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Abstract

The primeval function of the mammalian hippocampus (HPC) remains uncertain. Implicated

in learning and memory, spatial navigation, and neuropsychological disorders, evolutionary

theory suggests that the HPC evolved from a primeval chemosensory epithelium. Deficits in

sensing of internal body status (’interoception’) in patients with HPC lesions argue that inter-

nal sensing may be conserved in higher vertebrates. We studied the expression patterns in

mouse brain of 250 endocrine receptors that respond to blood-borne ligands. Key findings

are (i) the proportions and levels of endocrine receptor expression in the HPC are signifi-

cantly higher than in all other comparable brain regions. (ii) Surprisingly, the distribution of

endocrine receptor expression within mouse HPC was found to be highly structured: recep-

tors signaling ’challenge’ are segregated in dentate gyrus (DG), whereas those signaling

’sufficiency’ are principally found in cornu ammonis (CA) regions. Selective expression of

endocrine receptors in the HPC argues that interoception remains a core feature of hippo-

campal function. Further, we report that ligands of DG receptors predominantly inhibit both

synaptic potentiation and neurogenesis, whereas CA receptor ligands conversely promote

both synaptic potentiation and neurogenesis. These findings suggest that the hippocampus

acts as an integrator of body status, extending its role in context-dependent memory encod-

ing from ’where’ and ’when’ to ’how I feel’. Implications for anxiety and depression are

discussed.

Introduction

Current thinking predominantly attributes to the hippocampus (HPC) a pivotal role in learn-

ing and memory, in spatial navigation, and in anxiety, stress, and depression. However, the

central function of the HPC in both memory and neuropsychological disorders may be consis-

tent with an underlying role in internal sensing (interoception). Previous studies have
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implicated cortical regions, limbic brain, and thalamus, as well as the hypothalamus and brain-

stem regions, among others, in interoception [1]. The HPC (and adjoining amygdala) is a

prominent contender–in addition to his profound learning and memory deficits following

HPC surgery to alleviate severe recurrent epilepsy [2], the famous patient H.M. was unable to

sense internal states such as hunger [3]. Similar observations have been made in rodents with

selective HPC lesions [4–6].

A role for the HPC in internal sensing is consistent with evolutionary theory that the HPC

(and olfactory system) arose from a chemosensory epithelium, but with the closing of the

brain ventricles during evolution the hippocampus retained the capacity to sense the internal

milieu of the body [7–9]. It is of note that the ’rostral migratory stream’ in neonatal mice

directly connects the HPC and the chemosensing olfactory system [10], consistent with a com-

mon developmental origin. In addition, a key characteristic of traditional sensory epithelia

such as the olfactory system and retina in many vertebrate species is that neurogenesis contin-

ues into adulthood [11,12], and neurogenesis is also prominent in adult hippocampus, princi-

pally underlying the dentate gyrus (DG) (reviewed in [13].

Internal sensing is a key modulator of behavior. Hunger and thirst are induced by deficien-

cies in nutrient and water, respectively, and elicit clear adaptive motivations and behaviors.

Other diverse internal states, ranging from salt deficiency to hormonal status to inflammation/

infection, exert powerful effects on multiple aspects of brain function, centrally including

adaptive behavior as well as learning and memory, but the target brain region(s) and receptors

remain poorly defined.

The anatomy of the mammalian HPC is consistent with an internal sensory role. The hip-

pocampal formation lies at the interface (limbus, ’fringe’) between the lower brain and the

mass of the cerebral cortex. In terms of blood supply, the HPC is perhaps the most highly irri-

gated of all brain regions, and is also flanked by the central and lateral ventricles with the cho-

roid plexus [14]. In cross-section, the formation is divided into CA regions CA1 and CA3

(with a short intervening structure, CA2), and the DG. There may be a further functionally dis-

tinct region, the dentate hilus, but this is less secure. Gene expression surveys largely confirm

this anatomy [15,16]. Some have introduced additional subdivisions both within the DG–CA

circuit [17] and along the length of the hippocampus [18]. However, for simplicity we retain

the conventional subdivisions CA1–CA3 and DG.

To address the physiological role of the HPC we previously employed differential hybri-

dization [19], candidate gene screening [20], and gene-trapping [21] to identify genes selec-

tively expressed in HPC. This revealed that the mouse HPC expresses several endocrine

receptors and signaling molecules, potentially indicating a role of the HPC in internal sensing

of body physiology [9]. The aim of the present study was therefore to test rigorously the

hypothesis that the hippocampus is involved in interoception through systematic analysis of

the expression patterns of endocrine receptors across mouse brain, including subregions of the

HPC.

Specifically, we sought to answer two central questions. (i) Does the mouse HPC express a

greater diversity and/or level of endocrine receptors than other brain regions such as the cortex

and the cerebellum? (ii) If a greater level of expression is found, are these receptors expressed

uniformly across the HPC, or are different receptors differently distributed in the different

subdivisions of the HPC?–and can the pattern of expression tell us anything about the function

of the HPC?We report that the HPC is the principal brain site of endocrine receptor expres-

sion and, perhaps surprisingly, this analysis revealed a highly segregated distribution of recep-

tor expression in mouse hippocampus.

