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Polyglutamine (polyQ) diseases are inherited neurodegenerative disorders caused by the expansion of CAG codon repeats,
which code for polyQ in the corresponding gene products. These diseases are associated with the presence of amyloid-like
protein aggregates, induced by polyQ expansion. It has been suggested that the soluble aggregates rather than the mature
fibrillar aggregates are the toxic species, and that the aggregation properties of polyQ can be strongly modulated by the
surrounding protein context. To assess the importance of the protein carrier in polyQ aggregation, we have studied the
misfolding pathway and the kinetics of aggregation of polyQ of lengths above (Q41) and below (Q22) the pathological
threshold fused to the well-characterized protein carrier glutathione S-transferase (GST). This protein, chosen as a model
system, is per se able to misfold and aggregate irreversibly, thus mimicking the behaviour of domains of naturally occurring
polyQ proteins. We prove that, while it is generally accepted that the aggregation kinetics of polyQ depend on its length and
are faster for longer polyQ tracts, the presence of GST alters the polyQ aggregation pathway and reverses this trend.
Aggregation occurs through formation of a reservoir of soluble intermediates whose populations and kinetic stabilities
increase with polyQ length. Our results provide a new model that explains the toxicity of expanded polyQ proteins, in which
the interplay between polyQ regions and other aggregation-prone domains plays a key role in determining the aggregation
pathway.
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INTRODUCTION
Polyglutamine (polyQ) diseases are caused by the expansion of

CAG codon repeats resulting in extended polyQ tracts in the

expressed proteins [1]. This family of inherited neurodegenerative

disorders includes Huntington’s chorea, spinobulbar muscular

atrophy, dentatorubral-pallidoluysian atrophy, and spinocerebel-

lar ataxias (SCAs) 1, 2, 3, 6, 7, and 17. The polyQ region is the

only common feature of the proteins associated to these diseases,

that are otherwise totally unrelated [2]. In affected individuals, the

polyQ tract is expanded above a threshold of ca. 35 consecutive

glutamines, resulting in the aggregation of the mutant protein and

the consequent formation of intranuclear inclusions [3].

Although the role of aggregation and fibre formation of

expanded polyQ proteins has not yet been established clearly,

protein misfolding and aggregation are accepted to be central

issues for understanding the molecular mechanisms of these

pathologies [4]. In vitro studies have shown that polyQ aggregation

depends on protein concentration, repeat-length, and time and

that it occurs with a nucleation-dependent mechanism [5–7]. A

conformational transition from random coil to b-sheet, which

share most of the features typical of amyloids, takes place during

the process of fibre formation [8–10]. However, detailed structural

information on polyQ aggregates is still unavailable and the steps

leading to the assembly of mature fibres are not yet fully

understood.

Kinetic studies of polyQ protein aggregation in vitro have shown

that formation of amyloid or amyloid-like fibres generally occurs

via fibrous intermediates that can have distinct morphologies [10–

13]. Cell biology studies have suggested that these early aggregates

or proto-fibres rather than the insoluble aggregates are the main

cytotoxic species, with mature fibres having a beneficial role for

neuronal cells [14–17]. This hypothesis has been formulated also

for other neurodegenerative diseases related to protein misfolding

and aggregation, such as Parkinson’s and Alzheimer’s diseases and

the transmissible spongiform encephalopathies. Increasing evi-

dence suggests that soluble aggregates-mediated toxicity might be

a common pathogenesis mechanism for these disorders [18–23].

The characterisation of the early phases of fibrillation is therefore

critical for understanding the molecular causes of pathogenesis.

Another central issue is the relationship between the polyQ

tracts and other regions of the proteins that host them. Although

polyQ expansion is certainly the main factor responsible for

protein aggregation, various studies have demonstrated that the

protein context plays an important role in determining the stability

and solubility of polyQ peptides and may modify and contribute to

the aggregation process [24–27]. It is therefore important to

investigate the properties of polyQ when flanked by different

protein sequences in order to mimic their effect on aggregation.

In this work, we have studied the aggregation properties of

a model system consisting of two polyQ peptides of different

lengths, one below (22 glutamines) and one above (41 glutamines)

the pathological threshold, fused to glutathione S-transferase
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(GST). GST was chosen because it is a well characterised protein

of known structure, which can be used to mimic the environment

surrounding the polyQ region in full-length proteins, thus

providing an ideal model to assess the effects of protein context.

