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Abstract

Background: The history of maize has been characterized by major demographic events, including population size
changes associated with domestication and range expansion, and gene flow with wild relatives. The interplay

between demographic history and selection has shaped diversity across maize populations and genomes.

Results: We investigate these processes using high-depth resequencing data from 31 maize landraces spanning the
pre-Columbian distribution of maize, and four wild teosinte individuals (Zeamays ssp. parviglumis). Genome-wide

demographic analyses reveal that maize experienced pronounced declines in effective population size due to both a
protracted domestication bottleneck and serial founder effects during post-domestication spread, while parviglumis

in the Balsas River Valley experienced population growth. The domestication bottleneck and subsequent spread led

to an increase in deleterious alleles in the domesticate compared to the wild progenitor. This cost is particularly
pronounced in Andean maize, which has experienced a more dramatic founder event compared to other maize
populations. Additionally, we detect introgression from the wild teosinte Zeamays ssp.mexicana into maize in the

highlands of Mexico, Guatemala, and the southwestern USA, which reduces the prevalence of deleterious alleles likely
due to the higher long-term effective population size of teosinte.

Conclusions: These findings underscore the strong interaction between historical demography and the efficiency of

selection and illustrate how domesticated species are particularly useful for understanding these processes. The
landscape of deleterious alleles and therefore evolutionary potential is clearly influenced by recent demography, a
factor that could bear importantly on many species that have experienced recent demographic shifts.
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Background
Genomes are shaped over the course of their evolution-

ary history through a complex interaction of demography

and selection. Neutral processes that comprise a species’

demographic history, such as stochastic changes in popu-

lation size and migration events, influence both the pool

of diversity upon which selection can act and its efficiency.
Selection and genetic drift then jointly determine the fate

of this diversity.

*Correspondence: rossibarra@ucdavis.edu; mhufford@iastate.edu
3Department of Plant Sciences, University of California, Davis, USA
1Department of Ecology, Evolution, and Organismal Biology, Iowa State
University, Ames, USA
Full list of author information is available at the end of the article

After the development of agriculture, both crops and

humans have experienced profound demographic shifts

that left clear signatures in genome-wide patterns of diver-

sity [1, 2]. Early agriculturalists sampled a subset of the

diversity present in crop wild relatives, resulting in an ini-

tial demographic bottleneck for many domesticates [3].

Subsequent to domestication, humans and their crops

experienced a process of global expansion facilitated by

the rise of agriculture [4]. In many cases expansion was

accompanied by gene flow with close relatives, a demo-

graphic process that further altered patterns of diversity

[5, 6].

Recent interest in the effects of demography on func-

tional variation has led to a growing body of theory that
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is increasingly supported by empirical examples. To date,

the relationship between demography and selection has

been most thoroughly explored in the context of delete-

rious alleles. While theory suggests mutation load (i.e.,

the reduction in mean fitness caused by the presence

of deleterious alleles) may be insensitive to demography

over long periods [7, 8], empirical results are consistent

with load being shaped by demography over shorter

timescales [9–13]. For example, evidence in both plant

and animal species has revealed increased mutation

load in populations that have undergone recent, sudden

declines in effective population size (Ne) [10–12, 14].

Similarly, in geographically expanding populations,

repeated sub-sampling of diversity (i.e., serial founder

effects) can occur during migration away from a center of

origin [15, 16], a phenomenon shown to have decreased

genetic diversity and increased counts of deleterious

alleles in human populations more distant from Africa

[17, 18]. Finally, gene flow may also affect genome-wide

patterns of deleterious variants, particularly when occur-

ring between populations with starkly contrasting Ne.

For instance, during the Out-of-Africa migration, mod-

ern humans inter-mated with the Neanderthal species,

a close relative with substantially lower Ne and higher

mutation load [9]. The higher mutation load in Nean-

derthals presented a cost of gene flow, and subsequent

purifying selection appears to have limited the amount of

Neanderthal introgression near genes in the modern

human genome [9, 19].

The domesticated plant maize (Zea mays ssp.mays) has

a history of profound demographic shifts accompanied by

selection for agronomic performance and adaptation to

novel environments, making it an ideal system in which to

study the interaction between demography and selection.