The interoceptive hippocampus
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Methods

Endocrine receptors

A list was assembled of receptor molecules in mice and humans that respond to endocrine

(blood-borne) ligands. We elected to study 250 receptors, a number chosen to minimize the

risk that a small number of atypical receptors or experimental artifacts might bias the overall

picture, weighed against the labor-intensive constraints of manually analyzing a larger number

of receptors. To assemble the list, the GeneCards database (www.genecards.org) was searched at

random for genes/gene products containing ’receptor’. A preliminary list (>>250 receptor can-

didates) was manually filtered to exclude (i) non-receptor entries (e.g., receptor downstream

kinase, etc.), (ii) evident receptors for neurotransmitter and non-diffusible cell–cell interaction

molecules, and (iii) receptors not listed in the primary database consulted (Allan Brain Atlas) as

well as receptors whose expression profiles were classified as failing quality control. Although

principally cell-surface molecules, the final list includes intracellular receptors with an endo-

crine role (e.g., nuclear receptors). This generated a list of 253 endocrine receptors (Table A in

S1 Appendix; the molecular functions of specific groups of receptors are discussed in Box 1).

Quantification of mouse brain endocrine receptor expression data

Primary analysis relied on the Allen Brain Atlas (ABA; http://mouse.brain-map.org/), a pub-

licly available repository of in situ hybridization gene expression data across mouse brain [22]

made available by the Allen Institute for Brain Science established by Paul G. Allen. To retrieve

expression patterns we entered search terms (e.g., Gene1) into http://mouse.brain-map.org/

search/show, sagittal sections were selected in all cases when these were available. The ’expres-

sion’ option and the target brain region (typically mid-brain including the hippocampus) were

selected, a screenshot was taken; data for all 253 receptors were recorded at the same magnifi-

cation and intensity in a repository of image files. To quantitate expression levels ImageJ

[23,24] was employed. Using default settings, and a standard image size, representative brain

regions (HPC; cortex, CX; and cerebellum, CB) were selected using a cursor box of constant

size and analyzed using the ’measure’ function of ImageJ (the olfactory bulb could not be sys-

tematically analyzed because this structure can be lost during dissection, and the small relative

size of the mouse hypothalamus precludes analysis at the resolution afforded by ABA). In each

case the ’Mean’ function was used instead of the integrated density function ’IntDen’ because,

at constant image size, the relative values are the same. The same technique was used for hip-

pocampal subregions, but the cursor box was manually fitted to the separate regions (CA1,

CA2, CA3, DG). The ’Mean’ function in these cases represents relative (total) expression of the

target gene within the region measured. These analyses generate a digital intensity reading on

a scale of 0 to 255. The program accommodates different colors as follows: black, 0.00; red, 85/

255 (0.333); yellow, 170/255 (0.666); white, 255/255 (1.000), mirroring the output of the ABA.

Because region selection is to some extent subjective, subregion expression analysis was per-

formed by two independent researchers; in cases of disparity consensus was reached following

reanalysis of the primary data. Values were then normalized–a biologically realistic data trans-

formation because (i) the signal for each target depends on the hybridization properties of the

specific probe employed, (ii) the biological effects of a given receptor will vary across a wide

range depending on ligand concentration, ligand affinity, and downstream signal transduc-

tion, and (iii) for a given gene, the inter-regional pattern (ratio) of expression across the brain/

hippocampus (unlike absolute values) is likely to be independent of the specific probe/hybrid-

ization parameters. For normalization, the highest expression value was selected (100%) and

expression in other regions was expressed as a percentage of maximum. Inter-region

The interoceptive hippocampus
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Box 1. Observations on specific receptors

Estrogen receptors

Estrogen receptors (ERs) include the classical ERs ESR1 (ERα), ESR2 (ERβ), the estro-
gen-related (ESRR) receptors, as well as the membrane estrogen receptor GPR30/GPER.

Perplexingly, no significant expression of the major receptors (ESR1/ESR2) was detected

in mouse hippocampus, and there was also no expression of GPR30 (data: ABA); this

was confirmed by inspection of HippoSeq (not presented) and we consider this finding

to be reliable, further confirmed by a report that ER protein reactivity assessed by immu-

nohistochemistry is largely absent from the principal neurons of the rat HPC [70]. The

absence of ESR1 and ESR2 is challenging given multiple reports of estrogen-responsive

biological changes in the HPC (e.g., [71,72]), including our own work [73]. Although

our survey revealed prominent expression of ESRRG in HPC, E2 is not known activate

this receptor; cholesterol (but not E2) is reported to activate the related receptor, ESRRA

[74], and it is likely that there are other endogenous ligands for ESRRG, but E2 seems

unlikely.

Despite the absence of ESR1 and ESR2, ligand radiolabeling studies confirmed E2 bind-

ing specifically to rat CA regions [75]. The identity of the specific receptor responsible is

not known, but this could reflect E2 binding to the androgen receptor, AR, that is well

expressed in CA regions. E2 binds with high affinity to AR (Kd = ~0.2 nM) but does not

normally drive transcription activation unless in the presence of coactivators such as

ARA70, SRC1, or β-catenin [76]). Both SRC1 and β-catenin are well expressed through-

out the mouse hippocampus (data: ABA). Furthermore, E2 is rapidly metabolized in

vivo to estrone (E1) by HSD17B enzymes (that are well expressed in HPC–data: ABA)

and thence to estrone sulfate (E1S) by sulfotransferases: E1S is reported to activate AR in

the 10 nM range [77], and also has a 20-fold longer half-life than E2. Overall, some of the

biological activities ascribed to E2 in the HPCmight be explained by AR targeting by E2

or its metabolites.

Of note, the gating enzyme, CYP7B1, that blocks alternative ER/AR activation by metab-

olizing androstanediol/androstenediol and DHEA (see [78]), is most highly expressed in

DG [79], thereby blocking the action of alternative physiological estrogens and andro-

gens in DG, further restricting their action to CA regions.

