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Abstract. The fundamental Quality of Service (QoS) routing problem,
which consists in determining paths subject to multiple QoS constraints,
has been extensively investigated in the intra-domain context. However,
few solutions exist for the inter-domain case, despite the importance of
this problem to enable the delivery of services with QoS across domain
boundaries. We propose a method that distributes the operations to com-
pute inter-domain constrained paths. This method relies on a per-domain
formulation that is compatible with the path computation element frame-
work. It enables us to propose the first algorithm that guarantees to find
optimal paths subject to an arbitrary number of constraints. These paths
ensure the best QoS performance with respect to the constraints.

1 Introduction

The computation of constrained inter-domain paths is a highly investigated
topic: it enables the operators to take control over the routing and facilitates
the delivery of Quality of Service (QoS) across domain boundaries. Inter-domain
applications typically impose constraints on several QoS metrics (for example,
delay, jitter, packet losses). Nevertheless, computing the corresponding inter-
domain paths subject to multiple QoS constraints has long been considered as
impracticable because of the required communication overhead and because of
confidentiality constraints. Thus, in the current Internet, inter-domain routing
is based solely on basic connectivities and operator policies. However, recent
initiatives propose connection-oriented solutions based on multiprotocol label
switching to allow the computation of constrained inter-domain paths without
breaking the confidentiality constraints of the domains [1]. In particular, the
Path Computation Element (PCE) framework [2] enables the collaboration of
multiple domains to setup inter-domain constrained paths.

The present paper investigates the problem of computing inter-domain Multi-
constrained Paths (MCPs) in the PCE framework. As the MCP problem has
many important applications, the literature describes several solutions for the
intra-domain case [3, 4, 5, 6]. However, these solutions cannot be used to solve
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the inter-domain MCP problem because they rely on centralized computations
and break the confidentiality constraints of the domains. Alternatively, Saad and
others [7] propose an approximate solution to the inter-domain MCP problem.
Nevertheless, their study is limited to the problem with two constraints.

We analyze the required inter-domain information exchanges to solve the
inter-domain MCP problem exactly. This study enables us to present a method
to distribute the path computation. In particular, we describe a per-domain for-
mulation that is compatible with the PCE framework. This formulation allows
us to introduce the first solution that guarantees to find a path satisfying the
considered QoS constraints if such a path exists in the network. Moreover, the
computed paths are the furthest from the constraints, and thus, ensure the best
resistance to changes in the QoS conditions.

The remainder of the paper is organized as follows. In Section 2, we present
the requirements for inter-domain MCP computations and related work. The
proposed path computation method is described in Section 3 and followed by a
discussion on its performance in Section 4.

2 Background

2.1 Requirements for Inter-domain Path Computations

The Internet relies on the inter-connection of networks administrated by various
network operators and called domains, as illustrated in Fig. 1. The domains inter-
connect through domain border routers, which exchange mainly connectivity
information to preserve the scalability of the routing protocols.

The domains represent network operators, which are bound by competitive
relationships. In particular, the operators preserve the confidentiality of their
network state and topology. As a result, in every domain, only internal entities
possess enough information about the network state of the domain to allow the
computation of constrained paths inside this domain. Moreover, the domains
(e.g., BGP autonomous systems) have a wide autonomy. To summarize, there
is no central coordination entity with global state and topology information on
the traversed domains.

With distributed procedures, every domain controls its internal paths. We
think that the computation of inter-domain paths must typically be distributed

Fig. 1. Routing relies on a two-level hierarchy with a separation between intra-domain
and inter-domain operations
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Fig. 2. Operations of the BRPC procedure to compute an inter-domain path from s
to t and that traverses the lowest number of links

among the domains, to preserve both the autonomy of the domains and the
scalability of the routing protocols. Therefore, we present a novel method to
distribute the computation of inter-domain constrained paths.

2.2 The BRPC Procedure

Reference [1] describes a Backward Recursive PCE-based Computation (BRPC)
procedure to compute constrained inter-domain traffic engineered label switched
paths. BRPC uses multiple PCEs to compute these paths along a determined
domain sequence and preserves the autonomy of the domains.