Maize was domesticated in a narrow region of south-

west Mexico from the wild plant teosinte (Zea mays ssp.

parviglumis; hereafter, parviglumis [20–22]) and experi-

enced an associated genetic bottleneck that removed a

substantial proportion of the diversity found in its progen-

itor [23, 24]. Archaeological evidence suggests that after

initial domestication, maize spread across the Americas,

reaching the southwestern USA by approximately 4500

years before the present (BP) [25] and coastal South Amer-

ica as early as 6700 years BP [26]. Gene flow into maize

from multiple teosinte species has been documented

in geographical regions outside of its center of origin

[5, 27]. To date, genetic studies of demography and selec-

tion in maize have primarily focused on initial domes-

tication [28], only broadly considering the effects of

subsequent change in population size on diversity [2]

and largely disregarding the spatial effects of geographic

expansion and gene flow (but see [29]). Furthermore, the

effect of maize demography on the prevalence of deleteri-

ous alleles has yet to receive in-depth attention.

Here, we investigate the genome-wide effects of

demographic change in maize during domestication and

subsequent expansion using high-depth resequencing

data from a panel of maize landraces.We present evidence

for a protracted domestication bottleneck, further loss of

diversity during crop expansion, and gene flow between

maize and its wild relatives outside of its center of origin.

We then explore how this demographic history has shaped

genome-wide patterns of deleterious alleles.

Results

Maize population size change during domestication and

expansion

We resequenced 31 maize individuals, each from one

open-pollinated landrace, representing six geographical

regions that span the pre-Columbian range of maize cul-

tivation (southwestern US highlands, 6 individuals; Cen-

tral Mexican Plateau, 6 individuals; Mexican lowlands, 5

individuals; Guatemalan highlands, 3 individuals; South

American lowlands, 6 individuals; Andes, 5 individuals).

In addition, we resequenced four wild parviglumis indi-

viduals from a single population located in the Balsas

River Valley in Mexico (Fig. 1a). The median sequencing

depth was 29X, with a range of 24–53X, resulting in a

data set consisting of 49,508,640 single nucleotide poly-

morphisms (SNPs). Landrace accessions were selected

to broadly reflect the diversity of maize in the Amer-

icas and to be representative of defined ecogeographic

regions based on consultation with experts on landrace

germplasm (Major Goodman, personal communication)

and on descriptions in the Races ofMaize handbooks [30].

We first estimated historical changes in effective pop-

ulation size (Ne) of maize and parviglumis using the

multiple sequentially Markovian coalescent (MSMC) [31].

Consistent with archaeological evidence [21], we find that

the demographic histories of the various maize popula-

tions begin to diverge from one another approximately

10,000 years BP (Fig. 1b). Surprisingly, our single pop-

ulation of parviglumis diverges from maize much ear-

lier, around 75,000 years BP. All maize populations show

a gradual decline in diversity concomitant with diver-

gence from parviglumis, but the slope becomes more pro-

nounced around the time of domestication. This period

of declining Ne continues until the recent past (≈ 1100 −

2400 years BP) and is followed by extremely rapid pop-

ulation growth, suggesting recovery from domestication

post-dated expansion of maize across the Americas. In

contrast to our results in maize, parviglumis shows an

increase in Ne which also lasts until the recent past

(≈ 1200 − 1800 years BP). To determine if linked selec-

tion associated with domestication could bias estimates

of Ne in maize (see [32]), we masked previously identi-

fied domestication candidates [24] and observed nearly

identical results (Additional file 1: Figure S1A).
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Fig. 1Maize domestication and expansion. a Sampling locations. b Estimates of effective population size over time (mutation rate = 3 ∗ 10−8 ,

generation time = 1 year). Dashed lines represent bootstrapping results. The x axis is log10 scaled when time is less than 10,000 generations BP and

linear when greater than 10,000 generations BP as indicated by the gray background. c The percentage of polymorphic sites versus distance from

the maize domestication center. Abbreviations for populations: GuaHigh Guatemalan highlands,MexHighMexican highlands,MexLow Mexican

lowlands, SA_Low South American lowlands, SW_US southwestern US highlands

One explanation for the prolonged population size

reduction in maize following the onset of domestication

would be repeated colonization bottlenecks during the

spread of maize across the Americas. Genome-wide levels

of heterozygosity across our maize samples are consis-

tent with this idea, showing a strong negative correlation

(R2 = 0.3636, p = 0.0004; Fig. 1c) with distance from the

center of maize domestication in the Balsas River Basin.

