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This paper presents a multiscale investigation on the interplay among inherent anisotropy, fabric
evolution and strain localisation in granular soils, based on a hierarchical multiscale framework with
rigorous coupling of the finite-element method (FEM) and discrete-element method (DEM). DEM
assemblies with elongated particles are generated to simulate inherent anisotropy and are embedded to
the Gauss points of the FEMmesh to derive the required constitutive relation. Specimens preparedwith
different bedding plane angles are subjected to biaxial shear under either smooth or rough loading
platens. Key factors and physical mechanisms contributing towards the occurrence and development of
strain localisation are examined. The competing evolutions of two sources of anisotropy, one related to
particle orientations and the other related to contact normals, are found to underpin the development
of the shear band. A single band pattern is observed under smooth boundary conditions, and its
orientation relative to the bedding plane depends critically on the relative dominance between the two
anisotropies. Under rough boundary conditions, the non-coaxial material response and the boundary
constraint jointly lead to cross-shaped double shear bands. The multiscale simulations indicate that the
DEM assemblies inside the shear band(s) undergo extensive shearing, fabric evolution and particle
rotation, and may reach the critical state, while those located outside the shear band(s) experience mild
loading followed by unloading. The particle-orientation-based fabric anisotropy needs significantly
larger shear and dilation for mobilisation than the contact-normal based one. The asynchrony in
evolution of the two fabric anisotropies can cause non-coaxial responses for initially coaxial packings,
which directly triggers strain localisation.
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strain localisation

INTRODUCTION
Many intriguing phenomena observed in granular media
reflect non-trivial microstructural mechanisms that can be
better understood from a multiscale perspective (Guo &
Zhao, 2014). Strain localisation and anisotropy are among
the representative ones. Strain localisation in sand is widely
regarded as an important precursor associated with the
failure of geomaterials and relevant geostructures, while
anisotropy underpins key mechanical responses of granular
media including strength, deformation and failure. As most
in-situ granular soils are naturally inherently anisotropic,
how anisotropy interplays with strain localisation during the
inception and formation of the latter has drawn sustained
attention. Anisotropy has indeed been found among the key
factors, along with density, boundary conditions, drainage
conditions and specimen dimensions, affecting the occur-
rence of strain localisation in granular soils (Vardoulakis,
1996; Mokni & Desrues, 1999; Desrues & Viggiani, 2004;
Rechenmacher, 2006). Experimental studies by Tatsuoka
et al. (1990) and Lade et al. (2008) showed that the initiation
and development of a shear band in sand can be greatly
influenced by the presence of anisotropy.

Numerous past studies, including those dealing with the
effect of anisotropy, have treated strain localisation as a

material instability based on bifurcation analysis (Rudnicki
& Rice, 1975; Bigoni & Loret, 1999, among others). There
have been attempts to simulate the phenomenon of strain
localisation in anisotropic sand samples, based on either
continuum modelling, typically by finite-element method
(FEM), or micromechanics using the discrete-element
method (DEM) (Bauer et al., 2004; Tejchman & Górski,
2010; Fu & Dafalias, 2011b). Despite being successful in
reproducing important aspects of strain localisation, such as
the correlation between shear band pattern and inclination
and inherent anisotropy, these studies are not without
limitations. DEM-based micromechanics approaches, for
example, typically have difficulties in handling the large
number of particles required to simulate a real engineering
problem. Continuum modelling often relies on constitutive
relations which are phenomenological in nature. To trigger
strain localisation, it is common to introduce imperfections
in elements or random field distribution of material
properties in a FEM simulation, which may add subjectivity
and uncertainties to the simulations and distract from the
identification of key mechanisms of strain localisation. There
is another popular class of micromechanics approach
pioneered by Chang and co-workers, which has been
applied to treat inherent anisotropy and instability in sand
(Chang & Hicher, 2005; Hicher et al., 2008; Chang & Yin,
2010; Chang et al., 2011). Notably, most studies have
neglected the evolution of fabric anisotropy and how it
interacts with the developing shear band. Indeed, anisotropy
may evolve during the loading process, especially in regions
where strain is localised. It is evident that an evolving fabric
may affect importantly the development of the shear band as
well as its final pattern (Gao & Zhao, 2013). To quantify the
essential feature of fabric and its evolution, a
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micromechanics approach has been proved more appropriate
(Guo & Zhao, 2013b; Zhao & Guo, 2013), whereas a
continuum approach may be more efficient and straightfor-
ward to simulate strain localisation as a boundary value
problem (BVP). To capture the interplay between the two, a
combination of the two approaches is desirable.
In this study, the authors employ a hierarchical multiscale

approach coupling DEM and FEM (Guo & Zhao, 2013a,
2014) to model the behaviour of anisotropy, fabric evolution
and strain localisation in a granular soil. The multiscale
framework is in line with early studies by Nitka et al. (2011)
and Andrade et al. (2011). Specifically, the multiscale
approach treats a continuum domain by FEM and embeds
a DEM assembly as the representative volume element
(RVE) at each FEM Gauss point to derive the material
constitutive relation. It helps to circumvent the phenomen-
ological assumptions and parameter fitting in conventional
continuum approaches, expedites a direct linkof macroscopic
soil behaviour with its microscopic origin and enables
micromechanical insights to be gained into complex soil
properties such as history dependency, non-coaxiality,
dilatancy and critical state (Schofield & Wroth, 1968;
Gutierrez & Ishihara, 2000; Yu & Yuan, 2006; Tejchman &
Wu, 2009; Muhlhaus et al., 2010), as well as the anisotropy
and strain localisation to be considered here.

