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Abstract: The discovery of Higgs particle has ushered in a new era of particle physics. Even though

the list of members of the standard theory of particle physics is now complete, the shortcomings of

the theory became ever more acute. It is generally considered that the best solution to the problems

is an electron–positron collider that can study Higgs particle with high precision and high sensitivity;

namely, a Higgs factory. Among a few candidates for Higgs factory, the International Linear Collider

(ILC) is currently the most advanced in its program. In this article, we review the physics and the

project status of the ILC including its energy expandability.

Keywords: Higgs particle; elementary particles; standard theory; linear collider; dark matter;

top quark

1. Introduction

In 2012, two experiments, ATLAS and CMS, operating at a proton–proton collider
called the Large Hadron Collider (LHC), discovered the long-sought Higgs particle [1,2].
According to the standard theory of elementary particles (hereafter referred to as “the
Standard Theory”), the field of Higgs particle filled the entire universe sometime after the
Big Bang and gave masses to all the elementary particles currently known to have mass.
Even now, the Higgs field is everywhere while we do not notice its existence. The Higgs
particle is the only particle in the Standard Theory that has no electric charge nor spin, and
as such it can “mimic” the vacuum of the universe. The Higgs particle is thus at the core of
current particle physics.

The Higgs particle was the last to be discovered among the particles of the Standard
Theory. Rather than completing the ultimate theory of particles, however, the discovery of
the Higgs particle forces us to face serious shortcomings inherent in the Standard Theory.
They include:

1. Dark matter is known to exist by cosmological observations and the cosmological the-
ory, but there is no particle in the Standard Theory that can constitute the dark matter.

2. The Standard Theory cannot explain how the Higgs field came to fill the universe. In
other words, it cannot explain the origin of the symmetry breaking.

3. The universe is dominated by matter over antimatter while the Big Bang with pair
creations would indicate that the same amount of antimatter as matter should ex-
ist now. The Standard Theory cannot explain the matter–antimatter asymmetry
observed today.

4. The measured mass of the Higgs particle receives contribution from fields of other
particles clinging around it, and the mass correction predicted by the Standard Theory
is many orders of magnitude greater than the measured Higgs mass itself. This is a
highly unnatural situation suggesting that there exists a new and more fundamental
theory that makes it natural.
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These indicate that there are new physics beyond the Standard Theory. In fact, many
new theories have been proposed to solve these problems and some of them could solve
more than one shortcoming at the same time. For example, new theories such as those
based on super-symmetry or extra dimensions attempt to solve the problem of Higgs mass,
while in doing so they also provide candidates for dark matter.

A prominent feature of these new theories is that each theory contains a particle that
is very much like the Higgs particle of the Standard Theory, but with slightly different
properties, and the pattern of the deviations differ for each new theory. Thus, a high
precision study of the Higgs particle should be able to elucidate which of these new
theories is the true theory of nature, or if none satisfies the measurements, it could point
to the true theory. In general, the higher the energy scale of new physics, the smaller the
deviations; namely, the more precise are the measurements, the higher the energy scale that
can be probed. A facility that is capable of such study may be an electron–positron collider
at around 250 GeV, referred to as a ‘Higgs factory’, or a proton–proton collider at around
100 TeV. They are both capable of highly precise measurements needed. The cost and
timescale of the latter, however puts it further in the future, and thus there exists at present
a general agreement among the high energy physics community that an electron–positron
collider is of the highest priority [3].

There are currently four proposals for an electron–positron Higgs factory: Two (Inter-
national Linear Collider (ILC) and Compact Linear Collider (CLIC) [4]) are linear, where
electrons and positrons are accelerated in opposite directions along a straight line and
collide head-on at the center, and two (Future Circular Collider, ee version (FCCee) [5] and
Circular Electron Positron Collider (CEPC) [6]) are circular, where electrons and positrons
circulate in opposite directions in circular orbits and come to collide at one or more loca-
tions. The main merits for a linear collider are that beams can be polarized and that the
collision energy can be upgraded (with due cost) later to much higher energies if physics
demands. On the other hand, merits for a circular collider are that multiple collision points
can be accommodated, luminosities at energies lower than 250 GeV such as on the Z pole
are high, and that the same circular tunnel may be used for a proton–proton collider in
the future.

While the capabilities of these machines as a Higgs factory are roughly equivalent, one
of them—the International Linear Collider whose technical design report was completed
in 2013 [7] and updated later [8–10]—is generally considered the most advanced as an
international project.