To confirm this trend, we performed a similar analysis

with a much larger sample of published genotyping data

(n = 3520; Additional file 1: Figure S1B) [33] and observed

similar results.

While the gradual decrease in genetic diversity seen

with distance from the Balsas indicates serial founder

effects, our analyses also point to a more extreme founder

event in the Andean highlands of South America. Andean

landraces show a deeper bottleneck in our MSMC analy-

sis (Fig. 1b), have the lowest overall diversity (Additional

file 1: Figure S2), and show both a distinct reduction

of low frequency alleles and a greater proportion of

derived homozygous alleles compared to other popula-

tions (Additional file 1: Figure S2). To shed light on the

timing of this extreme founder event, we assessed evi-

dence for recent inbreeding. Inbreeding coefficients in

Andean samples were quite low and not statistically dif-

ferent from other populations (all F < 0.002 and p > 0.05

based on a Wilcoxon test). Likewise, no significant dif-

ference could be found across populations in the num-

ber of runs of homozygosity (ROHs) longer than 1 cM

(p > 0.05 in all cases, Wilcoxon test). Using simple
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conversions between generations and the genetic length

of an inherited region in the genome [34], these results

provide further evidence for limited recent (< 50 gener-

ations) inbreeding in the Andes. However, when ROHs

were limited to those shorter than 0.05cM and longer than

0.005cM (inbreeding from approximately 1000–10,000

generations in the past), Andean samples demonstrated

significantly greater cumulative ROHs compared to all

(p < 0.05, Wilcoxon test) but the South American low-

land population (p = 0.165, Wilcoxon test; Additional

file 1: Figure S3). Together, these lines of evidence are

consistent with an unusually strong founder event during

colonization of the Andes.

Introgression fromwild maize in highland populations

Adaptive introgression from the wild teosinte taxon Zea

mays ssp. mexicana (hereafter, mexicana) has previously

been observed in maize in the highlands of Mexico [5].

Our broad sampling allowed us to investigate whether

introgressed mexicana haplotypes have spread to high-

land maize populations outside of Mexico, potentially

playing a role in adaptation in other regions. In order to

test this hypothesis, we calculated Patterson’s D statis-

tic [35] across all maize populations. All individuals

from both the Mexican and Guatemalan highlands exhib-

ited highly significant evidence for shared ancestry with

mexicana (Additional file 1: Figure S4). Maize from the

southwestern USA also showed more limited evidence

of introgression, consistent with findings from ancient

DNA suggesting this region was originally colonized by

admixed maize from the highlands of Mexico [36]. In

contrast, the distribution of z-scores for South American

populations overlapped zero, providing no evidence for

substantial spread ofmexicana haplotypes to this region.

We localized introgression to chromosomal regions

through genome-wide calculation of the f̂d statistic [37].

Megabase-scale regions of introgression were identified in

both Mexican and Guatemalan highland populations that

correspond to those reported by [5] on chromosomes 4

and 6 (Fig. 2; Additional file 1: Figure S5). On chromosome

3 (at around 75 − 90 Mb), a large, previously unidenti-

fied region of introgression can be found in the Mexican

and southwestern US highlands (Fig. 2; Additional file 1:

Figure S5). This region overlaps a putative chromoso-

mal inversion associated with flowering time in maize

landraces [38] and in the maize nested association map-

ping population [39] and may be an example ofmexicana

contribution to modern maize lines.

The influence of demography on accumulation of

deleterious alleles

Population-specific changes in historical Ne should

influence the efficiency of purifying selection and

alter genome-wide patterns of deleterious variants [10].

Introgression from a species with substantially different

Ne may also influence the abundance and distribution of

deleterious alleles in the genome [9, 19]. Below we eval-

uate the effects of major demographic events during the

pre-Columbian history of maize on patterns of deleterious

alleles.