APPROACH AND FORMULATION
The hierarchical multiscale framework is based on a

rigorous coupling of two open-source codes – Escript
(FEM engine, Gross et al., 2007) and Yade (DEM engine,
Šmilauer et al., 2010), which is briefly summarised below. A
detailed formulation and solution procedure of the scheme
can be found in Guo & Zhao (2014).

Governing equation and the FEM model
The governing equation of a BVP can be written in the

following strong form (considering quasi-static equilibrium
in the absence of gravity)

σij;j ¼ 0 ð1Þ
where σij is the stress tensor. The FEM commonly employs a
variational weak form of equation (1), which is transformed
into a system of linear equations upon discretisation

Ku ¼ f ð2Þ
where K is the tangent stiffness matrix, u is the FEM nodal
displacement vector, and f is the nodal force lumped from the
applied boundary traction.
A conventional FEM needs to assume an elasto-plastic (or

hypoplastic) relation to describe the material response and to
assemble K from the elasto-plastic modulus D ep which is
highly non-linear and history-dependent for granular soils.
The hierarchical multiscale approach abandons any assump-
tion of phenomenological constitutive models, and incurs
separate DEM simulations at each FEM Gauss point to
provide the material constitutive responses. For a given
global loading step, the typical solution procedure of the
multiscale approach consists of the following substeps: (a)
evaluating the tangent modulus Dijkl based on the DEM
packing at each Gauss point to form K; (b) interpolating the
local deformation ui,j at each Gauss point from the (trial)
FEM solution and applying them as boundary conditions for
the corresponding RVE packing; (c) solving the local RVE,
updating the total stress at the Gauss point, and assembling
the global tangent operator and stress tensor for the FEM
domain; (d ) performing Newton–Raphson iteration over

(a) to (c) to find a converged solution of equation (2) for the
displacement field u.

DEM model and macroscopic definitions
To simulate inherent anisotropy, the present authors have

modified the DEM model in Guo & Zhao (2014) by
replacing the circular particles therein with elongated
clumps consisting of two identical discs, as shown in Fig. 1
(see also Evans & Frost, 2010; Li & Yu, 2010). The centroid
distance of the two clumped circular discs is set to be 1·25 r
(r¼ radius of the constituent discs), which leads to an aspect
ratio of 1·625. The area Acl, the equivalent radius req and the
inertia of moment (with regard to the mass centre) Icl of the
clump can be computed as follows

Acl ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0�6252
p

� 0�625þ π � arccosð0�625Þ
h i
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where mcl is the mass of the clump. Icl in equation (3) is
estimated by discretising the clump boundary to a star-
shaped polygon (see Fig. 1). The coefficient is determined
by approximating the clump boundary with a 3000-
segment polygon (this leads to an accuracy up to four
decimal places).
A similar linear force–displacement contact law for the

DEM model as described in Guo & Zhao (2014) is followed,
adopting a normal stiffness kn = req*¼455MPa and a
tangential stiffness kt¼0·3 kn, where req

* is the common
radius of the two contacted particles. The interparticle
friction angle governing the Coulomb friction criterion is
set to be ϕ ¼0·5 rad. The density of the particles is set to ρcl¼
2650 kg=m3. The DEM implementation of the clumps is
similar to Šmilauer et al. (2010).
Two macroscopic quantities pivotal to the multiscale

computation, the tangent modulus and the Cauchy stress
tensor, are homogenised from the RVE packing at each
Gauss point. By adopting a uniform strain assumption
(Wren & Borja, 1997; Kruyt & Rothenburg, 1998; Luding,
2004), the tangent modulus used for iterative solution of
equation (2) is estimated as

Dijkl ¼
1
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where V is the total volume of the assembly, Nc is the total
contact number in the assembly, n c is the outward contact
normal, d c is the branch vector connecting the centres of the
two contacted clumps (see Fig. 1). t c is the unit vector along
the tangential direction of a contact. The Cauchy stress
tensor is evaluated from the Love’s formula:

σij ¼
1

V

X

c[Nc

dc
i f

c
j ð5Þ

where f c is the interparticle contact force. From σij, the
mean effective stress p and the deviatoric stress q can be
calculated (in two dimensions): p¼σii=2, q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sijs ji=2
p

(sij¼σij� pδij, δij denoting the Kronecker delta). The local
strain is measured from the displacement gradient (obtained
from the FEM solution), namely εij¼�(ui,jþuj,i)=2.
Accordingly, the volumetric and deviatoric strains can be
defined: εv¼ εii, εq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2eije ji
p

, where eij¼ εij� εvδij=2. The
rigid body rotation (note that the rigid body rotation is
specifically referred to the overall rotation of the RVE
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packing here) ωij¼ (uj,i� ui,j)=2 is also considered for the
RVE boundary condition to accommodate large defor-
mations in strain localisation.

