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The intermediate Jacobian of 
the cubic threefold 

By C. HERBERT CLEMENS and PHILLIP A. GRIFFITHS 
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0. Introduction 

The purpose of this paper is to study the cubic threefold, that is, the 
hypersurface of degree three in complex projective four-space. Our principal 
tool in this study will be the intermediate Jacobian of the threefold, an abelian 
variety which has a role in the analysis of algebraic curves on the threefold 
similar to the role of the Jacobian variety in the study of divisors on an alge- 
braic curve. Much of what we will do is motivated by analogy with properties 
of curves and their Jacobian varieties, so we shall begin by recalling some of 
these properties together with some general facts about abelian varieties 
(see [17]). 
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A positive polarization on a complex torus A is given equivalently by: 
(i) a skew-symmetric form 

Q: H1(A) 0 H1(A)* Z 
which satisfies the Riemann bilinear relations; 

(ii) a non-degenerate divisor 0 on A, taken up to numerical equivalence 
(see [17; Chapter 1]). Since H2(A) Homz (A2H1(A), Z), if we are given 0, then 
the dual cohomology class Q ? H2(A) defines the corresponding form Q. Con- 
versely, given Q, the Riemann bilinear relations permit the construction of 
the non-degenerate divisor 0. A complex torus is called an abelian variety if 
it admits a positive polarization. 

A positive polarization on a complex torus is principal if equivalently: 
(i) Q is unimodular; 
(ii) dim 0 a 0 so that 0 is determined up to translation by its homology 

class. 
Because of this last property, principal positive polarizations are especially 
useful in geometry. If we define a morphism 

p: (A, OA) - (B, OB) 

between polarized abelian varieties to be given by a homomorphism P: A- B 
such that (P*(QB) = Q, then the principally polarized abelian varieties form 
a category having very strong semi-simplicity properties (see (3.6) and (3.20)). 

Given a smooth projective variety W, there are associated to W two abelian 
varieties, the Albanese variety Alb(W) characterized by the existence of a 
mapping X: W > Alb( W) such that any rational mapping of W into an abelian 
variety factors uniquely through X, and the Picard variety Pic(W) which is 
the group of divisors algebraically equivalent to zero modulo divisors of ration- 
al functions on W. Furthermore there exist the relations: 

(0 1) 
A X*: H1(W) H1(Alb(W)) (modulo torsion) 

(0.1) X*: Pic(Alb(W)) Pic(W). 

If C is a smooth curve, the intersection form 

H, (C) 
(2 
H, (C) Z 

induces a principal polarization on Alb(C) with corresponding divisor 0. The 
mapping *: C Pic(C) given by 

* W = (X - XO) 

induces a mapping: 
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(Using (0.1), a can be alternatively constructed from the mapping Alb(C) 
Pic(Alb(C)) given by a -- (0 + a).) It is then Abel's theorem that: 

(0.2) The map v: Alb(C) > Pic(C) is an isomorphism. 

Thus in the case of curves, these two abelian varieties can be identified, the 
resulting variety being denoted by J(C), called the Jacobian variety of the 
curve. 

Continuing with the case of curves, there are induced natural mappings: 
skW C(k) > J(C) 

where C(k) is the k-fold symmetric product of C. The Jacobi inversion theorem 
states that: 

(0.3) If k > g, the genus of C, c(k) is surjective and if k = g, the mapping is 
birational. 

The theorems of Riemann and Poincare state that: 

(0.4) For k < g, K(k)(C(k)) has the same homology class in H2k(J(C)) as the cycle 

1 -(dO. ... O ) . 1g (0. 0) 
(g - k)! (g-k)-times 

In particular, since 0 is determined up to translation by its homology class: 

r"'9-1'(C'g-1) = 0 + (constant)- 

Finally, Torelli's theorem states that: 

(0.5) The curve C is uniquely determined by the principally polarized abelian 
variety (J(C), 0). 

In general, let (A, 0) be a principally polarized abelian variety of dimen- 
sion g. Referring to (0.4), we say that (A, 0) has level k if the homology class of 

1 (0. 0) 
(g - k)! (g - k)-times 

contains an effective algebraic k-cycle. Thus (A, 0) is always of level (g - 1); 
and (A, 0) is of level one if and only if (A, 0) is a sum of Jacobians of smooth 
curves (see [14] and [16]). Now any principally polarized abelian variety has 
a unique direct sum decomposition into irreducible ones corresponding to the 
irreducible components of its theta-divisor (see Lemma 3.20). Thus given 
(A, 0) we can associate to it, for example, the principally polarized abelian 
variety (A1, 01) which is the direct sum of the components of (A, 0) which are 
not of level one. 

The motivation of the definition of (A1, 01) is as follows: If V is a non- 
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singular threefold such that the Hodge numbers h1' (V) and h3'0(V) are zero, 
then there is a principally polarized abelian variety (J(V), 04, called the in- 
termediate Jacobian of V, obtained by dividing H1'2(V) by a lattice generated 
by the third integral cohomology. The associated principally polarized abelian 
variety (J(V), (0)l) (obtained by "throwing away" the summands of J(V) 
which come from curves) turns out to be a birational invariant of V. In the 
case that V is a non-singular cubic threefold, (J(V), 0S) will be shown to be 
irreducible and of level two but not of level one, so that V cannot be rational. 

Again, let V denote a smooth, projective variety of dimension three. 
Given 'r E H3(V; Z) there is induced a linear mapping: 

7*: (H3,0(V) e H2,1(V)) > C 

(01 > 
r 

Then J(V) (H3'0(V) ? H2,1(V))*/{Y*}. Analogously to the case of curves, 
given an algebraic family {Z8}. e of effective algebraic one-cycles on V, the 
"locus of the cycle" map 

a *: H1 (S) >H3(V) 

induces a homomorphism of complex tori 

I: Alb(S) A JV) 
called the Abel-Jacobi mapping. (S is assumed to be smooth and irreducible.) 
Furthermore, if {ZJ} satisfies a mild general position requirement, then for 
each s E S there is defined an incidence divisor 

D= {tcS: (Z3 n Zt) # 0} 
Choosing a basepoint so ? S, the map *(s) = (D - D80) from S to Pic (S) 
leads to a homomorphism 

go: Alb(S) >Pic(S) . 
A general version of Abel's theorem says that there always is a factorization 

Alb(S) 

(0.6) JV) 

Pic(S) i/ 

and that if h3,0(V) = hl ?(V) = 0, ker p/ker ' is finite. This says that, up 
to isogeny, the equivalence relation on {ZJ} determined by J(V) is the same 
as that determined on {D3} by linear equivalence. 

We now specialize to the case that V is a cubic threefold. Then h3'0(V) 
hl ?(V) = 0 and h2,1(V) = 5. Furthermore, if we denote by Gr(2, 5) the Grass- 
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mann variety of projective lines in P4 and put 

S = {s E Gr(2, 5): the corresponding line L8 C VI 
then it is a result of Fano [6] that S is a smooth irreducible surface having 
the numerical characters 

(0.7) hl '(S) = 5, h2'0(S) = 10. 

Building upon results of Gherardelli [7] and Todd [19] we show: 

(0.8) (Abel's theorem and the Jacobi inversion theorem). In the diagram (0.6), 
all three mappings are isomorphisms. 

Also the natural mapping A: S > Alb(S) = J(V) is generically injective 
and we will show that: 

(0.9) The homology class of +(S) is the same as that of the cycle 
(1/3!) (Ov - Ov - Ov)- 
Next, the mapping 1j(2): S X S J(V) defined by ,(s, t) = s - t is generically 
6 - 1 so that: 

(0.10) (Theorems of Riemann and Poincare). The image variety *'2'(S x S) 
coincides, up to translation, with O,. 

Thus (J(V), O0) is of level two. By studying the so-called Gauss map on O, 
we then derive our last two theorems: 

(0.11) (Torelli theorem). The principally polarized abelian variety (J(V), O0) 

uniquely determines the cubic threefold V. 

(0.12) (Non-rationality theorem). The principally polarized abelian variety 
(J(V), O0) is not of level one so that V cannot be rational. 

Our methods of proof of (0.8)-(0.12) consist mainly in elementary geo- 
metric analysis of cubic hypersurfaces of dimensions 2, 3, and 4, applications 
of the theory of abelian varieties and of Picard-Lefschetz theory, and degenera- 
tion arguments, that is, reasoning based on the study of the topology of alge- 
braic varieties acquiring some simple types of singularities. Our use of this 
last technique occurs wher a family Vt of cubic threefolds acquires an ordinary 
double point for a fixed value t = 0 of the parameter. The corresponding sur- 
face of lines So has an ordinary double curve Do given by the lines on V0 which 
pass through the double point. The threefold V0 is rational and is obtained 
by blowing up P3 along a canonical embedding of Do, a non-singular curve of 
genus four, and then blowing down a quadric surface. Furthermore the sur- 
face So has as its normalization the second symmetric product D'2'. This 
enables us to construct a topological model for St by plumbing So along a 
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tubular neighborhood of Doe 
The preceding topological analysis leads, first of all, to the conclusion that 

the mappings of (0.6) are all isogenies. This then allows us to conclude that 
two relations induced on elements of S under the mapping S - Pic(S) actually 
already hold under S > Alb (S). Before stating these relations, recall that 
the group law on a cubic curve is generated by the relation "three points lying 
on a line". In this context, if we think of Alb(S) as a quotient of the free 
abelian group generated by the lines on V, then the generating relations for 
the group law include the following two: 

"Six lines passing through a point on V". 
"Three coplanar lines on V". 

The existence of these relations in Alb(S) are then sufficient to conclude (0.8). 

A second use of the degeneration argument outlined above comes in the 
proof of (0.9) where we show first that the theorem is true "in the limit" and 
then apply the absolute irreducibility of the action of the monodromy group 
for a Lefschetz pencil of hyperplane sections of a cubic fourfold to conclude 
(0.9) for smooth V and S. For (0.10), the fact that the difference map, rather 
than the sum, is used to construct O, geometrically is intimately related to 
the classical "double sixes", that is, conjugate sets of six disjoint lines on a 
non-singular cubic surface (see ? 13). 

The geometric aspects of our proofs of (0.11) and (0.12) were motivated 
by Andreotti's proof of the Torelli theorem for curves [1]. His arguments are 
based on the interplay between the geometry of the canonical mapping of the 
curve into projective space and the Gauss mapping on the theta-divisor. In the 
case of the cubic threefold, we find ourselves in a situation formally analogous 
to that upon which Andreotti builds his proof. To explain briefly, we can 
define a Gauss map on +(S) c J(V): 

9: *(S) >Gr (2, 5) 

where Gr (2, 5) should now be interpreted as the set of two-dimensional sub- 
spaces to the tangent space to J(V) at the origin. The central geometric fact 
is then that, under suitable identification, the composition go* is just the 
tautological inclusion coming from the definition of S as a subvariety of 
Gr(2, 5), the set of projective lines in P4. This essential fact, which we call 
the tangent bundle theorem, allows us to compute the branch locus of the Gauss 
map 

9: O -> P. 

Analogously to the case of curves, this branch locus is the dual variety V * 
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of the original cubic threefold V, from which we obtain (0.11). Finally (0.12) 
reduces to showing that V* does not contain linear subspaces of dimension 
two so that V* cannot coincide with the dual variety of a curve in P4. 

By and large, the paper is self-contained. Aside from one's natural incli- 
nation to do so, the reason that we have given a self-contained development is 
that it was often necessary to have somewhat more precise information than 
was classically available. For example many computations hinge on such ques- 
tions as whether the double curve Do of the degenerate Fano surface S0 splits 
into two components under normalization, what is the normal bundle of the 
curve lying over D, in the normalization of S0, and so forth. The length of 
the paper is due in large measure to this circumstance. 

By way of acknowledgement, two of the central ideas in this paper were 
suggested to us by A. Mayer and E. Bombieri. First, it was Mayer who told 
us that the Gauss mapping should be used to study the subvarieties in a princi- 
pally polarized abelian variety, and in particular that the Gauss map on the 
theta-divisor should have a branch locus with geometric significance. Second- 
ly, it was Bombieri who suggested that the rationality of the cubic threefold 
should force its intermediate Jacobian to look like the Jacobian variety of a 
curve. After we put in the information arising from polarizations, it was 
exactly this notion which led eventually to the irrationality proof. 

Finally, after this paper was completed, G. Lusztig pointed out to us a 
recent paper by A. N. Turin (Izvestia Akad. Nauk. S.S.S.R., Tom 34, no. 6, 
pages 1200-08). This paper, together with a subsequent one appearing in 
Izvestia, Tom 35 (1971), pages 498-529, seems to overlap very considerably 
with the geometric aspects of our study of the cubic threefold. In particular, 
the tangent bundle theorem is contained in an essentially equivalent form in 
Turin's first paper and the Torelli theorem for cubic threefolds, obtained by 
a different method, appears in the second paper according to a letter which 
we have recently received from the author. In a related letter, Y. Manin has 
written that he and V. Iskovskibh have recently proved the irrationality of 
the non-singular quartic threefold. Since some of these are unirational, this 
gives another counterexample to the three-dimensional Luroth problem. 

Before beginning the main body of the paper, we conclude the introduc- 
tion with a list of notation and conventions which will be used repeatedly 
throughout the paper: 

Notation and Conventions 

1. Dimension means complex dimension, and all complex manifolds will be 
assumed to be oriented by the form dxj A dy1 A ... A dx,, A dyo where {zj- 
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xj + iyjj=,... are holomorphic local coordinates. For a complex number z, 
Re z and Im z will denote its real and imaginary parts respectively. 

2. "Threefold" means "three-dimensional variety". If Xis an algebraic varie- 
ty, the expression "for generic x e X" means "there exists a dense Zariski open 
subset U of X such that for all x e U". 

3. For a product X1 x ... x Xm of manifolds, wr: (X1 x ... x Xm) 
will denote the projection onto the factor Xi. 

4. For a space X, Hq(X) = Hq(X; Z)/{torsion cycles}, all homology singular, 
with compact support. If X is a compact manifold: Hq(X) = (image of 
Hq(X; Z) in the de Rham group {closed q-forms}/{exact q-forms}); A: H*(X) 0 
H*(X) H*(X) denotes the cup-product operation and : H*(X) ( H*(X) 

H*(X) the dual intersection operation. If Y is an algebraic q-cycle in the 
algebraic manifold X, {Y} is the element of H2q(X) carried by Y. "-" will 
also denote intersection of algebraic cycles. 

5. For a complex manifold X, x e X, Y a submanifold of X: T(X) is the 
(complex) tangent bundle of X, T(X, x) its fibre at x; T*(X) is the dual 
cotangent bundle with fibre T*(X, x). N(X, Y) will denote the normal bundle 
to Y in X. For a divisor D on the algebraic manifold X, L(D) is the associ- 
ated line bundle and O(D) its sheaf of holomorphic sections. 

6. P. will denote complex projective n-space; Gr(k + 1, n + 1) will denote 
the Grassmann manifold of (k + l)-dimensional subspaces of complex (n + 1)- 
space. Then P, = Gr(1, n + 1) and P* will denote Gr(n, n + 1), the dual 
projective space to P,. For A c P*, let [A] = the subspace of P, determined 
by the linear subspace n{h: h: h e A}, for B C Pn, let [B] = {h e P*: B C [h]}. 

7. Z, Q, R, and C will denote respectively the integers, the rational, real and 
complex number fields. 

PART ONE: INTERMEDIATE JACOBIANS OF THREEFOLDS 

1. Algebraic correspondences and homology relations 

Let X and Y be smooth irreducible complex projective varieties of dimen- 
sion m and n respectively, and let T be an algebraic r-cycle in (X x Y). Let 

K: H* (X) (0 H* (Y) - H*(X x Y) 

be the Kiinneth isomorphism. Then T induces a homology mapping 9P(X, Y; 
T) defined by the composition: 
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H*(X) (i{2 H) (X) 0 H2f(Y) H*+2?f(X x Y) 

-I He+2,-2m(X X Y) ) H*+2r-2m(Y) 

We have immediately a purely formal numerical relation: 
(1.1) (9p(X, Y; T(Y) - )y = (i - (T(Y, X; T)(a)))x 
where Y E Hq(X), a C H2(m+n-r)-q(Y) 

If we let ~2r0 a, 0R 
b2r- 

be the decomposition of {T} according to the 
Kiinneth isomorphism K and if we let X1 and X2 be two copies of the manifold 
X, then we can define an algebraic cycle M in X1 x Y x X2 such that: 

(1.2) {M} = (I. a, (0 b2r-i (0 {X2}) (Ej {X1} (0 b2r-j (0 a,) 
(again we use the Kiinneth isomorphism, this time on X, x Y x X2). Define 
the mapping 7(X; T) as the composition: 

H*(X) = H*(X1) 0{ X28)1} H*+2(m+r)(Xl X Y x X2) 

{iL H*+4r-2(m+n)(Xl X Y X X2) 

(ma) 
* 

H*+4r-2(m+ f)(X) 

Again, by a purely formal calculation using the relation between the Kiinneth 
formula and the intersection pairing, one obtains: 
(1.3) (X; T) = p(Y, X; T) op(X, Y; T) 

Also notice that if we view T as a correspondence T: X Y and let T*: 
Y X be the dual correspondence (also defined by T c (X x Y)) then 

M= (T*oT): X-+ X. 
If T is an effective algebraic cycle (components with multiplicity one), then: 
(1.4) {M} = f(7rxlxy)-1(T)}-{(7ryXX2)-1(T)} . 

2. Families of algebraic curves on a threefold 
For the purposes of this paper, we will be interested in the formalism of 

? 1 only in a very restricted setting. Let V be a smooth irreducible complex 
projective variety of complex dimension three. 

Definition 2.1. An algebraic family of algebraic curves on V is a non- 
singular projective variety S (called the parameter space) together with an 
algebraic subvariety T c (S x V) such that: 

Z, - wv(({s} x V) n T) 
is an algebraic curve in V for each s e S. 

(Note: Multiplicities of the components of Z, are given by the multiplicities 
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of the components of ({s} x V) T. Thus since all components of T will be 
counted with multiplicity 1, the same will be true of Zs for generic s e S. This 
setting, while not the most general, is adequate for our present purposes.) 

For x e V define: 

(2.2) WX = 7rs((s x {x}) n T) 
Thus Wx is the set of s e S such that Zs passes through x. Now the family 
{Wx}Cex does not have to be equidimensional, however it will be of use to make 
some restriction in this direction, which we will incorporate in the following 
definition: 

Definition 2.3. The family {Z8}seS is said to be a coveringfamily of curves 
for V if: 

(i) S is irreducible, dim S = 2, and Zs is irreducible for generic s; 
(ii) for all but a finite number of points of V, 

dim Wx = 0; 

(iii) for generic x e V, Wx has more than one element; 
(iv) for generic x, if sl and s2 are distinct points of Wx then Zs, and Zs2 

have transverse intersection at x and have no other common points. 

A consequence of this definition is that if {Zs} is a covering family, we 
can define an effective divisor I, called the incidence divisor of (S x S), by 
putting: 

(2.4) I = (union of all components of dimension three of the set 
{(sl, S2) e (s x S): (Z.1 nZ82) # 0}) - 

Furthermore, if we define M as in (1.2) for the triple (S, V; T) it follows that 

(7rsxs)*(MI) = {I}, 
so that, again using the notation of ? 1: 

(2.5) 7(S; T) = p(S, S; I) . 

Notice also that if we define 

(2.6) D8 = 1W(({s} x s) n I) 
where wrs means projection on the second factor, then it is a consequence of 
Definition 2.3 that Ds is an effective divisor on S for each s e S. (Set-theo- 
retically Ds is just the set of all s' such that Zs and Zs, intersect on V, but as 
with Zsy we will want to count components of Ds with multiplicities given by 
those of the components of (({s} x S) I1). For generic s, Ds is counted with 
multiplicity one.) The algebraic family of divisors {Ds}8seS will be called the 
family of incidence divisors on S. 