Domestication and deleterious alleles

We first compared counts of deleterious alleles inMexican

lowland maize individuals to four parviglumis individuals

from a single population in the Balsas River Valley. Maize

from the Mexican lowlands has not experienced substan-

tial introgression fromwild relatives and is near the center

of maize origin [22], and thus best reflects the effects of

domestication alone. After identifying putatively deleteri-

ous mutations using Genomic Evolutionary Rate Profiling

(GERP) [40], we calculated the number of derived dele-

terious alleles per genome under both an additive and

a recessive model across four levels of mutation sever-

ity (see Methods for details). Maize showed significantly

more deleterious alleles than teosinte under both additive

(< 10%more; p = 0.0079,Wilcoxon test; Additional file 1:

Figure S6) and recessive (< 20− −30% more; p = 0.0079;

Fig. 3) models across all categories (Additional file 1:

Figure S7). Additionally, maize contained more than twice

as many fixed deleterious alleles than teosinte (57,881 ver-

sus 26,947) and 10% fewer segregating deleterious alleles

(429,837 versus 478,594), effects expected under a domes-

tication bottleneck (Fig. 3c; [7]). GERP load (GERP score

× frequency of deleterious alleles), a more direct proxy of

mutation load quantified at the population level, revealed

a similar trend (additive model: maize median = 23.635,

teosinte median = 22.791, p = 0.008, Wilcoxon test;

recessive model: maize median = 14.922, teosinte median

= 12.231, p = 0.008). Maize, like other domesticates

[12, 14, 41, 42], thus appears to have a higher mutation

load compared to its wild progenitor parviglumis.

While the elevated mutation load we observe in maize

relative to parviglumis may be driven primarily by the

domestication bottleneck, positive selection on causal

variants underlying domestication phenotypes may also

fix nearby deleterious variants through genetic hitchhik-

ing, which would result in a higher number of deleterious

alleles in regions linked to domestication loci [41, 43]. To

test this hypothesis, we first confirmed that 420 previously

identified domestication candidates [24] showed evidence

of selection in our data (Additional file 1: Figure S8),

and then assessed the distribution of deleterious alleles in

and near (5 kb upstream and downstream) these genes

by calculating the number of deleterious alleles per base

pair under both recessive and additive models. No signif-

icant difference was found in the prevalence of deleteri-

ous alleles near domestication and random sets of genes

(Additional file 1: Figure S9), suggesting the increased
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a b

Fig. 2 Introgression frommexicana into maize landraces. Loess regression of f̂d is plotted for all five populations on a chromosome 3 and b

chromosome 4. Each plot highlights a single population, with other populations shown in gray. The Mexican lowlands population is used as a

reference and thus not plotted. No significant introgression was detected in the South American lowlands or the Andes, and loess regressions for

these populations are only shown as gray lines. The statistic f̂d was calculated based on the tree in which P2 is varied across populations.mex

mexicana, Trip Tripsacum

mutation load we observe in maize has been driven pri-

marily by the genome-wide effects of the domestication

bottleneck rather than linkage associated with selection

on specific genes.

The effect of the Andean founder event on deleterious alleles

The extreme founder event observed in the Andes

could potentially alter genome-wide patterns of deleteri-

ous variants beyond the effects of domestication alone.

Under a recessive model, maize from the Andes con-

tains significantly more deleterious alleles than any other

population (Fig. 3b; Additional file 1: Figure S7; all p val-

ues < 0.02, Wilcoxon test), and this difference becomes

more extreme when considering more severe (i.e., higher

GERP score) mutations (Additional file 1: Figure S7). In

contrast, we observe no significant difference under an

additive model (Additional file 1: Figure S6; Additional

file 1: Figure S7). The Andean founder event therefore

appears to have resulted in higher mutation load than

seen in other maize populations. This result is further

supported by a higher proportion of fixed deleterious alle-

les within the Andes and fewer segregating deleterious

alleles (Additional file 1: Figure S10; Fig. 3d), a result

comparable to the differences observed between maize

and parviglumis.