Quantification of fabric anisotropy
According to Casagrande & Carillo (1944), granular soils

commonly possess two forms of anisotropy, namely, inherent
anisotropy and induced anisotropy (see also Arthur &
Menzies, 1972; Arthur et al., 1977; Wong & Arthur, 1985).
Inherent anisotropy is formed due to preferentially oriented
particles, voids and contact normals during geological
deposition processes such as tectonic compaction and
hydraulic=pneumatic transport or laboratory sample prep-
aration through air=water pluviation. Induced anisotropy is
caused by the applied loading, which may alter the
pre-existing inherent anisotropy and induce rearrangements
of the soil fabric. Both types of anisotropy affect the overall
behaviour of sand significantly (Oda, 1972a, 1972b; Abelev
& Lade, 2003; Lade & Abelev, 2003; Hasan & Alshibli, 2010;
Guo & Zhao, 2013b; Zhao & Guo, 2013). This paper adopts
the fabric tensor to quantify both sources of soil anisotropy.
Prior to loading, the fabric tensor represents the state of
inherent (or more accurately, initial) anisotropy in sand,
whereas upon loading, it reflects the superposition of
inherent anisotropy and induced anisotropy. In particular,
two different definitions of fabric tensor are compared. One
follows the widely used definition proposed by Satake (1982)
and Oda (1982) based on the contact normal distribution
(ϕij

c), and the other is defined based on the particle
orientation (ϕij

p)

ϕ�ij ¼
ð

Θ

EðΘÞn�i n�j dΘ ¼ 1

N�

X

N�

n�i n
�
j ð� ¼ c; pÞ ð6Þ

where the super=subscript * denotes either ‘c’ or ‘p’ for the
two tensors (throughout this paper). np is a unit vector
pointing along the longest axis of the clump (see Fig. 1).Np is
the total number of clumped particles in the assembly. The
distribution function E(Θ) can be approximated by a
second-order truncation of its Fourier expansion

EðΘÞ ¼ 1

2π
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�
i n

�
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� �
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where the deviatoric tensors F c
ij and F

p
ij quantifying the fabric

anisotropy can be calculated

F �
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1

2
δij

� �

ð� ¼ c; pÞ ð8Þ

A scalar Fc or Fp can be used to measure the anisotropic
intensity

F� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
F �
ijF

�
ij

r

ð� ¼ c; pÞ ð9Þ

Preparation of RVEs
A DEM assembly containing 400 particles proves to

be sufficient for the RVE (see also Guo & Zhao, 2013a,
2014; Nguyen et al., 2013, 2014) and is used in the study.
Each RVE contains clumps of equivalent radii ranging
from 3mm to 7 mm with particle size distribution (PSD)
according to Fig. 2(a). All particles (indeed rods) are
assumed to have a thickness of 100 mm, that is about
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Fig. 1. Clump geometry and interparticle contact law
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ten times the mean particle diameter. With the assumed
thickness, the stress quantities in the current two-
dimensional (2D) simulations are rendered in pressure
units (i.e. force over area). To prepare RVEs with different
inherent anisotropies, an assembly is generated with all
particles orientated in the same direction with no overlap.
Their orientation with regard to the horizontal plane (the
0� 0 axis) is denoted by an angle α, which is hereafter
referred to as the bedding plane angle. A two-stage isotropic
consolidation is then applied. First, the rotational degrees
of freedom (RDOFs) of all particles are prohibited until
a first-stage consolidation pressure p¼50 kPa is reached.
A second stage of consolidation is then continued by
relaxing the RDOFs for all particles until the sample
reaches a final designated pressure p0¼100 kPa. During
both stages, the interparticle friction angle is set small and is
adjusted case by case to obtain different dense packings with
a close initial void ratio of around e0¼0·13. A total of five
RVE packings, with α¼0°, 22·5°, 45°, 70° and a randomly
orientated packing, respectively, are prepared as shown in
Fig. 2(b). During the multiscale simulations, periodic
boundary conditions are imposed on each of the local
RVE assemblies, which renders the Hill–Mandel-type
condition satisfied a priori (Miehe & Dettmar, 2004;
Miehe et al., 2010). Note that in a pure DEM study,
proper observation windows (see e.g. Meejun et al., 2008; Fu
& Dafalias, 2011a) need to be defined for macroscopic
interpretations. They are not required in the current multi-
scale approach since the mesoscale RVE packings serve a
better role in this regard.
Figure 3 presents the homogenised responses of the

five RVEs under drained biaxial compression (note that
the two vertical sides of the unit cell are kept with
constant confining pressure of 100 kPa, and the top=bottom
is fixed against the vertical direction while allowing
horizontal movement when compression is applied from
the top), mimicking the subsequent biaxial shear on the
full sample under smooth platen. The RVE responses
are consistent with laboratory observations on sand. The
peak stress of the RVE decreases steadily with the increase
of α. The α¼0° RVE packing shows the most dilative
response accompanied with a drastic post-peak soften-
ing behaviour, whereas the dilation and the softening
for the α¼70° RVE are relatively mild. The random
packing gives rise to an intermediate strength and dilation
behaviour among all the RVEs. Note that the observed
responses in Fig. 3 are similar to those obtained by Seyedi
Hosseininia (2012a, 2012b) using elongated polygonal
particles.