Fibroblast growth factors (FGFs), Klotho (KL), and lactase-phlorizin hydro-
lase (LCT)

FGFs comprise two groups of ligand that have distinct biological functions. The first

group consists of membrane-bound ligands that mediate cell–cell interactions. The sec-

ond group, the endocrine FGFs (principally FGF19, FGF21, and FGF23), lack the mem-

brane-attachment motif, are released into the extracellular milieu, and enter the

bloodstream, where they mediate systemic endocrine effects (reviewed in [80,81]). In the

present analysis we report selective expression of FGF receptors FGFR1, FGFR3, and KL

in CA1 regions of the HPC. We note also that ABA reports selective hippocampal

expression (No. 2 in the top 100 HPC genes [22]) of lactase (LCT), also known as lac-

tase-phlorizin hydrolase, with selective expression in CA1. Hippocampal expression

might be surprising given the prominent role of LCT in human tolerance to lactose

The interoceptive hippocampus
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ingestion, but lactose metabolism may be incidental: there are indications that LCT

plays a signaling role. LCT is conserved in fish and Xenopus, where lactose is not known

(although the enzyme is also active against plant-derived laminaribiose). It is also a

membrane-bound polypeptide. LCT harbors 3–4 glycosidase domains, but the first two

display no enzymatic activity, and are therefore likely to have a different function [82].

There are two LCT homologs in mammals, lactase/Klotho-like (LCTL) and Klotho (KL).

Both appear to have, like LCT, a C-terminal transmembrane region. KL has a single gly-

cosidase domain whereas LCT and LCTL have 3–4. Importantly, both KL and LCTL are

coreceptors for endocrine-type FGFs [83]. LCT has not yet been tested but, in view of

strong homologies with both LCTL and KL, it is inferred that LCT is also a coreceptor

for endocrine FGFs, which would be consistent with joint expression of FGF1R, FGF3R,

KL, and LCT in HPC. It is not yet known whether these differ in their selectivity for dif-

ferent types of FGFs.

Somatostatin (SST) receptors

SST was first described as a hypothalamic peptide that governs pituitary hormone secre-

tion, and thus contributes to regulation of the HPA axis [84]. Of the five SST receptors

(SSTR1–5), most attention has focused on SSTR2 and SSTR4. Both bind SST and the

related molecule corticostatin. Although HPC expression of SSTR2 was not detected in

ABA (Table B in S1 Appendix), HippoSeq reports selective expression in DG, in contrast

to selective expression of SSTR4 in CA regions–confirming earlier literature that SSTR2

and SSTR4 have non-overlapping patterns of expression, with SSTR2 being expressed in

DG and SSTR4 in CA regions [85]. The two receptors play different (and perhaps con-

verse) roles, as revealed by agonist and knockout experiments [85–87]. In the framework

reported here SSTR4 may be classified as a ’sufficiency’ receptor whereas SSTR2 may be

classified as ’challenge’ on the basis of its effects on stress responses [88]. Further

research will be necessary to unravel whether this might partly reflect receptor binding

to different physiological ligands, with the added complexity that SST/corticostatin are

themselves expressed in some brain neurons (e.g., [84]), and could thus have dual endo-

crine/neurotransmitter functions.

Glucocorticoid receptors

Although the mineralocorticoid receptor (MR/NR3C2) is widely held to be a receptor

for aldosterone (ALDO), that regulates salt and ion balance, MR in brain principally

responds to the stress hormone cortisol (in human)/corticosterone (in rodents)

(’CORT’). This is because receptor specificity is governed by enzymatic ’gating’ (e.g.,

[78,89]): the classical sites for ALDO actions (e.g., kidney and colon) express high levels

of 11BHSD enzymes that rapidly metabolize CORT into inert metabolites. By contrast,

ALDO is resistant to enzymatic gating, and becomes the principal ligand for kidney MR.

Therefore, in brain regions such as the HPC, that lack discernable 11BHSD expression,

CORT becomes the principal ligand for MR; indeed, the affinity of MR for CORT is

higher than for ALDO, and circulating levels of CORT exceed those of ALDO; hippo-

campal MR is thus the principal brain receptor for adrenal glucocorticoid stress hor-

mones in mouse [90].

The situation in human is slightly different because, unlike mouse, rat, and marmoset

[91], where expression of MR is targeted to DG, human MR expression is more broadly

The interoceptive hippocampus
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expression ratios in whole brain were calculated from the un-normalized expression data. Pri-

mary data for receptor gene expression across the brain are given in Table B in S1 Appendix,

and for hippocampal subregions in Table C in S1 Appendix.

Heat mapping and statistical analysis

All analyses focused on genes that were expressed in at least one of the selected brain regions

(98 genes in Fig 1, and 86 genes in Fig 2), and were conducted in the R programming environ-

ment, version 3.3.3 [25]. Heatmaps were generated using heatmap.2 in the gplots library for R.

Note that heatmap.2 provides dendrograms to aid visualization of relationships among com-

ponents of the heatmap but provides no statistics to indicate support for the presented dendro-

grams versus alternative, competing dendrograms. Therefore, we strongly caution against

overinterpretation of the dendrograms presented.

To test whether gene expression profiles differ across brain regions (HPC, CX, and CB) we

measured the correlation in gene expression among brain regions. To this end, we analyzed

normalized gene expression (see above) because variation in probe affinity may generate spuri-

ous correlations. We calculated the correlation using arcsine square root transformed values of

normalized gene expression, and used case-bootstrapping to generate 95% confidence inter-

vals (R package ‘boot’ [26,27]; bootstrapped 10 000 replicates).