In the following, we will review the technical status of the machine, the physics reach,
and the project status of the ILC.

2. Machine

2.1. Overview of the Machine

At the ILC, an electron beam accelerated along a straight line to energy of 125 GeV
collides head-on with a positron beam similarly accelerated in the opposite direction,
resulting in collision energy of 250 GeV. Each beam consists of 5 trains per second (i.e., the
“repetition rate” is 5 Hz) where one train is roughly 1 ms long consisting of 1312 bunches.
One bunch contains 2 × 1010 particles and its size (rms) at the collision point is 7.7 nm high,
516 nm wide, and 300 µm long; namely, it is ribbon-like—very flat and long. A schematic
drawing of the machine is shown in Figure 1.

Electrons are generated by hitting a photocathode with a strong laser and are captured
and bunched. The electron bunch is then transported to the damping ring where the emit-
tance is reduced to the desired level during the train gap of 200 ms. When all 1312 bunches
are circulating in the damping ring with their emittance reduced, the bunches are extracted
one by one to the far end of the linac to be accelerated to 125 GeV.

Before the electron bunch reaches the collision point, it goes through an undulator to
generate an intense photon beam that hits a target to produce positrons which are then
captured and bunched. The positron bunch is transported to the damping ring to reduce
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its emittance (taking less than 200 ms), and then extracted to the opposite end of the linac
to be accelerated to 125 GeV. It collides with an electron bunch of the next train. Just before
collision, electron and positron bunches pass through a set of quadrupole magnets where
the transverse sizes are reduced to the specified values.

Figure 1. A schematic drawing of the International Linear Collider (ILC) (not to scale).

Surrounding the collision point is a state-of-the-art detector system designed to take
full advantage of the clean environment of linear collider. It is envisioned that there
will be two detectors in a push–pull mode—while one detector is taking data the other
is undergoing upgrade or maintenance or simply standing by. Currently, two detector
concept groups are actively engaged in R&Ds for the ILC: SiD and ILD [7].

With a polarized laser, electrons can have polarization of ±80%. The photons gen-
erated by the undulator is naturally polarized, and the baseline design results in ±30%
polarization for positrons. As an option, the polarization of positron may be increased to
±60% by using a longer undulator and limiting the phase space of created positrons. As a
backup positron source, a conventional source is considered where electrons accelerated
by a separate accelerator hit a target to produce positrons. This scheme allows enough
positrons to be produced even when the electron energy is lower than about 125 GeV while
the positrons produced this way are not polarized.

The luminosity may be upgraded by doubling the number of bunches per train or
by doubling the repetition rate of the train. The luminosity is roughly doubled by each
scheme and using both will result in increase of factor of bout four. The energy can be
upgraded either by making the linac longer or by increasing the gradient of the acceleration.
A collision energy of around 350 GeV is where the top quark pair creation threshold is
located and around 500 GeV is where measurements of Higgs self-coupling and Higgs-top
coupling become realistic. The basic machine parameters are summarized in Table 1.

Two key challenges of the ILC are to achieve high energy and to make the beams
small. Below, we will briefly review current status of these issues followed by some details
of upgrades.

2.2. Accelerating Beams

The ILC is based on a superconducting accelerator technology, and the development
of high-gradient RF cavity plays a central role. At the linac, beams are accelerated in
1.3 GHz 9-cell superconducting cavities made of high-purity niobium immersed in a liquid
helium bath at 2K (Figure 2). Since the cost of linac for a given final beam energy is roughly
inversely proportional to the accelerating gradient, there is a strong interest in achieving as
high gradient as possible. The ILC specification of the accelerating gradient is 35 MV/m
±20% for initial testing (“vertical test”) corresponding to approximately 31.5 MV/m when
in use. It translates to ~4 km of acceleration, or ~4000 cavities, to achieve the acceleration
to 125 GeV.
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Table 1. The ILC machine parameters for 250 GeV Higgs factory and energy upgrades [9]. Values for TDR 250 GeV [7]

are also shown as reference. The ‘L Upgrade’ column is the luminosity upgrade by doubling the number of bunches. For

500 GeV, the luminosity upgrade version is also shown. Once the energy is upgraded to 500 GeV (after the number of

bunch is doubled), the machine can be operated at 250 GeV with repetition rate of 10 Hz, which results in a luminosity of

5.4 × 1034/cm2s.