Model set-up for multiscale simulation of biaxial shear
on sand
The influence of anisotropy on strain localisation is

investigated through multiscale modelling of biaxial com-
pression tests on sand. Two boundary conditions are
compared, using either smooth or rough loading platens
on the sand samples. A sand specimen with dimensions
50 mm by 100 mm is discretised into 8�16 eight-node
quadrilateral elements, as shown in Fig. 4. A reduced
integration scheme using 2�2 Gauss points for each
element is adopted, which provides good accuracy compared
to the full integration using 3�3 Gauss points to be shown
in Fig. 6(a). The specimen is initially uniform by assigning
identical RVEs to all Gauss points. It is first isotropically
consolidated to a target initial mean effective pressure p0¼
100 kPa, and is then compressed along the vertical direction
with a constant horizontal confining pressure σ00¼100 kPa
until it fails.

RESULTS AND DISCUSSION
Global stress response
Figure 5 provides the resultant global axial stresses

(compression is positive) plotted against axial strain for
different specimens under different loading conditions, in
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comparison with pure RVE element test results. Fig. 6 further
compares the global resultant stress of the five specimens in
both loading cases. Owing to the use of the rough loading
platen, shear stresses are also resulted in the rough platen case
(Fig. 6(c)). In both cases, the general trend of the peak axial
stress of the five specimens is consistent with that of the
RVEs; that is, the peak axial stress decreases with the increase
of α. However, the post-peak stress reduction in the multi-
scale simulation is more dramatic than that in RVE element
test, due to the formation of a shear band in the multiscale
BVP. Similarly to their respective RVE, the five specimens
reach a comparable residual stress (around 200 kPa in the
smooth case and 300 kPa for the rough case). The pre-peak
responses of the multiscale simulation for both boundary
cases coincide well with their corresponding RVE responses
for all the samples, especially during the early elastic stage.
For the cases of α¼0°, 45° and the randomly orientated
specimens, the multiscale global peak axial stress is almost
identical to their respective RVE peak stress, suggesting a
relatively uniform pre-peak deformation in these specimens.
The other two samples (α¼22·5° and 75°) exhibit a smaller
multiscale global peak axial stress that occurs earlier than
their RVE peak stress under both loading conditions, which
indicates that considerable strain localisation may have
developed prior to the peak in these samples. Fig. 5 also
shows that the peak stress is attained slightly earlier in the
rough loading condition than in the corresponding smooth
case.

The post-peak responses display a marked difference
between the rough and smooth loading cases. The axial
stress in the smooth case (Fig. 6(a)) first drops dramatically
after the peak and then becomes steady, while in the rough
platen condition (Fig. 6(b)), it first shows a dramatic drop
after peak before entering a quasi-steady state, and then
increases to a mild second peak before dropping again to a
final steady value. These subtle post-peak changes in
Fig. 6(b) are intimately correlated with the development of
the resultant shear stress as shown in Fig. 6(c). During the
early shearing stage, the resultant shear stress in most
specimens (except the α¼70° sample) remains vanishingly
small because the deformation in each specimen is still
symmetric. The first dramatic drop in Fig. 6(b) indeed
corresponds to a rapid increase of the resultant shear stress,

while the second mild peak of the normal stress coincides
with the maximum shear stress. Towards the final steady
state, the resultant shear stress tends to vanish gradually. The
magnitude of the resultant shear stress is generally an order
smaller than that of the axial stress.
Figure 6(a) also shows for the smooth case of the α¼0°

sample, the predictions based on a reduced integration
scheme with 2�2 Gauss points (solid line) are almost
identical with those obtained from a full integration
scheme with 3�3 Gauss points (open circles). This indicates
that the high-order eight-node element with reduced inte-
gration is accurate enough while improving computational
efficiency.

Strain localisation and shear band patterns
The multiscale simulations show that a single shear band is

exclusively observed under the smooth loading condition,
whereas a cross-shaped double band pattern is found for the
rough platen case. Fig. 7 shows contours of the accumulated
deviatoric strain εq and void ratio e at the peak stress state,
and the final state for three specimens in both loading cases.
Under smooth loading conditions (Figs 7(a) and 7(b)), the
deformation of the α¼45° sample at the peak stress state
remains relatively homogeneous (small range in εq and e),
while the α¼22·5° specimen already shows a greater
variation of εq and e at the peak, suggesting that localisation
has developed at the peak, which results in a smaller global
peak stress than the RVE element test (Fig. 5). An intensely
localised shear band coinciding with the greatest void ratio is
observed in both samples at the final stage with accumulated
εq reaching 172~198%. The minimum εq at the final state in
both samples is also smaller than that in the peak stress state,
indicating unloading in regions outside the shear band.
Interestingly, a shear band inclining closely to the bedding
plane direction (termed as a type-b band according to
Tatsuoka et al. (1990)) is observed in the α¼22·5° sample,
while the one in the α¼45° sample is more to the
perpendicular direction of the bedding plane (termed by
Tatsuoka et al. (1990) as a type-a band). Both types of shear
band have been reported by Tatsuoka et al. (1986, 1990) in
their plane strain tests with lubricated loading platen. It was
argued that the type-a shear band is typically governed by the
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Coulomb’s failure condition, whereas the type-b band is
controlled by the zero-extension failure mechanism
(Tatsuoka et al., 1990; Gao & Zhao, 2013).
Under rough loading conditions, a cross-shaped shear