We illustrate the operations of BRPC in Fig. 2. Starting from the destination
domain, each domain computes a shortest-path tree with respect to a specific
objective function. The root of this tree is the destination node of the considered
path computation request. Its leaves are the entry Border Nodes (BNs) of the
domain. Then, the domain forwards this tree to the previous domain in the
considered sequence of traversed domains. Note that the advertised tree does
not necessarily include all the computed shortest paths: the domain selects the
paths that it wants to advertise to the upstream domain. The upstream domain
uses the information contained in the tree to compute a similar shortest-path
tree from its entry BNs towards the destination (t) of the request. This process
is repeated until the source node (s) is reached.

Note that BRPC requires that the domains exchange information about the
computed paths. This information might divulge confidential details about the
internal topology of the traversed domains. This problem is solved by the use
of path keys [8], which enable the domains to advertise only the entry BNs
and information about the path performance. The BRPC procedure specifies
the protocol exchanges among the domains; however, it does not describe the
algorithm that must be used in each traversed domain to compute the paths.

2.3 The MCP Problem

To define the MCP problem, we consider a network represented by a valued graph
G = (V, E, w). The set V of vertices represents the nodes of the considered
network. The set E of edges corresponds to the network links. The function
w : E → R, where R denotes the set of the real numbers, provides the value of
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the considered link metrics for every link: to model multiple QoS metrics, each
link l in E is associated with a vector w(l) of K ∈ N link weights. We denote the
k-th weight of the link l as wk(l) ∈ R

+, with k in [1..K], where R
+ represents

the set of the nonnegative real numbers. We define the weights of a path p as
the sum wk(p) =

∑
l∈p wk(l) of the link weights on this path. This means that

we consider only additive metrics. Nevertheless, we can treat the constraints on
bottleneck metrics (e.g., bandwidth) by computing a path in a graph from which
we have removed the links that break the constraints. In addition, positively-
valued multiplicative constraints can be transformed into additive constraints
by using a logarithm function.

We consider two non-empty paths p and s. We say that s is a suffix of p if
there is a path q such that p is the concatenation of q and s. We denote the
set of paths from a node s to a node t as Ps→t. Similarly, we denote as PD→t

the set of paths whose source is in the subset D of V and whose destination
is the node t in V . We consider a path computation request, which specifies a
source s and a destination t in V , as well as K constraints Wk in R

+∗, with k in
[1..K] and R

+∗ representing the set of the positive real numbers. The constraints
represent maximum bounds Wk on every weight wk(p) of the requested path:
to be acceptable, a path p ∈ Ps→t must satisfy wk(p) ≤ Wk for all k in [1..K].
We call feasible path any path that fulfills the constraints of the request; the
MCP problem consists in determining a feasible path. For instance, the problem
of finding a path whose end-to-end propagation delay is below fifty milliseconds
and which traverses less than fifteen links is an MCP problem.

The literature describes several brute-force algorithms [3,5] as well as heuris-
tics [4] and approximation algorithms [6] for the intra-domain MCP problem.
These algorithms typically assume that the network uses link-state routing (ev-
ery router maintains a complete view of the network) and require centralized
path computation operations. For inter-domain path computation, these as-
sumptions imply that every domain involved in the computation operations has
complete information about the state of other domains, which is usually unac-
ceptable for confidentiality and communication overhead reasons. In addition,
centralized path computation operations are incompatible with the required au-
tonomy of the domains. Consequently, we investigate distributed methods for
multi-constrained inter-domain path computation. To the best of our knowledge,
our work is the first to present an exact distributed solution to the inter-domain
MCP problem.

