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Abstract
Pulmonary fibrosis is a chronic debilitating condition characterized by progressive deposition of connective tissue, leading 
to a steady restriction of lung elasticity, a decline in lung function, and a median survival of 4.5 years. The leading causes 
of pulmonary fibrosis are inhalation of foreign particles (such as silicosis and pneumoconiosis), infections (such as post 
COVID-19), autoimmune diseases (such as systemic autoimmune diseases of the connective tissue), and idiopathic pulmo-
nary fibrosis. The therapeutics currently available for pulmonary fibrosis only modestly slow the progression of the disease. 
This review is centered on the interplay of damage-associated molecular pattern (DAMP) molecules, Toll-like receptor 4 
(TLR4), and inflammatory cytokines (such as TNF-α, IL-1β, and IL-17) as they contribute to the pathogenesis of pulmonary 
fibrosis, and the possible avenues to develop effective therapeutics that disrupt this interplay.
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Introduction

Pulmonary fibrosis is a chronic restrictive lung disease char-
acterized by a progressive decline in lung volume capacity, 
resulting from many chronic inflammatory disorders affect-
ing the lung [1–3]. The visibility of pulmonary fibrosis, 
in particular, has significantly increased during the 2020 
COVID-19 pandemic [4, 5]. Most hospitalized patients with 
COVID-19 have bilateral interstitial pneumonitis, as indi-
cated by ground-glass opacities [6], and many show signs 
of fibrosis with their lung capacity reduced by up to 30% [7, 

8]. In addition to infections such as COVID-19, pulmonary 
fibrosis can also occur in the contexts of repeated inhalation 
of foreign particles (such as silicosis and pneumoconiosis) 
and autoimmune diseases (such as systemic autoimmune dis-
eases of the connective tissue) [9, 10]. The prototypical form 
of chronic fibrotic condition of the lung, however, is idi-
opathic pulmonary fibrosis (IPF), for which only pirfenidone 
(Esbriet, Genentech) [11] and nintedanib (Ofev, Boehringer 
Ingelheim) [12] have been FDA-approved to attenuate the 
rate of disease progression. IPF’s median survival from diag-
nosis is 4.5 years [13], underlining the urgent medical need 
for more effective therapeutic approaches. Multiple genome-
wide association studies (GWAS) have reported genetic 
association signals in patients with IPF, stressing the impor-
tance of host defense, cell–cell adhesions, and DNA repair 
in the pathogenesis of the disease [14–18]. Furthermore, the 
altered host defense mechanisms explain not only the possi-
ble triggering of pulmonary fibrosis by chronic inflammation 
and viral infection but also the susceptibility of pulmonary 
fibrosis patients to viral-induced exacerbations [19].

During the past 10 years, damage-associated molecu-
lar pattern (DAMP) molecules have been shown to play 
a vital role in promoting exacerbation, remodeling, and 
silent progression of pulmonary fibrosis [20]. Toll-like 
receptors (TLRs), by virtue of being pattern recogni-
tion receptors of DAMPs, have been identified as criti-
cal mediators through which DAMPs exert their effect in 
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cellular microenvironments. It is now clear that inflamma-
tion, though not the only trigger of fibrosis, plays a key role 
in the activation of fibroblasts — a cellular process critical 
in the development of pulmonary fibrosis. The pathogenetic 
model that we present in this review focuses on how DAMP 
signaling at the cellular level tilts the scale from remodeling 
and fibrosis resolution towards self-perpetuating cycles of 
connective tissue deposition leading to clinically relevant 
fibrosis.

DAMPs and TLR4 in pulmonary fibrosis

Intermittent episodes of transient inflammation in the lungs 
triggered by pathogens, chemical irritants, or autoimmun-
ity can result in the necrosis and apoptosis of the epithelial 
cells and cause the release of intracellular components that 
act as DAMPs. The released DAMPs then activate homeo-
static processes that most often promote the resolution of the 
insult underlying the inflammatory process. However, during 
more prolonged pathological states, this process is exagger-
ated, turning the homeostatic pulmonary environment into a 
self-perpetuating cycle of inflammation and DAMP release, 
resulting in pulmonary fibrosis.