GST-polyQ proteins have been instrumental in establishing that,

prior to aggregation, polyQ is disordered regardless of its length,

and in assessing the hypothesis of a structural threshold between

short and long polyQ sequences [25,28].

Here, we have investigated the aggregation pathway of these

fusion proteins and compared their polymerization kinetics with

those of GST. Using complementary biophysical techniques, such

as optical spectroscopy methods and both dynamic and static light

scattering, we have been able to characterize the structural

properties of the proteins during the process of aggregation, to

estimate the timescale of aggregation, to assess the presence of

different species and measure their size and relative populations.

Our results show that the presence of a carrier may change

significantly the aggregation pathway of polyQ and that proto-

fibril formation may compete with bigger insoluble aggregates.

RESULTS

The presence of the polyQ tail influences the

aggregate population
The aggregation state of GST, GST-Q22 and GST-Q41 was first

characterized by dynamic light scattering (DLS) to obtain

information about the size of the species present in solution.

Analysis of the correlation function shows a bimodal distribution,

for all three samples which therefore contain two distinct

populations (Figure 1). The hydrodynamic radii of the dominant

species are 4–7 nm. GST is well known to form stable dimers in

the whole range of concentrations considered in this study, having

a hydrodynamic radius of 3.7 nm (gyration radius of 2.9 nm) as

calculated with the assumption of a globular shape of the

molecule. The observed experimental radius measured for GST

(4.260.5 nm) is therefore in excellent agreement with the presence

of the dimer as the minimal unit. Marginally larger radii were

observed for GST-Q22 and GST-Q41 (5.460.5 and 6.36

0.5 nm). These values can be explained by the progressive failure

of the assumption of an isotropic globular shape, which is expected

for the two samples in which the polyQ tail is unstructured [25].

The second population corresponds to species with much larger

molecular weights. Their hydrodynamic radius in the GST sample

is 80610 nm which corresponds to a soluble aggregate of ca. 3500

dimeric units, but their population is so small as to be practically

negligible. We estimated the numeric ratio between the soluble

aggregate and the dimer to be ca. 1:7000000, which accounts for

ca. 0.1% of the total population by mass. In GST-Q22 and GST-

Q41, the soluble aggregates have averaged radii of 9164 and

9664 nm respectively, which correspond to ca. 5000–7000

dimeric units. The aggregate populations are also small in these

samples. This explains why these species were not detected by

NMR or CD in previous studies [25] but can be observed by

a technique as sensitive to aggregation as DLS: large aggregates

scatter light much more than small species and therefore even

small populations of them will be detectable (with the same

argument, we cannot exclude the presence of minute populations

of species with radii close to that of the dimer). Despite the minor

populations of the soluble aggregates, a clear trend was observed

in all samples studied (from three different protein batches): the

numerical ratios between the larger and the smaller species are of

about 1 to 140000635000 and of 1 to 3200068000, which

correspond to ca. 3% and 11% of the total populations by mass of

GST-Q22 and GST-Q41, respectively, suggesting that the relative

populations of the soluble aggregates correlate with the length of

the polyQ tract. No significant time dependence of these ratios was

observed over a period of several months and the range of

concentrations considered (6–20 mM).

These results strongly indicate an intrinsic tendency of polyQ to

promote aggregation. While not affecting the size, which seems to

be determined by the carrier, the length of the polyQ tract

influences the relative populations of the aggregates.

The presence of a reducing agent discriminates

between different types of aggregation
We then explored the nature of the aggregation. GST has four

cysteines that are not involved in intramolecular sulphur bridges

and can thus bond intermolecularly and promote covalent

aggregation [29]. This phenomenon would be unwanted in the

present study since it would depend on the specific choice of the

protein carrier and not on the polyQ tract. To make sure that the

presence of DTT effectively inhibits the formation of disulphide

bridges, and to estimate the extent of their interference with the

formation of non-covalent polyQ aggregates, we compared

measurements in the presence and in the absence of a reducing

agent (Figure 2A). In experiments carried out in the absence of

DTT, the correlation function of GST showed a distribution

which corresponds to a species with a weighted average radius of

7.5 nm, which corresponds roughly to a dimer of the dimeric

form, and only minor traces of a species of 50 nm. This is much

smaller than the one observed in the presence of DTT. The size

distribution of GST-Q22 and GST-Q41 is bimodal with average

radii of 7.2 and 74 nm, and 10 and 86 nm, respectively. We did

not observe a dependence of their relative populations on the

protein concentration, at least in the range of concentrations

explored (5–40 mM). When an excess of freshly prepared DTT

(1 mM) was added to the samples without DTT, a progressive

decrease of scattered light was seen and followed until a steady

state was reached (Figure 2B), indicating a decrease of the average

dimensions of the sample species in response to the anti-oxidant

effect of DTT. The final state is indistinguishable from that

observed in samples always treated with DTT.