2.4 The Inter-MCP Problem

We consider a mathematical partition D of the set of nodes V , that is a division
of V into a finite number of non-overlapping and non-empty sets. We call every
element of this partition a domain. We define the Inter-MCP problem as follows:

Problem 1 (Inter-MCP). Given a finite loop-free sequence S = (D1, D2 . . .) of
|S| ∈ N domains, a source node s ∈ D1, a destination node t ∈ D|S|, and a set
of K end-to-end constraints Wk with k ∈ [1..K], find a feasible path from s to t
that traverses the sequence S of domains.
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Our definition of the Inter-MCP problem relies on the assumption that the
domain sequence crossed by the path is predetermined. This assumption is com-
monly adopted in relevant work of the domain, as in [1], to reduce the complexity
of the problem.

Wang and Crowcroft [9] have shown that the MCP problem is NP-complete.
As the MCP problem is a special case of the Inter-MCP problem, the Inter-MCP
problem is NP-complete too [10]. Thus, some of its instances cannot be solved
exactly in polynomial time (if P �= NP) [10]. However, previous work on the
MCP problem shows that most instances of the MCP problem can be solved
exactly in polynomial time [4, 11].

The contribution of our paper is to propose a method to distribute the compu-
tation of inter-domain MCPs. We provide two mechanisms, the first is a method
to distribute end-to-end computation operations among the traversed domains,
and the other one is an algorithm to perform the per-domain calculations. In
particular, we propose a solution, named ID-MCP (Inter-Domain MCP), which
is the first to enable the distributed exact computation of inter-domain MCPs
considering an arbitrary number of constraints. We use BRPC to propagate the
computation results and to permit the selection of optimal end-to-end paths.

3 Proposition of a Distributed Exact Solution

3.1 Distribution of the Computations among the Domains

Inter-domain path computations must be distributed among the traversed do-
mains so that the domains keep their autonomy. Therefore, our solution defines
the per-domain computations of the inter-domain MCP problem for every tra-
versed domain. The result of these per-domain computations is a set of paths
that our algorithm will use to find a feasible end-to-end path.

We use the concept of dominance, which expresses the idea that a solution is
“better” than another, to reduce the complexity of the computations inside each
domain. A path p is dominated if there is a path p′, with the same source and
destination, such that wk(p′) ≤ wk(p) for all considered weights wk, k ∈ [1..K]
and such that there is a k in [1..k] for which wk(p′) < wk(p). In this case, we
say that p′ dominates p. For instance, consider two paths p1 and p2 between
the same nodes and such that w(p1) = (4, 3)T and w(p2) = (3, 3)T , then,
p2 dominates p1. Concretely, a dominated path is never a good solution to an
MCP problem: there is a better candidate solution between the same nodes.
Thus, we are interested in computing only non-dominated paths. In particular,
previous work on the intra-domain MCP problem [5] shows that, to compute
MCPs exactly, intermediate nodes should memorize only feasible non-dominated
intermediate paths. We can apply this result: to compute inter-domain MCPs, it
is sufficient that every domain computes non-dominated feasible paths from its
entry BNs to the destination of the request. This method allows us to transform
the Inter-MCP problem into a specific MCP problem for every traversed domain.
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Fig. 3. Simplified operations of the extended RDA in a domain, considering the con-
straints W1 = 11 and W2 = 14

Problem 2. [Per-Domain Problem] Given an instance of the Inter-MCP problem,
a domain Di in the sequence S = (D1, D2 . . .), and a set P ∗ ⊂ PDi+1→t of paths
from the entry BNs of the next domain Di+1 to t, find all the non-dominated
feasible paths from the entry BNs of Di to t that have a suffix in P ∗.

3.2 Solution to the Per-domain Problem

For the per-domain operations of ID-MCP, we propose a novel extended reverse
Dijkstra’s algorithm (RDA) [12] that memorizes all non-dominated feasible in-
termediate paths. Figure 3 depicts the operations of this algorithm: the purpose
of the operations is to find the non-dominated feasible paths from the entry
BNs 3 and 6 to the destination t of the request. To compute these paths, the
algorithm uses a queue structure that contains the shortest paths from every
intermediate node to t. This queue is initialized with paths from the entry-BNs
of the neighboring downstream domain, nodes 8 and 9, to t. In the example, the
queue starts with two different paths from 8 to t and a path from 9 to t. The
calculation progresses from the right to the left of Fig. 3.