Multiple structurally diverse DAMPs have been identi-
fied to act as mediators for this vicious cycle [20]. These 
include intracellular peptides [21], glycoproteins [22, 23], 
phospholipids [24], and even nucleic acids [25, 26] that 
are released to the environment during cell injury and 
necrosis processes which drive progressive tissue fibro-
sis. Once released, these endogenous ligands exert their 
effect mainly through TLRs [22]. TLRs are pattern rec-
ognition receptors to which DAMPs bind and, with the 
help of adaptor proteins, activate intracellular signal trans-
duction cascades eliciting changes in gene expression and 
altering various cellular activities. Here, we focus on the 
profibrotic role of TLR4.

Among the TLRs, TLR4 has been shown to have a 
profibrotic effect in the lung when stimulated by DAMPs 
[27]. The first series of publications that illuminated 
the role of the TLR4 pathway on fibroblasts showed 
the activation of TLR4 enhances the process of fibro-
sis in the liver by downregulation the transforming 

growth factor (TGF)-β pseudoreceptor Bambi through 
TLR4 → MyD88 → NF-κB pathway, which causes sensiti-
zation of hepatic stellate cells (HSCs) to TGF-β1–induced 
signals and allows unrestricted activation of HSCs and 
differentiation to extracellular matrix (ECM)-producing 
myofibroblasts [28]. In this pioneering work, TLR4 was 
stimulated using lipopolysaccharide (LPS), a well-known 
and highly sensitive TLR4 activator [29–31]. Almost 
11 years later, a similar effect was observed in persistent 
fibrosis of the lung through TLR4/myeloid differentia-
tion 2 (MD2) complex related pathways and activation 
of pulmonary fibroblasts to myofibroblasts [32]. The 
stimulatory molecules used by Bhattacharyya et al. were 
tenascin-C (a multifunctional hexameric ECM protein) 
and fibronectin-extra domain A (Fn-EDA), which are 
potent TLR4 agonists generated within the injured pul-
monary extracellular microenvironments [33–37]. The 
role of TLR4-activating DAMPs in pulmonary fibrosis 
has been further evaluated with high-mobility group box1 
(HMGB1), a potent inducer of TLR4 [38] in pulmonary 
fibrosis. HMGB1 is highly expressed in IPF lungs, and its 
blockade with antibodies attenuates bleomycin-induced 
fibrosis [39]. Along the same line is the small heat shock 
protein alphaB-crystallin (HSPB5), implicated in the 
TLR4-dependent induction and progression of pulmonary 
fibrosis [40, 41]. Mice deficient in HSPB5 had an atten-
uated response to bleomycin-induced pulmonary fibro-
sis [42]. Another category of TLR4 agonists that have 
recently been identified to be involved in the progression 
of pulmonary fibrosis consists of S100 proteins. Higher 
levels of S100A4 have been shown to independently cor-
relate with worse disease progression in IPF [43], and 
S100A4 has been shown to contribute to fibrosis by acti-
vating pulmonary fibroblasts [44] (Table 1).

The induction of DAMPs following tissue injury or cell 
death in chronic inflammatory diseases has been studied 
extensively [45]. Oxidative stress and ECM matrix stiff-
ness can also damage the microenvironment and con-
tribute to the cycle of sustained fibrosis by the release of 
DAMPs [46]. However, support for whether this induction 
happens by direct effects on macrophages or fibroblasts to 
release DAMPs in the microenvironment is still lacking. 
Although some studies have suggested HMGB1 can be 

Table 1  TLR4 stimulating 
DAMPs described in this 
review, their size, functionality, 
and primary location

Name Size Functionality Primary location

HMGB1 215 amino acids Chromatin-binding Nucleus
S100A4 121 amino acids Calcium-binding Nucleus/cytoplasm
HSPB5 44 amino acids Protein chaperone Nucleus
CIRP 192 amino acids RNA-binding Nucleus
Fn-EDA 500 kDa glycoprotein Collagen-binding Extracellular matrix
Tenascin-C 2,000 kDa glycoprotein Cell–cell signaling Extracellular matrix
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induced by reactive oxygen species (ROS) in macrophage 
and fibroblasts [47, 48], there is no evidence that HSPB5 
protein can be induced by ROS in macrophages [49]. 
Furthermore, there is no conclusive evidence on whether 
the direct effect of ROS induces any profibrotic DAMPs 
in macrophages or fibroblasts in the fibrotic microenvi-
ronment. While Fn-EDA and tenascin-C are extracellu-
lar DAMPs contributing to ECM stiffness implicated in 
pulmonary fibrosis [35, 50], we know of no study that 
investigated the relationship between ECM stiffness and 
induction of profibrotic DAMPs at the cellular level in 
macrophages or fibroblasts.

