate gyrus (Fig. S7), and lateral septal

nucleus, dorsal part (LSD) (Fig. S8). Compared to IL3RA, IL3RB

showed higher expression in the mouse brain (Fig. 2a, b). It was

extensively expressed in mouse brain including neocortex (Fig. 2i–

k) and hippocampus (Fig. S6). Since all IL3RA positive cells also

expressed IL3RB (Fig. S6 and S9), we focused on IL3RA

hereinafter. To characterize IL3RA-positive cells, we performed

co-immunostaining and found IL3RA was expressed in SOX2-

and nestin-positive neural progenitors at early developmental stage

(Fig. 3a–e, Fig. S4 and S10). As development continues, the

observed (Figure 1e, arrow C and D), again, the probe containing T allele showed stronger binding than C allele. (f) Assays of promoter activities by
relative luciferase expression in HeLa, construct with T allele has significant higher expression activity than C allele. Values of relative luciferase activity
are expressed as mean 6 s.d. (results of three independent experiments, each containing three replicates). ***P,0.001 (one tailed Student’s t-test).
doi:10.1371/journal.pone.0050375.g001

Table 1. Replication of the most significantly associated SNPs in genetically divergent populations.

SNP Polymorphism Replication samples

ADNI sample

(Healthy controls)

CBDB/NIMH sample

(Healthy controls)

BIG sample (3.0 T)

(Healthy controls)

P value (Total brain volume) P value (Total brain volume) P value (Total brain volume)

All

(n =204)

Male

(n =110)

Female

(n=94)

All

(n = 188)

Male

(n =89)

Female

(n =99)

All

(n =486)

Male

(n =194)

Female

(n =292)

rs3916441 C/T 0.697 0.0467 0.164 0.0516 0.0416 0.462 3.561024 3.0861024 0.130

rs40401 G/A 0.147 0.261 0.467 0.703 0.580 NA NA NA NA

NA: Not available.
doi:10.1371/journal.pone.0050375.t001

IL3 Contributes to Human Brain Development
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expression of IL3RA was down-regulated in neural progenitors

(Fig. 3f–h). After birth, expression of IL3RA was found in some

Tuj1-positive neurons (Fig. S11). However, we noticed that many

IL3RA positive cells were Tuj1-negative (Fig. 3i–k, Fig. S11a–i).

Co-labeling with GFAP excluded their identity as glial cells

(Fig. 3l–n). Further double immunostaining showed many IL3RA

positive cells also weakly expressed Tbr2, a marker for interme-

diate progenitor cells (IPCs) (Fig. 3o–q and Fig. S12). In

contrast, in addition to co-expression with IL3RA, IL3RB was

expressed in neurons and glial cells (Fig. S13). Taken together,

these results demonstrate that IL3 and its receptors are mainly

expressed in neural progenitors and neurons in the developing

neocortex.

IL3 Promotes the Proliferation of Neural Progenitors
IL3 is known to activate three signaling pathways, the JAK/

STAT, the MAPK, and the PI3K/AKT pathways, among which

the MAPK signal pathway regulates cell proliferation [40]. Since

we found IL3RA co-expressed with the cell proliferation markers

Ki67 and pH3 (Fig. S14), IL3 could play a role in promoting the

proliferation of neural progenitors. We thus examined the effect of

IL3 treatment on the proliferation of neural progenitors isolated

from E13.5 cortex. We first verified the expression of IL3RA and

IL3RB in cultured neural progenitors (Fig. S15a). Anti-pH3

immunolabeling showed that the number of proliferating cells was

significantly increased in IL3-treated samples compared to the

controls (Fig. 4a,b), which is consistent with published observa-

tions [41]. Western blotting confirmed that IL3 could activate

MAPK pathway in both MEG01 cells (Fig. 4f) and cultured

neural progenitors (Fig. 4g). The phosphorylation of MAPK1/2

was significantly increased after IL3 treatment, indicating that IL3

can activate proliferation pathway in neural progenitors. We also

investigated another proliferation related pathway, the JAK/

STAT pathway. We found that JAK2 phosphorylation was

increased after IL3 treatment (Fig. 4g), further supporting the

involvement of IL3 in the proliferation of neural progenitors.

We next tested whether IL3 could drive neuronal differentiation

in vitro. The progenitor cells were cultured under differentiation

condition, treated with IL3, and the expression level of cell type-

specific markers was measured by quantitative PCR. We found

that IL3 had no effect on neuronal differentiation in vitro. After IL3

(10 ng/ml) treatment, the expression of all tested genes was not

changed significantly (Fig. S16). Collectively, these data suggest

that IL3 promotes the proliferation of neural progenitors through

the activation of MAPK and JAK/STAT pathways, but has no

effects on neural differentiation.

Neurotrophic Effects of IL3 on Neural Progenitors and
Neurons
IL3 is reported to have trophic effects on neurons [42]. It

promotes the survival of sensory neurons and protects against

neuronal death induced by FeSO4 and Ab [43,44]. We speculated

that IL3 might also have similar trophic effects on cortical neural

progenitors. To test this, we determined cell viability of cultured

neural progenitors and neurons in media with different growth

factors and supplements. The results suggest that when the

nutrition is deficient, the IL3 pathway could be activated to protect

against cell death induced by starvation (Fig. S15b,c, Fig. 4c,d).

Similar results were obtained on neurons when cultured using the

previously reported culture method [43] (Fig. 4e).

The Bcl-xL was reported has a role in neuronal survival

mediated by IL3 pathway [43], so we studied the expression of

Bcl-xL in neural progenitors and found there was no significant

change after treated with IL3 (Fig. S15e). The signaling through

the PI3K/AKT pathway is one of the most potent intracellular

mechanisms to promote cell survival. It is well established that IL3

can activate the PI3K/AKT pathway [40]. To further study the

mechanism of neural progenitor survival mediated by IL3 and to

test if the PI3K/AKT pathway participates in IL3-mediated

survival of neural progenitors, we studied the interactions between

IL3 and AKT1 in neural progenitors by western blotting. In

untreated progenitors, the level of phosphorylated AKT (the active

form) is low (Fig. 4g). However, the level of phosphorylated AKT

was dramatically increased after IL3 treatment (Fig. 4g). In

addition, analysis of three AKT1 SNPs indicated significant

association with brain volume (Table S5). Taken together, these

results indicate that IL3 promotes the survival of neural

progenitors by activating the PI3K/AKT pathway.

IL3 Activates Estrogen Receptor a and b in vitro
As shown above, the genetic association of the IL3 SNPs with

brain volume was female-specific in Chinese. To test whether

estrogen could regulate the expression of IL3, we treated the K562

cell line (which expresses both IL3 and estrogen receptor (Fig.