THE INTERMEDIATE JACOBIAN 291 

Recalling the definitions in ? 1, put: 

i)* = Cp(S, V; T): H1(S) - H3(V) 
(2.7) X* = p,(V, S; T): H3(V) - H3(S) 

al* = r2(S; T): H1(S) - H3(S)- 

Using ? 1 and (2.5), these mappings can be thought of gemetrically as follows: 

(p) = three-cycle traced out on V by Z, as s traces out the one-cycle v; 
X(a) = three-cycle traced out by W, as x traces out the three-cycle a; 
(7) = three-cycle traced out by D, as s traces out the one-cycle a. 

Furthermore, since T and I are algebraic cycles, the dual mappings 

cp*: H3(V) - H'(S) given by p *(w) | 
Jr .ou~r) 

(2.8) V*: H3(S) - H3(V) given by |*(,8) 

12*: H3(S) - H'(S) given by ) (,8) r J (*(r) 
respect the Hodge decompositions [13; ? 15] of H*(S) (0 C and H*(V) ( C 
according to the following rules: 

Rev*: Hp q(V) HP-l q-1(S) 

(2.9) (so, in particular, p* HI3,0(V)=?) 

i*: HP q(S) HPgq(V) ; 
12*: HP q(S) ) 

HP-l-l(S) 

Finally for a covering family {Z8} of curves for V there is a relation be- 
tween the "positivity" of the cycles Z, and D, which is conveniently introduced 
at this point: 

Definition 2.10. An effective algebraic one-cycle Z on V is called numeri- 
cally positive if for any effective divisor W on V: 

(W.Z) > 0 . 

PROPOSITION 2.11. If {Z8} is a covering family for V and if Z, is numeri- 
cally positive, then the divisors D, are ample on S. 

Proof. Let C be any effective divisor on S. Since {Z8} is a covering family, 
there is an effective divisor W on V such that 

q(S, V; T) ({C}) = {W} (see ? 1). 

But 

(qp(S, V; T)({C})-p(S, V; T)({s})) = (C-7)(S; T)({s})) 
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by (1.1), that is (W * Z8) (C- D8) . Since Z8 is numerically positive, (C * D8) > 0, 
and so by the criterion of Moishezon-Nakai [11; page 30], D8 is ample. 

COROLLARY 2.12. If V has Picard number = 1, then D, is ample. (Recall 
that if H2(V) has rank one, which is the case, for example, when V is a com- 
plete intersection, then the Picard number of V = 1.) 

3. The intermediate Jacobian and its polarizing class 

As was mentioned in ? 2, one has the Hodge decomposition of the group 
H3(V) (O C: 

H3(V) ( C H3'0(V) 0 H2"(V) 0 Hl2(V) 0 H0'3(V). 
If we project the subgroup H3(V) of H3(V) ( C into the subspace W= 
H",2(V) 0D H0'3(V), the image is a lattice U, in W and there is an isomorphism 

(3.1) p: H3(V) UV 

such that for a, a e H3(V): 

(3.2) a A ,8 = 2Re5 p(a) A p(i8) V V 

Now there is a non-degenerate hermitian form ,Cv defined on W by the for- 
mula: 

(3.3) CV(()1, w02) = 2i (01 A ()2 

By (3.2), Im ?JC, corresponds under the isomorphism (3.1) to the cup product 
pairing on H3(V). Thus Im CV is unimodular on Uv. Also if Q is the funda- 
mental class of a Kahler metric for V, then for appropriate choice of local 
coordinates z1, Z2, Z3 around x ? V 

Q Ix I/ -1]=, dzi. A dZk e (T*(V, x) A T*(V, x)) 

If w e H",2(V) is such that (cv A Q) Ix = 0, then 
(o Ix = aldz, A dz2 A dz3 + a2dz, A dz2 A dz3 + a3d-z A dz2 A dz3 

so that 
w0 A Co = r-2i)3( - 1)dxl A dy1 A dx2 A dy2 A dx3 A dy3 

where Zk = Xk + iYk and, if w Ix # 0, r is a positive real number. Thus we 
have: 

LEMMA 3.4 Let E be a subgroup of H3(V) such that for Ec = (E (Q C) c 
(H3(V) (0 C): 

(i) Er = (Ec n H2"(V)) 0 (Ec nH1 2(V)); 
(ii) (') A Q = 0 (i.e., w is primitive) for each W ? Ec; 
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then 7CV is positive definite on (Ec n Hl,2(V)). 

The preceding discussion suggests the following formalism (see also [17; 
Chapter I]): 

Definition 3.5. Let W be a finite-dimensional complex vector space, U a 
lattice (of maximal real rank) in W, and UC: (W x W) - C a nondegenerate 
hermitian form on W such that Im UC is integral-valued and unimodular on 
U. The triple (W, U, UC) is called a principally polarized complex torus. 

In the category of principally polarized complex tori, the notion of mor- 
phism will be the strong one, namely 

(f19 U19 XC) >(ff2 U2, 9 2) 

means a linear transformation v: W, W2 such that a(UU1) C U2 and XC1 - 

(XC2)0, the "pullback" of JC2 under a. This implies that a: W1 - W2 is injec- 
tive and that a(U1) is a direct summand of U2 such that Im JC2 is also uni- 
modular on U-L = (a(U1))1m X2 C U2. Since (a(W1))5C2 C (a(Wl))?ImX2, we 
have by dimension that: 

(?U(Wf1))-2 = (a(Wl))? Im 2 

Denoting this last complex vector space by Wi, we obtain a direct sum decom- 
position: 

(3.6) (W2, U2, XC2) (W1, U1 XC1) 0D (W1L, Uj 9JC21 WO) 

We have just seen that every non-singular threefold V has associated a 
principally polarized complex torus 

(3.7) *(V) = (WV UV I CV) - 
If h3,0(V) = hl"(V) = 0, then by Lemma 3.4, CV is positive definite so that 
Jf(V) becomes a principally polarized abelian variety. It is of course a stand- 
ard fact that if C is a non-singular projective curve, Wc = H0"1(C), Uc = the 
projection into H0"1(C) of the subgroup H'(C) of H'(C) 0 C, and 

fC(0(o,, (1)2) -2i oil A w02 

then XCC is positive definite on WC and 

(3.8) J(C) = (WC0 UC, JC) 

is a principally polarized abelian variety, called the Jacobian variety of C. 
Suppose now that X: V, - V2 is a birational morphism between non- 

singular threefolds. Then for oj,, oi2 e WV,: 

(3-9) 0), A (-)2 (X*w)l) A (X*Ot2) 
V2 V, 
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so that there is induced a morphism 

g(V2) * g(V1) 
and hence by (3.6) a direct sum decomposition: 

(3.10) g(V1) g(V2) 0 g(V2)'. 
If we suppose further that V1 is the monoidal transform of V2 obtained by 
blowing up V2 along a non-singular curve C, then for c(C) as in (3.8) we have: 

LEMMA 3.11. g(V1) g(V2) 0 g(C). 
Proof. Put T= {(s, x) e (C x Vi): X(x) = s}, and define , = p(C, V1; T): 

H1(C) H3(Vl) as in ? 1. One checks immediately that the sequence 

0 H3(V2) C X H3(V1) Xg C H (T) (g) C 

is exact where r = w1,: T - V, is the natural projection. By the Thom iso- 
morphism and the fact that as in (2.9) all maps respect the Hodge decomposi- 
tion of cohomology, we have the following diagram in which the horizontal 
sequence is exact: 

O WV2 WV1 H1 2(T) 

9* O 

Ho,1(C) 

The lemma will follow if we can show that 
(i) p* is onto; 
(ii) if (XQ),* denotes the pull-back of XCc, then 

(xCC) S* (UCV1) 12* ( Wv,1 

We obtain both (i) and (ii) at once by proving: If y1 y2 H 11(C), then: 

(3.12) (9*(Yi)*9*(Y/2))v1 = - (Y11*Y2)C - 

To prove (3.12), first notice that if y1 and y2 can be represented by cycles a1 
and a2 which have no common point, then so can p*(-1) and 9P*(2). It there- 
fore suffices to check the formula in the case where (y1 - 72) = 1 and their repre- 
sentatives a1 and a2 are part of a standard basis for H1(C). Thus a1 and a2 
meet transversely at one point so e C and have no other common point. Let 
W be a non-singular surface in V2 which meets C transversely. Then W = 
X-'(W) is a non-singular surface in V, with exceptional curves of the first kind 
above each point of (W n c). Suppose now that so e (W n C). Then: 

(Bu i(1) s a* (s2))V = in t(Syof ag s e tt())W h 

But it is a standard fact in the theory of algebraic surfaces that X-1(s) has 
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self-intersection (-1) in W. So (3.12) follows and so does the lemma. 

Given a principally polarized complex torus 

= (W, Uj5C) 

there is a natural identification 

(3.13) U ~&H,(WI U) 
so that Im SC can be interpreted as a linear mapping on (H1(W/ U) A H1(W/ U)). 
Since 

A 2H1(W/ U) H2(WI U) 
(-Im SC) corresponds naturally to an element 

Q(G) e H2(W/ U) 
called the polarizing class of 2. If SC is positive definite, that is, if If is a 
principally polarized abelian variety (see [17; page 30]), then there is an 
effective divisor O(f) on (W/U) such that {a(f)} is the Poincare dual of Q(,Y). 
O(f) is uniquely determined up to translation in (WI U) and is called the theta 
divisor of W. One has the formula for y1, Y2 e U: 

(3.14) Im XC(Y1, 92) =- ((1 X Y2)*O(7f))(WIU) 

where the identification (3.13) is assumed and "x" denotes the Pontrjagin 
product. 

For a principally polarized complex torus ST, we define 

dim Y = dim W . 

Definition 3.15. Let 2 be a principally polarized abelian variety of di- 
mension q. Sf is said to be of level k (1 < k < q -1) if 

Q (J) A ... A Q(Sf)/(q -k)! 
q- k-times 

is the Poincare dual of an effective algebraic k-cycle in (WIU). 

The condition of the definition is of course vacuous if k = q - 1. It is a 
theorem of Matsusaka (see [16] and [14]) that Y is of level one if and only if Y = 
J(C) where C is a (possibly reducible) non-singular algebraic curve (in which 
case the image of C in J(C) = (W,/ Uc) is the desired algebraic one-cycle). If 
,Y is of level one, then Y is of level k for each k = 1, ... , q - 1, since the 
image of the k-fold symmetric product C(k') of C in J(C) is a k-cycle satisfying 
the required condition in Definition 3.15. Finally, we note that in the case 
of the cubic threefold V which will be studied in detail later on, j(V) will be 
shown to be not of level one. We will prove, however, that I(V) is of level 
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two (see ? 13). 
Next we let C denote the set of isomorphism classes of principally polar- 

ized complex tori. We define an equivalence relation (--) in C as follows: 

(3.16) T raI, Y' if there exist non-singular (possibly reducible) curves C and 
C' such that there are morphisms 

9' >T' (C') 
I'-* ST 0 5(C). 

This equivalence relation has the properties: 

(3.17) If , r- TJ' and Y2 r",1 T then (n 1 f Y2) ')-'i (JtY 0 2)- 

(3.18) If F is a principally polarized abelian variety and c-W- T', then T is a 
principally polarized abelian variety. 

The set of equivalence classes C/{I1} with the operator (0) forms a commuta- 
tive semi-group with identity element equal to the equivalence class of 
Jacobian varieties of curves. Let G denote this semi-group. It would seem 
that the structure of G is quite complicated. However if we define: 

(3.19) A = (semi-group in G given by {1T: F is a principally polarized abelian 
variety}) 

we can give the structure of A explicitly with the help of the following lemma 
which was pointed out to the authors by G. Shimura (see also [14]): 

LEMMA 3.20. Let (W, U, X) be a principally polarized abelian variety 
and suppose that O(f) is reducible, that is O(T) = = miOi where each O, is 
effective and irreducible and each m, is a positive integer. Then all the m, = 1 
and there exist principally polarized abelian varieties Xi = (Wi, U., XiC) 
such that: 

(i) o P& Et, 
(ii) under the isomorphism (i), O, corresponds to (W1/U1) x ... x (Wi_1/ UA1) 

X O(T?) X (Wi+?/Ui+?) X ... X (W./U ). 

Proof. Define: 
A: (W/ U) > Pic (W/ U) 

(a1, ..., a,) v- (( m,(a, + O,)) - 0) 

where 0 is a particular divisor representing O(f) and 

0 = ,mO,0 . 
Now dim H0((W/U), O(1 m,(a, + 0,))) = 1 for each (a,, ... , an) G (W/U) and 
(W/U)7 is connected. Thus: 
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(3.21) T(a1, ***, an) -(b1, * *.. bj) if and only if at + OS = bi + OS for all i 
(where equality means equality as divisors). 

Since T is a homomorphism of abelian varieties and T is clearly onto, dim (ker 
P) = (n - 1)q where q = dim T. Let (W/U)i be the subvariety of (W/U)7 
corresponding to the inclusion of the i-th factor into the product. Then if 
Ai = (kerP) n (W/U)i we have by (3.21) that: 

kerT = EAj . 

Now consider each Ai as a subvariety of (WI U). By (3.21): 

ni Ai = {(O9... *, O)} . 
If we put B. = n jAj9 then an easy dimension count gives that 

dim Ai + dim B. - q . 

But ({Ai}-{B})(WVU) = 1 since n Ai has only one point. Thus (W/U) 
A, ( B., and it follows immediately that: 

(W/ U) = K,&=Z Bi. 
For a e Bi, a + Oj = Oj for all j # i so that 

({0} * {B-}) = .mi} * {Be}) . 

But 0 induces a principal polarization on B. since B. is a direct summand of 
(WI U) so that mi = 1 and the lemma is proved. 

Definition 3.22. A principally polarized complex torus Y is irreducible if 
for any morphism 

P: U'-*J 
either T' = 0 or p is an isomorphism. 

Since the direct summands of Y in Lemma 3.20 were constructed intrinsically 
from the components of (7f), we have: 

COROLLARY 3.23. If F is a principally polarized abelian variety, 'F has 
a unique decomposition into the direct sum of irreducible principally polar- 
ized abelian varieties. Y itself is irreducible if and only if 0(i) is irreducible. 

Now the semi-group A defined in (3.19) can be characterized as follows: 

COROLLARY 3.24. A (free abelian semi-group on the set of all irre- 
ducible principally polarized abelian varieties Y which are not of level one). 

If V is a non-singular algebraic threefold, we denote by g(V) the ele- 
ment of the semi-group G corresponding to the principally polarized complex 
torus ,(V), called the intermediate Jacobian of V(see (3.7)). Motivation for 
the definition of g(V) is contained in the following: 
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THEOREM 3.25. g is a birational invariant. 

Proof. Let V V' be a birational map. Then by [12; page 140], there 
exists a sequence 

V = Vn - Vn-, ... * Vo = V 

such that each Vim Vi-1 is obtained by blowing up a point or along a non- 
singular curve, and such that the composition 

Vat Vat V' 

is a (birational) morphism. Since blowing up a point has no effect on third 
homology and hence no effect on the intermediate Jacobian, we conclude by 
Lemma 3.11: 

9(V) Sf(V) E 9(C) 
for some (possibly reducible) non-singular curve C. By (3.9) and (3.10), there 
exists a morphism 

Similarly there exists V' such that ( V') - g(V') & g(C') and c(V) g( V'). 
So c(V) 1-, g(V') and the theorem follows. 

An essential role in what follows will be played by: 

COROLLARY 3.26. If there exists a birational mapping between V and P3, 

then c(V) = (C) for some (possibly reducible) non-singular curve C. 

Proof. By the previous theorem R(V) -1 (0). In particular by (3.18), 
c(V) is an abelian variety. Now use Corollary 3.23. 

4. The Abel-Jacobi mapping 

We wish to combine the considerations of ? 2 and ? 3. Let V be a non- 
singular algebraic threefold, and let {ZS},S, be a covering family of algebraic 
curves for V. Let 

(V) = (WV UV j IV) 

as in (3.7). Wv is canonically the dual vector space of H3'0(V) EH' 1(V). 
Furthermore, if for a e H13(V) we define 

a*: (H3'0(V) 0 H2"1(V)) - C 

CD I , I Gt 
Ja 

then we have a natural isomorphism of pairs: 

(Wv, Uv) & ((H3o0(V) @ H2l1(V))*, {a*: a e H3(V)}) 
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Define 

(4.1) J(V) = (WvlUv) (113 0(V) e H2 V))* /13(V) 

where H3( V) is identified with the corresponding lattice in (H3o0( V) E H21( V))*. 
Notice that under this last identification we can write elements of J(V) in 
the form 

E a~jai (a, real) 
where {fa} is some basis for H3(V), and (3.14) gives: 

(4.2) Q(g(V)) = - (ac*a)v 

where (a x A) denotes the Pontrjagin product of a and 0- considered as ele- 
ments of H1(J(V)). 

Similarly, if p + q = m, any cycle y c Hm(S) can be identified with a 
linear functional: 

y*:HPq(S) - C 

We define the Albanese variety of S: 

Alb (S) = (H1o0(S))* Hi(S), 

and the Picard variety of S: 

Pie (S) = (H2 1(S))*H3(S) 

By (2.7) and (2.9) we clearly have the following commutative diagram of in- 
duced homomorphisms: 

Alb (S) 

(4.3) l7 J(V). 

Pic (S) 2 

Again under the appropriate identifications, we write: 

P(E C7j) -E Cjp* (j) 
x(, aini) = E a-x* (ao) 

'r(E C j7j) = E C j7* (-Yj) . 

LEMMA 4.4. Let W be an ample divisor on V. Suppose that (9*(7)* W) 
0 in H1(V) for each WY C H,(S). Then the intersection pairing on V is non- 
degenerate on p*(H,(S)). 

Proof. The statement is an immediate corollary of (4.2), (2.9), and 
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Lemma 3.4. 

The mapping A: Alb (S) - J(V) is called the Abel-Jacobi mapping. We 
are now in a position to prove an analogue of the classical Abel's theorem for 
curves: 

THEOREM 4.5. Suppose that there is an ample divisor W on V such that 
(9(i)- W) = 0 for all v e H1(S). Then in the commutative diagram 

Alb (S) 
\(D 

/J(V) 
Pic (S) 2 

(ker q)0 = (ker )? where (0) denotes the component of the identity. 

Proof. We need only check that Xa, is injective on 9 (H1(S)). If 
0 then by (1.1) 

= 0 

for all v e H1(S). Now use Lemma 4.4. 

Geometrically Theorem 4.5 means that the equivalence relation on the 
curves {Zs}ses which is induced by the intermediate Jacobian of V is, up to 
isogeny, the same as linear equivalence on the incidence divisors {Ds}ses 
There is a general discussion of incidence divisors and Abel's theorem in [9; 
? 1-4]. 

For each choice of a basepoint s e S we have a canonical morphism: 

(4.6) a8: S- Alb(S) 

given by a,8(s') = (a 5a) . In the remainder of this section let us suppose 
that there is a principally polarized subtorus 

J_ = ( WI, U11 XI) * eV) 

such that: 
(i) T(Alb(S)) '. (Wil Uj) 
(ii) hC1 is positive definite on W1. 