These results indicate that covalent aggregation of GST can

compete with the non-covalent aggregation observed under reducing

Figure 1. Comparison of the intensity-weighted size distribution of GST
(black line), GST-Q22 (red line) and GST-Q41 (green line) at 90u
scattering angle. The measurements were carried out on 20 mM protein
samples and at 20uC.
doi:10.1371/journal.pone.0000111.g001
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conditions producing different, smaller soluble aggregates. The effect

can, however, be effectively reversed by addition of DTT. All the

following studies were carried out in the presence of DTT.

Thermally-induced aggregation occurs at higher

temperatures in GST-polyQ proteins
To study further the nature and the mechanism of aggregation,

the thermal stabilities of GST, GST-Q22 and GST-Q41 were

assessed by DLS, recording thermal unfolding profiles. Heat

should promote aggregation if this is mainly hydrophobic.

Thermal denaturation of GST causes a temperature-dependent

increase of scattered light intensity, concomitant with a size

increase of the aggregates (Figures 3A and B). The temperature at

which deviation of the signal from the baseline starts appearing

depends on the sample concentration. For GST, it is in the range

of 38–48uC for 6–20 mM protein concentrations (data not shown).

The increase continues up to ca. 55–58uC. Above this tempera-

ture, the signals decrease, concurring with the appearance of

a visible precipitate at the bottom of the cuvette. This behaviour

reflects the opposing trends of an increase of scattered light due to

the increasing dimensions of the species present in solution and

their loss from the same solution by precipitation. The event is

irreversible, as previously described for GST [29].

DLS temperature scans measured for GST-Q22 and GST-Q41

show similar features (Figure 3). Thermal unfolding is irreversible

also for these samples, and the starting temperature of aggregation

has an appreciable dependence on concentration (data not shown).

However, a clear difference is observed between the three samples:

at the same protein concentration, aggregation initiates at higher

temperature for the polyQ fusion proteins than for GST.

Interestingly, GST-Q41 starts aggregating at a higher temperature

than does GST-Q22. The extent of these differences depends on

the history of the samples and on the scanning rates, but the

qualitative behaviour is consistent and reproducible.

Our results confirm that thermally induced destabilization of

GST causes irreversible aggregation, and indicate that the same is

true for GST-polyQ proteins. The temperature of this transition is

influenced both by the presence and by the length of the polyQ

tract. This suggests that, although undergoing the same process,

the kinetics of aggregation of polyQ fusion proteins are slower than

those of GST.

GST-polyQ fusion proteins form a reservoir of

soluble aggregates
To follow in more details the early steps which precede the final

catastrophic events after which precipitation starts to occur, the

Figure 2. Effect of an antioxidant on aggregation. A) Comparison between the intensity-weighted size distributions obtained in the absence and in
the presence of DTT. B) Time course of light scattered intensity at 90u angle upon addition of DTT to fresh protein samples. GST, GST-Q22 and GST-
Q41 are shown using black, red and green lines, respectively. The measurements shown were carried out at 20uC using 20 mM samples.
doi:10.1371/journal.pone.0000111.g002
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behaviour of the individual species in solution was monitored by

a three dimensional representation of the intensity-weighted size

distribution during the temperature scan monitored by DLS

(Figure 4A). The plot clearly shows the simultaneous presence of

the minimal dimeric form and of the soluble aggregates. The

dominant and almost exclusive species present in the GST sample

remains the minimal dimeric unit (of ca. 4 nm radius) up to 38uC,

with only a minor contribution of a larger species. The populations

of the soluble aggregates of GST-Q22 and GST-Q41 are more

appreciable at all temperatures. For all three samples, there is no

significant appearance of species of dimensions intermediate

between the dimer and the soluble aggregates of 80–96 nm radii.

At high temperature, the size of the large species increases

exponentially (note that the x axes in Figure 4A are logarithmic),

suggesting that there is a progressive and direct scavenging of the

dimer by the soluble aggregates. Eventually, the signal from the

large species disappears completely as they grow into an insoluble

large aggregate and fall out of solution. The temperatures at which

the size starts to increase and at which the signal disappears are

different for the three samples and are progressively higher as

a function of the polyQ length. It is also clear from the plots that

the size growth of the soluble aggregate at the expense of the dimer

observed at high temperatures is larger for GST than for GST-

Q22 and GST-Q41, which increase more slowly.