band pattern is appreciable in the α¼45° sample at the peak
axial stress state, although the intensity of shear strain
remains low. Shear stress with symmetric distribution is
resulted along the top end of the sample by the loading
platen constraint (Fig. 7(c)) and the net shear stress is zero
(Fig. 6(c)). The type-b shear band develops dominantly after
the peak axial stress, while the type-a band stays nearly
stagnant until the resultant shear stress reaches its peak.
After the peak shear stress state, the type-a shear band
restarts to develop with the type-b band. At the final stage
(ε11¼10%), the shear stress approaches zero and an almost

symmetric (in shape) crossed double shear band pattern is
observed, with the first developed type-b band showing more
intense shear strain concentration than the type-a band.
Regarding the α¼70° sample, this exhibits an initial
non-coaxial material response from the beginning, leading
to a steady increase in the resultant shear stress and an
asymmetric shear deformation (Fig. 7(d)). The type-b shear
band is dominant over the type-a band until the peak shear
stress state is reached (ε11¼3·6%). The subsequent develop-
ment of the shear bands is similar to that of the α¼45° case,
except that the final cross shear band pattern appears to be
slightly asymmetric.

Fabric anisotropy and particle rotation
In addition to the accumulated shear strain and the void

ratio, it is also interesting to examine the distribution of
fabric anisotropy and the average particle rotation. Fig. 8
presents the results at the final stage for two samples under
smooth loading conditions and two samples in the rough
case, wherein the average particle rotation within a DEM
packing is defined by

θ̄ ¼ 1

Np

X

p[Np

θp ð10Þ

where θp is the accumulated rotation of an individual particle
(anti-clockwise rotation is treated as positive).
For the smooth case, it is evident from Figs 8(a) and 8(b)

that the contours of both Fp and θ̄ present rather similar
patterns to those of εq and e in Figs 7(a) and 7(b). The
localised θ̄ suggests substantial particle rotations inside the
shear band. This is consistent with both laboratory exper-
iments (Hall et al., 2010) and pure DEM simulations (Bardet
& Proubet, 1991). Notably, θ̄ is anti-clockwise in the case of
α¼22·5° and is clockwise in the random case. This is not
surprising since the shear band develops from the upper-right
to the lower-left side in the α¼22·5° case, whereas it inclines
from the upper-left corner to the lower-right corner in the
random specimen. Despite these similar localised patterns,
the two samples exhibit different behaviour in Fp. The
α¼22·5° specimen possesses a relatively large initial aniso-
tropic intensity compared to the random case. Fp inside the
localised band decreases with shearing and reaches a
minimum as compared to the outside regions. In contrast,
the random sample has a marginally small initial fabric
anisotropy (Fp� 0), and its Fp gradually increases inside the
shear band upon shearing and reaches a maximum at the
final stage. Fig. 8(c) presents the contours of the deviatoric
stress q and the contact normal based fabric anisotropy Fc,
which indicate both are apparently unsuitable to identify the
shear band (see also Guo & Zhao, 2014).
Under rough boundary conditions, the contours of Fp and

θ̄ for the two specimens (Figs 8(d) and 8(e)) also depict
similar localisation patterns as shown by εq and e. The
α¼70° specimen, with a higher initial fabric anisotropy,
shows a continuously decreasing Fp inside the double shear
bands upon shearing, whereas the Fp in the random specimen
(with a nearly zero initial anisotropy) increases gradually
under shear and reaches a maximum within the localised
bands. The contours of Fp show a similar pattern as observed
before that one shear band dominates the other. The two
samples share similar contours of θ̄. Anti-clockwise rotation
(positive θ̄) is found for particles inside the type-b band, and
clockwise rotation (negative θ̄) is observed within the type-a
shear band. At the intersection of the two bands, the particles
possess almost zero average accumulated rotation. Since the
two shear bands have developed asynchronously, the par-
ticles at this centre location are expected to rotate towards

700

600

500

400

300

200

100
0 2 4 6

(a)

8 10

0 2 4 6

(b)

8 10

Axial strain, ε11: %

0 2 4 6

(c)

8 10

Axial strain, ε11: %

A
x
ia

l 
s
tr

e
s
s
, 

σ
1
1
: 
k
P

a

700

600

500

400

300

200

100

50

40

30

20

10

–10

–20

–30

–40

–50

0

A
x
ia

l 
s
tr

e
s
s
, 

σ
1
1
: 
k
P

a
S

h
e
a
r 

s
tr

e
s
s
, 

σ
1

0
: 
k
P

a

α = 22·5°

Random

α = 0°

With full integration

α = 0°

α = 70°

α = 45°

α = 22·5°

Random

α = 0°

α = 70°

α = 45°

Fig. 6. (a) Resultant normal stress with smooth loading platen;
resultant (b) normal and (c) shear stresses with rough loading platen

ANISOTROPYAND STRAIN LOCALISATION IN GRANULAR SOILS 647



one direction first, and then rotate inversely when the second
shear band becomes distinct.