Let 0 be an effective divisor on (TWV!U1). Then there is associated to 0 a homo- 
morphism 

A: Alb (S) - Pic (S) 

which can be constructed as follows. Let O, be the divisor given on Alb (S) 
by q'-'(0). (Notice that O, may be zero but otherwise is an effective divisor. 
We suppose that 0,( # 0 since otherwise everything is trivial.) Now 0S induces 
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an algebraic family of divisors on S: 

{Es}seS 

such that L(E8) is the pull-back to S of the line bundle L(O) under the map- 
ping a8. The mapping p,,: S > Pic (S) defined by p80(s) = (E. - E8) has 
the following properties: 

(i) The homomorphism A: Alb (S) Pic (S) such that foa,, = P80 is inde- 
pendent of the choice of so. 

(ii) Let ,",: H1(S) - H3(S) be the homomorphism induced by A: Alb (S) 
Pic (S) and the identifications H1(Alb(S)) = H1(S), H1(Pic(S)) = H3(S). Then 
continuing with these same identifications, we obtain the formula: 

(4.7) ( 71M '2) (1x 7~2 ) 'P)Alb(S) 

( (9 (1)X cP*(Y2))O0)I( 1VU1) 

where " x " as before denotes Pontrjagin product. 
Now suppose that 0 is a specific representative of the theta-divisor O(f) 

determined up to translation. Recalling the definition of Y in (4.3), we have: 

THEOREM 4.8. , = - A: Alb(S) > Pic(S). 

Proof. For y71 y2 e H1(S): 

(4.2) 

- - ((P*(y1) X cP*(Y2))0)(Wl/Ul) 
(4.7) 

PART TWO: GEOMETRY OF CUBIC HYPERSURFACES 

5. The dual mapping, Lefschetz hypersurfaces 

Let V be a hypersurface in complex projective n-space P,. 

Definition 5.1. V will be called a Lefschetz hypersurface if V is either 
non-singular or has at most on-e ordinary double point. 

It follows that, if V is Lefschetz, then V is given locally in P, by either 
the equation z. = 0 (simple point) or (zi + *-- Z2) = 0 (double point) for 
appropriately chosen holomorphic local coordinates in P,. Suppose that V is 
defined by an irreducible homogeneous polynomial of degree d: 

(5.2) F(Xo, ..., Xn) - 

Let P* be the Grassmann manifold of hyperplanes in P, and let (Cn+l)* denote 
the dual vector space to Coil. Using the Plucker coordinates in (Cn+l)*, we 
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define a mapping 

(5-3) 6':~~~S Cn+1 (Cn+l) * 

by the formula: 

(5.4) &v(Yol .. * Y. E) 
= ((aFlaXo) (yo I .. I y.), .. I (aFlaX.) (yo I .. * y n))- 

Then 6v induces a rational mapping: 

(5-5) TV' Pn P'A- 
This mapping is called the dual or polar mapping associated to V. It is an 
elementary exercise to show that: 

(5.6) (1, 0, * . , 0) is a singular point of V if and only if (D2F/DX0DXj) 1(1 a0.. 0, = 0 
for all i (use Euler's formula), and (1, 0.**, 0) is an ordinary double point if 
and only if, in addition, 

det (((a2F/DXiDXj) 1(1 0.0)) 1 < i, j n) #0 

Now suppose that V is Lefschetz. Let P, denote the closure of the graph of 
?v in (P. x P*) and let V denote the closure of the graph of ?) I. The pro- 
jections onto the factors of (P. x P') give the standard commutative diagram: 

P* 

LEMMA 5.7. Pv and V are non-singular. If V is non-singular, IT is an 
isomorphism. If V has double point x0, w: (PV - W1(Xo)) - (Pn - {x0}) is an 
isomorphism and so is 9: w-1(x,) [x0J where [xo] {h e P*: xo e [hJ}. Thus 
Pv P--(P. blown up at x0). 

Proof. If V is non-singular, everything is obvious. If V has double point 
X0 = (1, 0, *--, 0) e P., define a mapping f: C' - (Cn"l)* by f(yl, -.., y) = 
((&F/DXo) (1 y1, *y , yn)* ..., (DF/DX,)(1, y1, ...* y)). If (C")o = (C" blown up 
at the origin) and (C+1')0* = ((Cn+1)* blown up at the origin), then by (5.6) f 
induces a regular mapping fo:(C")0 (C"+')* which takes the exceptional set 
in (C")o isomorphically onto a linear subspace of the exceptional set of (Cn+1)0. 

Let g, denote the composition (Cn)o C" P. and g2 the composition (Cn)o 
A 

(C"+')o* P*. The mapping g1 x g2: CO (P. x P*) is injective and every- 
where of maximal rank and is onto a neighborhood of r-1(x0) in P, The asser- 
tions of the lemma now follow immediately. 

COROLLARY 5.8. Qo = (V n (W-1(Xo))) is a non-singular quadratic hyper- 
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surface of ir-'(x0). 

Given a Lefschetz hypersurface V and h e P*, then Vh =(V n [h]) is a 
hypersurface in the projective space [h]. In general, of course, Vh will not 
be Lefschetz; however we now show that if h is chosen in a sufficiently generic 
manner, Vh continues to be Lefschetz. First of all, let H denote the subva- 
riety of P. defined by 

det ((&2F/DXiaXj),Xi,9j?n) = 0 - 

H is a hypersurface of degree (n + 1) (d - 2) in P., called the Hessian sub- 
variety of P. associated to V. 

LEMMA 5.9. Let V be a hypersurface, x a simple point of V. The follow- 
ing statements are equivalent: 

(i) x C H; 
(ii) ?V: PRn P* is of maximal rank at x; 
(iii) ?F 1: VV P* is of maximal rank at x; 
(iv) if h = D,(x) , the tangent hyperplane to V at x, then Vh has an ordi- 

nary double point at x. 

Proof. The equivalence of (i) and (ii) is obvious. To get the rest, assume 
x = (1, 0, ... , 0) and that the tangent hyperplane to V at x is given by Xn = 0. 
Using that 

aF/DXj = (1/d - 1) E Xi(D2F/DXiDXj) 
one has that at the point x: 

(5.10) (D2F/DXOaXj) = 0 if j # n, =(d-1) if j = n . 

Then (iii) is just the condition that 

det ((D2F/DXiaXj)o0?i:?_) 

be non-zero at x. So (iii) and (5.10) give (ii). By (5.6), (iv) is equivalent to 
the condition that 

det ((D2F/aXiDX6)1?i,6?n-) 

be non-zero at x so that again by (5.10), we have the equivalence of (iii) and 
(iv). 

In the following, V will always be a Lefschetz hypersurface and x0 will 
always stand for the double point of V if there is one. All statements should 
be taken as applying both to the case V non-singular and to the double point 
case, unless it is explicitly indicated to the contrary. Also we shall use the 
following notation: 

(5.11) If W is a subvariety of P., then W will denote its proper transform 
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in P, Furthermore if W has dimension r: 
mO(W) = multiplicity of x0 in W 

= intersection multiplicity at x0 of W with a generic (n - r)-plane 
passing through x0. 

Now for k > 0: Hk(PV) Hk(P,) ? Hk(r-w'(xo)). For k odd, these groups are 
all zero, and for k = 2r a basis for Hk(PV) is given by {{L}, {L0}} where L is 
an r-dimensional linear subspace of P, and Lo is an r-dimensional linear sub- 
space of (w-'(x0)). For linear subspaces L and L' (of dimension r) in P,, one 
has in P, the homology relation: 

(5.12) ({L} - {L'}) = (mo(L') - mo(L)){Lo} 
If x0 o L, then an immediate consequence of (5.4) is that deg ()*({L})) 
(d - 1)?, where ?* is the homology map associated to 9): P, P*. By Lemma 
5.7, deg (0*({Lo})) = 1. Taken together these last two facts give the 
formula: 

(5.13) deg (D* ({ WI)) = (d - 1)? deg ({ W}) - mo(W) 
where W is any r-dimensional subvariety of P,. 

COROLLARY 5.14. If d > 2, 9): P, P* is finite-to-one. 

Proof. If not, there would be an algebraic curve in P, which ? sends to 
a point. By (5.13), the curve must lie in w-1(xo). But that is impossible by 
Lemma 5.7. 

LEMMA 5.15. If d > 2, 0Dl j is generically injective. 

Proof. Let V* = ?( V). Then V* (considered as a subvariety of P* and 
taken with multiplicity one) has its own dual mapping ?,*: P* P** = PR, 

At a generic point x e V, 3DV I, must be of maximal rank since ? [i is equidi- 
mensional by Corollary 5.14. Therefore there is an open neighborhood U of 
x in PR such that ?)(U n V) is smooth at ?)(x). If E ajXj = 0 gives the 
tangent hyperplane to ?,(U n V) at ?0,(x), then E (aj(D2F/DXjaXi)(x))Xi 
must give the tangent hyperplane to V at x, since DV is of maximal rank at 
z by Lemma 5.9. Therefore at x: 

(E aj(a'F/aXjaX0) ,**, Eaj(a'F/aXjaX,)) 
= ((aFlaXo)s ***. (aFlaXJ)) 

On the other hand if x = (yo0 ..., y.), then at x: 

(E yj(D2F/aXjaXo), * ..., E yj(2F/aXjaXX)) 
= ((d - 1)(aF/DXo), ..., (d - 1)(aF/DXJ)) 

Thus as projective points (ao, ... , an) = (yog ..., y) which means that, restric- 
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ted to V, (0,oO,) is the identity map. The lemma is then clear. 

PROPOSITION 5.16. Let V be a Lefschetz hypersurface. Then a generic 
pencil of hyperplane sections of V contains only Lefschetz hypersurfaces. 

Proof. By what we have done above we know that there is a Zariski open 
subset U c V such that ( (U) n ?( V - U)) = 0 and ? to is injective and of 
maximal rank. Also there exists a Zariski open subset U. of [xj] such that 
the points of U, correspond to hyperplane sections of V which have at x. only 
an ordinary double point. Also @(V) [x0] by (5.13) and Lemma 5.15. So 
the subvariety (P(V - U) U (@(V) n [xo]) u ([xoi - UO) has codimension > 2 
in P*. The proposition follows. 

Definition 5.17. A pencil of hyperplane sections of a hypersurface V will 
be called Lefschetz if a generic element of the pencil is non-singular and each 
element of the pencil is Lefschetz. 

COROLLARY 5.18. Let V be a Lefschetz hypersurface. Then a generic 
pencil of hyperplane sections of V is a Lefschetz pencil. 

Finally, it is an easy exercise in differential topology to show that all the 
non-singular hyperplane sections of V are diffeomorphic, in fact they can be 
deformed one onto another along paths in (Pi - V*). Furthermore, since V* 
is irreducible, there is a connected Zariski open subet U* of V* containing 
only smooth points of V* and such that for h e U*, Vh is Lefschetz and for 
hl, h2 e U*, Vhl can be deformed homeomorphically onto Vh2 along a path in 
U*. (We shall need this fact in ? 11-see discussion preceding Lemma 11.23.) 

6. Cubic hypersurfaces 

We shall now restrict our attention to hypersurfaces of degree three. As 
in ? 5, V will be Lefschetz. We begin by deriving a fact about the dual map- 
ping in this case which will be of central importance in Part three of the 
paper. 

LEMMA 6.1. Let K* be a linear subspace of P*. Suppose Wc? V and 
9)(W)=K*. Then 

[K*] = n{[h]: he K*} 

is tangent to V at each point of W. 

Proof. If dim K* = 0, the assertion is trivial. If dim K* > 0, let x and 
y be distinct points of (W - {x}) such that @)(x) # @1(y). Let L* be the line 
in K* connecting @D(x) and @D(y) and let C = r(91-1(L*)) (see (5.7)). By (5.13), 
?D: C - L* is a covering by (2 deg({C}) - m0(C)) sheets. For the point y e C: 
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([@(g)]} - {C}) > 2(2 deg ({C}) - m0(C)) 
> 2 deg ({C}) 

since [9)(y)] is tangent to C at (2 deg ({C}) - m0(C)) points. So C' [@D(y)] 
and in particular x e [PM()], which implies that W' [K* *. But [K*] C [9D(x)] 
for x e W. The lemma follows. 

COROLLARY 6.2. If dim K* = r in Lemma 6.1, then 2r < (n -1). 

Proof. ?D is finite-to-one on V. But ?D(W) c {h: Wc [h]}. So r = dim W< 
dim{h: Wc[h]} < (n - (r + 1)). 

We next turn our attention to the algebraic family of projective lines 
(effective algebraic curves of degree one in Pa) which lie inside V. For n = 2, 
V ' P2 contains no lines. However, if n > 2, then V does contain lines. It is 
a classical fact, for example, that: 
(6.3) If V is a non-singular cubic hypersurface in P3, then V contains exactly 
27 lines. (See [18].) 

Suppose that V has double point x,. Let L be a line in P, which passes 
through x,. Then either L lies in V or L intersects V in precisely one more 
point. Thus the projection P,, P,1 centered at x0 gives a birational morphism: 

(6.4) P: V-> P-1 - 
Furthermore, if W, is the cone formed by the lines through x0 which lie in V, 
then 

P: (V - Wo) - (P'A1 -PO)) 

is an isomorphism. As for the structure of W.: 

LEMMA 6.5. Let [h] be any hyperplane in P. which does not contain x0. 
Then there is a non-singular complete intersection C of type (2,3) in [hi] such 
that W0 is the cone over C with vertex x0. 
(Recall that a complete intersection of type (2,3) in a projective space [h] is 
the intersection of a quadratic and a cubic hypersurface of [h].) 

Proof. Let YO be the tangent cone to V at x0. If xo [hi], then (YO n [hi]) 
is a non-singular quadratic hypersurface of [hi]. Also if L is a ray of YO, then 
L lies in V if and only if L meets V in one point outside of xo. Thus WO = 
(cone over ([hi n Yo n V)) and we need only check that ([]hi nWO) is non- 
singular. But if this variety were singular, it would be singular independently 
of the choice of [hi] so that YO and V would have to be tangent along an entire 
ray L of WO. This in turn would imply that @D(L) = (point) which contradicts 
Corollary 5.14. 
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We can summarize our discussion of the case where V has a double point 
x. as follows: V can be transformed (birationally) into P_1 by blowing up V 
at x0 and then blowing down the proper transforms of the lines through x0. 
So, for instance, if V is a surface, V is obtained from P2 by blowing up six 
points lying on a non-singular quadric curve. From this it follows easily that 
V contains exactly 21 lines, six of which pass through the double point x0. 
Furthermore no three of the lines through x0 are coplanar. 

The Chow variety of projective lines lying in a Lefschetz cubic hypersur- 
face V was studied classically by Fano [6] and also was treated extensively 
by Bombieri and Swinnerton-Dyer in [2]. Our presentation in ? 6 - ? 10 borrows 
heavily from these two works. We begin by classifying the lines in Pw into 
types depending on the behavior of the dual mapping ?D, along the line. By 
(5.13), for any line L, deg (D* ({L})) < 2 so that we can make the following 
classification: 

Definition 6.6. Let L be a projective line in Pa. 

(i) L will be called a line of first type if @D(L) is a non-singular (plane) 
quadric curve; 

(ii) L will be called of second type if either 
(a) x0 ( L but @D(L) is a projective line (so that ?D: L -?(L) is a 

ramified two-sheeted covering), 
(b) x0 e L and D II is an isomorphism onto a projective line in [x0] c P*. 

An easy corollary of (5.13) is that possibilities (i), (ii) (a), and (ii) (b) are mutu- 
ally exclusive and exhaust all possible cases for a line L in Pn. For any L, 
the dimension of the linear subspace [9D(L)] of PX, is always > (n - 3) and we 
have: 

LEMMA 6.7. A line L c V is of second type if and only if there is a 
(unique) (n - 2)-plane tangent to V along L. 'This (n - 2)-plane is [9D(L)]. 
If L C V is of first type, [9D(L)] is an (n - 3)-plane tangent to V along L. 

For a line L lying in V, we can characterize the local behavior of V near 
L according to the type of L. For this discussion we assume that L is given 
by: 

(6.8) X2 = ** =X =0 

Then F(Xo, ... , X.) = E {XiQi(Xoy X1): i = 2, ... , n} + (terms involving 
higher powers in X2, ... , X), where degree Qi = 2 for each i. Thus 9Dr IL is 

given by the formula: 
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L is of first type if and only if the Qi span the entire three-dimensional vector 
space of quadratic forms in two variables. In this case, a linear change of 
coordinates involving only X2, ***, Xw reduces F(XO, ***, X) to the form: 

(6.9) X2XO0 + X3X0X1 + X4X1 
+ (terms with higher powers of X2, ..., X") 

If L is of second type, the Qi span a two-dimensional vector space and we can 
put F(Xo, ***, XJ) into the form: 

X2Q2(XO, Xi) + X3Q3(XO, XI) 
+ (terms with higher powers of X2, ..., X") 

If xO 2 L, Q2 and Q3 have no common zero and one can make a coordinate 
change involving X0, X1 to get (1, 0, *--, 0) and (0, 1, 0, *--, 0) as the rami- 
fication points of ) 1I . Then a change involving only X2, X3 reduces 
F(Xo, * , X) to the form: 

(6.10) X2X0 + X3X12 
+ (terms with higher powers of X2, ***, XJ) 

Finally, if xO C L, then Q2 and Q3 have xO as their only common zero and a 
change of coordinates involving X0, X1 followed by one involving X2, X3 

reduces F(Xo, ***, XJ) to the form: 

(6.11) X2X0X1 + X3X1 + XOQO(X2, ... , Xn) 
+ XlQl(X2y ...-, Xn) + P(X2Y ...-, Xn) 

where degree Qi = 2 and degree P = 3. The double point xO then becomes the 
point (1, 0, *--, 0) and by (5.6): 

(6.12) det ((aQO/aXaXj)3! ij!f) # ? . 

Let Gr(2, n + 1) be the Grassmann variety of projective lines in P.. We 
wish to describe the family of lines in V locally around L. To do this, let Hi 
be the hyperplane in P. given by the equation Xi = 0. Put u; = (Xj/XO), 
z; = (XI/X,) for j = 2, ..., n. Then (U2, ..., uIn) gives affine coordinates for 
(H1 - (Ho n H1)) and (Z2, *, z%) gives affine coordinates for (Ho - (Ho n H1)). 
Furthermore: 

(6.13) (U2S * 
.. 

* UnY Z2Y I ZJ) 
give local coordinates in Gr(2, n + 1) around the point corresponding to the 
line L. To see which lines lie in V, one forms the polynomial 

F(x(1, 0, U2Y * * *, Un) + 1a(0, 1, Z2, ...* Z)) 

and sets the coefficients of X3Y X72/, X\/2 and p' each equal to zero. If L is of 
first type, we use (6.9) and get the local equations: 
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U2 + (higher powers) = 0 

(6.14) U3 + Z2 + (higher powers) = 0 
U4 + Z3 + (higher powers) = 0 

Z4 + (higher powers) = 0 . 

If L is of second type and x0 i L, use (6.10) to get: 

U2 + (higher powers) = 0 

(6.15) Z2 + (higher powers) = 0 
U3 + (higher powers) = 0 

Z3 + (higher powers) = 0. 

If L is of second type and x. e L, use (6.11) to get: 

QO(U2Y ..., U.) + (higher powers) = 0 

(6.16) U2 + (higher powers) = 0 
U3 + Z2 + (higher powers) = 0 

Z3 + (higher powers) = 0 . 

If L is of first type, there is a way to define a family of curves in 
Gr(2, n + 1) which will be quite helpful later on in studying the tangent space 
to the variety defined by (6.14) at the point 

U2 = * * * = Un = Z2 = ... = Zn = ? 