S17a)) with estrogen and found no overt change of IL3 expression

(Fig. S17c–e), while the expression of TFF1 as a control was

significantly increased after estrogen treatment (P,0.001) (Fig.

S17b–d). These results suggest that the transcription of IL3 could

not be directly regulated by estrogen.

It was reported that the MAPK and PI3K/AKT pathways

could activate the estrogen receptor (ER) [45,46]. To investigate

whether IL3 could activate ER genes through the two regulated

pathways, we constructed three vectors, 3ERE-PGL3 (contains

three repeats of estrogen response element (ERE)), ERa and ERb

Table 2. Association of rs3916441 with gray matter and white matter in genetically divergent populations.

SNP Polymorphism Replication samples

CBDB/NIMH sample

(Healthy controls) BIG sample (3.0 T) (Healthy controls)

P value (Total gray matter volume) P value (Total gray matter volume) P value (Total white matter volume)

All

(n =89)

Male

(n =99)

Female

(n=486)

All

(n = 486)

Male

(n=194)

Female

(n=292)

All

(n = 486)

Male

(n =194)

Female

(n =292)

rs3916441 C/T 0.0228 0.128 0.110 0.001 0.001 0.178 0.002 0.004 0.138

rs40401 G/A 0.171 0.128 NA NA NA NA NA NA NA

NA: Not available.
doi:10.1371/journal.pone.0050375.t002
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Figure 2. Spatiotemporal expression profiling of IL3 and its receptor in the developing mouse brain. (a) RT-PCR revealed the expression
of IL3 and its receptor in developing mouse brain from E12.5 to adult. (b) Quantitative PCR showed that the expression of IL3 and its receptors peaks
at P1–P4, a period with active neural proliferation and neurogenesis. Data are expressed as mean 6 s.e.m. (n = 3). (c–n) Immunohistochemistry
analysis indicated that IL3 and its receptor were expressed in the mouse brain. Co-expression of IL3 and IL3RA were detected (arrows in l–n),
indicating the activation of IL3-mediated signaling pathways in the developing mouse brain. (o–p) IL3RA is expressed in radial glia (resides in
ventricular zone and characterized by long radial processes, arrowhead in o) and migratory neurons (arrowheads in p). Ctx, cortex; VZ, ventricular
zone. Scale bars, (c, d, e) 25 mm; O, 10 mm.
doi:10.1371/journal.pone.0050375.g002

Figure 3. IL3RA is mainly expressed in neural progenitors and neurons. (a, b) Expression of IL3RA was detected in SVZ and IZ regions. Co-
labeling with SOX2 showed IL3RA expression cells in SVZ are SOX2 positive, indicating these cells are neural progenitors. However, IL3RA positive
cells in IZ are SOX2 negative, indicating these cells are not neural progenitors. (c–e) In the early stages of brain development, co-expression of IL3RA
and SOX2 was found in neocortex region. With the development of the central nervous system, expression of SOX2 was down-regulated or
disappeared in IL3RA positive cells (f–h). We also found many IL3RA positive cells were not mature neurons (i–k) or glial cells (l–n). Co-labeling with
TBR2 demonstrated IL3RA positive cells are intermediate progenitor cells (IPCs) (o–q). VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate
zone; CP, cortex plate. Scale bars, 25 mm.
doi:10.1371/journal.pone.0050375.g003
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respectively. We first studied the expression of IL3 receptors and

estrogen receptors in MEG-01 and HEK293T cell lines and we

found IL3 receptors were expressed in both cell lines (Fig. 5a,b).

The vectors (3ERE-PGL3 and ERa, or 3ERE-PGL3 and ERb)

were then co-transfected into the IL3 receptor-expressing MEG-

01 cell line, followed by IL3 or E2 treatments. As expected, IL3

Figure 4. IL3 promotes proliferation and survival of neural progenitors. (a) IL3 promotes neural progenitor’s proliferation. (b) Quantification
of proliferating cells (pH3+) after IL3 treatment. #P,0.05 (n = 4, one-tailed Student’s t-test). (c) Trophic effect of IL3 on neural progenitors. Neural
progenitors from E12.5 mice were grown in the absence of any factor and in the presence of different concentrations of IL3 for 36 hours, then cell
viability were determined. Note that 3.0 ng/ml IL3 could promote survival of neural progenitors significantly (n = 8 for each condition). (d–e)
Neurotrophic effects of IL3 on neural progenitors and neurons. Neural progenitors were first cultured in neurobasal medium with B27 supplement for
about 24 hours, then the medium was replaced with neurobasal medium containing N2 supplement and different concentrations of IL3 were added.
The cultures were maintained for 3 days and cell viability was determined. IL3 has significant effects on this culture condition on progenitors (d) and
neurons (e) (n = 8 for control group and 20 ng/ml group, n = 16 for other groups). y-axis, cell viability (normalized to control), x-axis, concentration of
IL3 (ng/ml). Data are expressed as mean6 s.e.m. *P,0.05, **P,0.01 (two-tailed Student’s t-test). (f) IL3 activates PI3K-AKT, MAPK1/2 and Gsk3b signal
pathways in MEG01 cell line. (g) IL3 activate MAPK, JAK/STAT, and PI3K/AKT pathways in primary cultured neural progenitors. The phosphorylation
level of AKT, MAPK1/2, JAK2 and GSK3b was increased after IL3 treatment.
doi:10.1371/journal.pone.0050375.g004
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could activate both ER genes, especially ERb (Fig. 5c,d). In

addition, the activation of ERb induced by E2 was enhanced by

IL3. We confirmed these results in HEK293T cells (Fig. 5e,f).

Hence, the activation of ER genes by IL3 and estrogen and the

interaction between them may explain the sex-specific functional

effects of the sequence polymorphism at rs31480 on brain volume

in females. The reported association studies on SCZ patients is

consistent with our observation, in which IL3 showed a significant

association with schizophrenia only in females. The hypothesized

sex-specific regulation of brain volume is illustrated in Fig. 6 and

Fig. S18.

Discussion

Brain volume is an important quantitative trait that underlies

our most complex cognitive abilities and human evolution is

characterized by a dramatic expansion in brain size and

complexity. Undoubtedly, our unique genetic makeup played

a decisive role in our enlarged brain and human brain size must

be highly regulated during development. The hypothesis that

SCZ is a brain disease unique to humans [47] suggests that

SCZ susceptibility genes may regulate the unique features of

human brain development and dysfunction of these genes may

disrupt the normal development of the human brain. In this

study, we provide evidence that IL3 may regulate human brain

volume variation. First, our genetic association results strongly

suggest the association between IL3 and brain volume. IL3 is

located in 5q31.1, one of the most successfully replicated regions

that may harbor SCZ susceptibility genes [26–35]. In fact,

5q23–31 was ranked number 2 of all chromosomal regions

implicated to harbor SCZ susceptibility genes in a genome-wide

meta-analysis of SCZ [48]. As accumulating data support that

SCZ is a neurodevelopmental disorder, it’s likely that there are

potential genes in 5q23.2–33.1 that regulate brain development.