Wilcoxon signed rank tests and paired t tests were used to determine whether non-normal-

ized gene expression differed among brain regions (Wilcoxon tests to compare HPC, CX and

CB; paired t tests to compare CA1, CA2, CA3, and DG). We used Chi-square goodness of fit

tests to determine whether genes that are exclusively (or alternatively, predominantly)

expressed in HPC, CB, or CX are distributed equally among these regions. We used a series of

three binomial tests to determine whether the numbers of genes expressed differed among

HPC, CB and CX. Pairwise correlation analysis is given in Table D in S1 Appendix.

Informative genes

For the majority of receptor genes the biological function of the receptor and/or the identity of

the ligand(s) remains unknown. For further analysis we therefore selected an ’informative’

subset of 32 genes where information is available concerning the biological role (or inferred

role) of the ligand/receptor pair. This subset included receptors for known diffusible hormones

(e.g., estrogen, glucocorticoids, progesterone), for cytokines (e.g., interleukins, interferons,

tumor necrosis factor), and growth factors (e.g., fibroblast growth factor). The list of informa-

tive genes is presented in Table E in S1 Appendix.

Inter-region expression ratios in hippocampus; statistical analysis

Normalized expression data were used to test whether gene expression ratios among hippo-

campus regions differed between group A versus B genes (for an explanation of groups A and

across both CA and DG regions [92]. However, unlike mouse, human hippocampus

expresses a gating enzyme (HSD11B1L/HSD11B3) in CA regions (but not in DG; data:

ABA)–a brain-enriched enzyme that converts CORT to inactive cortisone [93].

Although the kinetic parameters of the enzyme have not yet been studied in detail, the

action of MR could also be restricted to DG in human, mirroring the situation in mouse,

but by a different mechanism.

The interoceptive hippocampus
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Fig 1. Endocrine receptor gene expression in mouse brain and enrichment in the hippocampus (HPC).More than
one third of all endocrine receptors were detectably expressed in brain, where they are likely to modulate brain
function and cognition. Expression was restricted to specific brain regions: other than hippocampus (HPC),
cerebellum (CB), and cortex (CX), there was little evidence for specific gene expression in other comparable regions
(~4%; see text). (A) Mouse brain section highlighting the three regions studied in detail: HPC, CB, and CX. (B) (Left)
Heatmap of ’raw’ (unnormalized expression data, see Methods) for HPC versus CB and CX. (Right) Scatterplots of
unnormalized expression levels; horizontal lines are medians and quartiles showing that the mean expression level of
all receptors in HPC is significantly higher than in either CB or CX. (C) Normalized (maximum expression
level = 100%) gene expression data. On three counts, the HPC (red), versus CB (green) and CX (blue), is the major site
of expression of endocrine receptors (253 receptors examined) as further evidenced by the inset showing (i) exclusive
expression in HPC, (ii) most prominent expression in HPC, (iii) overall number of receptors expressed. �Receptors
showing no detectable expression or low-level/punctate/irreproducible expression are classified as expression absent.
Note that the dendrograms (generated by heatmap.2), depicted in A and B, are not supported by statistical analysis
versus alternative, competing dendrograms. Genes that are expressed exclusively in HPC, CB, or CB were not
distributed among these three regions with equal probability, and ‘exclusive genes’ were expressed most often in HPC;
the same result emerges when considering genes that are expressed most prominently in one brain region. Thus, the
HPC expresses both a greater number and level of endocrine receptor genes than any other brain region analyzed.

https://doi.org/10.1371/journal.pone.0227575.g001

The interoceptive hippocampus
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B see Results and Discussion). The mean expression data for CA (CA1–3) and DG were calcu-

lated and then log-transformed (1 or 2 was added to all values prior to log-transformation to

account for zeros; the outcome was the same in both cases). Pairwise DG/CA expression ratios

(Δ) were calculated from Δ = log(DG) − log(CA) {therefore, Δ = log(DG/CA)}. Welch’s t test

was employed to assess statistical significance of pairwise differences in ratios (i.e., Δ) for infor-
mative (group A, challenge; and group B, sufficiency) genes. The same approach was employed

for HippoSeq data (below).

However, because the distribution of Δ may violate the assumptions of t-tests, we addition-

ally used a permutation test to confirm conclusions from the t-test. The permutation test has

two stages. First, average Δ was calculated for each group of A and B genes, and the difference

Fig 2. Subregional representation of 86 receptors expressed in mouse hippocampus (HPC).Data are normalized to
the maximum expression level. �The data indicate that some receptors are somewhat restricted in their expression
pattern to one subregion, whereas others are expressed in combinations of regions. Note: the depicted dendrograms
(generated by heatmap.2) are not supported by statistical analysis versus alternative, competing dendrograms. There
were significant positive correlations between CA2 and CA3, and significant negative correlations between CA1 and
DG (Table D in S1 Appendix).

https://doi.org/10.1371/journal.pone.0227575.g002
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between these averages was calculated. This value represents the observed difference in average

Δ between groups A and B. Second, (i) Δ values were randomized among groups A and B, (ii)

average Δ of these randomized data was calculated for group A and B genes, and (iii) the differ-

ence between these average Δ values between groups A and B was calculated. We repeated this

second stage 10 000 times to generate a null distribution, against which we compared the

observed difference in average Δ between group A and B genes to yield the P value reported

here.

We used Dunn–Sidak corrected critical P values to assess significance when making multi-

ple comparisons (Pcrit = 0.0169 and 0.00851 for three and six comparisons, respectively).

Cross-validation of expression data

To validate data from the Allan Brain Atlas we consulted HippoSeq (https://hipposeq.janelia.

org) [28], a database of gene expression data. HippoSeq is based on transgenic tagging of sub-

regions of mouse HPC, brain microdissection, fluorescence cell-sorting retrieval of target HPC

CA pyramidal cell/dentate neuronal populations, and deep sequencing of mRNA populations.