Inflammatory cytokines and pulmonary 
fibrosis

Cytokines are proteins involved in cell signaling, includ-
ing interferons, interleukins, tumor necrosis factors, and 
chemokines. Over the past 10 years, much evidence has 
been accumulated in the role of proinflammatory cytokines 
in fibrogenesis and myofibroblast differentiation [51, 52]. 
Cytokines that did not use to be part of the discussion in 
pulmonary fibrosis have recently been shown to be integral 
to several pathways that drive pulmonary fibrosis [53–57]. 
The overarching mechanisms by which proinflamma-
tory cytokines tip the scale towards fibrogenesis include 
the recruitment of immune cells, regulation of the fibro-
blast activation status, and production of other profibrotic 
cytokines, among which is TGF-β1, the master regulator 
of fibrosis.

Proinflammatory cytokines can be regulated in pulmo-
nary fibrosis by oxidation stress and redox signaling through 
induction of mitochondria-derived ROS [58–60], NADPH 
oxidase (NOX) [61–65], and antioxidant depletion [60, 
66–68]. They can also be regulated by ECM matrix stiff-
ness through deposition of collagen [69] and cross-linking 
224 875 5689 with fibronectin [70] in the fibrotic tissue 
microenvironment. As discussed later, evidence shows that 
these cytokines can also be induced by DAMP stimulation 
of macrophages and fibroblasts. Regardless of how they 
are induced, proinflammatory cytokines have shown to be 
a profibrotic player in the early phase of fibrosis [51]. At 
the cellular level, these cytokines exert their effect by three 
mechanisms: directly inducing fibroblast activation, caus-
ing the release of profibrotic cytokines (including TGF-β1) 
in immune cells/fibroblasts, or promoting the persistent 
autocrine/paracrine activation of fibroblasts. Among the 
most studied proinflammatory and profibrotic cytokines is 
tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, 
and IL-17.

TNF‑α

In the case of TNF-α, all three cellular mechanisms of 
fibrosis have been described [71–75]. The profibrotic 
effect of TNF-α can be seen in the lungs of patients with 
IPF expressing high levels of TNF-α [76]. TNF-α released 
from M1 macrophages (classically activated macrophages, 
involved in secretion of proinflammatory cytokines) not 
only changes the phenotype of other macrophages and 
fibroblasts from reparative to inflammatory and delay tis-
sue repair [77, 78] but also induces the release of TGF-β1 
and platelet-derived growth factor (PDGF) from fibroblasts 
which in turn mediate fibroblast activation and production 
[79, 80]. Furthermore, even quiescent fibroblasts, which 
are resistant to activation by TLR agonists, will respond 
to TNF-α [81, 82]. TNF-α stimulated fibroblasts to secrete 
lumican and express integrins that promote persistent acti-
vation of fibroblast in an autocrine and paracrine fashion 
[83–85]. Less is known, however, about the release of 
TNF-α in the fibrotic microenvironment. ROS interme-
diates regulate the release of TNF-α from macrophages 
and fibroblasts [86], and NOX generated ROS participate 
in TNF-α-induced expression of vascular cell adhesion 
molecule 1 (VCAM-1) [87], which is a cell adhesion mol-
ecule highly expressed in the lungs of IPF patients [88] 
that is required for fibroblast activation [89]. The role of 
ECM stiffness in the release of TNF-α in a cellular fibrotic 
microenvironment is less clear. ECM stiffness has been 
shown to increase the release of TNF-α from RAW 264.7 
murine macrophages [90]. However, the release of TNF-α 
was inversely proportional to ECM stiffness in THP-1 
human macrophages [91]. Further studies are required to 
determine the effect of ECM stiffness and TNF-α release 
in the fibrotic pulmonary microenvironment.