Quantity Unit Baseline L Upgrade TDR Energy Upgrades

Centre of mass energy GeV 250 250 250 500 1000
Luminosity 1034/cm2s 1.35 2.7 0.82 1.8/3.6 4.9

Polarization for e-(e+) % 80 (30) 80 (30) 80 (30) 80 (30) 80( 20)
Repetition frequency Hz 5 5 5 5 4

Bunches per pulse 1 1312 2625 1312 1312/2625 2450
Bunch population 1010 2 2 2 2 1.74

Linac bunch interval ns 554 366 554 554/366 366
Beam pulse duration µs 727 961 727 727/961 897

Norm. hor. emitt. at IP nm 5 5 10 10 10
Norm. vert. emitt. at IP nm 35 35 35 35 30

Hor. beam size at IP nm 516 516 729 474 335
Vert. beam size at IP nm 7.7 7.7 7.7 5.9 2.7

Site AC power MW 129 122 163/204 300
Site length km 20.5 20.5 31 31 40

Figure 2. A 1.3 GHz 9-cell superconducting cavities for the ILC. The length is 1.25 m.

Cavities similar to the ILC cavities are used for the European X-ray Free Electron
Laser facility (E-XFEL) for which 832 9-cell cavities were produced and tested [11]. Even
though the gradient specification of ~26 MV/m for E-XFEL is lower than for the ILC, this
represents a highly reliable sample for estimating the yield and cost of cavity production
for the ILC. Figure 3 shows the distribution of the maximum gradient of cavities produced
for the E-XFEL by two vendors [11]. Vendor RI employs a production process that closely
follows the ILC procedures and achieves a better performance. The yield is ~95% yield for
the ILC specification of >35 MV/m−20% (=28 MV/m). Overall, the E-XFEL experience
indicates that the ILC goal for cavity production can be met. In addition, the cost estimate
of the ILC cavity production is firmly based on the experience of the E-XFEL.

Figure 3. Maximum gradient and yield of ‘as received’ cavities produced for the European X-ray

Free Electron Laser (E-XFEL) by two vendors [11]. Vendor RI employs a production process that

closely follows the ILC specification.
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Eight or nine 9-cell cavities are assembled into one cryomodule that provides support
and cooling. Since cavities and cryomodule parts are manufactured in different parts
of the world, a question arises if they can be successfully assembled without degrading
the performance. For this purpose, “plug compatibility” designs are adopted, where the
designs of connection points are rigorously defined. To test the idea in practice, a so-called
“S1-Global” project (Figure 4) was performed in which parts produced all over the world
were brought to the KEK laboratory in Japan to be assembled together. The result was
satisfactory.

Figure 4. The “S1-Global” project in which parts manufactured at different locations all over the world are assembled

together with “plug-compatible” designs.

2.3. Making the Beam Smaller

In order to make the beam smaller, the emittance of the beam has to be reduced.
Emittance is zero when particles in the beam focus to a single point or when they are
parallel in which case they can be focused to a point with a perfect lens. The emittance is
reduced by the damping ring where particles are encouraged to emit photons by bending
magnets or by wiggler magnets. The lost energy by the photon emission is recovered by
acceleration in the direction of design orbit. By repeating the process, all particles tend to
move in the design direction, thus reducing the emittance.

The test facilities ATF and ATF2 are located at the KEK accelerator laboratory. ATF
is a damping ring test facility to produce super-low emittance. There, the ILC goal was
achieved for both vertical and horizontal emittances. At ATF2, the beam is stabilized and
focused. Figure 5 shows the achieved vertical beam size as a function of time. A vertical
beam size of 41 nm has been achieved while the ILC goal is 37 nm; namely, the goal is more
or less achieved. Note that when a beam is accelerated, the emittance becomes smaller
since they tend to become more parallel, and thus the beam size is reduced. The beam size
of 37 nm at the ATF beam energy of 1.3 GeV corresponds to 5.9 nm at 250 GeV.
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Figure 5. The achieved vertical beam size at ATF2 facility [9]. The latest value of 41 nm is within 10% of the goal of 37 nm.