However, though studies repeatedly found association between

genes located in 5q23.2–33.1 and SCZ, the detailed expression

pattern of these genes and their function during brain

development is not known. Here, for the first time, we detailed

the spatiotemporal expression pattern of IL3 and its receptors in

developing mouse brain and we found IL3RA is mainly

expressed in neural progenitors and neurons, which also support

the importance of IL3 signaling pathway in brain development.

Also, our in vitro proliferation and survival assays further validate

the pivotal roles of IL3 in the development of central nervous

system. Collectively, these results provide novel insights to the

involvement of IL3 in brain development, supporting the

neurodevelopmental hypothesis of schizophrenia.

It should be noted that during the initial screening in the

Chinese sample, we used cranial volume as proxy of brain volume.

Though cranial volume is not exactly equal to brain volume, the

correlation between these two variables is very high [37]. More

importantly, we have successfully identified the association

between cranial volume and MCPH1 gene by applying this

method in our previous study [9]. In addition, the successful

replication of our initial findings in genetically divergent popula-

tions further support the reliability of our method.

We realized that the association data and the functional data

did not refer to the same SNP, which could be explained by

several possible reasons. First, though rs3916441 has the

smallest p value in our screening sample, it is located about

27 kb upstream of IL3, and the likelihood of rs3916441’s direct

regulation of IL3 expression is relatively small. Second, the p

value of rs3916441 and rs31480 is very close in our screening

sample, and they are highly linked (r2=0.89) in Chinese.

Hence, the functional data suggests rs31480 is probably the

causal SNP in brain volume regulation. Nevertheless, we have

successfully replicated the significant associations of IL3 variants

with brain volume in BIG sample (rs3916441), and we also

observed a marginal significant association in CBDB/NIMH

sample (rs3916441). Although the association of these SNPs did

not reach genome-wide significance, considering the non-overlap

of the studied samples and different genetic backgrounds of

Chinese and Europeans, IL3 is likely an authentic gene

contributing to brain volume variation in general populations.

To date, no genes have been shown significantly associated with

brain volume and only a few genes were associated with

intracranial volume in recent genome-wide association studies

[11–13], suggesting an extremely complicated genetic regulation

of brain volume.

Growing evidence have suggested that the interaction

between immune and nervous systems may play an important

role in the pathogenesis of schizophrenia [49]. The immune and

nervous systems interact with each other through cytokines, a

family of proteins that are secreted by a specific group of cells

of the immune system and have pleiotropic effects on many cell

types, including proliferation, differentiation, and survival. IL-3

is a cytokine that induces growth and differentiation of

hematopoietic stem cells and a variety of cell types originating

in the bone marrow. Recent studies have demonstrated the

important role of IL3 in the central nervous system (CNS). It is

expressed in the hippocampus and cortices of normal mouse

brain [50], and it stimulates the growth and proliferation of

microglial cells [51,52]. Studies also found that IL3 facilitates

the survival of sensory neurons significantly and stimulates the

formation of the neural network [53]. In addition, IL-3 has

been found to be able to promote the process extension of

cultured cholinergic [42] and prevent delayed neuronal death in

the hippocampus [43]. In fact, rat interleukin 3 receptor b-

subunit was cloned from cultured microglia [54], and disruption

of IL3 production in brain led to neurologic dysfunction [55].

All of these studies strongly suggest that IL3 is a pivotal

protective factor for CNS. More importantly, Chen et al.

recently reported that IL3 was significantly associated with

brain disease such as schizophrenia in three independent Irish

samples [34,56,57]. IL3 receptors, including IL3RA and

CSF2RB (or IL3RB), were also found significantly associated

with schizophrenia in three different populations [58–60]. In

addition, decreased IL-3 levels in the first-episode and drug-

naı̈ve patients with schizophrenia was also reported [61]. These

convergent evidences strongly indicate the involvement of the

IL3 pathway in schizophrenia. Interestingly, we noticed that

rs3916441, which is most significantly associated with brain

volume, was also significantly associated with schizophrenia in

females [34], implying the interaction between IL3 and gender

may play vital roles in normal brain development and

schizophrenia susceptibility. Though many investigations support

the involvement of IL3 in brain function and schizophrenia, the

precise expression pattern of IL3 and its receptors in developing

brain is not well characterized and it’s not clear how genetic

variation within IL3 affect brain development and schizophrenia

susceptibility.

In summary, we have demonstrated that IL3 plays crucial roles

in the development of the central nervous system. We identified a

genetic variant (rs31480) in the promoter of IL3 that is

significantly associated with brain volume in the general popula-

tion. This polymorphism influences the expression of IL3 and the

differential IL3 expression of the two alleles at rs31480 can

influence neural progenitor pool expansion and maintenance
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Figure 5. IL-3 activates estrogen receptors in MEG01 and HEK293T cells. There are two estrogen receptors, ERa and ERb. MEG01 and
HEK293T cell lines were used to test whether IL3 can activate estrogen receptors. Expression of IL-3 receptors (IL3RA, CSF2RB) were verified by RT-PCR
in MEG01(a) and HEK293T (b) cell lines. In HEK293T cell line, we also detected the expression of estrogen receptors (ERa and ERb) (b). Constructs
containing three repeats of estrogen response element (3ERE) and estrogen receptor (ERa or ERb) were co-transfected into MEG01 and HEK293T cell
lines prior to IL-3 or estrogen (E2) treatment. IL-3 can activate ERa and ERb in both cell lines (c-d for MEG01 and e-f for HEK293T), and this effect was
enhanced by the estrogen, indicating there were interactions between IL-3 and estrogen activation. Data are expressed as mean 6 s.e.m. (three
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during neurodevelopment. Furthermore, our findings that IL3 can

promote proliferation and survival of neural progenitors further

support the proposed novel role of IL3 in the central nervous

systems.

Materials and Methods

Samples
Our screening samples are from Yunnan province of south-

western China (n= 1,013). Replication samples included samples

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

n = 204), samples from the US National Institute of Health

(CBDB/NIMH; n= 188) and samples from the Dutch Brain

Imaging Genetics study (BIG; n= 486).

Screening Samples: Chinese Samples
The detailed information of the sample screening was described

in our previous study [9]. Briefly, a total of 1,013 unrelated healthy

individuals including 460 males and 553 females were included.