A revised input format (kind courtesy of Cembrowski et al.) allowed query of multiple genes,

generating a table of absolute readcounts (FPKM, fragments per kb of transcript per million

mapped reads). Cross-comparison to ABA established a lower limit (null expression) where 4

FPKM equated to an undetectable hybridization signal (not presented). Parallels and differ-

ences between the ABA and HippoSeq studies are summarized in Table F in S1 Appendix.

Because ABA is more robust than HippoSeq in terms of the number of animals studied (a

small number of unrepresentative animals would be less likely to affect conclusions based on

ABA rather than on HippoSeq, Table F in S1 Appendix), and because an in situ hybridization

pattern (ABA, particularly if confirmed by identical patterns generated in other mouse strains

or species) may be more immune to bias than an automatically generated value (HippoSeq),

ABA was preferred over HippoSeq for our primary analysis, although both are reported where

appropriate.

Analysis of receptor function

PubMed was searched for the name of each individual receptor in conjunction with ’synaptic

potentiation’ OR ’synaptic plasticity’ OR ’long-term potentiation’ OR ’LTP’ OR ’neurogenesis’.

Relevant publications were manually tabulated for ligand effects on both parameters and are

listed in Table H in S1 Appendix. Intergroup pairwise comparisons of effects (inhibition versus

stimulation) of literature-recorded ligands on LTP and neurogenesis employed both Student’s

unpaired t test and chi-square test.

Results

A representative list of 253 endocrine receptors was compiled (neurotransmitter receptors and

cell–cell interaction molecules were excluded; Table A in S1 Appendix). In situ hybridization

patterns were extracted from the Allen Mouse Brain Atlas (ABA); these were manually

scanned and quantified (Methods). Where appropriate, values were normalized and inter-

region ratios calculated.

Brain distribution of endocrine receptor expression

We report that, of all endocrine receptors, 98/253 (38.7%) were detectably expressed in brain.

This argues that, in addition to regulating body physiology including growth, development,
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reproduction, and homeostasis, etc., a major proportion of endocrine receptors may directly

regulate brain function and cognition.

We also report that endocrine receptor expression in mouse brain is principally limited to

specific brain regions. Only a small number of genes were expressed in major areas such as the

olfactory bulb (OLF), thalamus, pons/medulla, pallidum, or striatum (4.3%; see below). This

focused our attention on HPC, cortex (CX), and cerebellum (CB). Hypothalamus could not be

examined (Methods and Discussion).

Regarding our first question–the proportion of endocrine receptors expressed in mouse

HPC–we report that 86 of 253 (34.0%) endocrine receptors are expressed in HPC, a higher

number than in either CB (53) or CX (76). Importantly, the level of expression was highest in

HPC. Of all receptors with detectable expression in brain (n = 98), 61.3% were most promi-

nently expressed in the principal neuronal layers (pyramidal and granule cells) of the HPC

(versus 9.1% in CB and 25.5% in CX). Indeed, 17.3% of brain-expressed endocrine receptors

were exclusively expressed in HPC (compared to 4.1% and 7.1% that were exclusively

expressed in CB and CX, respectively). Fig 1 presents heatmaps of the normalized and un-nor-

malized expression data for these three brain regions, and the inset gives numerical values for

exclusivity, most prominent, and detectable expression.

Non-normalized gene expression differed significantly in all pairwise comparisons among

HPC, CB, and CX. The HPC expressed these genes at significantly higher levels than either CX or

CB (Wilcoxon signed rank test; vs CX:V = 3467, P = 3.266e−06; vs CB: V = 3527, P = 1.398e−08),

and CX expressed genes at higher levels then CB (V = 2208.5, P = 0.009944). All comparisons

remained significant after accounting for multiple comparisons. Overall, the probability of detect-

able gene expression was significantly higher for HPC than CB (binomial test, P = 0.0101), but did

not differ for remaining comparisons (binomial tests; HPC and CX: P = 0.58; CX and CB:

P = 0.052); these results remain unchanged after accounting for multiple comparisons.

Although we were unable to systematically screen for expression in OLF (Methods), a small

number of genes from our selection were expressed in OLF (Ednrb, Epor, Ccr3, Crhr1, Nrp1,

and Nmbr) of which only Ccr3 and Nmbr appeared to be specific for OLF. Remaining genes

were expressed in striatum and/or pallidum (Acvrl1, Nfgr, Rarb) or in pons/medulla (Adipor2,

Esrrg). No other brain regions stood out with other than trace expression in this survey (small

foci of low-level expression, not presented); in total, these represent 4.3% of all the endocrine

receptors studied, a far lower proportion than in either HPC, CB, or CX.

We conclude that, based on 253 receptors, there is significantly greater endocrine receptor

gene expression in HPC than in either CB or CX, or in any other comparable brain region ana-

lyzed (noting that hypothalamus could not be studied; Discussion).

Distribution across hippocampal subregions

With regard to our second question–the pattern of expression within the HPC–all the recep-

tors studied with detectable HPC expression (n = 86; Fig 1) identified mRNA within the cell

bodies of the principal excitatory neurons (pyramidal cells, DG neurons) of the HPC. How-

ever, the expression patterns of the assembled genes were non-randomly distributed across

subregions–although some were detectably expressed in all subregions, many were expressed

only in restricted regions of the HPC. Fig 2 presents the distribution (heatmap) of receptor

expression across the different regions of the mouse HPC. To address correlations between

HPC subregions, we performed pairwise correlation analysis (Table D in S1 Appendix). Nor-

malized gene expression was significantly negatively correlated between DG and CA1, and

positively correlated between CA2 and CA3. All remaining combinations of CA1, CA2, CA3,

and DG provided no evidence of correlated gene expression (Table D in S1 Appendix).
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To validate the subregional distributions in mouse HPC, we compared ABA in situ hybridiza-

tion data against a second database, HippoSeq (Methods; this database only addresses HPC

expression). Although there were some discordances, the HippoSeq database supported the over-

all subregional expression patterns detected by in situ hybridization (Table F in S1 Appendix).