Non-coaxiality
All simulations in this paper have been based on initially

uniform specimens with symmetric boundary conditions. In
a conventional FEM analysis, such samples are expected to
undergo homogeneous deformation without observing any
localisation. Most past studies have practically introduced

either imperfections or random fields for elements=material
parameters as triggers to simulate shear banding (Andrade &
Borja, 2006; Andrade et al., 2008; Tejchman & Górski,
2010). Despite being partially justified by the random nature
of geomaterials, these treatments may appear to be subjective
and potentially complicate the analysis of underlying
mechanisms with the random factors introduced. Indeed,
the non-coaxial response of a granular material induced by
the presence of anisotropy can play a role of symmetry
breaker to trigger strain localisation, which has been
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demonstrated by Gao & Zhao (2013) and Guo & Zhao
(2014). By virtue of its embedded DEM engine for each
Gauss point, the multiscale modelling can naturally repro-
duce the non-coaxial response of a granular soil, and helps to
capture strain localisation without resorting to introducing
any artificial imperfection or randomness. The smooth
platen loading case is taken here as an example.
Figure 9 presents the material responses of three RVEs

(α¼22·5°, 45° and 70°) based on their element test (note
that the element tests are performed on the unit cell).

Notwithstanding the fluctuated response curves due to a
limited number of particles used, the non-coaxial behaviour
is evident for each RVE. The non-coaxiality angle β (see the
inset of Fig. 9) is defined as the angle between the major
principal stress direction and the major principal strain
increment direction. Notably, both α¼22·5° and α¼45°
RVEs depict a roughly coaxial response (β� 0°) at the early
shearing stage up to an axial strain of about 1·55% and 3%,
respectively. After ε11¼1·55%, the α¼22·5° RVE gradually
develops a negative β, which triggers a type-b shear band as
observed in Fig. 7(a), whereas the α¼45° RVE develops a
positive β after ε11¼3%, leading to the formation of the
type-a shear band shown in Fig. 7(b). The α¼70° RVE
demonstrates a positive non-coaxiality from the very begin-
ning of shearing, which leads to a type-a shear band. The
material non-coaxiality observed from the element tests is
indeed consistent with the global responses in the BVPs.
Shown in Fig. 10 are the accumulated displacement fields for
the three specimens at different shearing levels. For example,
the displacement field in the α¼22·5° specimen remains
symmetric at ε11¼1·5% as the material response is coaxial
(Fig. 9). When the axial strain reaches 2·5%, an appreciable
leftwards-inclined displacement field is found, which triggers
a type-b shear band shortly after.
Clearly, the non-coaxiality observed in the RVEs is not

predetermined by the bedding plane orientation, but is a
consequence of the interplay among several key factors
including the particle orientation, the contact normal
distribution, the bulk density and the particle interlocking.
Indeed, the two fabric tensors ϕij

p and ϕij
c for soil are usually

orthogonal to each other. In the bedding plane direction,
there are less contact normals (n c) but longer branch vectors
(d c), while in the perpendicular direction of the bedding
plane there are more nc but shorter dc. The number of contact
normals and the length of branch vectors can be identified as
two major competing factors in determining non-coaxiality,
since they directly influence the principal directions of the
tangent modulus Dijkl in equation (4), which predominantly
governs the material non-coaxial response.

Local analyses
The hierarchical multiscale approach enables a direct

correlation of the macroscopic observations with their
underlying microstructural mechanisms through local
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analyses. Take the α¼0° sample in the smooth boundary
case as an example. Two typical local points, as shown in
Fig. 11(e), are selected for the analysis. Gauss point A is
located far away from the localisation zone, while the Gauss
point B is inside the shear band. Figs 11(a)–11(c) show the
material responses of point A extracted from the correspond-
ing RVE. Clearly, point A undergoes a small deformation,
reaching a maximum shear strain εq¼6·4% followed by
unloading. The loading path in Fig. 11(b) indicates the stress
of point A almost returns to its initial isotropic state after the
unloading. The overall volumetric change is also small
(εv¼ �0·4%). During the process, Fp at point A stays

almost unchanged, while Fc first experiences a significant
increase during the loading stage and then decreases during
unloading. The force chain network of the embedded RVE
packing of point A at the final stage, shown in Fig. 11(d), is
almost isotropic. In contrast to point A, point B experiences
excessively large deformation as shown in Figs 11(f)–11(i).
Its deviatoric strain monotonically increases to around
200%, reaching the critical state (Roscoe et al., 1958;
Schofield & Wroth, 1968) when the stress, the volume and
both fabric anisotropies all become constant. The material
responses at point B match reasonably well with the results of
a comparison pure DEM case under monotonic drained
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shear shown in Figs 11(f)–11(h) (open symbols). When both
Fp and Fc evolve with shear strain, the zero-εv point (from
overall contraction to dilation) at around εq¼9·5% can be
regarded as a watershed point in observing their changes. Fc
increases steadily upon shearing, attains a peak of more than
twice its initial value at the watershed point, and then drops
gradually before reaching a steady value. Prior to the
watershed strain level, Fp only shows marginally small
increase, and then decreases to a steady value of around
40% of its peak.