A two-dimensional plot of the ratios of the average dimensions

of the two main species present in solution (R2/R1, where species 1

refers to the minimal dimeric species, of ca. 4–7 nm radius, and

species 2 is the soluble aggregate, originally of ca. 80–90 nm

radius) vs. the ratio of the respective contributions to the

correlation function amplitude (A2/A1) provides a complementary

description (Figure 4B). For GST, there is a close to linear increase

of the dimensions of the aggregates at increasing A2/A1 ratios in

the whole range of temperatures up to signal disappearance. For

GST-Q22 and GST-Q41 instead, the amplitude increment is not

paralleled by an increase of the radii ratios, which remain almost

constant in the range 35uC–42uC, although the overall scattering

intensities increase exponentially over the whole range of

temperature (cf. Figures 3A and 4B). This strongly suggests that

GST aggregation proceeds through intermediate formation of

soluble species which grow immediately into large insoluble

aggregates. Their population does not however increase and the

large aggregates grow so much that they start to precipitate. On

the contrary, over the same temperature range, GST-Q22 and

GST-Q41 convert first the minimal dimeric unit into the soluble

aggregate, whose population rather than size increases. Only when

this intermediate of aggregation is significantly populated does the

process of aggregation proceed to formation of large aggregates.

These results indicate that aggregation occurs via an in-

termediate which behaves as a seed (or nucleus) for further

aggregation. However, the mechanism of aggregation of GST is

different from that of GST-Q22 and GST-Q41, which form

a reservoir of soluble aggregates before proceeding to the

formation of insoluble large species.

Temperature induced aggregation is associated

with a conformational transition
The process was monitored independently using far-UV CD to

follow the conformational state of the samples during thermally

induced aggregation. The CD spectrum of GST at 20uC is typical

of an a/b protein, with a predominance of the a-helical signal, and

in agreement with literature data (Figure 5A) [29]. At 20uC, the

spectra of GST-Q22 and GST-Q41 are very similar to that of

GST, but have a slightly higher content of random coil

conformation due to the presence of the polyQ tail, which has

been proven to be highly flexible and not to interact with the

carrier protein (Figure 5A, inset) [25]. For all three proteins,

spectra measured at higher temperatures showed that heating

induces a secondary structure transition from an a/b structure to

a conformation with a higher b-sheet content. Such a transition

has been described for several proteins that are known to form

fibres and are associated with misfolding diseases [30]. At the same

time, the overall signal decreases irreversibly. Visual inspection

and electron microscopy images of the samples after the scan (see

below) show that this irreversible process is aggregation, in

agreement with LS measurements. The CD signal decrease

therefore arises from two interconnected phenomena: a secondary

structure variation and protein aggregation, which eventually

causes precipitation and loss of the signal.

When thermal scans monitored at a fixed wavelength (222 nm)

were registered, we observed the same phenomenon as in DLS

measurements: there is a clear difference in the transition

midpoints of the three samples, with GST having a transition at

lower temperature (Figure 5B). The amplitude of the apparent

Figure 3. Effect of temperature on aggregation. A) Light scattered
intensity at 90u angle registered during the temperature scan. Data
relative to different proteins are normalized by dividing for the
respective initial values of scattered intensity. B) Weight-average radius
of the largest species, as obtained by CONTIN analysis [38], followed
during the temperature scan.
doi:10.1371/journal.pone.0000111.g003
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Figure 4. Analysis of the species size during the temperature scan. A) Contour plots of intensity-weighted size distribution during the temperature
scan. B) Size ratio of large to small species, R2/R1, plotted versus the ratio of their relative light scattering contribution, A2/A1 during the temperature
scan. The corresponding temperatures are indicated. C) Weight-averaged radius of the largest species, as obtained by CONTIN analysis [38], in the
course of temperature scan.
doi:10.1371/journal.pone.0000111.g004