IL‑17

Like TNF-α, IL-17 has been shown to play an important role 
in pulmonary fibrosis. Higher levels of IL-17 are found in 
lung tissues of IPF patients [92]. The mechanisms by which 
IL-17 is involved in the induction of fibrosis are likely very 
similar to those of TNF-α [93–95]. Furthermore, TNF-α 
and IL-17 have been shown to be the leading players in the 
recruitment of immune cells in the early stages of fibrosis 
[96]. The combination of these effects means that, overall, 
TNF-α and IL-17 are involved in sustained and intense acti-
vation of fibroblasts [97]. However, evidence has emerged 
that the effects of IL-17 on pulmonary fibrosis may be tem-
porally distinct from those of TNF-α. While IL-17 has been 
shown to enhance the proliferation of fibroblasts [98], col-
lagen deposition does not increase in the presence of IL-17 
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[99], and in fact, the signaling pathway of IL-17 is downreg-
ulated during collagen deposition [100]. Nevertheless, the 
precise role of IL-17 in fibroblast activation remains to be 
elucidated. The role of oxidative stress in the production of 
IL-17 has also remained unclear. While ROS induce TNF-α 
expression in macrophages and fibroblasts [87, 101] and aid 
IL-17 induced proliferation of fibroblasts [102], they have 
not been shown to increase the expression of IL-17 directly. 
Furthermore, to our knowledge, no study has yet shown the 
correlation between ECM stiffness and IL-17 expression on 
macrophages.

IL‑1β

The profibrotic role of IL-1β has long been known: mice 
overexpressing IL-1β have an exacerbated response to 
bleomycin-induced lung fibrosis [103]. Like TNF-α, 
IL-1β is a potent proinflammatory cytokine that induces 
activation of fibroblasts via the release of profibrotic 
cytokines like TGF-β1 [104]. Multiple pathways have 
been studied in connection with the direct effect of IL-1β 
on fibroblast activation [105–107]. Some studies have 
suggested that IL-1β is a cytokine upstream of IL-17 
or that the profibrotic effect of IL-1β is contingent on 
IL-17 [108–110]. Other studies have indicated that the 
profibrotic effects of IL-1β are mediated through the 
IL-1 receptor 1 (IL-1R1)/myeloid differentiation primary 
response 88 (MyD88) pathway [111, 112]. Further studies 
are needed to elucidate the exact mechanism by which 
IL-1β tilts the immune cells and fibroblasts towards per-
sistent fibrosis in the lung microenvironment.

Connecting DAMPs, TLR4, 
and proinflammatory cytokines

In the previous sections, we reviewed the profibrotic effects 
of individual DAMPs and proinflammatory cytokines in the 
development of fibrosis. However, it should be noted that 
the interplay between DAMPs and cytokines exerts a criti-
cal role in the development and sustainment of fibrosis. The 
interaction between DAMPs and TLR4 causes the release 
of numerous proinflammatory cytokines on macrophages 
and fibroblasts [113, 114]. These cytokines can, in turn, 
activate other macrophages and fibroblasts, as described in 
the previous section. This interplay has been demonstrated 
by induction of TNF-α and IL-1β expression in fibroblasts 
by activating the TLR4 pathway [115] using LPS. HMGB1 
has also been shown to induce TNF-α and IL-1β signaling 
in macrophages through the TLR4-dependent pathway [85, 
116, 117]. Similarly, HSPB5 has been shown to increase 
IL-1β and the nuclear localization of Smad4 [42, 118], 
which is likely enhanced by TLR4 signaling [118].

One built-in defense mechanism against the develop-
ment of pathological fibrosis is the induction of negative 
feedback loops by cytokines and DAMPs. TGF-β1 and 
IL-10 released by inflammatory macrophages and fibro-
blasts, for example, are potent inhibitors of inflammation 
in macrophages and fibroblasts which can tilt the organ 
towards resolution of fibrosis [119–121] in the late phase 
of fibrosis [122]. Furthermore, DAMPs can be protective 
against or involved in the resolution of fibrosis in some 
TLR signaling pathways. While fibroblast-specific defi-
ciency of TLR4 has been shown to be protective against 
fibrosis, and TLR2 has shown to exacerbate bleomycin-
induced pulmonary fibrosis by inducing an oxidative 
response [123–125], mice deficient in both TLR4 and 
TLR2 have been shown to have increased pulmonary fibro-
sis in response to radiation injury [126–128]. There are 
also antifibrotic TLRs that contrast the effect of DAMPs 
on profibrotic TLRs [22, 129]. TLR3 has been shown to 
have an antifibrotic effect by downregulation of the TGF-
β1 signaling pathway and autocrine induction of interferon 
(IFN)-β [130–132]. Moreover, TLR3 deficiency in fibro-
blasts has also been shown to increase collagen deposition 
and profibrotic cytokines, suggesting the role of DAMPs 
through TLR3 in the resolution of fibrosis [133]. Similarly, 
TLR9-mediated IFN-β induction in fibroblasts has shown 
to be protective against pulmonary fibrosis, and TLR9-
deficient mice have exacerbated pulmonary fibrosis [134].