Distribution of receptors with established roles: Subregion–function
correlations reveal a challenge–sufficiency axis

For the majority of the receptors studied here the biological ’meaning’ is unknown, either

because the receptor ligand is unknown or because the physiological role of the ligand(s) has

not been established. To illustrate, the first and last genes in our list, Acvr1 and Vmnr234,

respectively encode activin A receptor type 1 and a vomeronasal-like receptor. Ligands for

ACVR1 include both inhibins and activins, that inhibit and activate diverse physiological pro-

cesses and, moreover, have opposing functions; the primary in vivo ligand for ACVR1 in the

CNS remains unknown. For VMNR234, the ligand is also unknown. Given this uncertainty

we examined receptors from an ’informative’ list (n = 32) where the function of the ligand is

known (or inferred): these include angiotensins, cytokines, fibroblast growth factor (FGF),

interleukins/interferons, prostaglandins, retinoids, steroid hormones (androgens, estrogens,

glucocorticoids and mineralocorticoids), tumor growth factor (TGF), and tumor necrosis fac-

tor (TNF) (Methods and Table E in S1 Appendix). This revealed a gradient of expression

across the HPC, where some receptors were principally expressed in DG regions, and others

were principally expressed in CA regions (Fig 3).

Receptor categorization by function. To understand this pattern we sought a unifying

principle that might underpin and explain the gradient of receptor expression. It became

apparent that receptor function differed according to location within the HPC. Receptors

reflecting stress of various types (e.g., receptors for inflammatory cytokines and glucocorti-

coids) provided a clue because their expression was clustered in DG. Conversely, it was noted

that receptors responding to growth-promoting ligands (e.g., growth factors and sex steroids)

were principally localized in CA regions. On this basis it was possible to classify each ligand/

receptor pair into two groups.

Because one group of receptor ligands (designated ’group A’) signal loss of homeostasis

and/or physiological stress of various types (these ligands include angiotensins–blood pressure

fall; glucocorticoids–stress hormones; cytokines, interferons, and TNF–immune challenge),

we describe these here as denoting ’challenge’, whereas a second group of ligands (’group B’)

conversely includes growth-promoting hormones and factors (e.g., androgens, estrogens,

fibroblast growth factor, retinoids), which we term here ’sufficiency’ (more detailed listing and

discussion of receptor function is presented in Box 1 and Table H in S1 Appendix). Although

this classification is fully open to debate and refinement, we believe that it provides a potential

interpretation of the observed gradient of expression.

As shown in Fig 3, there was unexpected clustering of group A (’challenge’) receptor expres-

sion in DG, whereas group B (’sufficiency’) receptors were predominantly expressed in CA

regions.

To address the statistical significance of the patterning of group A versus group B observa-

tion we calculated the ratios between different hippocampal subregions (mean of CA regions

versus DG) by conversion to log10 values and subtraction (Methods) and plotted the results for

the two groups A and B (Fig 4). The ratio of gene expression in CA to DG differed significantly

between group A and B genes (Welch’s t-test, t = 4.22, df = 27.69, P = 0.00024). Permutation

tests confirmed these findings. The analysis was then repeated for the HippoSeq data; this also

achieved significance for CA regions versus DG (P = 0.0061; Table F in S1 Appendix).
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We conclude that the expression pattern is highly structured within mouse HPC, and that

group A receptors (’challenge’) are preferentially expressed in DG, and group B receptors (’suf-

ficiency’) are selectively expressed in CA regions (Fig 3).

Further receptors confirm the generality of the axis. To test whether the axis extends to

other endocrine receptors, we examined the expression pattern (in both ABA and HippoSeq)

of other informative receptors (that were not on our original list) whose ligand is known and

Fig 3. Expression of ’informative’ endocrine receptors in subregions of the mouse hippocampus (HPC). (Above) Principal
neuroatomical subdivisions of the rodent HPC (adapted from the model of [15]). (Below) Informative (see main text) receptors
sorted according to regional expression (heatmap, normalized data) with CA1 and DG at the two extremes (Methods) showing
expression clustering of receptor types in different regions (e.g., ’sufficiency’–FGF receptors FGFR1, FGFR3, and KL in CA
regions; and ’challenge’–interleukin and TNF receptors IL1R1, IL17RD, IL10RB, IL2RB, TNFRSRF 25, TNFRSF21, TNFRSF19
in DG).

https://doi.org/10.1371/journal.pone.0227575.g003
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that are expressed in brain. We identified seven such receptors. All were expressed in mouse

HPC (although some were only expressed at low levels, Table G in S1 Appendix). Challenge

receptors [interleukin 6 receptor, growth hormone secretagogue receptor (ghrelin receptor),

opioid growth factor receptor, irisin receptor, somatostatin receptor, leptin receptor, and glu-

cagon-like peptide 1 receptor] were all expressed at higher levels in DG than in CA regions,

whereas sufficiency receptors were expressed at highest level in CA regions (glucagon-like pep-

tide 1 receptor) or were expressed at similar levels in CA and DG (leptin receptor) (Table G in

S1 Appendix), confirming (7/7) that the DG versus CA differential ratio extends to other

receptors, reinforcing the generality of our findings.