Introgression decreases the prevalence of deleterious alleles

Highly variable rates of mexicana introgression were

detected across our landrace populations (Fig. 2;

Additional file 1: Figure S4; Additional file 1: Figure

S5). To explore the potential effects of introgression on

the genomic distribution of deleterious alleles, we fit a

linear model in which the number of deleterious sites is

predicted by introgression (represented by f̂d) and gene

density (exonic base pairs per centimorgan) in 10-kb non-

overlapping windows in the Mexican highland population

where we found the strongest evidence for mexicana

introgression. Gene density was included as a predictor

in the regression to control for the positive correlation

observed between gene density and both introgression

(p = 3.48e − 08) and deleterious alleles (p ≈ 0). When

identifying deleterious alleles under both additive and

recessive models, we found a strong negative correla-

tion with introgression (i.e., fewer deleterious alleles in

introgressed regions; p ≈ 0 under both models). These

findings likely reflect the larger ancestral Ne and more

efficient purifying selection inmexicana.

Discussion
Demographic studies in domesticated species have

focused largely on identifying progenitor population(s)
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Fig. 3 Burden of deleterious mutations during maize domestication and expansion. Comparison of counts of deleterious alleles at the individual

level a between parviglumis and maize (mean value in parviglumis population was used as the standard to calculate the relative burden) and b

among maize populations (mean value in Mexican lowland population was utilized as the standard to calculate the relative burden) under a

recessive model. Comparison of fixed versus segregating (seg) deleterious alleles at the population level c between parviglumis and maize and d

among maize populations. A jackknife sub-sampling approach (n = 4) was utilized for maize in c and for individual maize populations (n = 3) in d

and quantifying the effect of the domestication bottle-

neck on genetic diversity [24, 44, 45]. It is likely, however,

that the demographic history of domesticates is gener-

ally more complex than a simple bottleneck followed by

recovery [46, 47]. Many crops and domesticated animals

have expanded from defined centers of origin to global

distributions, experiencing population size changes and

gene flow from closely related taxa throughout their histo-

ries [48]. With this in mind, we have characterized maize

demography from domestication through initial expan-

sion in order to provide a more complete assessment of

the influence of demography on deleterious variants.

Historical changes in maize population size

Early models of maize demography suggested the ratio

of the domestication bottleneck size and duration was

between ≈ 2.5 : 1 and ≈ 5 : 1, but little statistical sup-

port was found for specific estimates of these individual

parameters [23, 28, 49]. Most recently, Beissinger et al. [2]

fit a model assuming a bottleneck followed by instanta-

neous exponential recovery.While our results concur with

the most recent model in finding a similar bottleneck size

(≈ 10% compared to≈ 5% in Beissinger et al.) and that the

modernNe of maize is quite large, the flexibility of MSMC

also allowed us to estimate the duration of the bottleneck.

We find that the domestication bottleneckmay have lasted

much longer than previously believed, spanning ≈ 9000

generations and only beginning to recover in the recent

past (Fig. 1b). Analysis of bottlenecks during African rice

and grape domestication have also suggested a duration

of several thousand generations [46, 47], indicating that

demographic bottlenecks during crop evolution may have

generally occurred over substantial periods of time. Previ-

ous work has suggested population structure can generate

spurious signals of population size change in methods like

MSMC [50, 51], such that individuals sampled from a
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single deme of a highly structured population can falsely

demonstrate signatures of a population bottleneck sim-

ilar to what we observe in maize [51]. Given that our

maize landraces are sampled from broad ecogeographic

regions, however, this effect should beminimal.Moreover,

a similar analysis in an Americas-wide sample of maize

landraces demonstrated qualitatively similar results [2].

In addition to a strong bottleneck during domestica-

tion, our finding that levels of diversity decline in pop-

ulations increasingly distant from the center of maize

domestication are suggestive of serial founder effects dur-

ing the spread of maize across the Americas (Fig. 1c;

Additional file 1: Figure S1). Serial founder effects are

the result of multiple sampling events during which small

founder populations are repeatedly drawn from ances-

tral pools, leading to a stepwise increase in genetic drift

and a concomitant decrease in genetic diversity. Dur-

ing maize range expansion, serial founder effects would

have occurred if seed carried to each successive colo-

nized region was limited to a sample of whole ears that

contained a fraction of the diversity found in the source

population [29]. Movement of entire ears involves a col-

lective transfer of seeds that are either full or maternal

half-siblings and could lead to more substantial founder

effects than would be seen if dispersal were truly ran-

dom. Such "kin-structured" migration, which is common

in nature, has theoretically been demonstrated to increase

inbreeding due to a reduction in the number of effective

colonists [52]. Consistent with serial founder effects, other

researchers have found a correlation between geographic

and genetic distance in maize landraces [22, 53], though

this was previously attributed to limited migration across

the species range leading to isolation by distance (IBD).

