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The International Axion Observatory (IAXO) is a new generation axion helioscope aiming
at a sensitivity to the axion-photon coupling of g, > few x 107'2 GeV™', ie. 1-1.5
orders of magnitude beyond the one currently achieved by CAST. The project relies on
improvements in magnetic field volume together with extensive use of x-ray focusing optics
and low background detectors, innovations already successfully tested in CAST. Additional
physics cases of TAXO could include the detection of electron-coupled axions invoked to
explain the white dwarf cooling, relic axions, and a large variety of more generic axion-
like particles (ALPs) and other novel excitations at the low-energy frontier of elementary
particle physics. This contribution is a summary of our recent paper [1].

1 Introduction
The Peccei-Quinn (PQ) mechanism of dynamical symmetry restoration [2, 3] stands out as

the most compelling solution of the strong CP problem. Central to the PQ mechanism is the
axion [4, 5], the Nambu-Goldstone boson of a new spontaneously broken symmetry U(1)pq.
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The properties of axions allow them to be produced in the early universe as coherent field
oscillations and as such to provide all or part of the cold dark matter [6, 7.

It is still possible to find these “invisible axions” in realistic search experiments and in
this way test a fundamental aspect of QCD. The generic ayy vertex allows for axion-photon
conversion in external electric or magnetic fields in analogy to the Primakoff effect for neutral
pions. As shown in 1983 by Pierre Sikivie, the smallness of the axion mass allows this conversion
to take place coherently over macroscopic distances, compensating for the smallness of the
interaction strength [8]. Especially promising is to use the Sun as a source for axions produced in
its interior by the Primakoff effect. Directing a strong dipole magnet toward the Sun allows one
to search for keV-range x-rays produced by axion-photon conversion, a process best visualized
as a particle oscillation phenomenon [9] in analogy to neutrino flavor oscillations. Three such
helioscopes have been built, in Brookhaven [10], Tokyo [11] and at CERN [12]. The CERN Axion
Solar Telescope (CAST) has just finished a 8-year long data taking period, having strongly
improved on previous experiments and even surpassed astrophysical limits in some range of
parameters, although axions have not been found.

We have shown [1] that large improvements in magnetic field volume, x-ray focusing optics
and detector backgrounds with respect to CAST are possible. Based on these improvements,
and on the experience gathered within CAST, we propose the International Axion Observatory
(IAXO), a new generation axion helioscope. IAXO could search for axions that are 1-1.5
orders of magnitude more weakly interacting that those allowed by current CAST constraints.
It appears conceivable to surpass the SN 1987A constraint on the axion mass, m, < 10-20 meV,
test the white-dwarf (WD) cooling hypothesis [13], and explore a substantial part of uncharted
axion territory experimentally. Moreover, TAXO would explore other more generic models of
weakly interacting sub-eV particles (WISPs) [15], in particular some ALPs models that have
been invoked in the context of several unexplained astrophysical observations. Equipped with
microwave cavities, this setup could also aim at detecting relic axions [16].

2 Experimental setup and expected sensitivity

TAXO will follow the basic conceptual layout of an enhanced axion helioscope seen in figure 1,
which shows a toroidal design for the magnet, together with X-ray optics and detectors attached
to each of the magnet bores. The improvements anticipated for each of the experimental
parameters of the helioscope were quantified in [1], organized in four scenarios (IAXO 1 to 4)
ranging from most conservative to most optimistic values (see table 1 of [1]). These values are
justified by several considerations on the magnet, x-ray optics and detectors, that are briefly
outlined in the following, but we refer to [1] for a detailed discussion.

The magnet parameters are the ones contributing mostly to the helioscope’s figure of merit.
The CAST success has relied, to a large extent, on the availability of the first class LHC test
magnet which was recycled to become part of the CAST helioscope. While going beyond CAST
magnet’s B or L is difficult, the improvement may come however in the cross section area, which
in the case of the CAST magnet is only 3 x 1072 m2. Substantially larger cross sections can
be achieved, although one needs a different magnet configuration. It is an essential part of our
proposal that a new magnet must be designed and built specifically for this application, if one
aims at a substantial step forward in sensitivity. A toroidal configuration for the TAXO magnet
is being studied with a total cross section area A of up to few m?, while keeping the product of
BL close to levels achieved for CAST.
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Figure 1: Possible conceptual arrangement for IAXO. On the left we show the cross section
of the IAXO toroidal magnet, in this example with six coils and bores. On the right the
longitudinal section with the magnet, the optics attached to each magnet bore and the x-ray
detectors.

Another area for improvement will be the x-ray optics. Although CAST has proven the
concept, only one of the four CAST magnet bores is equipped with optics. The use of focusing
power in the entire magnet cross section A is implicit in the figures of merit defined in [1], and
therefore the improvement obtained by enlarging A comes in part because a correspondingly
large optic is coupled to the magnet. Here the challenge is not so much achieving exquisite
focusing or near-unity reflectivity but the availability of cost-effective x-ray optics of the re-
quired size. IAXO’s optics specifications can be met by a dedicated fabrication effort based on
segmented glass substrate optics like the ones of HEFT or NuSTAR [14].

Finally, CAST has enjoyed the sustained development of its detectors towards lower back-
grounds during its lifetime. The latest generation of Micromegas detectors in CAST are achiev-
ing backgrounds of ~ 5 x 1076 counts keV~! em~2 s~1. This value is already a factor 20 better
than the backgrounds recorded during the first data-taking periods of CAST. Prospects for
reducing this level to 10~7 counts keV~! em™2 s™! or even lower appear feasible.

The computed sensitivities of each of the four TAXO scenarios are represented by the family
of blue lines in figure 2, both for hadronic axions (left) and non-hadronic ones (right). They
include two data taking campaigns for each of the scenarios: one three years long performed
without buffer gas (analogous to CAST I), and another three years long period with varying
amounts of “He gas inside the magnet bore (analogous to CAST II, although without the need
to use *He). In general, IAXO sensitivity lines go well beyond current CAST sensitivity for
hadronic axions and progressively penetrate into the decade 107'1-107'2 GeV~!, with the best
one approaching 107'2 GeV~!. They are sensitive to realistic QCD axion models at the 10
meV scale and exclude a good fraction of them above this. For non-hadronic axions, TAXO
sensitivity lines penetrate in the DFSZ model region, approaching or even surpassing the red-
giant constraints. Most relevantly, the IAXO 3 and TAXO 4 scenarios start probing the region
of parameter space highlighted by the cooling of WDs.
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Figure 2: LEFT: The parameter space for hadronic axions and ALPs. The CAST limit, some
other limits, and the range of PQ models (yellow band) are also shown. The blue lines indicate
the sensitivity of the four scenarios discussed in the text. RIGHT: The expected sensitivity
regions of the same four scenarios in the parameter space of non-hadronic axions with both
electron and photon coupling. The orange band represents the region motivated by WD cooling,
and the dashed line along the diagonal the red giants bound on the electron coupling. See [1]
for details.
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