The algorithm runs a loop. During each iteration of the loop, the algorithm
picks among the paths of the queue a path p whose weights are the furthest from
the constraints. In the example, the first path selected starts from node 9 and its
weights are (3, 3)T because the alternative paths in the queue (two paths from
node 8) are closer to the constraints. Then, the algorithm relaxes p: it evaluates
the weights of the paths from the neighboring nodes (node 7) of the source of
p (node 9) that have p as suffix. The algorithm adds the discovered paths to
the queue if they are feasible and not dominated by any path in the queue. In
the example, the path from node 7 with weights (5, 4)T is added to the queue.
If a new path dominates one or more paths of the queue, then the dominated
paths are discarded. The loop is repeated while the queue contains at least one
element that has not been relaxed or discarded (operations b to g). Finally, the
algorithm finds the feasible non-dominated paths from the entry BNs 3 and 6.
For example, it discovers the path with weights (6, 6)T from the entry BN 3 to t
through the nodes 3-4-7-9. During its operations, the algorithm does not discard
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Fig. 4. Propagation of the per-domain results for an inter-domain MCP problem with
two integer-valued metrics

any non-dominated feasible path. Thus, it guarantees to solve the Problem 2.
The termination of the algorithm is guaranteed as it relaxes one path during
each iteration of the loop and the number of paths in a domain is finite.

3.3 Propagation of the Per-domain Computation Results

Figure 4 illustrates the Inter-MCP problem on a simple example with two
integer-valued link weights. We use BRPC to forward the non-dominated feasi-
ble paths computed by every traversed domain to a PCE of the previous domain
in the considered sequence of crossed domains. An intermediate domain (D2)
receives a set P ∗ of paths from the downstream domain (D3). P ∗ includes the
feasible non-dominated paths from the entry-BNs (8 and 9) of the downstream
domain to the destination t of the request. The intermediate domain extends its
local vision of the network topology with the paths in P ∗ and uses this infor-
mation to compute the non-dominated feasible paths from its own entry-BNs (3
and 6) to t using our algorithm. Then, it advertises these paths to its neighbor-
ing upstream domain (D1), which is the source domain and is able to compute
an end-to-end feasible path. Note that a path-key mechanism [8] can be used
to preserve confidential information: it enables the BNs to advertise only path
performance information and a path-key that identifies a specific path. The key
is later translated into an explicit path during signaling operations.

Our algorithm requires the two following extensions of the PCE framework.
First, with our method, more than one non-dominated feasible paths from the
same entry BN can be advertised to the previous domain. This case was not
considered for the original BRPC procedure, thus, our algorithm requires an
extension of the virtual shortest-path tree structure defined in [1] to enable
the forwarding of several paths with the same source. This extension of the
BRPC procedure is conceptual: it does not require any modification of the PCE
protocol (PCEP) [2], which already provides the objects required to carry such
paths. Second, the path computation requests and replies should indicate that
every traversed domain must use our algorithm. This information can be carried
thanks to an objective function object [13] of PCEP [2], for example.
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4 Discussion

4.1 Performance Metrics

By design, ID-MCP provides provable performance guarantees. In particular, it
guarantees to find a path satisfying the request constraints if such a path exists.
In addition, as ID-MCP computes all non-dominated feasible paths, it enables
selecting the path that provides the largest performance margin compared to the
request constraints. This feature is important to maximize the chances that a
computed path can be successfully setup, as the state of the network can change
between the computation of a path and its setup. Simulations provide additional
information about the performance of our algorithm and the amount of signaling
overhead that it introduces in the network.