Neutral expectations of allele frequencies across popula-

tions under serial founder effects differ substantially from

those predicted under equilibrium conditions [15]. For

example, Slatkin and Excoffier [15] have demonstrated

that allele frequency clines previously attributed to adap-

tation could be generated entirely by neutral processes

under expansion. Many of the world’s crops have experi-

enced such histories of expansion, and studies attempting

to identify loci underlying crop adaptation during post-

domestication spread to new environments may most

accurately compare empirical data to neutral expectations

under a serial founder effects demography [15].

While a history of serial founder effects partially

explains the variation in diversity across maize landraces,

there are deviations from this model. For example, our

combined results showing increased ROHs (Additional

file 1: Figure S3), lower nucleotide diversity (Additional

file 1: Figure S2), and smaller effective population size

(Fig. 1) in the Andes all suggest a pronounced, ancient

founder event and are in agreement with previous work

modeling demography in this region [54]. The founder

event in the Andes may reflect initially limited cultiva-

tion due to the poor performance of maize in this region

relative to established root and tuber staples [55]; maize

cultivation may have only become widespread after an

initial lag period necessary for adaptation. Additionally,

we observe somewhat higher than expected nucleotide

diversity in maize landraces from the highlands of Mex-

ico and Guatemala (Fig. 1c), which may be linked to the

introgression we have detected frommexicana.

In striking contrast to the bottleneck we observe

in maize, the effective population size in parviglumis

increases steadily from the time of initial maize domesti-

cation until the recent past. Multiple population genetic

studies have reported negative genome-wide values of

Tajima’s D in parviglumis from the Balsas River Valley

[2, 23, 56], findings characteristic of an expanding pop-

ulation. Likewise, analyses of pollen content in sediment

cores from Mexico suggest herbaceous vegetation and

grasslands have expanded over the last 10,000 years due to

changing environmental conditions during the Holocene

and human management of vegetation with fire [57, 58].

While our parviglumis samples are drawn from a single

population in the Balsas, these data collectively suggest

parviglumis from this region has experienced expansion

over the last several millennia.

Consistent with archaeological evidence of the timing

of initial maize domestication [21], we find that maize

demographies begin to diverge ≈ 10, 000 generations BP,

a time that appears to coincide with a steeper decline

in maize Ne as well. In contrast, we estimate the timing

of the split between maize and our single population of

parviglumis to be ≈ 75, 000 generations BP, potentially

reflecting population structure in parviglumis. Beissinger

et al. [2], using samples from additional populations,

also find an estimate of maize-parviglumis divergence

older than the probable onset of domestication, suggest-

ing that currently available sequences of parviglumis may

not sample well from the populations directly ancestral to

domesticated maize.

The prevalence of gene flow during maize diffusion

Increasingly, range-wide analyses of crops and their wild

relatives have identified evidence of gene flow during

post-domestication expansion from newly sympatric pop-

ulations of their progenitor taxa and closely related

species [59–61]. Consistent with previous results from

genotyping data [5, 22, 62], we find strong support for

introgression from mexicana to maize in the highlands

of Mexico. While mexicana is not currently found in the

highlands of Guatemala, we also find strong evidence for

mexicana introgression in maize from this region, sug-

gesting eithermexicanawas at one timemore broadly dis-

tributed, or, perhapsmore likely, that highlandmaize from

Mexico was introduced to the Guatemalan highlands.
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Support is also found for mexicana introgression in the

southwestern USA at specific chromosomal regions such

as a putative inversion polymorphism on chromosome

3 (Fig. 2). These results confirm previous findings sug-

gesting maize from the highlands of Mexico originally

colonized the southwestern USA [36]. The more limited

signal of mexicana introgression here may be due to sub-

sequent gene flow from lowland maize as suggested by

[36]. Very little evidence is found formexicana haplotypes

extending into South America, as highland-adapted hap-

lotypes would likely have been maladaptive and removed

by selection as maize traversed the lowland regions of

Central America [54].