2.4. Staging and Upgrades

At the time of the TDR, the baseline collision energy was 500 GeV, and the TDR
machine parameters for 250 GeV collision were simply scaled from the 500 GeV design
assuming the same horizontal beam size. The horizontal beam size, however, is limited
by the beam background, which is less severe at 250 GeV, allowing a smaller horizontal
beam size. The new baseline design for 250 GeV collision thus uses a horizontal emittance
that is 1

2 of the TDR value, resulting in a horizontal beam size that is smaller by 1/
√

2 .
This increases the geometric luminosity by

√
2 , and when the pinching effect where the

colliding bunches focus each other is included, the overall increase becomes a factor of 1.65.
As mentioned in the introduction, the luminosity can be doubled by simply doubling

the number of bunches per train. This can be done for 250 GeV as well as for 500 GeV
and requires 50% more klystrons and modulators to drive the cavities. Additionally, a
second damping ring for positron may be needed. A detailed cost estimate for such an
upgrade was done for the 500 GeV case, and the cost increase of the overall machine was
6% including the second damping ring for positron. A similar estimate for the 250 GeV case
has not been done, but the relative cost increase is expected to be similar to the 500 GeV
case. The AC power for the 500 GeV case is estimated to increase from 163 MW to 204 MW
by doubling the number of bunches. Again, a similar estimate for the 250 GeV case has not
been done, but it is safe to assume that the increase of AC power is less than 25%.

The luminosity at 250 GeV can also be doubled by doubling the train repetition rate
from 5 Hz to 10 Hz. This requires a cryogenic system equivalent to that of the 500 GeV
machine. The cost and AC power of such machine would then be similar to those of the
500 GeV machine. Indeed, it may make sense to first double the number of bunches starting
from the 250 GeV baseline with 5 Hz repetition rate, then upgrade the energy to 500 GeV
with the same number of bunches and the same repetition rate, and then lower the energy
back to 250 GeV with 10 Hz repetition rate. This would result in a luminosity four times
greater than that of the baseline 250 GeV machine.

As stated in introduction, the collision energy of the machine can be increased in two
ways: One is simply by making the linac longer, and the other is by increasing the gradient
of the acceleration. The design of the beam delivery system leading to the interaction
point is such that minor modification can accommodate collisions of up to 1 TeV. When
the length of the linac increases, the turn-around at the end of linac needs to be relocated.
The Kitakami candidate site can accommodate at least up to 50 km while the length of the
machine is 20.5 km for 250 GeV collision. The achievable gradient at the time of energy
upgrade is difficult to predict. If we assume the same gradient of 31.5 MV then the length
of the 500 GeV machine would be 31 km.

Figure 6 shows the collision energies and luminosities of the four proposed electron-
positron Higgs factories based on information submitted to the 2020 European Strategy of
Particle Physics Update [3]. The luminosities are for single interaction point. While the two
circular machines (FCCee and CEPC) have two interaction points each in their CDRs, the
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effective increase of luminosity due to polarization is not included for linear colliders (ILC
and CLIC).

Figure 6. The luminosity vs. center-of-mass energy for the four candidates for electron-positron

Higgs factory. The luminosity is for single interaction point while the effect of polarization is not

included ([9], and references therein).

3. Physics

In the history of particle physics, proton machines and lepton machines played com-
plementary roles. Particles such as the Z vector boson were discovered at a proton machine
(SPS) and then studied in detail at lepton machines (SLC and LEP). History may repeat
itself for the new era of particle physics opened by the discovery of the Higgs particle.

Advantages of an electron–positron linear collider are:

1. Events are clean since it is a collision of elementary particles. For example, most of
the particles observed in a given Higgs event, or often all the particles, originate from
the decay of the Higgs particle itself without many extra particles.

2. One knows the 4-momentum of the initial state of the electron–positron collision. This
can be used, for example, to reconstruct an invisible particle by detecting particles
recoiling against that particle and reconstructing the recoil mass.

3. The beam can be polarized. This adds a new dimension to the measurement, allowing
us to probe those phenomena not accessible otherwise. In addition, in some impor-
tant cases, one can turn off dominant backgrounds created by left-handed electron
interactions by using a right-handed electron beam.

As stated in introduction, precision Higgs measurements are the most important
physics topic of the ILC; thus, the name “ILC Higgs factory”. On the other hand, high
precision translates to high sensitivity that could reveal new particles that may be missed at
the LHC if the particle is within the energy reach of the ILC. The upgraded LHC will have
impressive capabilities to find new particles. One should note, however, that even though
some 20,000 Higgs particles were generated at the Tevatron (a proton–antiproton collider),
a clear signal of the Higgs particle had to wait for the LHC. At a linear collider, only tens of
generated Higgs would have been sufficient to have established a Higgs discovery.