The identities of the subjects were self-declared and confirmed by

their written ID profiles. All the sampled individuals are from

Yunnan province of southwestern China. Written informed

consents for this study were obtained from all the subjects, and

the research protocol was approved by the internal review board

of Kunming Institute of Zoology, Chinese Academy of Sciences.

The ages of the 1,013 individuals range from 19 to 28 years with

98% of them being 21–26 years old.

Replication Samples: ADNI Sample
The MRI and genotyping data in this replication sample were

obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.ucla.edu). One goal of ADNI has been

to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). For up-to-date information, see www.

adni-info.org. The ADNI participants consist of patients with AD,

patients with MCI, and elderly healthy individuals. They were

aged 55–90 years and recruited from 59 sites across the U.S. and

Canada. Written informed consent was obtained from all 822

participants and the study was conducted with prior Institutional

Review Board approval. Of 822 participants, 204 unrelated non-

Hispanic Caucasian healthy controls were used in this study [62].

Replication Samples: CBDB/NIMH Sample
All subjects are the healthy control participants of Clinical Brain

Disorders Branch/National Institute of Mental Health Sibling

Study, a study aimed at identifying schizophrenia susceptibility

genes and related intermediate biologic phenotypes [63]. Subjects

with good quality of structural data and genotyping were included

the study.

Replication Samples: BIG Sample
In this study, a total of 486 healthy control subjects aged 18–35

years from the Brain Imaging Genetics (BIG) study at the Donders

Institute for Brain, Cognition and Behaviour of the Radboud

University Nijmegen (Medical Centre) were included. The BIG

study is a study of self-reported healthy individuals included into

earlier imaging studies at the Donders Centre for Cognitive

Neuroimaging. Subjects are of European Caucasian descent and

generally highly educated [64]. The study was approved by the

regional medical ethics committee (CMO regio Arnhem/Nijme-

gen) and all participants provided written informed consent prior

to participation.

independent assays, each containing 3 replicates).
#P,0.10,
*P,0.05,
**P,0.01,
***P,0.001.
doi:10.1371/journal.pone.0050375.g005

Figure 6. Model for regulation of brain volume by IL3 genetic variation and expression level. Individuals with different genotypes at
rs31480 have differential expression level of IL3 (individuals with TT genotype have higher IL-3 expression than CC carriers), which lead to differential
activation of signaling pathways mediated by IL3. The differential activation of signaling pathways further influence the proliferation and survival of
neural progenitors, eventually lead to brain volume variation for individuals with different genotypes at rs31480.
doi:10.1371/journal.pone.0050375.g006
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Measurement of Cranial Volume: Chinese Screening
Sample
The cranial volume was measured and calculated as described

in our previous study [9]. Three principal dimensions of the

cranium were measured including 1) Maximum antero-posterior

length (L, measured between glabella and the inion). 2) Maximum

breadth (B, biparietal diameter; measured between two parietal

eminences). 3) Cranial height (H, basi-bregmatic height, measured

between the internal acoustic meatus to the highest point of the

vertex). Then the cranial volumes were computed using the

following formula [9,65]: Male, 0.337 (L-1.1) (B-1.1) (H-1.1)

+406.01 cc; Female, 0.400 (L-1.1) (B-1.1) (H-1.1) +206.60 cc.

Measurement of Brain Volume: Replication Samples
(ANDI)
3D T1-weighted brain MRI scans were acquired using a sagittal

3D MP-RAGE sequence following the ADNI MRI protocol [66].

Baseline 1.5T MRI scans from 204 participants were downloaded

from the ADNI public website (http://www.loni.ucla.edu/ADNI/

) onto local servers at Indiana University School of Medicine. As

detailed in previous studies [67], FreeSurfer V4 software (http://

surfer.nmr.mgh.harvard.edu/), a widely employed brain segmen-

tation and cortical parcellation tool, was used to label cortical and

subcortical tissue classes using an atlas-based Bayesian segmenta-

tion procedure and to extract the measure of brain volume.

Measurement of Brain Volume: Replication Samples
(CBDB/NIMH)
All structural MRI were acquired on a 1.5 Tesla GE scanner

(GE Medical Systems, Milwaukee, Wisconsin) using a T1-

weighted spoiled gradient recalled (SPGR) sequence (repetition

time, 24 ms; echo time, 5 ms; number of excitations, 1; flip angle,

45u; matrix size 2566256; FOV 24624 cm2), with 124 sagittal

slices (0.9460.9461.5 mm3 resolution). Images were processed

using the FreeSurfer [68] toolbox (version 5). Total Brain Volume

(TBV) and Total Grey Matter volume (TGM) measurements were

calculated as previously described [63,69]. TGM was defined as

sum of tissue probabilities for the grey matter region. TBV was

defined as the sum of total gray matter volume, total white matter

volume, and cerebrospinal fluid.

Measurement of Brain Volume: Replication Samples (BIG
Sample)
Subjects were scanned at 3 Tesla (n = 486) MRI scanners and

T1-weighted structural magnetic resonance imaging data (3D

MPRAGE) were acquired (more information on the image

acquisition can be found in our previous study [70]). All scans

covered the entire brain and had a voxel-size of 16161 mm3. To

calculate total brain volume, raw DICOM MR imaging data were

converted to NIFTI format using the conversion as implemented

in SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/).

Normalizing, bias-correcting, and segmenting into gray matter,

white matter, and cerebrospinal fluid was performed using the

VBM toolbox (VBM5.1 Toolbox version 1.19) in SPM using

priors (default settings). This method uses an optimized VBM

Protocol [71,72] as well as a model based on Hidden Markov

Random Fields (HMRF) developed to increase signal-to-noise

ratio [73]. Total volume of gray matter, white matter, and

cerebrospinal fluid was calculated by adding the resulting tissue

probabilities. Total brain volume was defined as the sum of white

matter and gray matter volume.

SNP Selection, SNP Tagging, Genotyping and
Sequencing
SNP selection was based on the previous association studies

including our recent data [33–35]. We focused on the four genes

that identified by Chen et al. recently using systematically mapping

in large independent samples. In addition, our recent data and LD

in Chinese were also considered. We selected 8 SNPs for the initial

screening (rs3756295, rs40396, rs1291602, rs31251, rs1355095,

rs2240525, rs3914025, rs31400), additional SNPs were included

according to the association significance and whether they are

tagging SNPs. Totally, we selected 20 SNPs for fine mapping. The

20 SNPs were genotyped using the SNaPshot method (Applied

Biosystems). We sequenced the IL3 gene (including the 500 bp

upstream and downstream, respectively) in 150 randomly selected

individuals through direct sequencing. The conservation analyses

were performed by using UCSC genome browser [74]. (http://

genome.ucsc.edu/).