The above observations suggest that Fp is generally harder
to mobilise than Fc. In order for Fp to change, in addition to
shearing, considerable dilation is needed to allow the
relaxation of interlocking and reorientation of particles,
which is in contrast to the immediate change of Fc upon
shearing. The evolutions of the two sources of fabric
anisotropy are hence not synchronous. This probably helps
to explain the previous observations on the α¼22·5° and the
α¼45° samples in Fig. 9 that an initially coaxial packing
may later develop substantial non-coaxiality. Notably, it also
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takes a significant shearing process for Fp to reach its critical
state (e.g. εq. 150% for point B). This large deformation
level is normally hard to attain in a uniform sample in
routine laboratory element tests, which partially explains why
Oda (1972b) and Wong & Arthur (1985) observed in their
tests the survival of inherent anisotropy and limited particle
orientation change (Wong &Arthur (1985) only sheared their
soil samples to 6% of axial strain). Meanwhile, the above
analysis suggests that, although the stress and volumetric
changes can reach a steady state at a relatively early stage
(e.g. εq� 60% in Fig. 12(f)), the critical state for fabric
anisotropy (Li & Dafalias, 2012; Zhao & Guo, 2013; Gao
et al., 2014) can only be attained within the shear band
wherein much larger shear deformation occurs (e.g.
εq. 100%) (Mooney et al., 1998; Fu & Dafalias, 2011a).
Indeed, as shown in Fig. 11(i), the RVE packing at point B
experiences severe distortion (c.f. Fig. 11(d) for point A) at
the final stage accompanied by a significant clockwise rigid
body rotation ωij. The force chain network in Fig. 11(i) also
contains several penetrating strong force chains in the vertical
compression direction.

To further elucidate the natures of the two fabric tensors ϕij
p

and ϕij
c, in Fig. 12 their evolution is presented in terms of rose

diagrams extracted from a RVE inside the shear band formed
in the α¼0° specimen and the random specimen under
smooth loading conditions. The RVE for the α¼0° case
(Fig. 12(a)) possesses large initial anisotropies for both
measures. The major principal direction of the initial ϕij

p

aligns in the horizontal axis, which is almost perpendicular to
the major principal direction of the initial ϕij

c. After shear, the
major direction of ϕij

p rotates noticeably with a decreased
anisotropic intensity, but the rotation of ϕij

c and its change of

intensity is relatively small. For the randomly orientated
sample shown in Fig. 12(b), the RVE possesses nearly
isotropic fabric tensors at the initial state (both ϕij

p and ϕij
c

depict minor anisotropies due to the limited number of
particles used). After shear, the intensity of both anisotropy
measures increases. At the final stage, the major principal
directions of the two fabric tensors are roughly perpendicular
to each other. A further scrutiny of the fabric tensors at the
critical state from both specimens suggests that, although
different in initial states, their critical state fabric anisotropies
are close in terms of both principal direction (the small
deviation in the principal orientations of ϕij

p is attributable to
the different rigid body rotation ωij of the two RVE packings)
and anisotropic intensity (the length of the major principal
axis observed from Fig. 12 is about 0·25 for ϕij

p and 0·23 for
ϕij
c, noting that different radial length scales have been used

for ϕij
p in the two cases).

A particularly interesting observation for the rough
boundary case is the material response at the intersection
of two crossed shear bands. Fig. 13 shows the results of such a
point for the α¼45° specimen whose position is marked in
Fig. 7(c). The material responses at the Gauss point in Figs
13(a)–13(c) match fairly well with the results of a mono-
tonically drained pure DEM test as a comparison case. The
point appears to reach the critical state after the deviatoric
strain reaches 120%. Fig. 13(d) presents the force chain
network of the RVE packing at the peak shear stress (ε11¼
4·3%, corresponding to the onset state of the second shear
band), which depicts a noticeable anti-clockwise rigid body
rotation ωij that is consistent with the first shear band
(type-b) of the specimen. At the final state, the RVE packing
is severely deformed, but the rigid body rotation becomes
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negligible again due to the balance of the second shear band
(Fig. 13(e)). The observation is consistent with the observed
zero θ̄ at this point in Fig. 8.Meanwhile, strong force chains are
observed for the RVE in Figs 13(d) and 13(e), with the major
direction slightly tilted from the vertical axis. The evolutions
of the two fabric tensors are also presented in Figs 13(f) and
13(g). Interestingly, ϕij

p first flips anti-clockwise slightly until
the peak shear stress state due to the rigid body rotation of
the RVE. It then spins clockwise significantly to attain the
critical state. The anisotropy intensity of ϕij

p decreases steadily
to a critical state value (see also Fig. 13(c)), while ϕij

c rotates
continuously clockwise to the critical state with a roughly
constant anisotropic intensity in the course.