Another important physics is related to the top quark that is accessible when the
collision energy is upgraded to above 350 GeV. The top quark is the heaviest particle in the
Standard Theory, and there are models beyond the Standard Theory in which properties of
the top quark deviate from those of the Standard Theory.
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3.1. Higgs Physics

At the ILC Higgs factory, the main channel to produce Higgs particles is the so-called
Higgstrahlung process e+e− → HZ as shown in Figure 7a. The cross sections of this
process as well as other processes to produce Higgs particles—the vector-fusion processes
e+e− → Hυυ, He+e− —are shown in Figure 7a. The cross section of the Higgsstrahlung
process peaks around collision energy of 250 GeV.

Figure 7. (a) The processes to produce Higgs particles at the ILC Higgs factory [4]. (b) Reconstruction of Higgs particle with

the recoil mass technique at collision energy of 250 GeV [12].

The Higgsstrahlung process offers a technique to reconstruct the Higgs particle with-
out detecting its decay. Namely, by detecting the Z particle and calculating the invariant
mass of the system recoiling against it, one can reconstruct the Higgs particle without
actually detecting its decay products. A recoil mass distribution for the ILC running at
250 GeV is shown in Figure 7b [12]. This allows an absolute determination of the ZH
coupling. It also enables the measurement of the branching fraction of Higgs particle
decaying to an invisible final state with accuracy below 1% [13]. Through the recoil mass
technique, the Higgs mass can be determined to better than 30 MeV [13].

3.1.1. Higgs Coupling Measurements

Often-used approaches for analyzing Higgs couplings are the so-called “κ framework”
and the effective field theory approach. In the κ framework, one assumes the same
interaction forms as in the Standard Theory and simply varies the size of a coupling
constant to fit the observed partial decay rate:

Γ(H → X)

Γ(H → X)SM

= κ
2

where “SM” indicates the partial decay rate expected by the Standard Theory. In the
effective field theory approach, one assumes the SU(2) × U(1) gauge symmetry of the
Standard Theory and take all relevant terms up to dimension-6 to perform a global fit for
the coupling constants. In this effective field theory approach, radiative corrections are in
principle calculable and the effect of polarization is taken into account in a natural way. On
the other hand, the effect of polarization is explicitly ignored in the κ framework. We will
use the effective field theory approach in this article.

In general, the Higgs total decay rate is required to convert measured absolute branch-
ing ratios to coupling constants. The total decay rate can be obtained from the Higgs
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branching ratio to WW together with the partial decay rate to WW calculated from the HW
coupling constant measured by the WW fusion production rate. It could also be obtained
from the branching ratio to ZZ combined with the partial decay rate to ZZ calculated from
the HZ coupling constant measured by the e+e− → HZ production rate. However, the
Higgs to ZZ branching ratio is quite small, and the W fusion production rate at 250 GeV
is also small, as can be seen in Figure 7a. As a result, neither method is not ideal. In the
effective field theory approach, the SU(2) × U(1) gauge symmetry introduces a certain
relation between the HZ coupling and the HW coupling, making a high-precision Higgs
coupling analysis possible at 250 GeV.

3.1.2. Projected Precisions for Higgs Couplings

Precisions expected for Higgs couplings are shown in Table 2. The second column
corresponds to the case where 2 ab−1 of data taken at 250 GeV ILC is added to the results
from the upgraded LHC [14], and the third column is when 4 ab−1 of data taken at 500 GeV
ILC is included in addition. Expected result on e+e− → WW at the ILC as well as currently
available precision electroweak results are also included. In order to make the analysis
as model-independent as possible, Higgs decays to exotic states and invisible state are
included in the fit. The global fit in the effective field theory framework gives the coupling
constants of the interaction terms and their errors, while a given Higgs coupling in the
table in general corresponds to more than one terms. The quoted relative uncertainties
are one half of those of corresponding partial decay rates calculated from the result of the
global fit.

Table 2. Precisions expected for Higgs couplings for 2 ab−1 of data taken at 250 GeV and for 4 ab−1

of data taken at 500 GeV in addition to the 250 GeV data [9]. Results from the upgraded LHC are

also included.

Unit: % 250 GeV, 2 ab−1 500 GeV, 4 ab−1

HZZ 0.56 (0.47) 0.38 (0.33)
HWW 0.55 (0.47) 0.37 (0.33)
Hbb 1.0 (0.81) 0.60 (0.49)
Hττ 1.2 (0.98) 0.77 (0.68)
Hgg 1.6 (1.2) 0.96 (0.75)
Hcc 1.8 (1.4) 1.2 (0.9)
Hγγ 1.1 (1.1) 1.0 (1.0)
HγZ 7.5 (7.0) 4.0 (3.5)
Hµµ 4.0 (4.0) 3.8 (3.8)
Htt - 6.3 (4.5)

HHH - 27 (20)
Gtot 2.4 (1.9) 1.6 (1.3)
Ginv 0.36 (0.36) 0.32 (0.32)

The numbers in parentheses are for an optimistic projection for the ILC analysis where
plausible improvements in detection efficiencies and systematic errors are assumed as well
as an inclusion of the measurement of the left-right asymmetry parameter Al at 250 GeV
ILC using radiative return events (for the detail of the assumptions made, refer to [9]).