Prediction of DNA-binding Motifs
We used Dragon ERE finder [75], a web-based program for

identification and interactive analyses of estrogen response

elements (EREs) to predict EREs in the upstream region of IL3.

AliBaba (http://www.gene-regulation.com/pub/programs/

alibaba2/index.html) was used to predict and compare DNA-

binding motifs in the promoter region with alternative alleles.

Cell Culture, Treatment, and RNA Extraction
K562 cells were routinely cultured in DMEM (Gibco)

supplemented with 10% FBS (Hyclone), 100 u/ml penicillin and

100 ug/ml streptomycin. Before treatments, the cells were

maintained in phenol red-free DMEM containing 10% dextran-

coated charcoal-stripped fetal bovine serum (DCC-FBS) (Hyclone) for

a minimum of 3 days with the media changed every day. Cells

were treated with 10 nM 17-beta-estradiol (E2) (Sigma) for 2 to 24

hours. Total RNA was harvested and prepared using TRIzol

(Invitrogen) following the manufacturer’s instructions.

Quantitative Real-time PCR
Reverse transcription PCR (RT-PCR) was performed using the

Omniscript RT Kit (Qiagen) following the manufacturer’s

instructions. We carried out real-time quantitative PCR using

gene specific primers, and the fold change in expression was

calculated using the DDCt (threshold cycle) method. The GAPDH

was used as the internal control.

EMSA
EMSAs were performed with a LightshiftTM chemilumescent

EMSA kit (Pierce). The single-strand oligonucleotides were

biotinylated with Biotin 39 End DNA labeling Kit (Pierce) and

then annealed to form double strands. The nuclear extracts of

MCF-7 and U2OS were prepared by CelLyticTM NuCLEARTM

Extraction kit (Sigma). HeLa nuclear extracts were purchased

from Santa Cruz Biotech. The binding reactions were performed

for 20 mins at room temperature in 10 mM Tris-HCl (PH 7.5),

1 mM MgCl2, 0.5 mM EDTA, 0.5 mM DTT, 50 mM NaCl,

50 ug/ml poly (dI-dC)(dI-dC) and 4% glycerol, 35 fmol biotin 39-

end -labeled double-stranded oligonucleotides, and purified

recombinant SP1 protein (Alexis) or nuclear extracts. After

incubation, samples were separated on a native 6% polyacryl-

amide gel and then transferred to a nylon membrane. The

positions of biotin end-labeled oligonucleotides were detected by a

chemilumescent reaction with streptavidin-horseradish peroxidase

according to the manufacturer’s instructions and visualized by
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autoradiography. For competition assays, we pre-incubated 100-

fold excess of unlabeled oligonucleotide probe with SP1 or nuclear

extracts before adding the biotin-labeled probe. The nucleotide

sequences of the double-stranded oligonucledtides with either T or

C allele are:

T-allele: 59-TGCACATATAAGGCGGGAGGTTGTTGC-

CAACGCTTCAGAGC-39.

C-allele: 59-TGCACATATAAGGCGGGAGGCTGTTGC-

CAACGCTTCAGAGC-39.

Promoter Cloning and Reporter Gene Assays
To construct IL3 promoter, we amplified fragments encom-

passing nucleotides -436 to +164 (relative to the ATG start codon

at +1) of IL3 by PCR from genomic DNA of two individuals

homozygous with respect to the corresponding genotypes (TT and

CC) for rs31480, using primers tailed with Xhol and HindIII

restriction sites, and directionally subcloned them into the Xhol and

HindIII sites of the pGL3-Basic expression vector (Promega). We

verified all recombinant clones by bi-directional DNA sequencing.

HeLa, COS-7, CHO, and SK cells were routinely cultured in

DMEM supplemented with 10% FBS with antibiotics. The cells

were plated at 2.56105 cells per well in a 24-well plate the day

before transfection and incubated overnight at 37uC in 5% CO2.

Transient transfection assays were conducted in these cells using

the Lipofectamine 2000 transfection reagent (Invitrogen), all assays

were performed in at least three independent experiments with

minimum of three replicates. The reporters containing either T

allele or C allele were transfected into these cells together with a

Renilla luciferase control vector. After 24h incubation, we collected

the cells and measured luciferase activity using the Dual-Luciferase

Reporter Assay System (Promega).

3ERE Cloning and IL3 Activation Assays
Three repeats of Estrogen Response Elements (EREs) tailed

with Xhol and HindIII restriction sites were synthesized and

annealed to form double-stranded nucleotides. The sequence is 59-

CCG CTCGAG TA GGTCA GCG TGACC TA TA GGTCA

GCG TGACC TA TA GGTCA GCG TGACC TA AAGCTT

GGG-39. We directionally cloned it into the pGL3-Basic vector

after restriction enzyme digestion. We confirmed the construct by

sequencing. The estrogen receptor alpha and beta vectors were

kindly provided by professor Sylvie Mader (Faculté de Médecine,

Université de Montréal) and Leigh C. Murphy (University of

Manitoba). MEG-01 and HEK293T, IL3 receptor expression

positive cell lines were cultured in PRMI 1640 and DMEM

respectively supplemented with 10% FBS, 2 mM L-glutamine,

1 mM Sodium pyruvate and 1% antibiotics. Co-transfection of

3ERE-pGL3 (2 ug), ERa (1 ug) or ERb (1 ug) were performed by

using a Nucleofector Device from Amaxa Biosystems (Lonza

Cologne AG, Germany) in MEG01 cell line, while co-transfection

in HEK293T cell line were used Lipofectamine 2000 transfection

reagent (Invitrogen) as previously described, and with pRL-TK as

the internal control. After six hours incubation, 17-beta-estradiol

and recombinant human IL3 protein (Invitrogen) were added into

the medium with a final concentration of 10 nM. Cells were

harvested and their luciferase activity was measured after

additional 24 h incubation. All assays were performed in at least

three independent experiments with a minimum of triplications.

Statistical Analysis
Hardy-Weinberg equilibrium of each SNP was assessed by

using GENEPOP (v 4.0) [76]. Association of single SNP with total

brain volume (TBV) and their additive effects on this quantitative

trait were tested by utilizing PLINK or SAS statistical software

using the linear regression option, with age, sex and IQ (optional)

as covariates; for the analyses on total gray/white matter, TBV

was also considered as a covariate [77]. To account for sex-specific

effects, we used a statistical model where the mean effect of SNP

dose on the phenotype was allowed to differ for the two sexes. The

p-value was adjusted by the conservative Bonferroni correction

according to the number of independent SNPs and the divided

internal samples separated by sex. We used the Haplo Stats [78] to

infer the haplotype frequency and to perform the haplotype

association test. We used the Haploview [79] to calculate pairwise

LD indices r2 and D’, to define LD blocks and to select the tag

SNPs. Haplotypes were inferred with the PHASE program by the

Bayesian statistical methods based on the genotype data [80].