CONCLUSIONS
The interplays between anisotropy and strain localisation

in granular soils were investigated using a hierarchical
multiscale approach based on rigorous coupling of FEM
and DEM, wherein clumped particles were used in the DEM
part to simulate initial anisotropy. Biaxial compression tests

were simulated by the multiscale approach on samples under
either smooth or rough boundary conditions. Key findings
from the study are summarised as follows.

(a) The bedding plane orientation is not necessarily the
‘weaker’ direction for the shear band to initiate. Either
type-a or type-b shear bands can happen under smooth
boundary conditions, which is consistent with the
experimental observations by Tatsuoka et al. (1990).
Under rough boundary conditions, cross-shaped double
bands occur (type-a pairs with type-b), but they are not
initiated simultaneously. The inception of the first band
leads to increased resultant shear stress on the platen,
while the later developing one offsets the shear stress
towards zero at the residual state. Significant particle
rotation is observed inside shear bands except at the
intersection of the cross-shaped double bands, where
vanishing average particle rotation is found.

(b) Non-coaxial material responses may serve as an
important direct (nominal) triggering mechanism for
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strain localisation, while the fundamental (physical)
triggering factors may vary greatly in a BVP for sand.
For example, initial anisotropy, imperfection, inhom-
ogeneity, boundary constraints and drainage condition
can also cause non-coaxial material responses and
induce strain localisation. Although non-coaxiality has
long been investigated in the context of constitutive
modelling of sand only, the present study is the first to
discuss its direct correlation with strain localisation by
evidence from multiscale analysis.

(c) The two fabric anisotropy tensors ϕij
c and ϕij

p, defined by
the distributions of the contact normals and the particle
orientations, respectively, play different roles in trigger-
ing strain localisation. ϕij

c begins to evolve immediately
upon loading, while the evolution of ϕij

p needs to be
mobilised with larger shear and dilation. The asynchro-
nous evolution of the two anisotropies can cause an
initially coaxial packing to develop substantial non-
coaxiality at small shearing levels to trigger strain
localisation. The shearing strain level for ϕij

p to reach the
critical state is also much larger than that for ϕij

c.
(d) The final shear bands feature a high concentration of

shear strain, large dilation and excessive particle
rotations. Within the shear band, ϕij

p attains an
extremum (which can be either a minimum for an
initially anisotropic specimen or a maximum for an
initially random specimen). The local RVEs inside the
shear band may attain critical state after shear with
constant volume, constant stress and constant fabric
anisotropies (in terms of both Fp and Fc), while those
outside the shear band may experience mild defor-
mation followed by unloading.

The current study constitutes a first step towards bridging the
micromechanics of a granular soil and the macroscopic
phenomena such as strain localisation. It is apparent that the
micro- and meso-scale models considered in such an
approach may influence the macroscopic responses and
thus need careful calibrations to tackle specific problems.
To account for inherent anisotropy, the observations and the
conclusions drawn above have been based on a simple clump
DEMmodel, which may be improved by using more complex
particle shapes for better approximation of real sand particles
(e.g. Mollon & Zhao, 2012, 2013, 2014). This multiscale
investigation highlights the complicated nature of non-
coaxiality, which may involve multiple influential factors
such as particle orientation and contact normal distributions
that jointly contribute to the anisotropic soil behaviour. This
definitely deserves further theoretical consideration in the
context of continuum soil mechanics.
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NOTATION
Acl, Icl,

ρcl

area, inertia of moment and density of a clump particle

Dep elasto-plastic modulus
Dijkl homogenised tangent modulus of a DEM packing
dc, di

c branch vector at a contact
E(Θ) distribution function

e local void ratio
f FEM nodal force vector

fc, fi
c contact force at a contact
K FEM stiffness matrix

kn, kt contact normal stiffness and tangential stiffness
Np, Nc particle number and contact number within a DEM

packing
n c, ni

c unit contact normal vector
np, ni

p unit particle orientation vector
p, q mean effective stress and deviatoric stress

p0, e0 initial mean effective stress and void ratio prior to
biaxial shear

r radius of the constituent disc of a clump particle
req equivalent radius of a clump particle
req
* common radius of two contacting particles

t c, ti
c unit tangential vector at a contact
u FEM nodal displacement vector

ui,j FEM deformation field and boundary condition for
local RVEs

V total volume of a DEM packing
α bedding plane angle of a RVE packing
β non-coaxiality angle in a RVE element test
δij Kronecker delta

ε̇1; ε̇3 major and minor principal strain increment
εij, eij strain tensor and deviatoric strain tensor
εv, εq volumetric strain and deviatoric strain
θp; θ̄ individual particle rotation and average particle rotation

for a RVE F
p
ijpacking

σ1, σ3 major and minor principal stress
σij, sij effective stress tensor and deviatoric stress tensor

ϕ ij
c, F c

ij ,
Fc

contact normal based fabric tensor, deviatoric tensor
and anisotropic intensity

ϕ ij
p, F

p
ij ,
Fp

particle orientation based fabric tensor, deviatoric tensor
and anisotropic intensity

φ interparticle friction angle
ωij rigid body rotation of a RVE packing
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