For (an, a,) e P1, let B(aO, a,) be the closed irreducible curve in Gr(2, X + 1) 
which is given (in terms of the local coordinates (6.13)) by the equations: 

U2 + Z4 = 0 

U3 + Z2 = 0 

U4 + Z3 = 0 

U'5 =*-=Uqz Z2 =*-=ZnL = ? 

and 

aU13 + afU4 = 0 

(Compare this with (6.14).) For each s e B(a0, a,) let L, be the corresponding 
line in PX and define: 

(6.17) Q(a0,, a,) = UILs e B(a, a,)l} 

Then Q(a,, a,) is a non-singular quadric surface which spans a three-plane 
M(ao, a,) in Pa. Assuming L is given by (6.8) and Vby (6.9), we let h(a0, a,) be 
the element of P* such that [h(ao, a,)] is spanned by M(a0, a,) and [9I(L)]. 
Then: 

LEMMA 6.18. (i) Q(aoy a,) is tangent to V along L. (ii) The mapping 
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(an, a) v- h(a0, a') is an isomorphism from P1 onto 9I(L). 

Proof: (i) follows immediately from (6.11) and the definition of Q(a0,, a). 
For (ii), we see from (6.9) that the tangent hyperplane to V at the point 
(1%0 , 01 . *, 0) on L is given by: 

,f0X2 + 0,f3,fX3 + /3'X4 = 0. 

But [h(ao, a,)] is spanned by the points (1, O 0, a1, -aoa0 O, ..., 0) and (O, 1, 
- al, aoy Oa.. 0 0) together with the (n - 3)-plane given by X2= X3= X4 = 0. 

Thus [h(aO, a,)] is given by the equation 

C2X2 + C3X3 + C4X4 = 0 

where c2A, -c3a0 = 0 and - c2A, ? c3a0 = 0. Normalizing things by picking 
C2= a 2, we get C3 = a0a1 and C4 = 2 and the lemma is proved. 

PROPOSITION 6.19. Let V be a Lefschetz cubic hypersurface, L a line in 
V such that xo X L. Let (n) denote the line bundle of degree n on L. If L is 
of first type, the normal bundle N(V, L) to L in V is given by 

(0) i0 (0) i0 (1) 0. .* i . (1); 
if L is of second type, N(V, L) P (- 1) 0 (1) 0 (1) D ... 0t (1). 

Proof. If L is of first type, normalize the equations for L and V as in 
(6.8) and (6.9). Using (6.14) and the definition of Q(aO , a) in (6.17), one checks 
immediately that Q(1,0), Q(O, 1), and [9D(L)] meet transversely along L. How- 
ever by Lemmas 6.7 and 6.18, Q(1, O), Q(O, 1) and [O(L)] are all tangent 
to Valong L. Thus N(V, L) N(Q(1, O), L) 0 N(Q(O, 1), L) 0) N([g)(L)], L). 
If L is of second type, the (n - 2)-plane [9D(L)] is tangent to V along L. 
Normalize the equations for L and V as in (6.8) and (6.10). Then [9D(L)] is 
given by the equations 

X2= X3= 0. 

The tangent hyperplane to Vat (So , 0, . * *, 0) is given by ,OX2 ? ,812X3 = 0. 
Let L(So6,81) be the line spanned by (6, 0, 0,8 O.**, 0) and (O O, - 82 O 

0 0) and let 

B = U{L(SoS,81): (i80, i1) G P1} - 
Then B is non-singular along L and tangent to V there. Also [9D(L)] and B 
meet transversely along L. Thus: 

N(V, L) P N([D(L)], L) 0 N(B, L). 

Since degree N(V, L) = (n - 4) and degree N([9ID(L)], L) = (n - 3), it follows 
that degree N(B, L) = -1 and the proposition is proved. 
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The algebraic structure of the set of lines in a Lefschetz cubic hypersur- 
face is now accessible. The purpose of the next section is to examine that 
structure. 

7. The variety of lines on a cubic hypersurface 
For each s e Gr(2, n + 1), let Ls be the associated line c Pa. For a 

Lefschetz cubic hypersurface V in PR we define: 

S = S =I{seGr(2,n+ 1): Ls - V} 
(7.1) D = D I{s e S,: Ls is of second type} 

T = Tv = {(s,x)e(S, x V):xe L,} 
Then the projection 

(7.2) ws: T -S 

is an algebraic fibre bundle with fibre a projective line. We also have a pro- 
jection 

(7.3) wr,: T- V. 

If V has double point x0, define 

(7.4) Do = {s e SS:xoLe L} 

By Lemma 6.5, Do is isomorphic to a non-singular complete intersection of 
type (2,3) in P_1. By Proposition 5.16, therefore, the generic fibre of 1w, in 
(7.3) must be isomorphic to a non-singular complete intersection of type (2, 3) 
in P,2. Next let D, be the union of the components of D, which do not lie 
in Do. We wish to bound the dimension of D1. To do this, let R1 be the set 
of all (s, x) e Tv such that s e D1, x0 2 Ls, and x is not one of the two ramifica- 
tion points of the mapping )I Zs. 

LEMMA 7.5 wv : R, - V is finite-to-one. 

Proof. Suppose there is an irreducible (open) curve C in R1 such that 
wrv(C) = {y}. R, possesses an involution i which is induced from the involu- 
tions is: Ls > Ls given by the two-sheeted mapping ?D: Ls - ?D(Ls). Also 
(7rsoi) = i and (Dvowrvoi) = (9),owr). So (Dvowrv)(i(C)) = {JD)(y)} and since 
Dv I(v1x0}) is finite-to-one, there exists z e V such that wrv(i(C)) = {z}. Since 
Wr is injective on fibres of US: Tv - Sv, z # y. So for any (s, x) e C, Ls must 
be the line passing through y and z. The lemma follows. 

COROLLARY 7.6. dim R1 < (n - 2) and dim D1 < (n - 3). 

Proof. The first statement follows from the fact that 9v is at least two- 
to-one on wrv(Rl) together with Lemma 5.15. The second statement then 
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follows from Lemma 7.5. 

We have already studied the local structure of S, in (6.14)-(6.16). Using 
(6.14), (6.15), and the Jacobian criterion for non-singularity we get: 

LEMMA 7.7. Let V be a Lefschetz cubic hypersurface in P,. Then 
(S - D0) is non-singular and has pure dimension 2(n - 3). 

(Notice that it follows from Proposition 6.19 that if x0 X L, H'(L, O9(N(V, 
L))) = 0 and HO(L, ?(N(V, L))) = 2(n - 3). By a theorem of Kodaira [15; 
page 150], the Chow variety of lines in V is smooth at L and the tangent 
space to this Chow variety is H0(L, ?(N( V, L))). This yields an alternate proof 
of Lemma 7.7.) 

If s e Do, the local equations for S, around s are given in (6.16). If L. is 
given by (6.8) and V by (6.11), the double point x0 is given by (1, 0, - - *, 0) so 
that the local equations for Do are given by (6.16) together with the additional 
conditions 

U2 =n - 0 p 

By (6.12), QJ(u2 ..., u.) is a non-degenerate quadratic form. Taken together, 
these conditions mean that there is a neighborhood U. of s in S, which is 
biholomorphic to the analytic variety (P,3 x Q.-3) where P,_ is an (n - 3)- 
dimensional polydisc and 

Qn-3 = {(u1Y 
.. * Un-2): E u2 0 Euji~j < 1} 

This biholomorphism carries (Dof n U8) onto (P,3 x {0}). To describe this 
situation, we say that Do is an ordinary double variety of S,. 

THEOREM 7.8. Let S, be a Lefschetz cubic hypersurface. Then S, is a 
projective variety of pure dimension 2(n - 3). If V is non-singular, so is S, 
If V has a double point, S, is non-singular except along Do which is a non- 
singular (n - 3)-dimensional ordinary double variety for S, 

This theorem will allow us to get rather precise information about the 
topology of S,. But first we need a general proposition about non-singularity 
of various subvarieties of S,. In order to give geometric proofs of non-singu- 
larity of such subvarieties it will be convenient to construct a "linear" sub- 
variety T8 c Gr(2, n + 1) for each non-singular point s e S, to play the 
analogous role to that of the tangent hyperplane in the case of hypersurfaces 
in P.. If L. is of second type, define: 

(7.9) T8 = {t e Gr(2, n + 1): Lt - [9(L8)], the 
(n - 2)-plane tangent to V along L,}. 
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T77 is a non-singular 2(n - 3)-dimensional (Schubert) subvariety of Gr (2, n + 1) 
and we have the equality of tangent spaces: 

T(SV, s) = T(T8, s) 

(considered as subspaces of T(Gr(2, n + 1), s)). If L,, is of first type, our 
construction of T, depends on the choice (6.13) of local coordinates for 
Gr(2, n + 1). Define: 

(7.10) T8, - (closure in Gr(2, n + 1) of the variety given in local 
coordinates (6.13) by the equations 

02 = ? u U3 + Z2=0 u U4 + Z3 = 0 , Z4 = 0). 

Then T, is irreducible of dimension 2(n - 3) and by (6.14): 

T(T8, s) = T(SV, s) . 

Let R be an (n - 2)-plane in Pa and let Y be a non-singular cubic hyper- 
surface in Pn. Define 

Yh = (Yn[h]) for he[R]; 
(7.11) AR = {(s, h) e (Sy x [RI): L. C [h]}; 

Sh = wr-A](h) where w[RE: ARK [RI is the natural projection. 

For generic choice of [R], the family { Yh} is a Lefschetz pencil of hyper- 
plane sections of Y and since we can assume that R itself meets Y trans- 
versely the double points which occur in YA never lie on R. Therefore to 
show that for generic R, AR is non-singular, let 

Bh= I{seGr(2,n + 1): L8z[hI} 

BR = {s e Gr(2, n + 1): (L. n R) # 0} 
and we prove: 

PROPOSITION 7.12. (i) For generic R, if s e (BR n Sy) and L8, R, then 
(BR n Sy) is non-singular at s. (ii) For generic R, if h e [R] and s e Sh such 
that L, contains only non-singular points of Yh, then Bh and Sy meet trans- 
versely at s. 

Proof. (i) At s, the local coordinates (6.13) can be constructed so that 
BR is given by linear equations. Thus it suffices to show that if s e (BR n Sy), 
T8BR. If L8 is of first type and T.7 cBR, fix 

to G (B(1, 0) -{s}), t1 E (B(O, 1) - {s}) 
where B(a0, a1) is as in (6.17). Then to, t, and {t: Lt c [c(L8)]} all lie in 
T, and R is determined by (R n Lto), (R n L,1), and (R n [O(L,)]). Thus 
dim {R: T7, C BR) = (n - 1). If L, is of second type, T77 c BR if and only if 
dim ([n(L8)] f R) > (n - 3). A dimension argument now yields (i). 
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(ii) At s, Bh is given by linear equations in the coordinates (6.13), so it 
suffices to show that: 

(7.13) dim. (T., nBh) < (2(n - 3) - 2). 

Let L. be of first type (for Y in P,). If [9I(L8)] [hi], then (7.13) is clearly 
satisfied since T, contains all lines lying in [9D(L,)]. If [9D(L)] g [hi] and 
(7.13) were not satisfied then there would exist (a,,, a) e P1 such that 
B(a,, ?4) c Bh (see (6.17)). Thus h = h(a0, ?a) and by Lemma 6.18 (ii), L. 
passes through the point where [hi] and Y are tangent. This gives (7.13) in 
case L, is of first type. If L, is of second type, it suffices to show that 
[9I(L,)] [hi]. But if this were not the case, [f(Ls)] would be a hyperplane of 
[hi] which was tangent to Yh along all of L,. But this contradicts the fact 
that Yh is Lefschetz and therefore has a finite-to-one dual mapping. The 
proposition is proved. 

If V is a non-singular, cubic hypersurface in P,1, there is a non-singular 
cubic hypersurface Y c P_ such that V is a hyperplane section of Y. Let 

U = {h e P*: Yh is non-singular}. 

Since U is a Zariski open subset of P* it is connected. Then Proposition 7.12 
(ii) and a standard elementary argument from differential topology gives: 

LEMMA 7.14. Sh is diffeomorphic to S, for all h C U. 

PART THREE: THE CUBIC THREEFOLD 

8. The Fano surface of lines on a cubic threefold, 
the double point case 

We now restrict ourselves to the case of central interest in this paper, 
namely the case in which V is a Lefschetz cubic hypersurface in P4. For 
xc V, let Wz = {seS,: xceL} (see (2.2)). 

LEMMA 8.1. There are at most a finite numher of points x on Vsuch that 
dim W,> O. If x is a simple point on V and dim Wx > O then Wx is a cone 
over a non-singular plane curve of degree 3. 

Proof. If dimWx > 0, let W = U{L s e Wx}. Clearly there is a plane 
tangent to V along any ray of W so that by Lemma 6.7, L. is of second 
type for each s c Wx. Lemma 7.5 and Corollary 7.6 then give the first 
statement. The proof of the second statement parallels exactly the proof 
of Lemma 6.5. 

The simple points x such that Wx is infinite should be called "Eckardt 
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points" (see [18; page 6]). For instance, the cubic threefold given by the 
equation 

X3 + + = 0 

has all points of the form (yo, *--, Y4) such that all but two of the yj's are 0 
as Eckardt points. There are 30 such points. (From results of ? 10, it will 
follow that 30 is the maximal number of Eckardt points for a non-singular 
cubic threefold.) Assuming for a moment the irreducibility of So, we conclude: 

COROLLARY 8.2. If Vis a non-singular cubic threefold, the family {Ls}sesj 
is a covering family of curves for V. (See Definition 2.3.) 

Suppose that V has a double point xo. If xo 2 [hi], let 

p: Vo [h] P:~ 3 

be the birational morphism defined as in (6.4). S, has double curve Do 
{s E S,: xo C Lj}, and if xo X [hi] Lemma 6.5 gives that the mapping s + (L, n 
[h]) is an isomorphism of Do onto a non-singular space curve of genus four. 
By the adjunction formula, this embedding 

(8.3) K: Do 0 [h] PP3 

is canonical. Since D: Vow P* is finite-to-one, V contains no planes so that 
each (t, t') E D 2' determines a unique point \(t, t') in S, such that 

Lt + Lt + L,(t t,) 

is a plane section of V. The morphism 

X: D 2) S- 

clearly restricts to an isomorphism from (D2) - X`(Do)) onto (S, - DO). 
Also associated to X in (8.3) there is a canonical morphism 

(8.4) K(2': D -2) - Gr (2, 4) P(4) 

which assigns to (t, t') the line through K(t) and i(t'). It is clear that for 
(t, t') E (D('- X`(Do)): 

(8.5) LK(2(tt,) = p(L2(t t,)) 

For (t, t') e Do2, let K(t t, be the unique plane such that Lt + Lt, + 
(third line) is the section of V by K(,,t,). 

LEMMA 8.6. Let QO be the non-singular quadric surface given in Corollary 
5.8. The following conditions are equivalent for (t, t') E D 2)0 

(i) (ttV) e `(Do); 
(ii) L,(2,(tt), is a trisecant of ic(D0); 
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(iii) (K(t t) n Qo) = one of the lines on Q0. 
Proof. The equivalence of (i) and (ii) is clear. If (t, t') E X-'(D0), then 

({k(t t')} {QJ})v > 3 so that (iii) must hold. Conversely, if (iii) holds, then 
every line in K(t t') which passes through xo lies in the tangent cone to V at 
x0. Thus if L is a line in K(t to) not passing through xo, the three lines con- 
necting xo with the three points of (L n V) must lie in V. This gives the 
lemma. 

For (t, t') E D 2', define: 

if x(t, tV) Do 
(8.7) J(t, t'1) - L(~ 
( AL(tt,) + (K(t,t') n Qo) if x(t tV) Do 

J(t t') is an algebraic one-cycle on V and under the mappings 

V 
\P 

V PO. 

J(tt,) behaves according to the formulas: 

(8.8) 7w(J(tta)) L2(tt) ; P(J(t t)) -LK(2)(t t') 

LEMMA 8.9. The family {J(t to)} (t, t) e Do2) is a covering family of curves for V. 

Proof. Use Lemma 8.1 and the fact that (wz x p) gives an embedding of 
V into (P4 x P3). 

It follows from the preceding discussion that X-'(DO) must have two com- 
ponents, D1 and D2, corresponding to the two rulings of Q0. Also the map 
X: D2 2) S, is just the standard desingularization of the variety S, Each 
component Di of X-'(DO) for i = 1, 2 must be isomorphic to Do under the 
mapping: 

(8.10) X, = X iD= 1,2. 

It is interesting to apply the considerations of Part one to the covering 
family {J(tt')}(t, tC e D2) for V. For t E Do, let 

(8.11) Et = {(t', t") E Do2: t' t} 

If we let {D(t t')}(t tV)eD 2) be the family of incidence divisors (see (2.6)) associ- 
ated to {J(t,t')}, then it is immediate from the definition of J(t t') that: 

(8.12) For (t, t') E D1: D(t t') = E2(t t') + D2i 

For (t, t') E D2: D(t t') = E2(t t') + D1 

LEMMA 8.13. (i) {D1} = {D2} in H2(D02). So in particular ({D } . {Dij) 
Ofor i = 1, 2; 
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(ii) ({Et}.{Dj ) = 2 for i = 1, 2. 

Proof. (i) is clear from (8.12). Given to e Do, there is exactly one point 
(t, t') e D, such that to = \(t, t'). So (Eto f D1) ={(t, to), (t', to)}. That this 
intersection is generically transverse follows immediately from the fact that 
Et is given by the curve (Do x {t}) in (Do x DO). This gives (ii). 

Next let qA: Alb (DI2)- J( V) be the Abel-Jacobi mapping associated to 
{J(t Vt)}(t t') eD(2) (see (4.3)). For i = 1, 2, t e Do, the inclusions 

1-i: Di DO - 

att: Et Do 

induce homomorphisms of the corresponding Albanese varieties (which we 
denote by the same symbols ,cci and yt respectively). Also, since the mapping 
p: Va P, is just the monoidal transform which blows up the curve K(D0) in 
P3, there is induced by Lemma 3.11 an isomorphism 

p: J(Do) J( V) 

PROPOSITION 8.14. (i) For t e D0, the diagram 

J(Et) J(Do) 

it] 
1P 

Alb (D (2) 9 J( V) 

is anticommutative. 
(ii) For i = 1, 2 and Xi as in (8.10), the diagram 

J(Di) J(Do) 

Al D0' J( V) 
is commutative. 

Proof. For (t, t') e Di, J(t t') (L(, to + L#(t, t')) where L#(t, t') is a 
line in Q0. The algebraic family {Lt + Li(X\T(t))}tED0 of algebraic one-cycles 
induces a homology map (see ? 1) ai: H1(Do) H3(V). Under the natural 
identification H1(Do) = H1(J(Do)), H3(V) = H1(J(V)), a, is the homology map 
corresponding to (qofaioX 1). But the homology map H1(D0) H3(V) induced 
by the family {Li(XT'(t))}teD0 is the zero map since it factors through H3(Qo) 
0. Thus vi = a: H1(Do) H3(V) where a is the homology map induced by 
the family {LtjtODo, which is the homology map corresponding to 5. This 
gives (ii). For (i) notice that ((oa,1) corresponds to the homology map induced 
by the family {J(t t)}t eDo. Thus it suffices to show that the homology map 
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Hj(D'2') H3(V) induced by the family {L, + L, + J(t, t')} is the zero map. 
Let G = Gr(2, 4), the Grassmann variety of lines in P3. Then G is simply 
connected ([3; page 70]) and G parametrizes an algebraic family of algebraic 
one-cycles on V whose generic element is p-'(L.), u e G. If u = K(2)(t, t') 
(see (8.4)), then 

p-'(L.) = (Lt + Lt, + J(t t') + Q(t.t')) 

where Q(t t') is an algebraic one-cycle in Q0. As above the homology map 
H,(D121) H4(V) induced by the family {Q(t t) }(t teD(2) must be zero since it 
factors through H3(Q0) = 0. But the homology map induced by the family 
{p-1(K'2)(t, t'))}(tt) E D(2) must also be zero since it factors through H1(G) = 0. 
The proposition follows. 