When taken together, a picture emerges that juxtaposes 
the interaction of DAMPs and cytokines through TLR4 pro-
moting persistent fibrosis and, through other TLRs, the reso-
lution of fibrosis. The pathology ensues when the balance is 
tilted towards the persistent profibrotic pathway by different 
sections of the pathway perpetuated through positive feed-
back. This has therapeutic potential in fibrotic diseases of the 
lung not only by disrupting TLR4 pathways and DAMPs but 
also by inducing antifibrotic TLRs.

Therapeutic considerations

While the research in therapeutic approaches to pulmo-
nary fibrosis is ongoing, treatment strategies targeting 
the DAMPs, TLR4, and proinflammatory cytokines path-
way have shown promising results in preclinical models 
(Table 2). Anti-HMGB1 antibody significantly attenuated 
lung fibrosis in a mouse model [39]. In addition, there is 
evidence that inhibition of HMGB1 will diminish fibroblast 
activation [135] and can disrupt the process of fibrosis [136]. 
Furthermore, silencing HMGB1 or its downstream signaling 
has proven successful in inhibiting the fibrotic process in dif-
ferent conditions [137, 138]. Anti-S100A4 has been shown 
to prevent bleomycin-induced pulmonary fibrosis in mice 
[44]. While the effect of anti-HSPB5 antibody in pulmonary 
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fibrosis has not been studied, HSPB5-deficient mice have 
attenuated pulmonary fibrosis in response to bleomycin [42]. 
Among the extracellular TLR4 agonists present in the pul-
monary fibrotic microenvironment, neutralizing tenascin-C 
is a promising target for antifibrotic therapy. Not only do 
tenascin-C-deficient mice have an attenuated response to 
bleomycin-induced lung fibrosis, but this process has also 
been shown to be TLR4 dependent [35].

While studies have looked at the effect of anti-TLR4 in 
stopping pulmonary fibrosis, many have failed. This is due to 
the fact that while TLR4 drives persistent fibrosis and fibro-
blast activation, TLR4 is also required for the resolution of 
fibrosis [139]. However, there is a promise that specifically 
targeting specific TLR4/MD2 signaling complexes, which 
are responsible for the profibrotic effect of TLR4, can provide 
potential therapeutic strategies [32, 35].

Anti-TNF-α antibodies embody the most successful 
therapeutic approaches to fibrotic lung diseases. While 
multiple studies have shown the therapeutic effects in ani-
mal models [140–142], a double-blind clinical trial of IPF 
patients treated with etanercept, a monoclonal antibody 
against TNF-α, improved neither the forced vital capacity 
nor the diffusing capacity of the lungs. However, it showed 
a non-significant improvement in function and quality of 
life measures [143]. The multicentric double-blind clini-
cal trial “A Study of Cardiovascular Events in Diabetes” 
(ASCEND) showed that pirfenidone, a non-peptide syn-
thetic molecule with anti-TNF-α activity, reduced disease 
progression in patients with IPF [11]. Additionally, a study 
combining the results of two previous trials of pirfenidone 
in IPF patients [144] observed a significant decrease in the 
risk of death after treatment [145]. While there has not 
been a trial evaluating the effect of neutralizing IL-1β in 
IPF, mice deficient in IL-1R1 are protected and developed 
attenuated bleomycin-induced pulmonary fibrosis [111]. 
Moreover, a monoclonal anti-IL-1β antibody has also been 

shown to attenuate silica-induced fibrosis in mice [146]. 
Along the same line, blocking IL-17 has shown to attenuate 
pulmonary fibrosis in both silica and bleomycin-induced 
pulmonary fibrosis models in mice and to promote resolu-
tion of fibrosis [93, 147].