Sequence alignment and assembly were conducted by DNASTAR

software package. The analysis of quantitative PCR data was

based on the DCt values.

Immunohistochemistry
The C57BL/6J mice were used in this paper and all animal

procedures described herein were approved by the University

Committee of Animal Resources at the University of Rochester.

For the purposes of staging embryos, noon of the day a vaginal

plug was detected was taken to be embryonic day 0.5 (E0.5). Mice

were deeply anesthetized, perfused transcardially with PBS,

followed by 4% PFA in PBS, pH 7.3. Then the brains were

dissected, postfixed in 4% PFA in PBS at 4uC overnight, washed

three times in PBS, and cryoprotected in 30% sucrose in PBS

before rapid freezing in OCT compound (TissueTek). For antigen

retrieval, cryosections (20 mm) were heated in 10 mM citrate

buffer (pH 6.0) at 95uC for 10 min. The sections were permea-

bilized and blocked in PBS plus 0.1% Tween-20, 5% horse serum,

and incubated with primary antibody overnight at 4uC, washed in

PBS three times and incubated with fluorescently labeled

secondary antibody for 1 h at room temperature. The primary

antibodies used were mouse monoclonal anti-IL3RA (Santa Cruz,

1:100), rabbit polyclonal anti-IL3RA (Santa Cruz, 1:100), rabbit

polyclonal anti-IL3RB (Santa Cruz, 1:100), goat polyclonal anti-

IL3 (Santa Cruz, 1:100), rabbit monoclonal anti-b-III tubulin

(Tuj1) (Covance, 1:1000), mouse anti-NeuN (Chemicon, 1:300),

goat anti-SOX2 (Santa Cruz, 1:500), rabbit anti-Nestin (Abcam,

1:300), rabbit anti-TBR2 (Millipore, 1:200), rabbit anti-pH3

(Santa Cruz, 1:200), rabbit anti-PROX1 (Covance, 1:1000),

anti-estrogen receptor b (Santa Cruz, 1:100), rabbit anti-Ki67

(Novocastra, 1:1000), rabbit anti-GFAP (1:2000). Secondary

antibodies used were Alexa Fluor 488 (Invitrogen, 1:500), 546

(Invitrogen, 1:500) conjugated to donkey anti-mouse, rabbit or

anti-goat (Invitrogen). DNA was stained with 49,6-diamidino-2-

phenylindole (DAPI; Molecular Probes). Images were acquired

with a Zeiss laser confocal microscope and analysed with LSM 510

software (Carl Zeiss).

Primary Cultures
For neural progenitor’s culture, cerebral cortices from C57BL/6

mice embryos (E12.5–14.5) were dissected in HBSS solution

(Invitorgen), the meninges and other parts were removed under

dissecting microscope and only the cortices were retained. After

several washes with HBSS, the cortices were minced and

dissociated mechanically with trituration, filtered through a

70 mm cell strainer (BD Falcon). Then, the cells were culture in

neurobasal medium (Invitrogen) or DMEM/F12 (Millipore) with

different supplements and growth factors according to experimen-

tal requirements. For neurons culture, the procedures are same

with neural progenitors except the age of mice embryos (E14.5–

17.5).
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Proliferation Assays
For generation of neurospheres, the dissociated cells from

E14.5–17.5 mice cortices were cultured for 2–5d in the medium

containing neurobasal medium, B27 (Invotrogen) and N2 (In-

vitrogen) supplements, 100 U/mL penicillin, 100 mg/mL strepto-

mycin, FGF2 (10 ng/ml), and EGF (10 ng/ml). For monolayer

cultures, the generated neurospheres were collected and spun

down (200 g for 5 minutes), then triturated with a Pasteur pipette

to obtain single cells. The single cell suspensions were replated

onto poly-L-lysine (50 mg/ml)/laminin (10 mg/ml)–coated Lab-

Tek Chamber Slide (Thermo Scientific). Cells were treated with

different concentrations of recombinant mouse IL3 (10 and

100 ng/ml) and cultured in above medium. Untreated cells served

as control. After 24 or 48 hours culture, cells were fixed with 4%

PFA and subjected to mmunohistochemistry. Immunostaining and

morphometry were carried out to assess the numbers of

proliferating progenitors (Ki67 and pH3 positive). More than 4

random microscopic fields (206) were analyzed and about 8000

cells were counted for each condition.

Assessment of Differentiation Markers in vitro
To investigate whether IL3 can drive neural differentiation, we

used quantitative real-time PCR method described previously [81]

to evaluate the effects of IL3 on neural differentiation. First, neural

progenitors were cultured in neurobasal medium (containing B27

supplements, N2 supplements,10 ng/ml FGF2 and 10 ng/ml

EGF) for 2 days, then FGF2 and EGF was removed and replaced

by neurobasal medium with 1% serum (vol/vol), B27 supplements,

N2 supplements and IL3 (10, 100, and 200 ng/ml). Four days

after addition of recombinant mouse IL3 (Invitrogen), cells were

harvested for the RNA extraction. Untreated cells served as

control. RNA was isolated using Trizol reagent (Invitrogen)

according to the manufacturer’s instructions and treated with

DNase I (Fermentas). cDNA was synthesized from 3 mg total RNA

using oligo-dT primers and Superscript III Reverse Transcriptase

(Invitrogen). Quantitative PCR was performed by using the Bio-

Rad iCycler & iQ Real-Time PCR Systems. The following primer

pairs were used: mouse Sox2-F, GCGGAGTG-

GAAACTTTTGTCC, mouse Sox2-R, CGGGAAGCGTG-

TACTTATCCTT; mouse Nestin-F, CCCCTTGCCTAA-

TACCCTTGA, mouse Nestin-R,

GCCTCAGACATAGGTGGGATG; mouse b-III-tub-F, TA-

GACCCCAGCGGCAACTAT, mouse b-III-tub-R,

GTTCCAGGTTCCAAGTCCACC; mouse GFAP-F:

CCCTGGCTCGTGTGGATTT, mouse GFAP-R: GACCGA-

TACCACTCCTCTGTC; mouse ENO2-F:

GTCCCTGGCCGTGTGTAAG, mouse ENO2-R: CATCCC-

GAAAGCTCTCAGC; mouse nestin-F: CCCTGAAGTCGAG-

GAGCTG, mouse nestin-R: CTGCTGCACCTCTAAGCGA;

mouse PLP1-F: TGAGCGCAACGGTAACAGG, mouse PLP1-

R: CCCACAAACTTGTCGGGATG. The iCycler PCR analysis

was performed using the SYBR Green master mix, according to

the manufacturer’s recommendations (BioRad). The specificity of

product was ensured by melting curve analysis and agrose gel

electrophoresis. cDNA content of samples was normalized to the

expression of GAPDH.