The improvements obtainable by adding ILC data to the upgraded LHC data is shown
in Figure 8. All cases assume that the Higgs decay final states are limited to those of the
Standard Theory and that there are no anomalous forms of HZ and HW couplings. Actually,
these assumptions are not necessary for the ILC which, in fact, is an important merit for
the ILC. They are made here for the sake of comparison. First, we see that there is no data
of Hc for LHC where the charm tagging is challenging. For the ILC, the excellent vertex
identification capability makes it possible to separate out charm quarks. The improvements
for HZ and HW are impressive due to the measurement of the Higgs production rate. For
the Hb coupling, the b-tagging capability of the ILC plays an important role. On the other
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hand, improvements for Hµ, Hγ, and Ht are not significant. In particular, 500 GeV ILC is
required for measurements of these coupling constants.

Figure 8. Improvements by adding ILC data to the upgraded LHC data [9]. The all analyses assume

that there are no Higgs decay final states other than those of the Standard Theory and that the forms

of HZ and HW couplings are the same as those of the Standard Theory. For each bar, the light (dark)

color corresponds to an optimistic (conservative) projection.

The Higgs self-coupling parameter λ comes from the term of the Higgs potential that
is cube of the Higgs field measured as a deviation from the value of the vacuum. This
indicates that the Higgs potential is not symmetric with respect to the vacuum. Since the
original Higgs potential is expected to be symmetric with respect to the original vacuum,
the Higgs self-coupling indicates that the vacuum has shifted from the original point to
a local minimum. Thus, the Higgs self-coupling can be said to be a smoking gun of the
symmetry breaking. In general, there can also be a quadratic term, but it is far more difficult
to measure and, in this article, Higgs self-coupling is understood to refer to the 3-point
Higgs self-coupling.

The Standard theory predicts a continuous phase transition for the symmetry breaking
and leads to a specific value for the Higgs self-coupling. On the other hand, new theories
with first-order phase transition tends to have Higgs self-couplings that are different from
that of the Standard Theory [15–17]. Thus, the value of the Higgs self-coupling gives
information on the nature of the symmetry breaking that caused the Higgs field to ’freeze’
at a certain value. The 3-point self-coupling can change a single Higgs particle to two
Higgs particles. Thus, the modes to search are the single Higgs Production modes where
one Higgs particle replaced with two Higgs particles. At the 500 GeV ILC, the signal mode
is e+e− → HHZ , and the current state of the art is that the Higgs self-coupling can be
measured to 27% with the full dataset [18]. At 1 TeV, e+e− → HHυυ mode is detected
to give the Higgs self-coupling to 16% with 2 ab−1 of data [18]. The measurement of the
Higgs self-coupling is challenging at any facility.

3.1.3. Impact of Polarizations

In Figure 9, relative precisions obtainable by the data with and without polarizations
are shown for Higgs couplings to various particles as well as for the partial decay rate to
invisible final state and the total Higgs decay rate. They all correspond to the cases where
the results of the ILC are combined with those of upgraded LHC (HL-LHC). The dark
green shows the precisions obtainable by 2 ab−1 of data at the ILC250 (Higgs factory) with
polarizations and the dark red by 5 ab−1 of ILC250 data without polarizations. Relative
merits with polarizations depend on modes and simple conversion to a gain factor of
effective luminosity is not possible. One can see, however, that 2 ab−1 of data with
polarizations is roughly equivalent to 5 ab−1 of data without polarizations.
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Figure 9. Relative precisions obtainable by the data with and without polarizations [9]. The results

of the ILC are combined with those of upgraded LHC (HL-LHC). The polarizations are assumed to

be ±80% for electrons and ±30% for positrons, and the data is divided to (−+, +−, ++, −−) = (45%,

45%, 5%, 5%).