Figure 5. The effect of temperature on the far-UV CD spectra. A) Far-UV CD spectra of GST-Q41 recorded at different temperatures: 20uC (continuous
black line), sample incubated at 51uC for 30 minutes (dashed line), and then incubated at 68uC for 1 hour and 20 minutes (grey line). Protein
concentration was 4 mM. Inset: Far-UV CD spectra of GST (dashed line), GST-Q22 (dotted line), and GST-Q41 (continuous line) recorded at 20uC. B) Far-
UV CD thermal scans of GST (continuous black line), GST-Q22 (dotted line), and GST-Q41 (grey line) recorded at 222 nm with a heating rate of 1uC/
min. The curves were normalized to the intensity of the GST sample at 20uC for comparison purposes. The cooling profile of GST (dashed line) was
recorded with the same rate and is added as an example of irreversibility. A similar behaviour was observed for the other two proteins. Protein
concentration was 20 mM in all samples.
doi:10.1371/journal.pone.0000111.g005
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transition is smaller for GST-Q41 than for GST-Q22 and, even

more so, for GST. A final signal intensity similar to that of GST is

reached also by GST-Q22 and GST-Q41, but only after

incubation at high temperature for several hours (data not shown).

Quantitatively, the temperature at which formation of the

insoluble aggregates starts being observable by DLS appears lower

than that at which we observe a conformational transition by CD.

This difference is partly a consequence of the slower scanning rate

imposed by DLS measurements, which lead to work at quasi-

equilibrium conditions. However, even taking this effect into

account, we observed consistently that the structural transition

occurs at a temperature at which the dimer ceases to influence the

DLS measurements. This delay suggests that the two techniques

record different albeit interconnected events. The b-rich signal

does not arise from the dimer but becomes detectable only when

the aggregates become the dominant species in solution. We

cannot, on the other hand, infer anything on the structure of the

aggregates while they are in co-presence with the dimers, since

their populations are too small to influence the CD signal.

These observations provide direct information about the

structural changes occurring upon aggregation and confirm the

presence of different kinetics of aggregation due to the presence of

the polyQ tail.

Studying further the kinetics of aggregation
To quantify the differences in behaviour of GST, GST-Q22, and

GST-Q41, time scans were recorded at fixed temperatures using

both LS and CD. The far-UV CD data, recorded at temperatures

close to the beginning of the thermally induced transitions, showed

that the predominantly helical signal converts, as a function of

time, into a b-rich spectrum, as observed during temperature scans

(data not shown). The signal intensity also decreases with time, in

concomitance with the formation of an insoluble precipitate

(Figure 6A). The kinetics of the a to b transition and aggregation

are temperature dependent and are slower at lower temperature,

as expected for a hydrophobic process. Conformational changes

and aggregation occur with faster kinetics for GST, followed by

GST-Q22 and then GST-Q41. The kinetics are characterised by

Figure 6. Kinetics of aggregation. A) Far-UV CD time scans of GST (black line), GST-Q22 (red line), and GST-Q41 (green line) recorded at 50uC. The
signal changes, monitored at 222 nm, arise from both protein aggregation and the associated conformational transition. The curves were normalized
to the intensity of GST for comparison purposes. Protein concentration was 4 mM in all samples. B) Contour plots of intensity-weighted size
distribution of samples quenched at 37uC. C) Time course of light scattered intensity at 90u angle of samples quenched at 37uC.
doi:10.1371/journal.pone.0000111.g006
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a lag phase, followed by an exponential decay phase, typical of

nucleation-dependent polymerization [31]. At 50uC, the lag phase

measured for GST is approximately 3 min, whereas GST-Q22

and GST-Q41 have lag phases of approximately 19 and 26 min,

respectively. The estimated average values of the apparent transition

half lives at 50uC are 31, 40, and 67 (+/23) min for 4 mM samples of

GST, GST-Q22, and GST-Q41, respectively (Table 1).

When the aggregation kinetics were followed by DLS, the

scattered light intensity was recorded at 37uC, which is the

temperature at which the exponential increase of scattered light

starts. This temperature is significantly lower than the one used to

detect conformational changes by CD, but we wanted to make

sure we could follow with each technique the early stages of

aggregation. A longer persistence of the soluble aggregates of

GST-Q41 is very clear in a three-dimensional representation

(Figure 6B). Intensity plots measured at different time intervals

show that GST aggregates faster, followed by GST-Q22, and

finally GST-Q41, with half lives of 53 min, 70 min and 390 min

(Figure 6C). These values are in excellent qualitative agreement

with those obtained by CD, which, having been recorded at higher

temperatures, are smaller. The conversion of the GST soluble

aggregates into larger species is also much faster, over the same

time interval, than that of the polyQ fusion proteins. Measure-

ments performed with sample concentrations in the range

6–30 mM indicate a clear dependence of aggregation kinetics on

concentration (data not shown).