We evaluate the following performance metrics. The number of feasible non-
dominated paths returned by ID-MCP is denoted as NP. This number enables
us to evaluate the available path diversity in the simulated scenario. More-
over, we consider the cost (C), defined as the lowest value of the function
c(p) = maxk∈[1..K]

(
wk(p)

Wk

)
among the computed paths. Furthermore, we de-

fine a function c′ as μk∈[1..K]

(
wk(p)

Wk

)
, where μ denotes the arithmetic mean

operator. We call multi-dimensional cost (MC) the value of c′ for the end-to-end
path that has the lowest value of c′ among the computed paths. MC helps to
evaluate the quality of the returned paths considering all metrics, whereas C
indicates their performance margin with respect to the most restrictive metric.

Previous work [4, 5] has shown that the complexity of MCP computations
inside a domain depends on the maximum number α of paths memorized for a
single node. Thus, we measure α to estimate the time complexity of ID-MCP.
In addition, α helps us to determine the number of paths exchanged by the do-
mains during inter-domain path computation operations, and thus, the signaling
overhead.

4.2 Evaluation Scenario

We present results for topologies representing extreme cases for the algorithm,
to assess its performance in a worst-case situation.1 We consider lattice domain
topologies (square grids) made up of 25 nodes, as represented in Fig. 5. We
interconnect the domains to build a domain sequence along which we compute
inter-domain MCPs. In FM (Full Mesh), every node of an intermediate domain is
connected to every node in the next and in the previous domain of the sequence.
In SL (Single Link), only the bottom-right node of every domain is connected
to the top-left node of the next-domain. We generate the values of two random
uniformly distributed link-weights for every simulation run. We consider the
following path computation requests. The source is the top-left node of the first
domain and the destination is the bottom-right node of the last domain. We
compare the outputs of ID-MCP for two different set of constraints. First, we
1 Simulations on real topologies provide similar results [14].
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Fig. 5. The lattice topology with single-link domain inter-connections (SL)

define strict constraints so that, in average, there is a feasible path for less than
70% of the simulated requests. Second, we define loose constraints so that there
is a feasible path for every simulated request.

4.3 Simulation Results

Table 1 presents the results of the simulations. For loose constraints, the perfor-
mance of the optimal path computed by ID-MCP is much better than requested
(C and MC are below 20%). This indicates that ID-MCP finds paths that will
remain feasible even in case of variations in the network state. In addition, ID-
MCP manages to find several feasible non-dominated paths (NP is greater than
3) even when the optimal performance of the network is close to the constraints
(for strict constraints, C and MC are greater than 60%).

The complexity of the computations remains reasonable for the simulated
scenario (α is lower than 10). However, the size of the simulated topology is
relatively limited compared to real networks, which can include several hundreds
of nodes. In addition, the MCP problem is NP-complete. Thus, the complexity
of the computations on larger topologies would be typically prohibitive. This
scalability concern underlines the need for a trade-off between the complexity
of the calculations and the performance of the computed paths. In particular,
our algorithm provides the theoretical basis for future heuristics with a reduced
complexity. We will study these heuristics in forthcoming work.

Table 1. Simulation results with loose and strict constraints

C [%] MC [%] α NP

Constraints SL FM SL FM SL FM SL FM

Loose 19.2 13.9 18.7 11.4 10 7 7 3

Strict 89.3 72 86.5 60.1 8 2 5 1

5 Conclusion

In this paper, we have studied the inter-domain MCP problem, whose applica-
tions are more and more important with the recent advances in inter-domain
traffic engineering. The main contribution of the paper is the distribution of the
MCP computation operations among the traversed domains. In particular, we
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have analyzed the required information exchanges among the domains to solve
the inter-domain problem. This study has enabled us to introduce ID-MCP, the
first solution to the considered problem that guarantees to find a feasible path if
such a path exists in the network. In particular, ID-MCP is based on distributed
per-domain computations that are compatible with the PCE framework and that
allow computing optimal end-to-end paths. These paths are the furthest from the
constraints, thus, they ensure the best resistance to future variations of the QoS
conditions. As the considered problem is NP-complete, the complexity of the
computations is prohibitive for large topologies. However, our solution provides
the theoretical foundation for future heuristics with a reduced complexity.
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