Cell Viability Assays
To investigate whether IL3 has protective or trophic effects on

neural progenitor’s survival, cerebral cortices from E12.5 or E13.5

mice embryos were dissociated and the isolated cells (56104) were

plated onto poly-L-lysine coated 96-well plate (Corning). The

survival of neural progenitors was investigated by three culture

conditions. Firstly, we studied the neurotrophic effects of IL3 on

neural progenitors through culturing the progenitors in the

absence of any factor (with neurobasal medium only) and in the

presence of IL3 (0.02–50 ng/ml). Recombinant mouse IL3 was

added into the medium after the culture initiated two hours. After

36 hours incubation, cell viability was determined by measurement

of cellular ATP levels (CellTiter-Glo Luminescent Cell Viability

Assay, Promega). Secondly, neural progenitors were first cultured

in neurobasal medium supplemented with B27 and Glutamax

(Invitrogen). On day 2 of culture, the medium was replaced with

serum-free neurobasal medium containing N2 supplement and

different concentrations of mouse IL3 (0.1–20 ng/ml). The

cultures were maintained for 3 days and cell viability was

measured. Thirdly, neural progenitors were first cultured in

neurobasal medium supplemented with B27 and Glutamax. On

day 2 of culture, IL3 was added into the medium and the cultures

were maintained for 3 days and cell viability was measured. For

studying the effects of IL3 on neurons, cerebral cortices from

E16.5–E18.5 mice embryos were dissociated and cultured in

DMEM/F12 medium with 5% FBS. On day 2 of culture, the

medium was replaced with serum-free DMEM/F12 containing

N2 supplement and different concentrations of IL3 (0.1–20 ng/

ml). The cultures were maintained for 2 or 3 days and cell viability

was determined as described above.

Western Blotting
Neural progenitors from E13.5 mice were first cultured in

neurobasal medium under proliferating condition (containing B27

supplement, Glutamax, 10 ng/ml FGF2 and EGF) for one week.

To exclude the interference of other factors, the supplements,

FGF2 and EGF were removed from the medium for about 16

hours prior to IL3 treatment (3 ng/ml). Proteins from MEG01

cells (IL3 treated) and neural progenitors were homogenized in

RIPA lyses buffer (Cell signaling) containing a cocktail of protease

inhibitor (Sigma Chemical, MO, USA) and phosphatase inhibitor

(Cell Signaling). Proteins were quantified by BCA method (Pierce).

Extracted protein (40 mg) was separated by SDS-polyacrylamide

gel electrophoresis and transferred to PVDF or Nitrocellulose

membrane by electrophoretic transfer. The membrane was

blocked, incubated with primary antibodies for overnight at 4uC,

washed three times with TBST, and then incubated with

secondary antibody for 1 hour at room temperature. Antibodies

used in western blot are as follows: Rabbit anti-phospho-AKT

(Thr308) (Cell Signaling), Rabbit anti-AKT1 (Cell Signaling),

Rabbit anti-phospho-JAK2 (Tyr 1007/1008) (Cell Signaling),

Rabbit anti-JAK2 (Cell Signaling), Rabbit anti-phospho-GSK3b

(Ser9) (Cell Signaling), Rabbit anti-phospho-ERK1/2 (Cell

Signaling), Rabbit anti-ERK1/2 (Cell Signaling), Rabbit anti-

GSK3b (BD), and Rabbit anti-actin (Abcam). Immunoreactivity

was detected with an enhanced chemiluminescence system (Pierce,

IL, USA) with colored markers (Fermentas) as molecular size

standards.

Supporting Information

Figure S1 Linkage disequilibrium (LD) pattern of the

studies SNPs in Chinese (CHB) and Europeans (CEU). (a)

In screening sample (CHB), they are four haplotype blocks and all

the 7 highly significant association SNPs are located in block 2. (b)

In CEU, they are five haplotype blocks and the 7 highly linked

SNPs in CHB are disrupted. LD values (r2) for each pair of

markers were calculated by Haploview (v4.2). Haplotype blocks

were defined according to the criteria of Gabriel et al.

(PDF)
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Figure S2 The C allele of rs31480 is highly conserved in

vertebrate. rs31480 (box in red) is locates 216 bp upstream of

the IL3 promoter, and only 10 bp downstream of the highly

conserved TATA binding site (box in blue). The C allele (ancestral

allele) is completely conserved in all of the listed species, implying

functional importance of rs31480. Note that rs31480 is lies in a

primates conserved region (up panel), also suggesting the

importance of rs31480 in primates. TSS, transcription start site.

(PDF)

Figure S3 Impacts of rs31480 on promoter activity in
CHO, SK-N-SH and COS-7 cell lines. Promoter activity of

the construct with T allele is significantly higher than C allele in

CHO (a) and COS-7 (b) cells. In SK-N-SH cells (c), the trend is

same as CHO and COS-7 though the differences were not

reached significant level. Values of relative luciferase activity are

expressed as mean 6 s.d. (results of a triplicate assay). #P= 0.07,

**P,0.005 (Student’s t-test).

(PDF)

Figure S4 Expression of IL3RA in embryonic mouse
brain (E12.5). IL3RA is expressed in SOX2 positive cells in

Frontal cortex and hippocampus, two regions that associated with

higher level cognitive functions. Scale bar, 50 mm.

(PDF)

Figure S5 IL3RA is mainly expressed in the neocortex

region of mouse brain. (a–f) Co-expression of IL3RA and

IL3RB in agranular retrosplenial cortex (RSA), barrel field of the

primary somatosensory cortex (S1BF). (g–l) Expression of IL3RA

was also found in perirhinal cortex (Prh), primary Motor Cortex

(M1) and secondary Motor Cortex (M2). Note that IL3RA positive

cells were also expressed Tbr2 weakly, indicating they were not

mature neurons. Scale bar, 25 mm.

(PDF)

Figure S6 Expression of IL3RA and IL3RB in hippo-

campus. (a–c) Co-expression of IL3RA and IL3RB in CA3

region of hippocampus. (d–i) IL3RA is expressed in CA1 and CA3

of hippocampus, some of IL3RA positive cells were Tuj1 positive,

indicating they were mature neurons, whereas others were Tuj1

negative. Scale bar, 25 mm.

(PDF)

Figure S7 IL3RA is expressed in hilus of dentate gyrus.