COROLLARY 8.15. The mapping q': Alb (D'2') J(V) is an isomorphism 
and if 0 is a representative of the theta-divisor O(,(V)): 

({0} * {0})/2 ! = {(D2)} 

in H4(J(V)). 
(Compare this with ? 3, especially Definition 3.15. Also notice that we 

have used the fact that the automorphism a (-a) on J(V) induces the 
identity map in even dimensional homology.) 

PROPOSITION 8.16. Let V, and V2 be two Lefschetz cubic threefolds, each 
with a double point. If g(V1) s J(V2) then V, V2. 

Proof. Let Djo be the double curve of Sv, j 1, 2. Then g(D10) g(D20) 
so that by the classical Torelli theorem [1], D10 D20. Thus a canonical 
embedding of D10 into P3 can differ from one for D20 by at most a linear auto- 
morphism of P3. Since Vj is obtained from P3 by blowing up along the canoni- 
cally embedded Djo, the proposition follows. 

Our purpose in much of the remainder of the paper is to examine the 
analogues of Proposition 8.14 (i), Corollary 8.15 and Proposition 8.16 in the 
case of non-singular cubic threefolds. Our task is made more difficult by the 
fact that in this case g(V) will turn out not to be the Jacobian of a curve and 
much less is known about principally polarized abelian varieties which are 
not of level one (see Definition 3.15). 

9. A topological model for the Fano surface, the non-singular case 

Let V be a non-singular cubic threefold. As in ? 7 let Y be a non-singular 
cubic fourfold such that V is a hyperplane section of Y. Let R be a generic 
three-plane in P5. Let AR, Y,, and Sh (h e [R]) be as in (7.11). Since R is 
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assumed to be transverse to Y, double points of Yh never lie on R and so, 
using Proposition 7.12, AR is easily seen to be non-singular. Moreover Sh 

is non-singular for almost all h, and for the remaining values h., - * *, hm of h, 
Sh is the surface of lines for a cubic threefold with one double point. We will 
construct a topological model for Sh from our knowledge of the topology of 

Shp j = 0, 1, ..., m. Our techniques are essentially those of the classical 
Lefschetz theory ([21; Chapter VI]). 

Fix h E [RI, h {! Jho, ..., hm}. Connect h to each hj by a path pj in [R]: 

\PjX 

/ Pm~~P 

Il m 

Let Bj = U{Sh: h E pj}. We now proceed to analyze the structure of Bj for 
fixed j. For convenience of notation in this part of the argument, fix j and 
put Sh = S, Shj = So with double curve DO, and put Bj = B. Then we have 
as in ?8: 

K: D2') So 

and we let D, and D2 be the two components of X-`(Do). There is a retraction 
theorem for this situation ([5; page 42]). Since the normal bundles to D, and 
D2 in Dg2) are topologically trivial by Lemma 8.13, we can state the retrac- 
tion theorem in this case as follows: 

(9.1) For i = 1, 2 let Ni be a tubular neighborhood of Di. Then there exists 
a Coo normal fibration 

vi: Ni -+Di DO 
and trivializations 

N 1*Do x x{zeC: IzI <2}421 N2 

such that: 
(i) If M1 = z?-'(Do x {z: I z I < 1/2}), then S is obtained (as a differenti- 

able manifold) from 
(D2) - (M1 U M2)) 

by identifying a e (N1 - M1) with b e (N2- M2) whenever, for z1(a) = (t1, z1) 
and Z2(b) = (t2, z2): 
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t= t2 
and 

Zlz2 = 1. 

Thus S is irreducible. Also we have a quotient mapping 

A: (D2) -(M1 U M2)) S. 

(ii) Let r: [1/2, 2] [0, 1] be a C--function which = 0 on [1/2, 1], is 
increasing on [1, 2] and - 1 on some neighborhood (2 - e, 2] of 2. Define 
p: S SO by: 

( XK(',-'(a)) if a e (D 2-(N1 U N2)); 
X(z7'(t, r(j z j)z)) whenever, for b e (N1 n +-'(a)), 

p(a) = z1(b) = (t, z) with IzI > 1; 
X(zy' (t, r( z I)z)) whenever, for b e (N2 n +-'(a)), 

Z2(b) = (t, z) with I z > 1. 

Then B is homeomorphic to the mapping cylinder of p. 
Let X= p-'(DO). Then X (Do x (circle)). Using Lemma 8.13, Prop- 

osition 8.14, and 9.1 (i), it is easily shown that: 

(9.2) The natural mapping Hq(X) Hq(S) takes Hq(X) isomorphically onto 
a direct summand of Hq(S) for all q. 
In the remainder of the chapter let Hq( ) denote q-th integral cohomology 
not modulo torsion. If MN is the mapping cylinder of p, and if X, is the 
mapping cylinder of p 1, then using excision and the Thom-Gysin isomor- 
phism we have 

Hq(Mp, S) Hq(Xo U S, S) Hq(Xp, Xp n S) 
Thus there is an exact cohomology sequence associated to p: 

*** Hq(SO) PA Hq(S) PI, Hq-,(Do) 

> I~q+l(SO) P Hq+l(S) , ... 

where ,ct is the composition of Hq(S) Hq(X) with the Gysin map Hq(X) 
Hq-l(Do). By (9.2) therefore, 4a: Hq(S) Hq-l(Do) is onto for q > 0. So: 

LEMMA 9.3. The sequence 

0 -+ Hq(SO) P Hq(S) , Hq-l(D) - 0 

is exact for all q. 

Next let K be the quotient space obtained from D(2) + (Do x [0, ii) by 
identifying 
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(t, t') e D1 with (X(t, t'), 0) 
(t, t') e D2 with (X(t, t'), 1) 

Then K has the same homotopy type as So and using the exact cohomology 
sequence for the pair (K, DI2)) and the Thom-Gysin isomorphism, we obtain 
the following exact sequence associated to the mapping X: 

*.. -* *Hq(SO) H(Do2)) - Hq(D0) 

- 7> H ~(SO) H Hq1Do2) *A. 
The mapping H (Do2)) H (DO) in this sequence is given by (o)* - o) where 

1-1:= X Dow D'2) for i = 1, 2. Again by Lemma 8.13 and Proposition 
8.14, it is easily seen that co* = so*. Therefore: 

LEMMA 9.4. The sequence 

0 - H 1(DO) > H'(S0) Hq(Do2)) -D o 
is exact for all q. 

Taking Lemmas 9.3 and 9.4 together we have: 

COROLLARY 9.5. H'(S) Z10, H'(So) Z9. 

Also, for any one-cycle y in Do, there is a two-chain S in D 2) such that a's = 
? - y where vi lies in Di for i = 1, 2 and I(y1) = X(y2) = y (see Proposition 
8.14). Thus X(fl) is a two-cycle in So. If 12 e H'(S.) is such that <K, 12> # 0, 
then for non-zero ~ e H0(Do) the definition of a gives that <\(/3), v(e) U '2> # 0. 

LEMMA 9.6. The cup product mapping 

H'(So) A H'(So) -- H2(SO) 

is injective. 

Proof. If e generates H0(DO) and 12 e (H'(SO) - (ker X*)), one can find 
a two-chain fi as in the discussion just previous such that <X(,8), v(e) U 12> # 0. 
Thus 

(H'(So)/(ker x*)) H2(SO) 

7) F- m U vUe 

is injective. Now use Lemma 9.4 together with the fact that the cupproduct 
mapping H'(D(2') A/ H'(D 2)) H2(D 2)) is injective. 

Let {Ds}ses denote the family of incidence divisors for {LJses (see ? 2). 
By (8.12) we have that under the mapping p*: H2(S) H2(SO) 

(9.7) -*(JD.J) = ({EX0}) + {Do} = X*({Eto + Do}) 
for s e S. to e Do, and i = 1, 2. 
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Choose a basis 7, ***, 7 for H'(D(2") such that: 

(9.8) <{EtO}, 2k U 24k> = 1 for k = 1, ... , 4; 
<{Eto}, 7' U 7?> = 0 for all other 1 > k. 

Then by Proposition 8.14: 

(99) <{Di}, k U 24+k>=1 for k = 1 , ... , 4 and i = 1, 2; 
< Di} I 9 U r?> = 0 for all other 1 > k. 

Next let ,***,... C H'(S0) be such that X*(k) = %k for all k and put 

72k = p*(ok)eH (S) 

A consequence of (9.7)-(9.9) is: 

(9.10) <{DS}, 72k U 724+k> = 2 for k = 1, ***, 4; 
<{D8}, k U 1 > = 0 for all other l > k. 

Let X' be a generator for H0(D0) and put 

X = p*oq(X') e H'(S) 

Then by (9.7): 

(9.11) <ADS}, X U 7k> = 0 for k = 1,.., 8. 

To see what the cocycle X is geometrically, let U be a regular tubular neigh- 
borhood of the circle bundle X in S. If c is the orientation class for the 
bundle (U, a U) over X, then (up to sign), X is the image of the generator 
of H0(X) under the composition: 

H?(X) )o H1(U9 A U) ,H'(S). 
By Corollary 2.12, D8 is an ample divisor on S. Using this fact and sequence 
(9.3), pick a e H'(S) such that: 

(9.12) (i) ,ce(6) = generator of H0(Do); 
(ii) <{Ds}8 aU7)k>= 0 for all k = 1, ...* 8; 
(iii) <{D8}, X U 8>> 0. 

Then the collection {X, 8, 21, ... *, 7} is a basis for H'(S). 
Suppose now that in H2(S) we have the relation: 

= eX U 8 + X U (a akrk) + 8 U (a bkrk) + E Ckl)k U '21 = 0. 

Using the mapping H2(S) H2(X) H2(DO x (circle)) we conclude that all 
the bk = 0 and : Ck(4+k) = 0. Then by restricting e to D8 we have also 
e = 0. Then by Lemmas 9.3 and 9.6 we have: 

LEMMA 9.13. The cupproduct mapping 
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H'(S) A H'(S) - H2(S) 

is injective. 

(Notice that by Lemma 7.14 this result is valid for the surface of lines as- 
sociated to any non-singular cubic threefold.) 

Another result about the topology of S is gotten from the fact that by 
direct computation (see for example [1; Section i]) the topological Euler char- 
acteristic X(D2)) = 15. For Mi as in (9.1) (i), x(Mi) = -6 and X(DMj) = 0. 
Thus by (9.1) (i): 

(9.14) X(S) = 27. 

Finally, we will need in ? 13 a series of integration formulas on S. We 
have on DI2': 

(9.15) <{Do2)} 7k U 7+k U ' U 4+ 1>= for l < k < I < 4 
<{Do2)} ,p U U) 

I U y) 
I for {p, q, r, s}l #{k, 4 + k, 1, 4+1}. 

(To see this look, for instance, at the image of D 2) in J(DO) and compute its 
Poincare dual.) Also by Lemma 9.4, <{SO}, v(X) U rk U 1 U r> = 0 for all 
k, 1, m. This gives the formulas on S: 

<{S}, Y2k U 74+k U Yfl U 7)4+1> = 1 for 1 # k; 
(9.16) <ISII Up U Yq U Yr U 7s> ? for {p, q, r, s}l #{k, 4 + k, 1, 4 + 1}; 

<{Sip X U Y2k U Yl U m> ? for all k, 1, m . 

Leaving the orientation check for later (see the end of ? 11), the definition of 

X and the map pa (see Lemma 9.3) give easily that: 

(9.17) <{S} X U a U rk U 24+k> =? for k = 1, ***, 4; 
<{S}XUUaUkU l>= 0 forother l > k. 

Besides checking the sign in (9.17) we also want to compute <{S}, a U rk U 

'2j U 7m> and <{D.}, X U a>. For this we need more information about the 

divisor D. which we shall obtain in ? 10 and ? 11. In any case we can make 

some steps in the computation now: 

LEMMA 9.18. In H3(S) we have (modulo torsion) the relations: 

(i) (Y2k U 724+?k U 7) is independent of k = 1, ---, 4 as long as 1 {, 4 + k}; 
(ii) (Y2k U h U 72m) = 0 unless, for some {a, b} c lk, 1, m}, a - b = 4. 

Proof. By (9.15) and duality the relations obtained on D"2) by replacing 

r by the corresponding A' are valid. Also the subspace A of H3(SO) generated 

by {Y)klk= ... 8 cannot have rank 9. This can be seen as follows. Using 

Lemma 8.13 and the homology sequence for the pair (K, D 2)) used in the 

proof of Lemma 9.4 one computes immediately the exactness of the sequence 
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0 -* H3(D'2) H3(So) H2(Do) ) o. 
Then the pairing H3(D 2') x H3(D'2') Z is non-singular and unimodular so 
that there is a three-cycle fi on SO such that 

(i) d(B) = generator of H2(DO) 
(ii) <,,> = O for all oe A. 

If d generates H2(Do), <S. C(d)> = ? 1, so rank A = 8. Thus modulo torsion 
X*: Am H3(D(2)) is injective. Thus the relations (i) and (ii) of the lemma hold 
on SO if we replace r by '/. The lemma then follows. 

(From now on we return to the convention that all cohomology is modulo 
torsion.) 

10. Distinguished divisors on the Fano surface 

From now on, unless explicitly indicated to the contrary, V will be a non- 
singular cubic threefold, and S = So, D = DV, and T = TV will be as in (7.1). 
Since in this case, the dual mapping 0D,: P4 P* is everywhere defined, we 
can identify 9): P, -P* with ?), (see ? 5). We write simply 

@ 4 ) PE ?D: P4-*P . 
Let K be a plane in P4. K; V since D is finite-to-one. We therefore 

have a family of divisors on S: 

{DK}K KeGr(3,5) , DK = {s S: (Lf nK) # 0} 
Each K determines a hyperplane section of Gr (2, 5) under the standard Plucker 
embedding 

(10.1) Gr(2, 5) c P9 

and the set {[hK]}KeC(r(3,5) so determined spans the projective space P*. Since 
for all K, S A [hK], we conclude: 

LEMMA 10.2. Under the Piicker embedding S e Gr(2, 5)-e P9, no hyper- 
plane of P9 contains S. 

A fundamental result of Fano for the family {DK} is: 

PROPOSITION 10.3. For a plane K in P4, DK is a canonical divisor on S. 

Proof. For a generic line L in P4, Vh = (vn [hi]) is a Lefschetz cubic 
surface for all but a finite set N of values of h C [L] c P*. Furthermore for 
any h C [L], the number of lines of S which lie in Vh is finite (since we can 
choose L so that [L] does not contain @)(x) for any Eckardt point x C V). Let 
S' = S - {s: L, C Vh for some h C N} and we have an induced finite-to-one 
morphism: 
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T: ST - ([L] - N) . 

By (6.3), z-'(h) has 27 elements if Vh is non-singular and by the discussion 
following Lemma 6.5, r'-(h) has 21 elements if Vh has a double point. 
Therefore z ramifies only over h C (@(V) n [LI). Furthermore z ramifies at 
s C S' if and only if there is a plane K in P4 such that 

(i) [K] Cz-[LI CzP*;4 
(ii) s is a singular point of z-'([K]) = (DKn sf). 

Let MK = {t C Gr(2, 5): (Lt n K) = 0}. Then (ii) is equivalent to the con- 
dition that MK and S be tangent at s. Using local coordinates (6.14) and (6.15), 
it is easily seen that if K is tangent to V at some point of L8, then MK and S 
are tangent at s. This means that if there is an x C L. such that L C[9i(X)], 
the tangent hyperplane to V at x, then z is ramified at s. Thus if Vh has 
double point Xh (h e ([LI - N)), then z must ramify at each of the six points 
s such that Xh G L8. Since z-'(h) for such an h has 21 elements, we conclude 
that the ramification occurs only at the six points mentioned and that the 
branching at each of the points is simple. Thus if Wx = {s e S: x C L8} and 
CL is the divisor on S given by the set 

U {Wx: 9(x)G[L , 
the divisor (CL - 3DK) is a canonical divisor on S. However for a generic 
plane [L] C P*, gf-'([L]) is a complete intersection of type (2, 2) in P4 (by 
(5.4)) which meets V transversely except possibly at a finite set (by Lemma 
5.9 and Corollary 5.14). Therefore CL is linearly equivalent to the divisor 
4DK and the proposition is proved. 

We next turn our attention to {Ds}8e8, the family of incidence divisors 
on S. By Corollary 2.12: 

LEMMA 10.4. The family {DS} is a family of ample divisors on S. 

LEMMA 10.5. For generic s G S, DS is non-singular. 

Proof. Let MS = {t e Gr(2, 5): (Lt n LS) # 0}. If s' e DA and L., is of 
first type, we can assume local coordinates (6.13) to be constructed at s' such 
that LS meets (H0 n H1) (given by X0 = X, = 0). Since MS is then given by 
linear equations, it follows easily that MS and S meet transversely along D, 
in a neighborhood of s'. Similarly if L, is of second type, MS and S meet 
transversely along DS in a neighborhood of s' except if: 

(10.6) L, lies in the plane [9(L8,)] tangent to V along LS 
Thus s' is a singular point of DS only if LS, is of second type and (10.6) holds. 
A dimension argument then gives the lemma since a generic s C S corresponds 
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to a line L. of first type. 

LEMMA 10.7. L. is of second type if and only if s e D8. 

Proof. For s'd D8, s' = s, let K8 be the plane spanned by (L. U L8S). If 
s C DO, lims, As KS is a plane tangent to V along L8. So by Lemma 6.7, L. 
is of second type. Conversely, for L8 of second type, the set of planes K such 
that (K. V) = (L. + L,1 + L,2) is connected and as K approaches [9(Lj)], 
either L8l or L,2 (or both) must approach L8. The lemma follows. 

We can now compute a series of numerical invariants associated to the 
surface S (see, for instance, [13; page 154]). By Lemmas 10.4 and 10.5, D8 is 
a non-singular irreducible curve for generic s. Since two skew lines in a non- 
singular cubic surface have exactly five common incident lines ([18; pages 3-5]): 

(10.8) ({D}-{D8})s = 5 - 

Picking a plane K such that (K- V) = L,1 + L82 + L,3, (si # si for i # j)y 
we have 

(10.9) DK- (D,1 + D82 + D83) 
where "I-" denotes linear equivalence. Then by Proposition 10.3 and the 
adjunction formula for surfaces: 

(10.10) genus (Dj) = 11 . 

We have already seen that the second Chern number C2[S] = 27 in (9.14). 
To get the first Chern number, use Proposition 10.3: 

(10.11) c2[S] = ({DK}1{DK})S= 45 

Since 12(ho (S) - h"(S) + h2 0(S)) = (c2 + C): 

(10.12) h2'0(S) = 10 

Then by Lemma 10.2 and Proposition 10.3: 

LEMMA 10.13. The Plilcker embedding S c Gr(2, 5) P, is a canonical 
embedding of S. 

Since X(S) = 27 = (2 - 2,1(S) + 2,$2(S)), where afj denotes the j-th Betti 
number, 82(S) = 45 and so by Lemma 9.13: 

(10.14) The natural map (H'(Sv) (0 Q) A (H'(Sv) 0 Q) H2(SV) ? Q is an 
isomorphism. 

In the final portion of this chapter, we treat the algebraic subvariety D 
of S, where D = Dv is the set of points on S which correspond to lines of 
second type on V. From Corollary 7.6, dim D < 1. In order to characterize 
the divisor D in S, we need several lemmas. 
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LEMMA 10.15. Let E = {s C D: ([g(L,)] n v) = 3L,}. Then E is a finite 
set. 