Taken together, the CD and LS data strongly suggest that,

although the presence of the polyQ tail does not affect the

secondary structure of GST, it has a striking effect on the time

scales of formation of insoluble aggregates. The polyQ tracts seem

to delay the aggregation process of GST in a polyQ length-

dependent manner.

The tendency to form fibrils increases with the

polyQ length
A different behaviour of the three samples could also be deduced

from direct visual inspection of the samples. Immediately after the

kinetic studies, only GST was cloudy, whereas the other two

samples showed physical precipitation at the bottom of the cell or

became opalescent only after several hours at high temperature

(data not shown). Inspection of the samples by EM showed the

presence of fibrillar aggregates only for GST-Q41 (Figure 7). They

were typically 10–50 nm long and narrower than 5 nm. GST-Q22

and GST showed amorphous aggregates that were usually too big

even to be visualised in the EM grids. While we cannot exclude

that also these samples could form fibres if the correct conditions

were found, we must conclude that longer polyQ tails facilitate

fibre formation in GST fusion proteins, in agreement with what

has been observed for isolated polyQ peptides [28].

DISCUSSION
An increasing number of diseases that result in neuronal death

have been associated with protein misfolding and aggregate

formation. Accumulating evidence strongly supports the view that

cytotoxicity arises from the presence of soluble aggregates and/or

prefibrillar species, rather than from the fibrillar species which

form the insoluble aggregates accumulated in the cell either as

amyloid fibres or as amorphous deposits. In this newer model, the

insoluble species would serve only as an escape route for smaller

aggregates. It is therefore essential to characterize the species

Table 1. Half lives (min) of GST, GST-Q22 and GST-Q41 as
estimated from LS and CD data recorded at different
temperature.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37/uCa 50/uCb 51.5/uCb

GST 53 31 (3) 10 (0)

GST-Q22 70 40 (19) 23 (5)

GST-Q41 390 67 (26) 39 (12)

In parentheses are indicated the lag phases.
aObtained from LS.
bObtained from CD.
doi:10.1371/journal.pone.0000111.t001..
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Figure 7. Visualization of the large insoluble aggregates as observed by EM. GST (left) and GST-Q41 (right) samples were analysed immediately after
the kinetics at 50uC.
doi:10.1371/journal.pone.0000111.g007
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involved and the misfolding pathways that relate them in order to

understand the mechanism of aggregation.

Here, we have adopted a model system which makes use of

GST as a carrier to investigate the role of protein context in the

aggregation pathway of polyQ. We have shown that the presence

of polyQ tails results in the trapping and stabilization of a small

but well defined population of soluble aggregates. Interestingly, the

size of these species is defined by the carrier protein and not by the

polyQ tract, as judged from their presence already in the GST

sample. They must reflect an intrinsic tendency of this protein to

misfold during over-expression and/or purification, a behaviour

possible also in proteins as soluble as GST, which is known to

undergo irreversible transitions upon stress conditions [29]. When

the polyQ tail is added, the population of aggregation inter-

mediates increases by 1–2 orders of magnitude (depending on the

polyQ length) already at room temperature, without the

appearance of additional species. Although not necessarily

structurally and morphologically similar, the soluble aggregates

observed in the three samples seem to have similar hydrodynamic

radii. This suggests that the polyQ tract increases the probability of

misfolding but the carrier protein acts as the template for

aggregation formation. We do not observe significant dimer-to-

aggregate inter-conversion at room temperature, in agreement

with the observation that no aggregation was detected by CD and

NMR for the same constructs over a period of months [25].

The pathway of thermal aggregation of the three samples was

followed by CD, LS and both optical and electron microscopy.

These techniques provided complementary information. LS, being

highly sensitive even to minute populations of aggregates whose

capacity to scatter light increases with molecular size [32], helped

us to characterize the size of the species present in solution. CD

provided a description of the secondary structure of the popula-

tions dominant in solution, whereas optical and electron micro-

scopies gave us information on the morphology of the insoluble

aggregates. The model which comes out from LS data is that

aggregation proceeds through a two-step irreversible conversion of

the three species, the minimal dimeric units, a soluble high

molecular weight species and large insoluble aggregates of

dimensions too large to be detected even by LS (i.e. rough-

ly$10 mm). Before disappearing into the large insoluble aggre-

gates, an appreciable population of dimer is trapped in the

intermediate state which becomes increasingly more populated.