Conclusion and perspective

Strong evidence has emerged that pulmonary fibrosis 
results from a cycle receiving positive feedback at multi-
ple checkpoints that are instigated by DAMP induction of 
proinflammatory cytokines through TLR4 receptors. The 
process starts with an injury either from a viral infection, 
chemical/mechanical trauma, or immune-mediated dam-
age that causes the release of DAMPs in the microenvi-
ronment (Fig. 1). The DAMPs then reprogram resident 
macrophages and fibroblasts towards a proinflammatory/
profibrotic phenotype in a TLR4-dependent process. This 
prompts the deposition of extracellular collagen leading to 
ECM stiffness and the further release of DAMPs and pro-
inflammatory/profibrotic cytokines along with the secre-
tion of TGF-β1, the master regulator of fibrosis. TGF-β1, 
in turn, causes autocrine/paracrine activation of other 
macrophages and fibroblasts in the microenvironment that 
feeds the vicious cycle of persistent fibrosis. In our not 
yet published observations, we have discovered that extra-
cellular cold-inducible RNA-binding protein (eCIRP), a 
DAMP that causes inflammation and organ injury in sep-
sis, hemorrhagic shock, and ischemia/reperfusion injury 
[148, 149], also plays an important role in the pathogen-
esis of pulmonary fibrosis. By targeting eCIRP, we may be 
able to ameliorate the fibrotic process in the lungs.

In this review, we have focused on a selected number 
of inflammatory cytokines, namely TNF-α, IL-1β, and 
IL-17, and showed the interplay of TLR4, DAMPs, and 

Table 2  Potential molecular targets, therapeutic, and the stage of investigation for the interplay described in this review

* These agents have not yet been studied in the context of fibrosis

Molecular target Potential therapeutic Stage of investigation References

HMGB1 Anti-HMGB1 antibody Mouse models have shown attenuated response to fibrosis [39, 136–138]
S100A4 Anti-S100A4 antibody:  3B11* Mouse models have shown attenuated response to fibrosis [42, 44]
HSPB5 Anti-HSPB5 antibody HSPB5-deficient mice have attenuated fibrotic response [42, 44]
Tenascin-C Anti-tenascin-C antibody:  ST2485* Mouse models have shown attenuated response to fibrosis, 

and the process is TLR4 dependent
[33–35]

TLR4/MD2 Anti-TLR4/MD2 complex antibody: T5342126 Mouse models have shown attenuated response to fibrosis [32–35]
TNF-α Anti-TNF-α antibody: etanercept Two double-blind randomized control trials have shown 

reduced disease progression
[11, 140–145]

IL-1β Anti-IL-1β antibody:  canakinumab* IL-1R1 deficiency in mice and monoclonal antibody has 
been shown to attenuate fibrosis in mice

[111, 146]

IL-17 Anti-IL-17 antibody:  secukinumab*, 
 brodalumab*, and  ixekizumab*

Mouse models have shown attenuated response to fibrosis [93, 147]
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these cytokines. There are, however, other cytokines and 
chemokines that have shown to be either involved in this 
interplay or contribute to processes occurring in ECM, 
such as the production of ROS, which can contribute to the 
cycle of persistent fibrosis in the lung. In the class of inter-
leukins alone, IL-2, IL-6, IL-9, IL-12, IL-13, and IL-27 
have critical roles in the regulation of pulmonary fibrosis 
[150–156]. Among these, IL-6’s contributing mechanisms 
to the fibrotic process are likely very similar to those of 
TNF-α and IL-17 [157]. Just like TNF-α, IL-6 is released 
by M1 macrophages and changes the phenotype of other 
macrophages and fibroblasts from reparative to inflamma-
tory and delays tissue repair [158]. Some studies suggest 
that blocking IL-6 can have the opposite effect on lung 
fibrosis [159]. This effect is due to the protective effect 
of IL-6/Stat3 signaling axes in alveolar epithelial cells 
against apoptosis, which are imperative for the produc-
tion of surfactant synthesis necessary for the protection of 
the lung during injury [160]. Therefore, the timing of the 
anti-IL-6 strategy in the treatment of lung injury is crucial 
in antifibrotic therapeutic approaches [161]. While IL-6 
is one of the most studied inflammatory cytokines in pul-
monary fibrosis, its precise role in regulating the process 
of fibrosis in inflammatory diseases of the lung remains 
to be elucidated.