Proof. Suppose E contains a curve C. By Lemma 7.5 dim W = 2 where 
W = w7(rw(C)). Since ?f is finite-to-one, ?f I must be of maximal rank at a 
generic simple point x of W. Let x = wv(s, x), s a simple point of E. By 
(6.10) we can normalize the equation for V to the form: 

X2Xo2 + X3X2 + XoE {bojkXJXk: 2 ? j < k < 4} 
+ X1E{blIkXjXk: 2 < ? < k < 4} + P(X2, X3, X4) 

where L. is given by X2 = X3= X4= 0. The condition that s C E is precisely 
the condition that bO44 = b144= 0. This implies that the (5 x 3)-matrix 

((D2F/DXDX0)x (D2F/DXDX1)x 
(D2F/DX8X4)i)aX 

1 .4 

is not of maximal rank. But it is immediate from (6.15) that the plane given 
by X2 = X= 0 is the tangent plane to W at a generic point of L,. Thus 

L Jw cannot be of maximal rank at x which gives the desired contradiction. 

Recall that the tangent cone Cx to V at a point x is the union of all lines 
in P4 which have contact of order > 3 with V at x. 

LEMMA 10.16. Suppose for some s C D 

(CX- V) = (3L. + Lt. + Lt2 + Lt3) 

for generic x C L,. Then 

([QiD(L,)]- V) = 3LUS 
Proof. Put the equation for V in normal form with respect to L, as in 

the proof of Lemma 10.15. At the point (1, 0, - -, 0) one calculates immedi- 
ately that the tangent cone C(, 0,... 0,) is either 

(i) the union of two planes K and K'; 
(ii) a plane K; 
(iii) the tangent hyperplane to V at (1, 0, * , 0). 

In cases (i) and (ii), (C(1,0,... 0,- V) = (3L, + *- ) so that K (or K') must be 
the unique hyperplane tangent to V along L,. Thus in any case [9)(L8)]c 
C(,0...,O). Similarly [9(L8)] c C(o, 0,.0) Suppose 

([9D(L,)]- V) = (2L. + Lt) 
where t # s, and suppose, for example, that (1, 0, *--, 0) 2 Lt. Then any line 
joining (1, 0, - - *, 0) with a point on Lt has contact of order > 4 with V and so 
must lie in V. Since V contains no planes, we have a contradiction to the 
assumption that t # s. 

Next consider the mapping wv: TV V given in (7.3). wv has fibre 
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(W. x {x}) where W. = (s: x C L8}. Let V' be the set obtained by deleting 
from V the (finite) number of points x for which dim W > 0. Putting T' = 
V (V'), we have that the mapping 

(10.17) w': T' V' 

is proper, finite-to-one and generically six-to-one. 

LEMMA 10.18. Ac' is unramified at (s, x) if and only if L. is of first type. 
Furthermore the ramification of w' is simple along a Zariski open subset of 
each component of r-'(D). 

Proof. One checks easily from equations (6.14) that if L. is of first type, 
then there is a tubular neighborhood of ({s} x L8) in T on which w1, is an 
immersion. Therefore w' is unramified at each point of ({s} x L8). If L. is of 
second type, we proceed as follows. Let M = {(t, x) C (Gr(2, 5) x P4)x e Lt}. 
Let WG: M-a Gr(2, 5) and rp4: M-a P4 be the standard projections. If x c L8, 
let 

E. = It C Gr (2, 5): x C Lt '- [(L)]} - 
Then E. is tangent to S at s by equations (6.15). Let Ex be a non-singular 
curve on S which is tangent to Ex at s. Since the surfaces wr'(Ex) and wr-'(E') 
are tangent along ({s} x L8), WP4 I7r1(E ) is not of maximal rank at (s, x); so 
w' cannot be either. The rest of the proof now follows immediately from 
Lemmas 10.15 and 10.16. 

We are now ready to characterize D = D,. For a hyperplane section 
Vh=(Vfl[h]) of V,let 
(10.19) S(h) = rAlp(Vh) 

The Bertini theorems give that for generic h, S(h) is non-singular. So for 
generic h, S(h) is isomorphic to S blown up at the twenty-seven points s such 
that L8, [h], and the monoidal transformation is given by the projection 
w8: S(h) - S. Let E(h) denote the exceptional divisor on S(h). If K, denotes 
the canonical divisor on the algebraic manifold X and "-" denotes linear 
equivalence, we have 

Kv ~ (- 21Vh) 

and so by Lemma 10.18: 

KT- (w-'(D) - 2S(h)) . 

By the adjunction formula, we have on S(h): 

KS(h) - (S(h).(KT + S(h))) 
(S(h). (wl'(D) - S(h'))) 
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where h' is any element of P*. On the other hand, Lemma 10.3 gives that 
on S(h): 

KS(h) ' ((S(h)-S(h')) + 2E(h)) 

Thus (WH'(D) -S(h)) - 2((S(h) -S(h')) + E(h)) on S(h) so that on S: 

(10.20) D - 2DK 

where K = ([hi n [h']). This gives the result of Fano: 

PROPOSITION 10.21. The set D is of pure dimension one and, considered 
as a divisor on S, is linearly equivalent to twice the canonical divisor. 

PART FOUR: THE INTERMEDIATE JACOBIAN OF THE CUBIC THREEFOLD 

11. The Gherardelli-Todd isomorphism 

We now return to the general considerations of Part one in order to 
apply them to the case in which V is a non-singular cubic hypersurface in P4. 
Our analysis of the geometry of V and its surface of lines S will allow us to 
characterize these varieties entirely in terms of the principally polarized com- 
plex torus g(V). (Notice that h"0(V) = 0 - h3'0(V), so 5(V) is in fact a 
principally polarized abelian variety.) 

From ? 4, we have a homomorphism of abelian varieties 

(11.1) 9: Alb(S) - J(V) - 

By ?9, dim Alb(S) = 5, and by [8; page 488], h3'0(V) = 0 and h2"(V) = 5. 

We devote this chapter to showing that p is actually an isomorphism of abel- 
ian varieties. This result is also a corollary of work of Todd [19; page 183]. 
We begin with a result of Gherardelli ([7]): 

LEMMA 11.2. 9: Alb(S) - J(V) is an isogeny. 

Proof. Let T = T, be as in (7.1), and ws: TO S the projective line 
bundle given in (7.2). By the Gysin sequence for sphere bundles, there is a 
vector space isomorphism: 

7rS+X 
(11.3) H2"(S) 0D H"(S) > H2"(T) 
where Z: H"0(S) H2"(T) is given by Z(a) = wrs(a) A C where C is the 
Poincare dual to {S(h)} in T (see (10.19)). Since 7rw is generically finite-to-one, 
wv: H2"l(V) H H2 "(T) is injective, and since h2"l(V) = h1' (S), it suffices to 
show that in H2'1(V): 

((image wr) n (image 7r)) = {0} . 
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To see this, choose h as in ? 10 so that S(h) is non-singular. For GO : He l(V), 
decompose wi*(so) according to (11.3): 

7 * (o-) = wr*(8) + (7w* (a) A C). 

If a = 0 and 8 # 0, there would exist a three-cycle y on the surface S(h) with 

w *(o)) # 0. However 

X C a() A = 0 
;rv* (W 

since wr, factors through H3(Vh), the zero group. This gives the lemma. 

The proof of Lemma 11.2 shows that for any a) e H3(V): 

v ((S)) IS(h) = 0 - 

Thus if 4r*(o)) = wr*(,C) + (7r*(a) A C2) as in (11.3): 

Is= -oa A 8c 
where cl C Hl'(S) is the first Chern class of the bundle wr. By a theorem of 
Chern [4; page 571], one has the relation on T: 

C2 A ' = ' A 5* (C1) - 5*(C2). 

So for any a), A(' e H3(V): 

a) A a)' = (1/6) wrv*(a)) A w *(a)') 

(1/6) (ws(a) A C- *(aA c1)) A (*s(a')AY- C-*(a' A c1)) 

= - (1/6) |r*(a A a' A c1) A '2 
(11.4) T 

= - (1/6) |a A a' Ac1 
s 

= - (1/6) 5 a A a' 
D K 

= - (1/2) |a A a' 
D S 

by Proposition 10.3 and (10.9). (By (2.8), a =q*(a)), a' q,*(cW).) Under the 
natural identification H3(V) H'(J(V)) we therefore have that if y is the 
image of {D,} under the mapping (qoaor)*: H2(S) H2(J(V)), then 

|dA i=-2 Im Xv(di' 

for any c, d' C H1(J(V)) (see (3.1) and (3.3)). 
On the other hand, if Qv = Q(G(V)) is the polarizing class of f(V) as 
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in ? 3, it is an easy exercise in linear algebra to show that for i, d' G H(J(V)): 

|J(e) A V' A QI - -4! JmfCV($, t) 
J(V) 

Thus we have: 

LEMMA 11.5. (qoaj)*({Dj}) has as its Poincare' dual on J(V) the class 
(2QV/4 !). 

(Compare this result with Definition 3.15.) 

Another corollary of Lemma 11.2 is the following: 

LEMMA 11.6. Let X: J(V) Pic(S) be as in (4.3). Then X is an isogeny 
and 

deg(X) = deg(') . 

(The degree of an isogeny is the cardinality of its kernel.) 

Proof. The homology maps g*, X*, and *,y associated to A, X, and 7 = 

(Xoq) are given in (2.7). By (1.1) there is an intersection formula: 

(a'*~~ M7 *a*(')= **('))s 

Let E denote the bilinear form on H1(S) induced under A* from the intersec- 
tion pairing on H3(V). Then deg(q)= Idet E I"2 and by the intersection 
formula for *, deg(y)) Idet E . Thus deg(X) = det E 1/2. 

We wish to show, of course, that deg(q) 1. By (4.3) and standard 
facts about curves we have a commutative diagram: 

Alb (Dj)8 Alb(S) 

(11.7) J(D.) / V) 

1 81 /K 
Pic (D8) - Pic (S) 

where D. is any non-singular incidence divisor and K8. and 1,u are induced by 
the inclusion D. U S. Let a denote the composition (Kro1etop0). 

LEMMA 11.8. The homorphism a: Alb (S) Alb (S) is given by 

a(U) = - 2u . 

Proof. Since S is connected and for all s e S the ample divisor D. is con- 
nected, it is immediate that 

{planes K: (K. V) is a sum of lines} 
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is connected. Also, if (K. V) = (L81 + L82 + L,,), then (Y(a.(s,) + a.(S2) + 

a,8(s3)) must go to the fixed point of Pic (S) corresponding to the canonical 
divisor on S by Proposition 10.3. By Theorem 4.5 it follows that there is 
a fixed point up e Alb (S) such that whenever (L,1 + L82 + L8,) is a plane 
section of V: 

(11.9) a,8(s1) + a8(S2) + a8(s3) u uo in Alb(S) 

Since V is simply connected, it follows that the mapping 

V Alb(S) 

gotten by sending x to ,6= a8(si) where L,1 ..., L,6 are the six lines 
through x is also a constant mapping. So there is a fixed ul e Alb(S) such 
that: 

(11.10) E a.(si) = U, 

whenever L,1 ..., L86 are the six lines through a point. Fix so e S. Then 
for s C DS: 

a(a,8O(s)) = a8O(t) + 4=1 a8O(ti) + (constant) 

where (L, + L. + L8O) is a plane section of V and L80, L8, Lt1, ... , L t are 
the six lines through the point x = (L., n L8O). Applying (11.9) and (11.10): 

a(a8O(s)) - - (a,0(so) + a8O(s)) 
+ u1 - (aso(s) + a,8O(s)) + (constant) 
- 2a0so(s) + (constant) . 

Since D8o is ample, a,8O(D8O) generates Alb(S) and the lemma follows. 

Following [2], the formula (11.9) suggests the definition of an involution: 

(11.11) e: D8 -bDs 

for each s e S by putting y8(sj) = that unique s2 e D. such that (L. + L81 + L82) 
is a plane section of V. Using (10.6) and the involution ys it is clear that D. 
is non-singular except at fixpoints of vs. Also for generic s there are no fix- 
points. Then by (10.10) and the Riemann-Hurwicz formula, the quotient 

(11.12) Gs= D./vs 

is a non-singular curve of genus 6. Let is denote alternatively the quotient 
mapping D., G. or the induced homomorphism: 

Alb (Ds,) > Alb (Gs,) . 

Also let ys stand as well for the involution on Alb (D,) induced by (11.11). 
Using (11.9), we have on Alb (Dj): 
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(11.13) IC3o =8 -K 8; ' 3SO73S =8 

Let A = (image((identity map) + as)) and B = (image((identity map) - 
Then by (11.13): 

A 9 (ker ,) 
B (ker is) 

By a dimension argument: 
A = (ker Kc8)0 
B (ker $8)0 

where (0) denotes as before the component of the identity. Since ys respects 
the standard hermitian form associated to Alb(Dj), A and B are orthogonal 
subvarieties of Alb (Dj). On the other hand, if K8,: H1(D8) H1(S) and 
fs*: H3(S) - H1(D8) are the homology mappings associated to tc8 and pas respec- 
tively, then(YeS*(3))D (KY)c) 0 for y e ker Kr8, s e H3(S). Thus 
P.8(Pic(S)) c (ker K,8)I and so by dimensions: 
(11.14) B = (ker $)= p),-(Pic(S)) . 

We next wish to compute the degree of the isogeny Jr = Ks I1B B Alb (S). 
The covering es induces a non-trivial representation of the fundamental group 
of G. in the permutation group S(2), or equivalently, a non-trivial homomor- 
phism 

P: Hi (G.) >(Z/2Z). 
It follows that there is a basis 70, 60, al, a,, .., y5, a for H1(G8) such that: 

(i) p(-0) = 1, p(7) 0 for j = 1, *.., 5 and p(a) = 0 for j = O *.., 5; 
(ii) (7jY7k) = (amj@k) 0 , and (7Yj k) = the Kronecker symbol ajk. 

Such a basis can be represented by cycles in "standard form", that is, each 
cycle is a connected differentiable submanifold of G,, any two intersect in at 
most one point, and all such intersections are transverse. We then have the 
following picture for the covering $8: 

_~~~~~~~~~~ 

PI ,C~T~~9 etc. o 

Gi- ) et. o o o 

0O ?1 



334 C. H. CLEMENS AND P. GRIFFITHS 

In the obvious way, one constructs a standard basis 

(-/?, all U {J,/~ id: i =1, 2;j = 1, ... 5} 
for H1(D8) such that: 

(11.15) 'y(y0) = 0, y(3) = 
z ( = ,1 y(at) = ai+1 for i, j > 1 

and such that the intersection number of two basis elements in DS is precisely 
the same as the intersection number of the basis elements in G. over which 
they lie. Then the mapping Is*: H1(DJ) H1(G8) has a kernel which is freely 
generated by the set 

(11.16) {(l _ Q,.) 8. _ ok) D = i ,*@A 5} . 
Also by (11.13) and the fact that D. is ample in S, the mapping KCS,: H1(DJ) 
H1(S) takes the set 

(11.17) {1, i;: j = 1, .. 5} 
onto a basis for H1(S). By (11.14) and (11.16), however, the abelian variety 
B is just the subvariety of Alb(D8) given by elements of the form 

A (aQj(z - it) + bj(a& - a)), aj, bj real. 

(Here H1(D8) is identified with the lattice U such that Alb (D=) (H" 0(DJ) *1 U).) 
Therefore the degree of /c: B Alb(S) must be equal to the order of the 
group 

H1(S)/jc*(ker e* 

Using bases (11.16) and (11.17) and the first formula of (11.13), one computes 
immediately that: 

(11.18) deg(jc) = 210. 

THEOREM 11.19. q': Alb(S) J(V) is an isomorphism. 

Proof. We have the commutative diagram of isogenies: 

Pic(S) 

B J(V). 

Alb(S) / 

Now the composition (Kcoftoxoq) =- 2 (identity map) by Lemma 11.8. But 
deg(jc) = 210. Therefore qA, X, and pe must all be isomorphisms. 

We now wish to complete the list of formulas begun in (9.16) and (9.17). 
First of all, by (11.4), if 93 {=, X, aq, ..., 8} is the basis for H'(S) used in 
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? 9, then the determinant of the matrix 

{DS 1a fipe $ 

is 210. Therefore using (9.10)-(9.12) we can improve on (9.12) (iii), namely we 
may conclude that: 

(11.20) X A a = 2 . Ds 
By Theorem 11.19, under the mapping 

(q'o a.): S- J(V) 
we can identify 93 with a basis for H'(J(V)). By (9.10), (9.11), (9.12) (ii), 
(11.20), and (11.4), the polarizing class Q, = Q(gI(V)) is given on J(V) by: 

(11.21) QV = (X A a + Zk'=1 k A ya4+k) 

Let us return to the pencil {Sh}h6[R] of divisors on the threefold AR con- 
sidered in (7.11) and ? 9. Associated to {Sh}h [R] we have the Lefschetz pencil 
{1Yh1h[R] of hyperplane sections of the non-singular cubic fourfold Y. For 
Pf = ([R] - {ho, , hm}) we have the continuous family of homomorphisms 

(11.22) H1(Sh) . A H3(Yh) - H3(Sh) h e Pf 
which by Theorem 11.9 and Lemma 11.6 must be isomorphisms. Let 

Tn,; Y) -^ Tv j: Y h > h 

Tj S;^ -* Ts h - h 

be the Picard-Lefschetz diffeomorphisms (see [5; pages 42-43]) associated to 
the path q, in P' as shown: 

I11j 
0 * 1)1 

According to theorems of Lefschetz (Analysis Situs. Paris: Gauthier-Villars,. 
1950, pages 93 and 106-08), there is a "vanishing cycle" 3j e H3(Y-) associ- 
ated to each j = 0, * , m such that: 

(i) {aj}j, m generate H3(Y^) (since H3(Y) = 0); 
(ii) the vanishing cycles are all conjugate under the action of wz1(P') on 

H3(Y^) induced by the Picard-Lefschetz diffeomorphisms (see end of ? 5); 



336 C. H. CLEMENS AND P. GRIFFITHS 

(iii) (Tv,j).(a) - a ? (aoa)a, for all a X H3(Yh). 

Thus the fundamental group wr1(P') acts irreducibly on H3(Yh) and so by 
using (11.22), it also acts irreducibly on H1(S-) and also 

LEMMA 11.23. w1(P') acts irreducibly on H'(Sa) ? C. 

Choosing a basepoint so C S, such that (se, h) G Sh for all h C [R] and 
letting Do0, h be the incidence divisor for so in Sh we have clearly that 
(Tj)*((D.O,}) = I{D 0, }e:H2(Sh) forall j = 0.**, m. Thus if d E: H2(S^) is 
the Poincare dual of {Do0,^I on S^: 

(11.24) eh is invariant under the action of w1(P'). 

Since the Picard-Lefschetz diffeomorphisms respect the intersection pair- 
ing on Y^ we have that Qv is invariant under the automorphism induced on 
J(Vh) by Tj for each j so that again using (11.22): 
(11.25) i0 = (Qpoa8)*(Qv) is invariant under the action of w1(P'). 

For S = S- the form 

B1: (H'(S) (8 C) x (H'(S) (8 C) - C 

(a, a) as A d'A t-h 

is non-degenerate. Let B2(a, a') = a A d' A do Since (q'oa8) is an im- 
s 

mersion (see beginning of ? 12), B2 is also non-degenerate. There is certainly 
some real number c # 0 such that B, + cB2 is degenerate. Let A = 
{a e (H'(S) ( C): B,(a, a') + cB2(a, a') = 0 for all o' e H'(S)}. By (11.24) 
and (11.25), A is an invariant sub3pace of H'(S) 0 C so that by Lemma 
11.23 

(11.26) B1 + cB2 = ? . 