Prox1 was used to label the granule cell layer (GCL) of the dentate

gyrus, note IL3RA positive cells in hilus were prox1 negative.

Scale bar, 50 mm.

(PDF)

Figure S8 Double immunostaining of IL3RA and SOX2

revealed co-localization of IL3RA and SOX2 in developing

mouse brain. (a–c) IL3RA expression cells were SOX2 positive in

lateral septal nucleus, dorsal part (LSD), indicating they were neural

progenitors. (d–i) In cortex, some IL3RA positive cells still express

SOX2, but for many of IL3RA positive cells, expression of SOX2

was down-regulated or turned-off, demonstrating they were

converted into immediate progenitors or neurons. Scale bar, 25 mm.

(PDF)

Figure S9 Co-expression of IL3RA and IL3RB in mouse
brain. All IL3RA positive cells were also expression IL3RB. Scale

bar, 25 mm.

(PDF)

Figure S10 IL3RA is mainly expressed in neural pro-

genitors at early embryonic stage. (a–c) At E12.5, IL3RA is

expressed in sox2 positive progenitors in frontal cortex. (b–e) Co-

expression of IL3RA and nestin, a marker for neural progenitors.

(f–h) At E14.5, IL3RA is expressed in some sox2 positive

progenitors in cingulate cortex. Scale bar, 25 mm.

(PDF)

Figure S11 Double immunostaining analysis of IL3RA

and Tuj1 in the developing mouse brain. At early stage of

brain development (From E14.5-P1), IL3RA is not expressed in

mature neurons (a–i). However, at P2 stage, a proportion of

IL3RA positive cells are mature neurons as revealed by co-

localization with tuj1 (j–l), a marker for mature neurons. Scale bar,

25 mm.

(PDF)

Figure S12 IL3RA is expressed in immediate progenitor

cells (IPCs). IL3RA positive cells also express Tbr2 weakly,

indicating these cells were immediate progenitors. Scale bar,

25 mm.

(PDF)

Figure S13 IL3RB is expressed in neurons and glia cells.
(a–c) Co-immunofluorescence of IL3RB and NeuN revealed

expression of IL3RB in mature neurons. (d–f) IL3RB also

expressed in some glia cells (GFAP positive). Scale bar, 25 mm.

(PDF)

Figure S14 Expression of IL3RA in proliferating neural
progenitors. Some IL3RA positive cells also expressed Ki67 and

pH3, marker for proliferation cells, indicating they were active

proliferation. Scale bar, 25 mm.

(PDF)

Figure S15 Expression of IL3 receptors (IL3RA and

IL3RB) in cultured neural progenitors and trophic

effects of IL-3 on neural progenitors and neurons. (a)

IL3 receptors (IL3RA and IL3RB) were expressed in cultured

neural progenitors (from E13.5 mice) as revealed by RT-PCR,

however, bIL3 was not detected. (b) When there were 5% FBS in

neurobasal medium, IL-3 has no trophic effects on neural

progenitors. Neural progenitors from E12.5 mice were cultured in

neurobasal medium (supplemented with 5% FBS and IL-3) for 36

hours then cell viability was measured. (c) IL-3 (1 ng/ml) significantly

promotes survival of neurons when there were no any factors in

neurobasal medium. Neurons from E17.5 mice were cultured in

neurobasal medium (supplemented with B27 and Glutamax) for 12

days, then B27 and Glutamax were removed from medium and

different concentrations of IL-3 were added. Cell viability was

determined after IL-3 treatment for 2 days. (d) However, when there

were B27 supplement in neurobasal medium, trophic effects of IL-3

on neurons was disappeared. Neurons from E18 mice were first

cultured in neurobasal medium (supplemented with B27 and

different concentrations of IL-3) for 24 hours, cell viability was then

measured. Y-axis, cell viability (normalized to control); X-axis,

concentration of IL-3 (ng/ml). Data are expressed as mean 6 s.e.m.

(n=8 for each group). *P,0.05 (Student’s t-test). (e) The expression of

BCL-xL was not regulated by IL3 in neural progenitors.

(PDF)

Figure S16 IL3 has no effects on neural differentiation.
Neural progenitors were first cultured in neurobasal medium

under proliferation condition (containing 10 ng/ml FGF2 and

EGF), after 4 day’s culture, FGF2 and EGF were removed. Then

2% FBS and different concentrations of IL3 (10, 100, 200 ng/ml)

were added. The cultures were maintained for 4 days and RNAwas

isolated for quantification. Relative gene expression was not

changed for all of the tested genes, indicating IL3 has no effect on

neural differentiation. Real-time PCR analysis of beta-III Tubulin
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(Tubb3) (a) and Enolase 2 (ENO2) (b), two neuron specific markers,

GFAP (glia cells marker) (c), sox2 (neural stem cells marker) (d),

Tbr2 (immediate progenitors marker) (e), and DCX (new born

neurons marker) (f). None of these cell specific markers showed

significant change after different concentration IL-3 treatment.

(PDF)

Figure S17 IL-3 is not regulated by estrogen. We first

confirmed that K562 cell line expressed IL3 and estrogen

receptors (ESR1 and ESR2) by RT-PCR (a). (b–c) Expression of

TFF1 and IL3 was not changed after treated by vehicle (DMSO)

for different times (0 h–24 h). TFF1, an estrogen response gene,

showed significantly elevated after treated by estrogen (10 nM) (d),

however, expression of IL-3 was not changed after estrogen

treatment (e), indicating IL-3 is not regulated by estrogen. Data

are expressed as mean 6 s.e.m. (three independent assays, each

containing 3 replicates). **P,0.01.

(PDF)

Figure S18 Model for sex-specific association of IL-3
and brain volume. Different genotypes at rs31480 (TT vs. CC)

influence IL-39s expression in both males and females. However,

since the estrogen receptors (ER) level is low in males, therefore,

even the signaling pathways mediated by IL-3 were different in

TT and CC carriers, the total activation level of ERs was not

significant changed. But in females, the activation level of ERs was

different between TT and CC carriers due to high level of ERs. In

addition, estrogen can further enhance ER activity in females. As a

result, signaling pathways mediated by ER were greatly activated

in TT carriers than in CC carriers, which may influence brain

development, eventually lead to difference of brain volume in TT

and CC carriers at rs31480.

(PDF)

Table S1 Marker characteristics and association sig-

nificance in females.

(DOC)

Table S2 Core haplotype association analysis in fe-

males.

(DOC)

Table S3 Marker characteristics and association sig-

nificance in males.

(DOC)

Table S4 Average cranial volumes of female individuals

with three different genotypes at each of the seven SNPs

covering IL-3.

(DOC)

Table S5 Marker characteristics of AKT1 and associa-

tion significance.

(DOC)
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