HPC receptors are functional: Synaptic potentiation and neurogenesis

We addressed whether the informative receptors are functional in vivo and in vitro by litera-

ture searching regarding two output measures: synaptic potentiation (long-term potentiation,

LTP) and neurogenesis. The evidence argues that these endocrine receptors are fully functional

and modulate both LTP and neurogenesis.

Synaptic potentiation. Although not all receptors have been studied in the literature,

there was evidence that DG ligands predominantly inhibit local LTP, whereas CA ligands pro-

mote LTP. For example, DG ligands IL-1, IL-2, IFN-α, IFN-γ, TGF-β, and TNF-α all inhibit

LTP in rodent hippocampus [29–36]. By contrast, CA1 ligands such as cholecystokinin

Fig 4. Ratios of CA versus DG expression for informative receptors. (A) Group A (DG/challenge). (B) Group B
(CA/sufficiency). Individual genes are ordered as in Fig 3. The differential DG versus CA pattern of expression was
highly significant.

https://doi.org/10.1371/journal.pone.0227575.g004
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(CCK), different types of FGF, and somatostatin (SST) are reported to enhance hippocampal

LTP [37–40]. Thyroid hormone deficiency is associated with pronounced deficits in synaptic

plasticity (e.g., [41–43]). Caution is urged, however, because some ligands may have distinct

(even converse) effects on CA1 versus DG LTP, perhaps pointing to functional differences in

the receptors expressed in different hippocampal regions. Nonetheless, based on the published

literature, a clear pattern emerges in which challenge ligands (DG) predominantly impair LTP,

whereas sufficiency ligands (CA) promote LTP (Fig 5 and Table H in S1 Appendix).

Neurogenesis. The literature also records differential effects of DG and CA ligands.

Group A (DG/challenge) ligands such as glucocorticoids, interleukins, interferons, and TNF-α
are reported to inhibit neurogenesis (e.g., [44–50]) whereas group B (CA/sufficiency) ligands

such as estrogen, progesterone, and FGF stimulate neurogenesis (e.g., [51–55]. There are some

discordances, particularly when comparing long- and short-term effects (for example for glu-

cocorticoids, reviewed in [47]). However, agents targeting DG predominantly suppress neuro-

genesis, whereas those targeting CA regions increase neurogenesis (Fig 5 and Table H in S1

Appendix).

Because of the small number of samples, differences between each group (DG/CA)/parame-

ter (LTP/neurogenesis) and a random distribution were not uniformly significant (range

P = 0.005–0.114 for four comparisons and two statistical tests). By contrast, intergroup com-

parisons revealed that the differences between groups A and B regarding LTP and neurogen-

esis were consistently highly significant (LTP, t test, P = 0.0001; chi-square test, P = 0.0028;

Fig 5. Differential effects of receptor activation on long-term potentiation (LTP) and neurogenesis. (A) Group A
(DG/challenge). (B) Group B (CA/sufficiency). Individual genes are ordered as in Figs 3 and 4. (C) Mean scores for the
two groups, demonstrating that group A receptors tend to suppress both LTP and neurogenesis, whereas group B
receptors tend to promote both parameters. The differential patterns of stimulation/inhibition of LTP and
neurogenesis were highly significant between the two groups.

https://doi.org/10.1371/journal.pone.0227575.g005
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neurogenesis, t test, P = 0.0002; chi-square test, P = 0.006) confirming that the patterns are

indeed different.

In conclusion, ligand effects on both LTP and neurogenesis confirm that these hippocampal

receptors are functional. Moreover, they indicate that the challenge/sufficiency axis extends to

receptor function, wherein DG/challenge receptors predominantly inhibit both neurogenesis

and synaptic plasticity, whereas CA/sufficiency ligands principally promote both parameters.

Discussion

This work confirms and extends prior suggestions that the HPC is involved in internal sensing,

as reflected here by greater expression of endocrine receptors than in any other brain region,

including CX and CB.

With regard to our first question (how many receptors), we report that 86 of 253 (34%)

endocrine receptor genes are expressed in mouse HPC, and 17/98 (17.3%) are exclusively

expressed in HPC, values markedly higher than for any other brain region. This accords with

our previous data, based on small sample size, that 37% (21–59%, 95% CI) of mouse genes are

expressed in HPC, a selection that predominantly encodes endocrine receptors and signaling

molecules [21]. Aside from CX and CB, only low-level expression of these receptors was

observed in other comparable brain regions (e.g., OLF, thalamus, pons/medulla, pallidum, or

striatum; hypothalamus was not studied); these represent ca 4% of all receptors studied. How-

ever, we do not exclude the possibility that some receptors are expressed in other brain regions

at levels below the limit of detection of in situ hybridization.

Thus, of all major brain regions in mouse, endocrine receptor genes are most prominently

expressed in HPC, attesting that the present-day HPC is likely to play a role in sensing and

responding to internal blood-borne (endocrine) markers of body physiology, arguing that the

sensory function (interoception) attributed to the primeval hippocampus [7–9] has been

retained to this day.

Our analysis has focused largely on hormonal ligands and has not addressed whether the

HPC can directly sense levels of low molecular weight ligands (e.g., minerals, pH, CO2, etc.)

because much less is known about their receptors. For example, NHE4 (SLC9A4), that is acti-

vated by hypertonicity, is well expressed in HPC (Allen Brain Atlas), but its exact function is

unknown. It could mediate direct sensing of metabolites, although this remains speculative. It

is likely that, with evolution, the mouse HPC now responds principally to peripheral hormones

that act as proxies for metabolite levels. For example, aldosterone, a salt regulatory hormone,

targets glucocorticoid receptors in the HPC.