Since B1 and B2 take integral values on H'(S), c is in fact a rational number. 
By (10.14) therefore 

and 

5 = ({D8} {D8}) 
C= 

= I-10 

by Lemma 11.5. Thus: 

LEMMA 11.27. On S, the Poincare dual of {D8} is the class 

(1/2)((Z A 3) + mk=j 2k A 24+k) 

We are now in a position to complete the list of integration formulas on 
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S begun in ? 9. For convenience we list those which we have derived up to 
this point: 

G DA3-2= 7 CA 54+k fork=1,.1.,4; 
Ds Ds 

(11.28) 5X AYrk =0 = A 72k for k = 1, . . ., 8; 
Ds Ds 

5D.k A 7i = 0 for l > k, l9 k + 4 . 
Ds 

Also we know that 

V2k A )24+k A '?i A )?4+1 =1 for 1 ? k < 1 ? 4; s 

)7v A )7 A )r A )s = 0 for other p, q, r, s; 
(11.29) s 

| A )2k A '?, A )2m = 0 for all k, 1, m; 
s 

|ZX A a A 7k A 7, = 0 for l > k, 1 4 + k . 
s 

Lemma 11.27 allows us to improve on (9.17) and conclude: 

(11.30) | A a A 72k A 724+k = 1 for 1? k < 4 . 

Finally, since &o A )7k = 0 for all k, Lemmas 9.18 and 11.27 give that: 
D s 

(11.31) a A )2k A '2' A )2m = 0 for all k, 1, m . 

12. The Gauss map and the tangent bundle theorem 

From (10.14) we have that 

(12.1) H2'0(S) H"0(S) A H1"0(S) . 

Thus the mappings as: S - Alb (S) defined in (4.6) are immersions since by 
Lemma 10.13 the linear system of canonical divisors on S has no basepoints. 
Let Gr (2, T(Alb(S), 0)) be the Grassmann variety of two-dimensional sub- 
spaces of the tangent space to Alb(S) at the basepoint 0. Now each isomor- 
phism 

(12.2) T(Alb(S), 0) C5 

induces an associated isomorphism 

Gr (2, T(Alb(S), 0)) Gr (2, 5) 

Also there is a rational mapping 
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(12.3) 9: acs(S) ) Gr (2, T(Alb(S), 0)) 
defined by assigning to u e a,8(S) the subspace T((a,,(S) - u), 0) of T(Alb(S), 0). 
9 is called the Gauss map associated to a,8(S) and the purpose of this 
chapter is to prove that, for appropriate choice of isomorphism (12.2), there 
is a commutative diagram: 

S - , a(S) 
(12.4) e 9 

Gr(2, 5) ozeGr(2, T(Alb(S), 0)) 
where s is the standard inclusion of S (see (7.1)). Notice that (12.1) and 
Lemma 10.13 give immediately that if d: Gr(2, 5) P, is the Plucker em- 
bedding then for any choice in (12.2): 

LEMMA 12.5. There is an automorphism a of P, such that (dogoaj) 
(Uodos). 

The stronger fact (12.4) is considerably harder to prove. Since it is the 
central geometric fact of the paper, we will present two proofs, the first an 
analytic proof using residues and the second an algebro-geometric proof. The 
first proof is shorter and more direct, and in the second we will derive some 
geometric facts which will in any case be useful in ? 13. 

Let A42(V) be the vector space of rational four-forms on P4 with a pole 
of order two along V. If E = C5, there is an isomorphism 

(12.6) o: E* > A'( V) 
defined by putting 

c)(H) = (H(yo, ..., Y4)Q(yQ ..., Y4))IF(Yo, ..., 9 Y 

where F(XO, ...* X4) is the defining polynomial for V and 

Q(YO9 Y4) =Y E 1)'yj(dy0 A * A dyj A * A dy4). 

By [8; page 488], the Poincare residue operator induces an isomorphism: 
(12.7) : Al( V) > H2"(V) 

since h3'0( V) = 0. Combining these with the isomorphism 
p*: H2"1(V) > H0 (S) 

(see ? 2 and ? 11), we get an isomorphism: 
(12.8) p: E* > H"O(S) 

Thus for each s C S, p gives a linear mapping: 
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ps: E* > T*(S, s). 

On the other hand, Ls c V is the "projectification" of a two-dimensional sub- 
space Js of C. Write: 

JS1 = {H 1 E*: H Ij 0}1 
If we identify E* with (T(Alb(S), 0))* under (12.8) then the commuta- 

tivity of (12.4) is an immediate corollary of: 

PROPOSITION 12.9. The sequence 

? JS1 >E* Ps ) T*(S, s) >O 
is exact for each s e S. 

Proof. (12.1) and Proposition 10.3 imply that ps is onto for each s e S. 
So we must show that if H js= 0 then p(H) vanishes at s for all s such that 

L. c [h] 
where h C P* is the element given by H(XQ, * *,*X4) = 0. We assume that 
([hi n V) is non-singular, since it will suffice to treat this case, the generic 
one. Now as in [8; equation (10.8)], there is a residue isomorphism 
(12.10) R: A'(V) - H'(V; &?) 
where f22 is the sheaf of closed holomorphic two-forms on V. For generic H 
we will explicity construct the mapping 

(Roc): E* > H'(V; &V) 
and then relate it geometrically to the mapping p of (12.8). Let z1, , z4 be 
holomorphic local coordinates in r4 around a point of (v n [hi) such that: 

(i) [h] is given by z1 = 0; 
(ii) V is given by z4 = 0. 

Locally o(H) = (zlf(z)dz, A ... A dz4/z4) where f is holomorphic. If we 
choose g(z) such that 

ag/l3Z = aef/az49 

then locally 

o(H) = d((zlg(z)dz, A dz2 A dz4 -zlf (z)dz, A dZ2 A dz3)1Z4) - 

Next choose a finite covering { Uk} of a neighborhood of V in P4 such that on 
each Uk: 

o(H) = d7k where 7k is holomorphic on (Uk - V), vanishes on 
([h] f Uk) and has first order pole along (V n Uk) . 

If we define jk = ( - 2k) on (Uj n Uk), then each *j, has the following 
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properties: 

(i) dtjk = 0; 

(ii) *jk vanishes on ([hi f Ujk); 
(iii) */jk is either identically zero on a component Ujk of Ujk or else jk 

has a first order pole along (V n Us,,). 
Any meromorphic three-form * satisfying (i)-(iii) may be expressed (on the 
corresponding U) in the form: 

* = ((zea A dz4)/z4) + (zfl/z4) 

where a and 3 do not involve dz4. Since d/ = 0, we must have in fact that 
z1fl/z4 is holomorphic on U. Then the Poincare residue ([8; ? 10]) of * is 
given by: 

R(*) =Zia I(vnu) 

which is therefore a closed holomorphic two-form on (V n U) which vanishes 
on ([hi n vn U). The element 

(Roco)(H) e HI( V; Q 

is then represented by the cocycle: 

(12.11) {R(*jk)l 
The important thing about this cocycle is that it vanishes along ([hi n v). 
We can now finish the proof of Proposition 12.9 by proving the following: 

(12.12) For generic He E*, if [h] is the hyperplane defined by Hand L. ( [h], 
then for each z e T(S, s) the contraction <z, pj(H)> = 0. 

From [15; page 150], there is a natural isomorphism for each s C S: 

(12.13) A: T(S, s) - H0(L,; O(N(V, Lj))) 

where N( V, L8) denotes as before the normal bundle. There is a contraction 

(12.14) 
H0(L,; (9(N(V, L,))) 

x H1(V; f22) - H'(L,; QLS) 

defined as follows. If 0 e H0(L.; (D(N(V, Lj))), choose on (Ujk n L,) a repre- 
sentative 

f"jk e H1((Ujk n L,); O(T(V) I(UjknLL))) 

for )o (Ujk nLs)* If a) {= A kj e H'(V;f2V) let ejk be the contraction 

<f~jkq (0jk lUjknLs> I 

Then ijk is an element of H0(Ujk n L,; QV lUjknLL) and so gives an element 
t* e H0(UjknL,; Q(UjknL8)) (where Q' denotes the sheaf of holomorphic one- 
forms). Then {Jr} e H'(L8; Q') depends only on 2 and o. Putting <72, a> = 
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{k we have the pairing (12.14). Furthermore, for suitable choice of iso- 
morphism 

H1(L8 ; QL) C, 

the mapping (12.13) of Kodaira satisfies at s the identity: 

(12.15) <7, (q2*ou)(Q)> = <K(z), R(Q)> 
for z e T(S, s) and Q e A4(V). (See (12.7), [8], and [15].) Finally if Q = o(H) 
for generic HeE* and if HI8= 0, then using representative (12.11) for 
R(o(H)) the right hand side of (12.15) trivially vanishes at s for all z e T(S, s). 
Thus 

<7, (tp*ouaoo)(H)> = 0 
which proves (12.12) and hence the proposition. 

This then is the analytic proof of the commutativity of (12.14). Before 
turning to an algebro-geometric discussion, we remark that the proof of Prop- 
osition 12.9 can be generalized to give the following: 

Let V be a smooth hypersurface of dimension (2n + 1) in a smooth pro- 
jective variety X. Suppose that {Zs}ses is an algebraic family of algebraic 
n-cycles on V. As above we have mappings 

A211++2(V H-(V;fQv+l) A+j2(V) R 

H2n+1'0(V) 0) ED & Hn+1'n(V) -D H" (S) 

Then if Q E A2n+2(V) and R(Q) is zero on Z8, 

(q1*oq)(Q) Is = 0 

We now return again to our point of departure just after Lemma 12.5. 
We proceed by a different route, deriving a series of geometric lemmas. 

LEMMA 12.16. Let (Sx S)0 = ((S x S) - (diagonal)). For (s, t) e (S x S)0, 
define: 

(([L8] n [LUJ), the hyperplane spanned 
(D(s, t) = by L8 U Lt. if (L8 n Lt) = 0; 

@(x) if {x} = (Ls n Lt) (see ? 5) . 

Then PD: (S x S)0 > P* is analytic. 

Proof. If suffices to check that if C is a non-singular curve in (S x S)0 
and (s,, to) is an isolated point of 

C n {(s, t): (L8 n Lt) # 0} 
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and Lso nLtL = {x, then 

limit(st)ec,(st)-(soto) (D(s, t) = @(x) 
Let ho = limit (D(s, t). Following [18; page 2], let y be any point in [ho] such 
that y does not lie in the plane spanned by Lso and Lto. Then if Lo is a line 
in P4 which meets [ho] at y, and if (s, t) is near (so, to), there is a unique line 
L(s,t) meeting Lo, Ls and Lt. If y X V, then as (s, t) approaches (so, to), the 
two points given by (Ls n L(s,t)) and (Lt n L(s,t)) must both approach the 
point x e (Lso n Lto). Thus a generic line in [ho] which passes through x has 
multiple contact with V at x, and so x must be a singular point of ([hi n v). 
So h. = D(x) and the lemma is proved. 

LEMMA 12.17. Let v: E - S x S be an analytic mapping of the unit 
disc into S x S such that for z e E, z # 0, v(z) X (diagonal of S x S) but 
v(O) = (so, so). Then limit, (D(v(z)) E 9D(Lso). 

Proof. Let ho = limit (D(v(z)). If the lemma is false, (V n [ho]) is non- 
singular in a neighborhood of Lso. So there is a tubular neighborhood U of 
Lso in P4 such that, if z is near 0 and (s, t) = v(z), U contains (Ls U Lt) and 
(u n v n [o(s, t)]) is diffeomorphic to (U n v n [ho]). But in (V n [$(s, t)]), 
({L} -{Ls}) = - 1 and ({L}- {Lt) > 0, so that it is impossible that both Ls 
and Lt go to Lso in (vfn [h]). This gives the lemma. 

Let Ice (S x S) denote as in (2.4) the incidence divisor for the family 
{Ls}. For (s, s') e I, in order that (s, s') be a singular point of I it is neces- 
sary that s be a singular point of Ds, and s' be a singular point of Ds. By 
condition (10.6), this can only happen if i = s' and (V. [D(Ls)]) = 3Ls. (Recall 
that [D(Ls)] is the plane tangent to V along Ls.) By Lemma 10.15 therefore: 

LEMMA 12.18. I is non-singular except possibly at a finite set of points 
lying on the diagonal of S x S. 

Let 7s be as in (11.11) and define: 

(12.19) I' = {(s, s') E I: as (s) # S} 
w: I' S given by r(s, s') = s. 

Thus if L. is of first type, 7r-(s) = ({s} x Ds). If Ls is of second type, r-1(s) = 
({s} x (Ds - {t})) where (2Ls + L,) is a plane section of V. Also, if (s, s') e I', 
s is a non-singular point of D, . 

LEMMA 12.20. If (s, s') e I% "mittCDs8,t.. $(s, t) = D(Ls n LS,(8,))- 
Proof. Let s, = as (s). Then s, # s. If s, # s', then (Lt n Ls1) = 0 

for all t e DAl t near s, since V contains no planes. By Lemma 12.16, 
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limitt Dsft-s D(s,, t) = (Lfl nL,). But for t near s, (D(s,, t) = '(s, t), and so 
we are done in case s, # s'. If s, = s', let K be the plane spanned by Ls and 
Ls,. K is tangent to V along Ls so that K= [D(Ls,)]. Also Kc [$(s, t)] 
for t e Ds,, t near s. Thus limit P(s, t) e ?(Ls,). But by Lemma 12.17, 
limit $D(s, t) e OD(Ls), and (D(Ls) n D(L, )) = ?(LS n L8,) since, if x e Ls, y e L8, 
and @(x) = 9@(y), then the line through x and y lies in V and so must be either 
Ls or L>,. The lemma is therefore proved. 

We define two morphisms on I': 

(12.21) P: I' V 
(s, s') I-> (L. n LT,(s)). 

(12.22) Let z-: P(S) > S be the projective line bundle whose fibre at s is 
Gr (1, T(S, s)) and put: 

X: I'- P(S) 
(s, S') -*{T(Ds, s)} 

LEMMA 12.23. Suppose Ls is a line of first type. Then for (s, s,) and 
(Si S2) G I': p(s, s,) = p(s, s,) if and only if X(s, s,) = x(s, s,). 

Proof. If C is a non-singular curve in S and s e C then by Lemma 10.7, 
(L4 nLs) = 0 for t e C, t near s. Furthermore if we put the equation for V 
into normal form with respect to L, as in (6.9) and let B(a,, a,) be the curves 
in Gr(2, 5) defined as in the discussion preceding Lemma 6.18 then there 
is a unique (a., a,) e Pi such that C and B(a., a,) are tangent at s. For that 
particular (a, a,): 

limittCeC,t~s (D(Si t = "iMitt C B(lo,cal),t's )D(Ss t) 
(where $(s, t) is the hyperplane spanned by Ls and L4). Using Lemma 6.18 
and the fact that for all t e B(ao, a,), D(s, t) = h(ao, a,), we have that: 

X(s, sI) = X(s, s2) if and only if O(p(s, si)) = O(p(s, s2)) 

Since ED Ks is infective, we have the lemma. 

LEMMA 12.24. Suppose that Ls is a line of second type. If (s, s,) and 
(S, S2) e I', then D(p(s, s,)) = O(p(s, sQ)) if and only if 

?(Ls f Ls8) = 'O(Ls n LS2) - 

(Notice that if, for example, s = s, then (Ls fn L,) should be interpreted as 
"iMitt Dslts (Lt t Ls) which exists since Ds is non-singular at s.) 

Proof. Suppose (s, s') E I' and s # s'. By Lemma 12.17, if h = 
limitteDs,,ts <(s, t) then [D(L,)] c [h]. Clearly L8 c [h] also. Since Ls8. 
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[9)(L8)] by the definition of I', h = D(Lf n L,), the tangent hyperplane to 
V at (L, fl [n(L8)]). By Lemma 12.20 therefore: 
(12.25) D(L. n L.) = 0D(L. n Lr,,(S)). 
By continuity, (12.25) continues to hold if s = s'. The lemma now follows 
directly from Lemma 12.20. 

If L. is of second type, we see by (6.15) that the tangent directions to S 
at s are given by the Schubert varieties: 
(12.26) E, = It E Gr(2, 5): x E L, - [O(L8)]} for x E L8 - 

LEMMA 12.27. Let L, be a line of second type and let (s, s') e I. Then if 
x = (L4, n L,), D8, and Ex are tangent at s. 

Proof. Let WG: M > Gr(2, 5) be as in the proof of Lemma 10.18. Then 
if D8, and Ev are tangent at s, we have as in that proof: wp4: w_'(Ds) - P4 
is not of maximal rank at (s, y). On the other hand, if y' E L8, y' # y, then 
Wp4G 1wG(Ey) P is clearly of maximal rank at (s, y') and so wp4: w'(Ds') P4 
must also be of maximal rank at (s, y') since wr'(E,) and wr'(D8) are tangent 
along ({s} x L,). But if s # s' and {x} = (L,, n L.,), wp4: G1(D8) P4 cannot 
be of maximal rank at (s, x) since non-degeneracy at (s, x) would imply that: 

(p)(T(7r-(D~,), (s, x))) c= T([O(L,,)], x) 

which in turn would imply that L., c [J(Lj)]. This cannot be since (s, s') E I'. 
The lemma is therefore proved if ses'. The case s = s' follows by a conti- 
nuity argument. 

COROLLARY 12.28. If L. is of second type and (s, s1) and (s, s2) C I', 
X(S, S1) = X(S, S2) if and only if (L,, n L81) = (L,, n L,2). Also J(p(s, s1)) = 
P(p(s, s2)) if and only if (L,, n L,) and (L,, n L,2) go to the same point under 
P: L8- P*. 

By Lemma 12.23 and Corollary 12.28, there is a unique rational map 

a*: P(S) V* = @P(V) 

such that the diagram 

It P > V 

P(S) V* 
is commutative. If L. is of first type, then by Lemma 12.23 and the injec- 
tivity of D IL., we have that 

(12.29) 8*: r' (s) - 9(L8) 
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is an isomorphism. If L. is of second type then by Corollary 12.28, 8* is 
defined at a generic point of z-'(s) and 

0* 7.-l(S) > O)(Ls 
is generically two-to-one. Since 9P: Van V* is generically injective, there is 
a unique lifting 8: P(S) - V of 8*. By Zariski's Main Theorem ([10; pages 
43-48]) and the fact that D: V - V* is finite-to-one, 8 is defined at each point 
at which 8* is defined. Since 9P is generically injective, 8(z-'(s)) c Ls. If L. 
is of first type, 8* [-(s) andg IL, are isomorphisms so that 

(12.30) a: Z'1(s) > Ls 

is an isomorphism. If L. is of second type, ) IL, and 8* ['(s) are both generi- 
cally two-to-one so that the mapping (12.30) is an injection. 

PROPOSITION 12.31. The mapping 8s: P(S) > T, defined by 0,(b) = 
(z(b), 0(b)) is an isomorphism of projective line bundles over S. 

Proof. By the preceding discussion 9s is an injective, fibre-preserving 
map which is defined at a generic point of each fibre of r: P(S) - S. Using 
the fact that any such map is determined in the neighborhood of a fibre by 
its values on three distinct local sections of z: P(S) S, the proposition 
follows. 

We are now in a position to derive a proof of the commutativity of (12.4). 
Using the immersion 

ao0: S > Alb(S) 

we define a morphism 

01: P(S) > Gr (1, T(Alb(S), 0)) 
by associating to b e P(S) the subspace 

T((a8o0(C) - a.o(s)), 0) 

where C is any curve which passes through s = z-(b) with direction b. By 
Proposition 12.31, 8: P(S) > V is a morphism and we assert: 

LEMMA 12.32. For b, b' e P(S), if 0(b) = 0(b') then 01(b) = 01(b'). 