The soluble aggregates are thus an integral part of the aggregation

pathway: they appear to behave like ‘sticky glue balls’ which

scavenge dimers remaining in solution, and thus act as the foci for

further aggregation. The process does not consist of a simple

unfolding event but, as observed by CD, is a complex transition in

which aggregation is tightly associated with an irreversible

structural transition which results in a significant enrichment of

b content.

The effect is, however, not the same for all the samples tested, as

already reported before [25]. Irreversible aggregation of GST

occurs either at lower temperatures or, when following the process

at constant temperature, with faster aggregation kinetics than

those of GST-Q22 and GST-Q41. This suggests that the two

pathways dimer-to-soluble aggregate and from the soluble-to-

insoluble aggregate have a similar efficiency only for GST,

whereas one of them is disfavoured in GST-Q22 and GST-Q41

with consequent, if transient, formation of a reservoir of soluble

high molecular weight intermediates or protofibrils. These results

could look somewhat counterintuitive and in direct conflict with

what is observed when the polyQ tail is proteolytically cleaved

from the carrier: the cleaved polyQ peptides have aggregation

kinetics which depend on the polyQ length so that, even at room

temperature, Q41 aggregates must faster than Q22 [28]. A similar

behaviour has been observed for polyQ tracts fused to CRABP I,

a highly soluble protein with a reversible unfolding pathway [33].

The main difference between these examples and our GST

model system is that, under destabilizing conditions, unmodified

GST is able to undergo irreversible aggregation on its own. This

strongly suggests that, when together, the two distinct elements

GST and polyQ, each with intrinsic tendencies to aggregation, do

not behave independently but mutually affect each other’s

behaviour.

The importance of protein context in modulating the behaviour

of polyQ is largely supported by independent evidence

[24,26,27,33,34]. The effect seems to work both ways. Soluble

carriers are known to solubilize the insoluble polyQ and to make it

stable in solution for several months. Well known examples are

myoglobin, CRABP I and GST itself. Addition of a proline-rich

extension to a polyQ tract has also been shown to decrease its

tendency to aggregate [35]. Conversely, protein domains outside

the polyQ tract have been shown to increase the tendency of

polyQ to misfolding: cellular studies of the aggregation propensity

of expanded and non-expanded ataxin-1 and ataxin-3 have shown

that, while promoted by polyQ expansion, aggregation can be

noticeably reduced by deletion of such domains or their

replacement with sequences with no known tendency to aggregate

[34,36]. Incorporation of a polyQ tract into a loop of the stably

folded chymotrypsin inhibitor 2 (CI2) has also been shown to lead

to formation of misfolded dimeric and trimeric species [37]. It is

therefore not entirely surprising that, in addition to increasing the

probability of misfolding and causing structural destabilisation,

polyQ can alter the kinetics of aggregation of its carrier proteins,

thus having an effect on the time scale of aggregation.

The effect can be due to different causes. The flexible polyQ

tail, which, before aggregation, fluctuates freely in solution, could

mask the surface which promotes GST aggregation, decreasing the

probability of effective collisions of this region with other

molecules. This would disfavour further transition to the insoluble

aggregates, thus slowing the kinetics. The polyQ tail could also

increase the stability of the GST aggregation intermediate by

transiently interacting with the carrier. It might be more difficult to

promote transition of both the polyQ tail and the globular GST to

the b-rich structure of the large aggregate for steric hindrance

reasons. Recent theoretical studies also indicate that merely adding

a large mass to the terminus of a protein tends to stabilise the fold

(DJT, unpublished data).

The presence of larger reservoirs of soluble aggregates or

protofibrils along the aggregation pathway observed for the polyQ

fusion proteins could be correlated with their increasing tendency

to form ordered fibres, a feature that is easily observed for polyQ

peptides but not for GST. The trapped intermediates, which

kinetically prevent the immediate appearance of large insoluble

aggregates, could lead more easily to well-ordered fibrillar

structures, as for crystal formation, where slower growth condi-

tions are generally beneficial once nucleation has occurred.

How can our observations be related to ‘real’ polyQ proteins?