3.1.4. Separation of Models

These precision measurements make it possible to distinguish different new physics
scenarios through the pattern of deviation from the Standard Theory. Figure 10 shows the
separation power of the ILC Higgs factory for 9 models that are unlikely to be rejected by
the upgraded LHC. The number in each grid is the number of standard deviations between
the two models represented by the grid. In most cases, the models can be distinguished
with significance of several standard deviations. Thus, it can be said that the ILC Higgs
factory can more or less pinpoint the correct theory or if the true theory is not in the list of
proposed theories, it can tell what kind of theory is the true theory.

Figure 10. Separation powers of the ILC Higgs factory for 9 new theoretical models beyond the

Standard Theory that are considered unlikely to be rejected by the upgraded LHC [19].

3.2. Search for New Particles

At the ILC, new particles may be pair-created where the pair may be the same particle
type or they may be different. Often, the pair-created particle would decay to an invisible
particle emitting a soft ordinary particle such as W, τ, or µ. When the pair are the same
type, the maximum and minimum end points of the energy distribution of the ordinary
particle simultaneously gives the masses of the pair-created new particle and that of the
invisible particle. In some of well-motivated and natural models for new physics, the mass
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difference between the new particles is small (about 20 GeV or less). At hadron machines
such as LHC, these signals are difficult to detect since the ordinary particle is soft and
identifying them would be like searching a needle in a haystack, while a linear collider can
detect such signals in most cases. In general, the discovery potential at the ILC extends
essentially up to the beam energy for nearly all models and their parameter spaces.

Figure 11 shows an example for the case where the new particle is smuon µ̃ (the super
partner of muon in supersymmetric models) decaying to a dark matter candidate and a
muon. The dark matter candidate escapes without interaction with the detector, and the
signature of event is a pair of soft muons. The discovery potential is seen to extend close to
the beam energy.

Figure 11. An example for pair creation of new particle that decays to the dark matter candidate and

a muon: e+e− → µ̃+µ̃−, µ̃ → χµ [9]. The regions for 5σ discovery and 95% exclusion are shown.

The analysis corresponds to 500 fb−1 of data taken at collision energy of 500 GeV. The signature for

250 GeV collision energy is essentially the same.

Dark matter candidates are usually conpletely invisible to the detector. Even in such
senarios, the signal can be detected using the recoil mass of a detected initial-state photon
in e+e− → χχγ where χ is the invisible particle [19,20], where the energy and angular
distributions of the detected photon give information on the invisible particle.

3.3. Top Quark

At the ILC, the top quark can be studied either around the threshold of the pair
creation (~350 GeV) or well above the threshold.

At the threshold, the production cross section as a function of collision energy gives
information on key top parameters; in particular, the mass and the total decay rate as
shown in Figure 12. The top mass measured by the shape of the production cross section is
closely related to the so-called ms mass that is relevant to various theoretical applications.
The statistical errors on the top mass and its total decay rate are estimated to be 16 MeV
and 21 MeV [21,22], respectively, for a 200 fb−1 of data taken around the threshold. This
top mass can be translated to the ms mass with a systematic error of ~10 MeV [23].

At well above the threshold, the angular distribution of the pair produced top quark
with respect to the incoming electron beam is sensitive to the right-handed and left-handed
top coupling to the intermediate Z particle. This is particularly true with the capability of
a linear collider to polarize the incoming beams. Figure 13 shows the deviation from the
Standard theory for the right-handed and left-handed couplings for a variety of models
beyond the Standard Theory [24]. One can see that many new physics theories can be
distinguished with the precision of the ILC.
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Figure 12. At the threshold of top pair production, the top mass and decay rate can be measured

with high precision [22].

Figure 13. The right–handed and left–handed top coupling to the Z are shown for the Standard

Theory and other new theories. The ILC precision is shown as the dotted red oval near the center [24].

4. Project Status

The 4-volume ILC technical design report [4] was completed in June 2013. This was
a culmination of the international efforts managed by the Global Design Effort (GDE)
and the research directorate (RD). The activity of GDE and RD were passed on to a new
organization—the Linear Collider Collaboration (LCC) led by its director Lyn Evans. The
main goal of the LCC was to realize the ILC. The LCC was supervised by the Linear
Collider Board, which in turn was under the International Committee for Future Accelera-
tors (ICFA).

There have been strong international supports for the ILC. Recent ones include the
statement of the 2020 European Strategy of Particle Physics Update [3]: “The timely
realization of the electron-positron International Linear Collider (ILC) in Japan would be
compatible with this strategy and, in that case, the European particle physics community
would wish to collaborate.” It is also noteworthy that the US State Department issued a
supporting statement at a conference on linear collider [25], saying “the U.S. Department
of State has done our initial due diligence, and we are ready to assist our partner agencies
in moving forward with the next major particle physics facility in Japan—the International
Linear Collider, also known as the ILC.”