Proof. It suffices to check this for generic b and b'. Let z(b) = s, z(b') = 
s'. If s = s' the lemma is trivial. If s # s' and x = 8(b) = 0(b'), then x e 
0(r'-(s)) = L, and x e 8(r'1(s')) = L8. Let t = y8(s') = y8(s). Then x = p(s, t) 
= (8oX)(s, t) = 8({T(D,, s)}). But x = 8(b) and 8 - is injective. Thus b = 

{T(D,, s)}. Similarly b' = {T(DO, s')}. Now by (11.13), (a,80 |Dtoyt) = - a80 IDt + 

(constant). So 01({T(D,, s)}) = 81({T(DO, s')}) and the lemma is proved. 
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By Lemma 12.32, there is an induced mapping 

X: V > Gr(1, T(Alb(S), 0)) 

such that (XoO) = 01. We then have the commutative diagram 

Os 
TV P(S) 

1 02 01' 
(12.33) 7 AVI 8 

V -Gr(1, T(Alb(S), 0)) 
nil 
P4 P4 

By its definition, 08 induces a mapping of S into Gr(2, T(Alb(S), 0)) and 
using (12.3): 

(12.34) The mapping S Gr(2, T(Alb(S), 0)) is precisely the composition 
(Co a8s). 

By Lemmas 12.5 and 10.2: 

(12.35) 01(P(S)) is contained in no hyperplane of Gr(1, T(Alb(S), 0)). 

If H is a generic hyperplane c Gr(1, T(Alb(S), 0)): 
0 < ({L8} *{x'-(H)})v ? ({ 1(S)} {8 P 1(H)}) = 1 

Therefore if Vh denotes as before a hyperplane section of V: 

(12.36) X is induced by sections of the bundle L(Vh). 

But (12.35) and (12.36) taken together imply that X is induced by the 
entire five-dimensional vector space of sections of L(Vh). (See Lemma (A. 1) 
of Appendix.) So (12.33) can be completed by an appropriate isomorphism 
between the two copies of P4 appearing in the diagram. Thus by (12.34): 

THEOREM 12.37. For proper choice of isomorphism (12.2), the following 
diagram is commutative: 

S > oa8(S) 

Gr(2, 5) P&Gr (2, T(Alb(S) , 0)). 
Since a.: S Alb (S) is an immersion, (Goas) induces the tangent bundle 

on S so that: 

COROLLARY 12.38. Let U(S) be the two-dimensional vector bundle on S 
induced by the inclusion 

S:S > Gr(2, 5) 
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Then U(S) is isomorphic to the tangent bundle T(S). 

Lastly since Vn U {L,: t e 9(a(S)) c Gr(2, 5)}, we have 

COROLLARY 12.39. The cubic threefold V is determined by its surface of 
lines S. 

13. The "double-six", Torelli, and irrationality theorems 

As in ? 3, let Q, = Q(I(V)) denote the polarizing class of the principally 
polarized abelian variety g(V). Let a8,: S - Alb(S) and p: Alb(S) ~~L J(V) 
be as in previous chapters. Referring to Definition 3.15 and Lemma 11.5, 
we have the following: 

PROPOSITION 13.1. (9oa8)*({S}) has as its Poineare dual on J(V) the class 

(Q3j3 !). 
Proof. Let i1, *.. I, 2o be any basis for H'(J(V)) such that 

QV = E Ak A 15+k I 

If we continue to denote by ok the pull-back of ek to S under (bpoas)*, then 
from Lemma 11.5 we have: 

(3 5 A $5?k 
2 for k =1,*,5; 

(13.2) Ds 

5D kA 0 -0 for other l > k . 
Ds 

To prove the proposition, it suffices to prove that 

5 k A 25+k A i, A 5+1 = 1 for ki #1 , 
S 

| A /q A dr A = when {p, q, r, s} {k, 5 + k, 1, 5 + 1} . 

Since this is strictly a numerical result, it suffices to prove the result for 
S = S- with Sa as in ? 9. By (11.21), we may take as our basis for H'(S) 
the set {X, a, r1, * * } of ? 9. Then the proposition is proved by the for- 
mulas (11.29)-(11.31). 

(Thus I(V) is a principally polarized abelian variety of level 2 (see ? 3).) 

Define the morphism 

(13.3) NY: S x S --> A(V) 

by P(s1, s2) = P(a.(s) - xs(s2)). By Theorem 12.37, NP is an immersion at 
each point (si, S2) such that (L., nL L82) = 0. Thus the image P(S x S) in 
J(V) (counted with multiplicity one) is an effective divisor on J(V) which we 
denote by Os. Notice that Os is even (that is, Os = - Os) and independent of 
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the choice of basepoint s for the mapping ax,. Notice also that T(diagonal of 
S x S) = e J(V). Take a generic (si, s') e (S x S). Then (L,1 nl ,L) = 0 
and there are five lines t2, ** , t6 e S such that Ltj is incident to both L,1 and 
L. for j = 2, *, 6. Referring to (11.11), define: 

sj = ^Itj(s') X = 2, ***, 6, 
isr= ^tj(sl) j = 2, ...,6 

By (11.9), T(sj, so) = T(sk, sk) for j, k = 1, 2, *-*, 6. The pair ((si, 2, . , s6), 

(s', s', *Q, s6)) is known classically as a "double-six" of lines on a cubic sur- 
face (see [18; page 7]). Since dim T(S x S) = 4, T is generically finite-to- 
one and, by what we have seen, -t is generically at least six-to-one. But by 
Proposition 13.1, TP({S x S}) has as its Poincare dual on J(V) the class 
6Q,. Since Q, is not divisible in H2(J(V)), we have: 

THEOREM 13.4. {8s} has as its Poincare dual on J( V) the polarizing class 
QV. 

As in (12.3) we can define a Gauss map 

(13.5) 9: OS ) Gr (4, T(J(V), O)) 

by assigning to u e Os the subspace T(Os - u, 0) of T(J(V), 0). Then 
Theorem 12.37 implies that for appropriate choice of isomorphism (12.2) we 
have the following commutative diagram of rational mappings: 

SxS S O>8s cJ(V) 

(13.6) ?D $ 
P* P,--o Gr(4, T(J(V), I0)) 

where (D is as in Lemma 12.16. Let V* = @(V), the dual variety to V in 
P* (see ? 5). As in [1; ? 71, let N denote the closure of the graph of (D in 
(S x S) x P* and define 

(13.7) Eh = s Xs(Nn ((S x S) x {h})) 

for h e P*. If h X V *, then by Lemma 12.17, (Eh n (diagonal of S x S)) = 

0. Then Eh contains n. (2 x (27)) points since (v n [h]) is a non-singu- 
lar cubic surface. For h e V*, either Eh is infinite or Eh contains a number 
of points no larger than n0. But clearly the set of points h such that Eh is 
infinite has dimension < 2. Also for generic h C V*, (V n [h]) has only one 
ordinary double point by Proposition 5.16. Thus for generic h C V*, Eh has 
at least (2 x (22)) points. And Eh for generic h e V* must have less than 
n0 points since otherwise there would exist a non-trivial connected covering 
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space of (P* - (set of codimension > 2)) which is impossible. By [1; ? 7], 
for any rational map f: X Pd from a normal irreducible projective variety 
of dimension d onto Pd, there is a divisor D in Pd uniquely determined by the 
condition that it is the largest effective divisor such that for x generic in D, 
f'-(x) has fewer than n elements, where n is the cardinality of f'-(y) for 
generic y e Pd. D is called the branch locus of f and will be denoted by b(f). 
Then we have: 

LEMMA 13.8. b($) = V* ' P* 

Let es be the normalization of O,. Then there is induced the following 
commutative diagram: 

(S x S)-OS 
(13.9) 1 ( P 

G 
P* - Os 

where 4' and a8 are morphisms. Since 4' is finite-to-one except over a set of 
codimension > 2: 

b(G o,) 9; b((@) . 
But b(Q) = V* is irreducible and b(qoa) # 0 since 4' is generically six-to- 
one, $D is generically n.-to-one and (P* - (set of codimension > 2)) has no non- 
trivial connected covering spaces. Thus we have: 

(13.10) b(9oa8)= b($)= V 

THEOREM 13.11. Let V, and V2 be two non-singular cubic threefolds. Ij 
(v1)g (V2) then V1 V2. 

Proof. If g(V1) P J(V2) and if Sj = Sj for j = 1, 2 then there is an 
isomorphism v: J(VT) J(V2) such that 2v(Os) and 0S2 both give the theta- 
divisor of J(V) by Theorem 13.4. Thus there exists u C J(V2) such that: 

V(0 1) = OS2 + U- 

Then there-is--a commutative diagram 

aS I 0S2 

(90i1)1 1(POA2) 
P4 P4* 

Using 13.10 therefore, V1* V2*. Since for j 1, 2 

Vg Vj o n Vj 

is finite-to-one and3 generically one-to-one, the theorem now follows easily 
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from Zariski's Main Theorem. 

Notice that the method of proof of Theorem 13.11 is analogous to the 
method of Andreotti in [1]. Our final theorem also derives from the techniques 
and results of that same work. 

THEOREM 13.12. Let V be a non-singular cubic threefold. Then V is not 
birationally equivalent to P3. 

Proof. By Corollary 3.26, it suffices to show that J(V) is not isomorphic 
to J(C) for some non-singular curve C. Suppose that such a curve C did exist. 
Let 

Kc: C- P, 

be the morphism induced by sections of the canonical bundle of C. Following 
[1], if C is not hyperelliptic let C* = eh CF4*: i(C) and [h] are tangent at 
some point}, and if C is hyperelliptic, put 

C* = {h e P*: either c(C) and [h] are somewhere tangent, or 
[h] contains one of the 12 branch points of the ramified 
two-sheeted covering C - i(C)} . 

If O, is the theta-divisor for the principally polarized abelian variety g(C), 
then we have a birational morphism 

""/ C(4) > OC C-- J(C) 

by Riemann's theorem. Let Ac denote the Gauss map 

9c: OC > P4. 

By [1; pages 820-21], b(go-/) = C*. Since J(V) g(C), it follows that we 
can identify J(V) and J(C) so that Os = Oc + u. We then have the com- 
mutative diagram: 

s xs- 0 , r C(4) 

P4* 

Putting a = (-/'oT), we have: 

= b$) ((Oco7) 0)2b(9co C* - 

However C* as defined above contains a linear subspace of dimension 2 in P* 
(in fact it contains an infinite number of such subspaces), whereas by Corol- 
lary 6.2, V* contains no such subspace. This gives the desired contradic- 
tion to the assumption that g(V) J(C) and so the theorem is proved. 
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APPENDICES 

A. Equivalence relations on the algebraic one-cycles 
lying on a cubic threefold 

Let Vc P4 be a non-singular cubic three-fold. There is a free abelian 
group, called the group of algebraic one-cycles, which has the set of irredu- 
cible algebraic curves lying on V as a distinguished basis. We denote this 
group by C( V). Assigning to each irreducible curve its degree as an algebraic 
subvariety of P4, we can define a homomorphism: 

deg: C(V) > Z. 

The kernel of this map, which we denote by H(V), is the group of algebraic 
one-cycles homologous to zero. Before discussing some relations between cer- 
tain subgroups of H( V), we will need to prove a lemma originally due to Fano: 

LEMMA A.1. Let W be an effective divisor on V. Then there is an effective 
divisor Y on P4 such that: 

W (Y. V). 

Proof. By the Lefschetz theorem applied to Vc P4, the natural mapping 
H2(P4) > H2( V) is an isomorphism so that there is some divisor Y, on P4 such 
that W is homologous, and therefore linearly equivalent, to (Yin V). Also, if 
H is a hyperplane on P4, the sheaf sequence: 

0 > Op((k -3)H) > O(p4(kH) 0 CV(k(H V)) 0 0 

is exact. If k > 0: 

H'(P4; C((k - 3)H)) H3(P4; Q((- k - 2)H)) - 0 

(see [13; ? 15 and 18]). Thus we obtain that the mapping 

H?(P4; 0(kH)) ) H?(V; C9(k(V.H))) 
is a surjection. Since Y1 - kH for some k > 0, the lemma follows. 

Now let C be an irreducible curve on V and let S and T be as in (7.1). 
By desingularizing the components of wr- (C) c T and discarding any com- 
ponents which arise from Eckardt points of V, we obtain a non-singular curve 
C1 and a mapping 

+:C1-, T 

such that (rvo*): C, C is finite-to-one and generically six-to-one. (Note 
that * is not necessarily generically injective since some components of w1r-'(C) 
may have to be counted with multiplicity > 1.) Next we define a P1-bundle 
over Cl: 
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T, = {(u, x) e C, x V: x s LS(e(u))1 
Now we can construct sections of the bundle w1r: T, - C1 as follows: 

(i) define z-: C, > T, by z-(u) = (u, (wrvo*)(u)); 
(ii) for a generic hyperplane H - P4 define a: C1 T1 by a(u) 

(u , (L,,S (,t(u,, H)), 
Using Lemma A.1, we have that there exists a divisor Yc P4 such that 
(counting multiplicities): 

(Y V) = lv(Ti) . 

Therefore (again keeping track of multiplicities): 

( Y- Vet H) = irv(a7(C1)) 
But in the surface T1, U(CQ) is homologous, and in fact linearly equivalent, 
-to (z-(C1) + (sum of fibres of w11)). Thus projecting onto V by wr1: T1 - V, we 
have 

LEMMA A.2. Let C be an irreducible curve on V. Then there exists a 
divisor Y on P4 such that 6C is rationally equivalent to ((H. Y. V) + (sum of 
lines)) on V. 

Let R( V) be the subgroup of H( V) consisting of all algebraic one-cycles 
rationally equivalent to zero, and A(V) the subgroup of all algebraic one- 
cycles algebraically equivalent to zero. Then 

R( V) c- A( V) c- H( V), 
and dividing by R(V) we get an inclusion of quotient groups: 

a(V) c7 C(V). 
If we let 2( V) be the subgroup of (f( V) generated by elements of the form 

E nj~L, (sj 1 S, E nj = 0) 

then by Lemma A.2: 

PROPOSITION A.3. 6TC(V) c 2(V). 

B. Unirationality 

Recall that a threefold V is unirational if there is a generically finite-to- 
one rational mapping 

f: P3- V. 

It was evidently known to Max Noether that the cubic threefold is unirational. 
'We will give a construction for this which was pointed out to us by J. Fogarty. 

Let L. be a line in V and let [@(x)] denote the tangent hyperplane to V 



THE INTERMEDIATE JACOBIAN 353 

at the point x e L.. Then there is a P2-bundle 

B > Lo 

with fibre = It e Gr(2, 5): x e L, ' [PD(x)]}. Evidently B is a rational threefold. 
We can define a rational map by the rule 

(f (x, t) + 2x) = (L, i V) 
for (x, t) e B. Then f: B e V is defined except along a curve and the set of 
adherence points to f along that curve lies in 

W = U{L,: seS and (Lf nLo) # 0}. 

For y e (V - W), let K be the plane through y and Lo. Then f'-(y) is the 
set of points (x, t) e B such that: 

(i) ye L,; 
(ii) x is a singular point of (K. V). 

Since (K. V) = L, + (quadric curve), f is generically two-to-one. 

C. Mumford's theory of Prym varieties and a comment on moduli 

D. Mumford has developed a theory of "conic bundles" and associated 
Prym varieties. His theory gives also a proof that if V is a non-singular cubic 
threefold then J(V) is not the Jacobian variety of a curve. Furthermore, it 
sheds some light on the singularities of the polarizing divisor O,. We shall 
briefly describe his results here. 

Let L be a line lying in V and let 

FL: P4 - P2 

be a generic projection centered along L. If VL is the variety obtained by 
blowing up V along L, then WrL induces a morphism 

(C.1) wr: VL > P2 . 

The fibres of w are given by conic curves on V which are coplanar with L. 
By [18; pages 3-5], these fibres are non-singular except along a plane curve 
GL of degree five along which the fibre becomes the sum of two lines. For 
generic L, we have seen in ? 10 that GL is the quotient of the incidence divisor 
D, under a fix-point-free involution NIL. 

The situation (C.1) is called a conic bundle. Note that VL V gives an 
isomorphism on the principally polarized intermediate Jacobians: 

(C .2) fJ( V) fJ( VL) - 

If we put J(DL) = (W, U, XC), then NL induces an involution on W which 
leaves SC invariant and also takes U onto itself. This gives a decomposition 
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W1 (e W-, 

into eigenspaces corresponing to the eigenvalues + 1 and - 1 of the involu- 
tion. Im JC is not unimodular on the lattice 

u = (U n W1) 
but it is divisible as an integral-valued bilinear form and Im ((1/2)K) is inte- 
gral-valued and unimodular. The resulting principally polarized abelian 
variety 

(W-19 U_19 (1/2)JC) 
is called the Prym variety associated to (DL, YL), which we shall denote by 

9(DL, NIL) - 
Mumford has proved that for conic bundles with singular fibres which 

are always the union of two distinct linear components, there is an isomor- 
phism between the intermediate Jacobian variety of the conic bundle and the 
Prym variety associated to the curve with fix-point-free involution given by 
the components of the singular fibres. Thus in our situation: 

(C.3) J(VL) P& 9)(DLY AIL) - 

The question then arises as to which Prym varieties can be Jacobian vari- 
eties of curves. If (W, U, SC) is a principally polarized abelian variety and 
0 is the corresponding theta-divisor on (WI U), then it is known that a neces- 
sary condition for (W, U, SC) to be the Jacobian of a curve is that: 

(C.4) dim (Osing) > (dim W) - 4 

where Osing is the singular locus of the subvariety 0 of (WIU). 
Let D be a non-singular irreducible algebraic curve, Y a fixed-p~int-free 

involution, and G the quotient curve. If the associated Prym variety 9)(D, 1) 
has theta-divisor 0,, then Mumford has shown that: 

(C.5) dim ((r)sing) < (g - 5) 

where g = genus of G except in the following case: 
(i) G is hyperelliptic; 
(ii) G is a three-sheeted covering of P1; 
(iii) G is a double covering of an elliptic curve; 
(iv) G is a curve of genus 5 having some vanishing theta-nulls; 
(v) G is a plane quintic. 

By (C.3), it is case (v) which interests us here. In this case the unramified 
coverings D - G fall into two classes depending on the parity of the dimen- 
sion of a certain linear system on G. To see what this is, let L1 be the line 
bundle on G which is constructed from the representation 
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7U,(G) >{1,1} - 11C* 
associated to the covering D - G and let L2 be the ample bundle on G c P2 
gotten by restricting the bundle whose divisor is a line on P2. Then there 
are two cases: 

(i) if dim H0(G; ((L, ? L2)) is even, dim ((Or)sing) 1 so that we cannot 
rule out the possibility that the Prym variety is the Jacobian of a curve; 

(ii) if dim H0(G; (D(L, ? L2)) is odd, then the singular set of O, contains 
exactly one point. Now for the case of the cubic threefold, (DL, -YL) falls into 
this last case, so that by (C.3) and (C.4) the intermediate Jacobian cannot be 
the Jacobian of a curve. Also, by ? 13, the singular point of Or = Os ' J( V) 
must just be the image of the diagonal of S x S under the difference map 
(S x S) H cOSJ(V). 

Finally, we should like to give a comment about moduli of the set of 
cubic threefolds. It is easily seen that the isomorphism class of a cubic three- 
fold V depends on ten parameters (see [8; pages 493-94]). If a plane quintic 
GL arises as in (C.1), then the ramification locus of the Gauss mapping applied 
to the theta-divisor of i(DL, NL) allows us to reconstruct V, and for fixed V 
the family {GL} depends on two parameters. Since the family of all plane 
quintics also depends on twelve parameters, this suggests that one may be 
able to take a generic plane quintic G and an unramified double covering 
D - G such that dim H0(G; C(L, 0 L2)) is odd and recover a cubic threefold 
from the ramification locus of the Gauss map associated to the theta-divisor 
on the Prym variety. 
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