The results presented here are coherent both internally and with

what is known about the behaviour of polyQ proteins. GST, which

was originally chosen mainly because it is a well characterised

globular protein for which both the structure and the unfolding

properties are known, turned out a posteriori to be an ideal model

for naturally occurring polyQ proteins. Its ability to aggregate

irreversibly through formation of a b rich conformation mimics

the behaviour of at least two of the nine known proteins linked to

polyQ diseases. Both ataxin-1 and ataxin-3 contain globular

motifs, the AXH and the Josephin domains, which have strong
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intrinsic tendencies to form non-covalent aggregates [27,34]. It is

tempting to suggest that the tendency of protein context to

stabilize larger populations of soluble aggregates or proto-fibrils

is an important and more general behaviour, which could be

at the basis of polyQ pathologies. If, as now widely believed, the

toxic species is the soluble aggregates and/or the protofibrils rather

than the insoluble aggregates, this model could help to explain

why longer polyQ tracts are more toxic than short ones. More

work will be needed to extend this model to more specific

examples.

MATERIALS AND METHODS

Samples preparation
The DNA sequences coding for 22 and 41 glutamines were cloned

into a pGEX-4T1 plasmid vector containing Schistosoma japonicum

GST with a 21-residue linker at the C-terminus, as described

before [25]. The GST-fusion proteins were expressed in E. coli

strain BL21 and purified by affinity chromatography using

glutathione-agarose beads (Amersham Pharmacia). The purity of

the samples was assessed by SDS-PAGE and mass spectrometry.

Protein concentrations were determined using UV absorption,

with calculated extinction coefficient at 280 nm of 40920. The

buffer used was 40 mM sodium phosphate, pH 6.5, and 1 mM

dithiothreitol (DTT) to prevent cysteine oxidation. The experi-

ments performed under non-reducing conditions were performed

in the same buffer, in the absence of DTT.

Static and dynamic light scattering
Before each measurement, the samples were filtered using 0.2 mm

pore diameter membranes (Sartorius), put into dust-free optical

cells and placed into a thermostated cell compartment of

a Brookhaven Instruments BI200-SM goniometer to carry out

the measurements. The temperature was controlled within 0.1uC
using a thermostated recirculating bath. The light scattered

intensity and time autocorrelation function were measured by

using a Brookhaven BI-9000 correlator and a 100 mW Argon

laser (Melles Griot) tuned at l = 514.5 nm. The spatial resolution

is defined by the scattering vector q = 4pnl0
21sin(h/2), where n is

the refraction index of the solution, l0 is the wavelength of the

incident light, and h is the scattering angle. Static light scattering

data were corrected for the background scattering of the solvent

and normalized by using toluene as calibration liquid. In DLS

experiments, the correlator was operated in the multi-channel

mode. To assess reproducibility, each experiment was repeated at

least three times using independent batches of proteins. The size

and relative populations indicated throughout the manuscript are

averaged over the measurements.

Data analysis
The field autocorrelation function, g(1)(t), was obtained by

measuring the intensity correlation function and analyzed by

using CONTIN [38], in order to determine the distribution of

relaxation times according to:

g 1ð Þ tð Þ~
ð

A Cð Þ exp { C tð ÞdC

where A(C) denotes the contribution amplitude of the mode with

characteristic time C21. The latter is related to the diffusion

coefficient by:

C~Dq2

The hydrodynamic radius is obtained by the Stoke-Einstein

relationship D = kBT/6pgRH. The simpler cumulative analysis,

which gives the average value and the width of the size distribution

[39], can be strictly applied only for GST samples under non-

aggregating conditions, where large species are negligible and

a modal distribution is observed. For GST-Q22 and GST-Q41 or

even for GST samples under aggregating conditions, a contribu-

tion of two different particle populations was observed always.

Circular dichroism
CD measurements were performed on a Jasco J-715 spectro-

polarimeter equipped with a PTC-348 Peltier temperature control

system, which allows a maximal error of 0.1uC. CD spectra were

recorded using quartz cuvettes (Hellma) with pathlengths of 1 mm.

Protein samples were in 40 mM phosphate pH 6.5, 1 mM DTT,

with protein concentrations of 4–20 mM. CD intensities are

presented as the CD absorption coefficient calculated using the

molar concentration of the proteins (DeM). Thermal scans were

measured by increasing temperature from 20 to 90uC at 1uC/min

or at 10uC/hour. Reversibility was assessed by cooling to 20uC
using the same rate. Temperature and time scans were recorded

by monitoring the CD signal at 222 nm.

Electron microscopy
The samples used for CD temperature or time scans were directly

analysed by EM, applied to carbon coated grids and stained with

1% sodium silico-tungstate (pH 7). The grids were viewed under

minimal dose, accurate defocus conditions with a Jeol 1200EX

operated at 100 kV.
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