Additionally, we focused on the fibrotic effect of TLR4 
in the early phases of fibrosis in this review. However, as 
mentioned earlier in the review, TLR4 also plays a crucial 
role in the resolution of fibrosis in later phases of fibrosis 
and remodeling [139].  TLR4−/− mice are more susceptible 
to intratracheal bleomycin-induced lung fibrosis due to (1) 
impaired type 2 alveolar epithelial cells renewal, which are 
critical cells in the fibrosis repair process [162], and (2) 
impaired activation of autophagy signaling leading to accu-
mulation of ROS [139].

Although we focused on macrophages and their interac-
tions with fibroblasts in this review, a wide range of immune 
cell types are also involved in the progression and resolution 
of fibrosis [163]. Neutrophils are the cells that are recruited 
early stages of the fibrotic process, mice depleted from 
neutrophils have ameliorated response to, and the failure 
in recruiting neutrophils protects mice from bleomycin-
induced pulmonary fibrosis [164, 165]. On the other hand, 
natural killer cells may have a protective effect against lung 
fibrosis [166]. Without NK cell recruitment, the pulmonary 
environment lacks IFN-γ, an important anti-inflammatory 
cytokine involved in the resolution of fibrosis [167]. This 
results in an enhanced fibrosis process in the lung [168, 
169]. Dendritic cells (DCs), however, may play a dual role 
in pulmonary fibrosis. Like neutrophils, DCs arrive in the 

Fig. 1  The interplay of DAMPs, TLR4, and proinflammatory 
cytokines in pulmonary fibrosis centered around macrophages 
and fibroblasts. (1) Injury to the cells either from a viral infec-
tion, chemical/mechanical trauma, or immune-mediated damage 
causes the release of DAMPs in the microenvironment. (2) DAMPs 
stimulate and activate macrophages and fibroblasts through a TLR4-
MD2 → MyD88-mediated pathway. (3) Activated macrophages 
release proinflammatory cytokines such as TNF-α, IL-17, and IL-1β 
in the tissue microenvironment that, (4) along with TGF-β, activate 
fibroblasts to become profibrotic and deposit collagen and ECM com-

ponents like fibronectin and tenascin-C. This causes stiffness of ECM 
and oxidative stress in the microenvironment, which (5) causes the 
release of more DAMPs leading to the vicious cycle of pulmonary 
fibrosis. DAMP, damage-associated molecular patterns; HMGB1, 
high-mobility group box 1; eCIRP, extracellular cold-inducible RNA-
binding protein; HSPB5, heat shock protein B5; TLR4, Toll-like-
receptor 4; MD2, myeloid differentiation factor 2; MyD88, myeloid 
differentiation primary response 88; NF-κB, nuclear factor kappa-
light-chain-enhancer of activated B cells; ECM, extracellular matrix
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early phases of pulmonary fibrosis in significant numbers, 
and inhibiting the immune activity of DCs attenuates fibrosis 
[170]. However, it has also been observed that mice deficient 
in DCs develop more severe fibrosis, and, in contrast, mice 
equipped with an increasing number of DCs develop milder 
pulmonary fibrosis after the bleomycin challenge [171]. 
The mechanisms by which DCs exert their pro/antifibrotic 
role remain to be further elucidated [172]. We believe mac-
rophages are the most pertinent to this review because they 
are the master regulator of fibrosis across organs, given that 
they are the primary providers of TGF-β [173]. Addition-
ally, the close interaction of macrophages with fibroblasts 
is a critical contributor to the cycle described in this review 
[174, 175].

In this review, we summarized the current state of knowl-
edge regarding the role of DAMPs, selected proinflamma-
tory cytokines, their interplay through TLRs (more specifi-
cally TLR4), and their contribution to cellular processes of 
lung fibrosis. Furthermore, we highlighted knowledge gaps 
and summarized the therapeutic potential of targeting this 
vicious fibrotic cycle at every checkpoint. Given that the 
issue of persistent fibrosis without resolution in COVID-19, 
IPF, and other profibrotic lung diseases is far from resolved, 
it is critical to look deeper into these pathways to illuminate 
not only the connection between the inflammatory reaction 
and fibrosis but also develop possible therapeutics that can 
ameliorate pulmonary fibrosis by disrupting the positive 
feedback pathways involved.
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