Based on the discussions at the LCB meeting held in Palo Alto, California on 22
February 2020, ICFA decided in August 2020 to advance the ILC project to the next phase
by establishing the International Development Team (IDT) whose mandate is to make
preparations toward the ILC Pre-Laboratory (Pre-Lab). The IDT would complete its work
by the end of 2021.
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The Pre-Lab is to solve remaining technical issues of the accelerator, design the organi-
zation and functions of the ILC laboratory, and launch the ILC laboratory. The Pre-Lab is
to last for 4 years followed by 10 years of construction under the ILC laboratory.

Status in Japan

In order to deal with this new development, the Japan High Energy Physics Com-
mittee that represents the Japanese high energy physics community established the ILC
Steering Panel (http://jahep-ilc.org/en/, accessed on 11 April 2021) in October 2020. The
charge for the panel is to develop and execute coherent promotion strategies under close
coordination with IDT and KEK. It cooperates with other scientific communities, govern-
mental authorities, legislators, corporate leaders, regional governments, media, as well as
international communities and authorities.

At the political level in Japan, a non-partisan group, the Federation of Diet Members
for the ILC (“Federation”) was formed in 2006. It consists of over 100 members out of a
total of 710 Diet Members. Federation members meet frequently to discuss the strategies
to realize the ILC and have interacted closely with counterparts of possible international
partners. They have visited the United States (2013~) and Europe (2016~) numerous times
in order to discuss the ILC.

Within the ruling party, the Liaison Committee for Realizing the ILC (“Committee”)
was formed with a large fraction of the key members of the party in 2018 aiming to realize
the ILC by elevating the project as a national priority across policies. In February 2019,
the Federation and the Committee jointly approved a resolution urging the Japanese
government to host the ILC as a cross-policy national project.

On 5 June 2020, the National Diet of Japan passed a bill to extend the term of the
Reconstruction Agency whose mandate is to manage the reconstruction after the Great East
Japan Earthquake. One of its supplementary resolutions mentioned the ILC: “Since the
Tohoku area is the world’s candidate site for the International Linear Collider project, its
implementation will contribute, alongside the Fukushima Innovation Coast Framework, to
the creation of a “New Tohoku” by becoming a breeding ground for scientific innovation.
Therefore, the discussions need to be pushed forward in close coordination with the
relevant organizations toward realizing the ILC in Japan” (unofficial translation).

The Advanced Accelerator Association Promoting Science and Technology (AAA, http:
//aaa-sentan.org/en/, accessed on 11 April 2021) is the industry–academia collaboration
that supports the ILC. It is chaired by a former CEO of Mitsubishi Heavy Industries and
consists of over 100 companies and over 40 academic institutes. It supports the delegation
of the Federation to the US and Europe by providing financial and logistical support while
engaging in technological R&Ds including the clean technologies for ILC (“Green ILC”).

Local efforts in the Tohoku Region where the candidate site of the ILC is located are
coordinated by the Tohoku ILC Promotion Council (https://en.tohoku-ilc.jp/, accessed
on 11 April 2021) and its preparation office—the Tohoku ILC Project Development Center
(https://tipdc.org/en, accessed on 11 April 2021). They address regional issues such
as geological and hydrological survey, infrastructure development, and environmental
assessment. The Tohoku ILC Promotion Council consists of academia (10), industries
and business (203), and local governments (18), and its annual meetings are attended by
Prefectural Governors (2) and Mayors (6). Some of the local governments have their own
organizations to promote the ILC.

5. Conclusions

The ILC has been designed to play a leading role in the new era of particle physics
ushered in by the discovery of the Higgs particle. Thanks to the cleanliness of its events
as well as the capability to control the initial state of the collision, the ILC has sensitivities
to the properties of the Higgs particle iggsHiggs that greatly upgrade the ultimate LHC
precisions. Additionally, for new particle searches, the ILC provides impressive capabilities
to uncover new physics that may be difficult to find at the LHC. The international and

http://jahep-ilc.org/en/
http://aaa-sentan.org/en/
http://aaa-sentan.org/en/
https://en.tohoku-ilc.jp/
https://tipdc.org/en
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domestic supports are strong and the project is now moving toward the PreLab that is to
prepare for the ILC laboratory to start construction.
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