Regarding our second question (patterning within the HPC), we report a highly significant

non-random distribution of receptor expression across different HPC subregions of mouse

HPC. Receptors whose biological function is known or may be inferred (’informative’ genes,

n = 32) were expressed in a highly structured pattern within the formation. Ligands signaling

different aspects of challenge (termed here group A: stress, infection, inflammation, blood

pressure fall) were principally found to target receptors expressed in DG, whereas ligands sig-

naling aspects of sufficiency (group B: androgens, endocrine FGF, estrogens, progestins, reti-

noic acid, thyroid hormones) instead principally target the CA regions, with a mean 8.33-fold

difference in the DG versus CA expression ratio (P< 0.0001).

Although the validity of this distinction remains open to debate (see Results for the underly-

ing rationale), for the purposes of discussion we term this a ’challenge/sufficiency’ axis. The

highly ordered (DG vs CA) segregation of receptor expression in mouse brain raises the ques-

tion of the function of this segregation (see below).
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We also report that the challenge/sufficiency axis accurately mirrors the effects of DG ver-

sus CA ligands on physiological functions within the HPC. With few exceptions, DG/challenge

receptors inhibit, whereas CA/sufficiency ligands promote, both neurogenesis and synaptic

potentiation.

The contrasting effects on synaptic potentiation suggest that the hippocampus might act as

an integrator of positive and negative information. Given the paradigmatic hippocampal cir-

cuit: cortex!DG! CA3! CA1! cortex, the output of the hippocampus is likely to repre-

sent the summation of ligand effects on DG and CA regions. The recorded modulation of

synaptic potentiation (and thus of overall neurotransmission through the HPC) by endocrine

receptor ligands leads us to speculate that the ancestral function of LTP may have been to indi-

cate relevant physiological states worthy of encoding in memory traces, ranging from no LTP

(highly adverse context) to potent LTP (highly beneficial context).

A key question concerns whether the challenge/sufficiency axis is reiterated in primates.

Preliminary inspection of the microarray-based Allan Human Brain Atlas (http://human.

brain-map.org/) fully confirms selective endocrine receptor expression in human HPC, consis-

tent with internal sensing deficits in HPC-ablated patient H.M. [3], but the human data (from

elderly individuals) are not strictly comparable to the analyzed data from young mice (and are

therefore not presented). It is possible that DG/CA patterning may be less well conserved in

human, but we note that strict conservation of this patterning across vertebrates is unlikely

because, for example, birds and reptiles lack a morphological dentate gyrus (e.g., [56]). Indeed,

there is no a priori reason why physical segregation of challenge versus sufficiency signaling

should be necessary. We suspect that mouse brain may be a special (but informative) case–

analysis of this species has pointed, for the first time, to differential HPC receptor localization

according to function, providing a new and unexpected perspective on hippocampal function.

Although comprehensive in situ receptor expression data in human are so far lacking, there

is firm evidence that a functional challenge/sufficiency axis also operates. The human HPC is

at the heart of anxiety [57,58], as well as of stress responses and depression. Extensive review

would be out of place, but we note that clinical administration of ’challenge’ ligands (DG in

mouse) such as IL-1α, IL-2, IFN-α, IFN-β, and TNF-α produces malaise and sickness behavior

[59–64], that has been suggested to be akin to anxiety/depression, whereas ’sufficiency’ ligands

(CA regions in mouse) such as androgens, IGF-1, and thyroid hormone have converse positive

effects (e.g., [65–67]), all of which target HPC receptors, indicating that the axis is also func-

tional in human. Systematic inventory of clinical data on challenge/sufficiency ligands will be

necessary to confirm this contention.

Nonetheless, we observe an accurate correlation between ligands targeting CA regions and

antidepressant/anxiolytic benefits, and the converse for DG ligands. This parallels effects on

neurogenesis, where CA ligands predominantly promote neurogenesis in the HPC whereas

DG ligands inhibit neurogenesis. This is of special note given that stimulation of HPC neuro-

genesis has been directly linked to antidepressant action and has been used for new antidepres-

sant drug screening (e.g., [68,69]); differential receptor localization may provide novel

indicators for the development of new antidepressants/anxiolytics.

In sum, the selective expression of endocrine receptors in mouse HPC, further highlighted

by challenge–sufficiency patterning of endocrine receptor expression, argues that internal

sensing remains a core function of the HPC. This accords with evolutionary theory that the

HPC arose from a chemosensory epithelium [7–9], and argues that the present-day HPC in

particular has retained the ability to monitor the internal milieu of the body. Interoception

mediated by the hippocampus may thus provide a new dimension to context-dependent mem-

ory encoding, extending from ’where’ and ’when’ to ’how I feel’.
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It will be vital to test these concepts in mice genetically engineered to express designer

receptors only in DG versus CA regions, and to study the effect of ligand administration on

physiology, behavior, and memory. It would also be very informative to study cross-species

conservation of expression in larger mammals (rabbit, sheep, non-human primates) where the

relative contribution of the hypothalamus (that was too small to be analyzed) could be exam-

ined in detail. Moreover, in addition to looking forwards (from mouse to primates), it would

be highly illuminating (i) to examine in detail the trajectories of endocrine receptor expression

during early development, and (ii) to address the expression profiles of homologs of these

genes in other representatives of the vertebrate lineage including birds, reptiles, and fish. One

promising line of investigation will be to dissect memory processes in the earliest organisms

that encode associations between different internal and external stimuli. Addressing the earli-

est precedents, and the traces these have left in extant species, will be a fertile territory for new

insights into the operation of the human brain.
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