Impacts of demography on accumulation of deleterious

variants

Previous work in maize has characterized genome-wide

trends in deleterious alleles across modern inbred maize

lines, revealing that inbreeding during the formation of

modern lines has likely purged many recessive deleteri-

ous variants [63] and that complementation of deleterious

alleles likely underlies the heterosis observed in hybrid

breeding programs [63, 64]. Additionally, [2] revealed that

purifying selection has removed a greater extent of pair-

wise diversity (θπ ) near genes in parviglumis than inmaize

due to the higher historical Ne in parviglumis, but that

this trend is reversed when considering younger alleles

due to the recent dramatic expansion in maize population

size. To date, however, few links have been made between

the historical demography of maize domestication and

expansion and the prevalence of deleterious alleles. Our

analysis reveals, for the first time, that demography has

played a pivotal role in determining both the geographic

and genomic landscapes of deleterious alleles in maize.

Population size and deleterious variants

Previous studies have suggested a “cost of domestica-

tion” in which a higher burden of deleterious alleles is

found in domesticates compared to their wild progenitors

[12, 41, 43, 65, 66]. Consistent with these results, we detect

an excess of deleterious alleles in maize relative to parvig-

lumis (Fig. 3; Additional file 1: Figure S6; Additional file 1:

Figure S7), which could be caused by two potential factors.

First, reduced population size during the domestication

bottleneck could result in deleterious alleles drifting to

higher allele frequency. Second, hitchhiking caused by

strong positive selection on domestication genes could

cause linked deleterious alleles to rise in frequency

[12, 65]. While we find support for the former in maize,

we see little evidence of the latter. Recent studies have

reported contrasting results regarding the effect of selec-

tive sweeps in patterning the distribution of deleterious

alleles. For example, putative selective sweeps in cas-

sava showed a paucity of deleterious alleles, a result

that was attributed to purifying selection [67]. Sweep

regions in grape exhibited an overall decrease in the num-

ber of deleterious alleles but an increase in the ratio

of deleterious mutations to synonymous variants, a pat-

tern suggesting deleterious alleles may have hitchhiked

along with the targets of positive directional selection

[46]. Finally, selective sweeps in Asian rice contained a

roughly equivalent ratio of deleterious mutations to syn-

onymous mutations when compared to neutral regions

[68]. Clearly, further exploration is warranted to clarify

the effect of selection on the distribution of deleterious

mutations. In addition to the cost of domestication, we

find a cost of geographic expansion that is likely driven

by serial founder effects. The increase in deleterious alle-

les during expansion is most pronounced in the Andes

and may be symptomatic of the extreme founder event we

propose above.

Differences in the number of deleterious alleles between

maize and parviglumis and non-Andean and Andean

maize are more dramatic under a recessive model than

an additive model. This trend may indicate that the bulk

of deleterious alleles in maize are at least partially reces-

sive, such that heterozygous sites contribute less to a

reduction in individual fitness. Previous work in human

populations has shown that the majority of deleterious

mutations are recessive or partially recessive [69], and

data from knock-out mutations in yeast have revealed

that large-effect mutations tend to be more recessive [70].

Likewise, both theory and empirical evaluation across

a number of organisms suggest that mildly deleterious

mutations are likely to be partially recessive [71]. In maize,

Yang et al. [63] have found that most deleterious alle-

les are at least partially recessive and note a negative

correlation between the severity of a deleterious vari-

ant and its dominance. Our results thus match nicely

both with previous empirical data and theoretical expec-

tations showing that recent population bottlenecks should

only show strong differences in load under a recessive

model [7].

Introgression and deleterious variants

Very few studies have investigated the effects of introgres-

sion from a taxon with substantially different Ne on the

genomic landscape of deleterious variants. The best exam-

ple is found in the human literature, where confirmation

has been found that introgression fromNeanderthals with

low ancestral Ne increased the overall mutation load in

modern humans [9, 19]. We report here the opposite pat-

tern in maize, as introgression appears to have reduced

the proportion of deleterious variants. Nonetheless, the

underlying interpretation is similar: the taxon donating

alleles mexicana has had a larger ancestral Ne than maize

[27], and introgressed haplotypes have thus experienced

more efficient long-term purging of deleterious alleles.
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Conclusions
We have demonstrated that demography during the

domestication and expansion of maize across the

Americas has profoundly influenced putative func-

tional variation across populations and within individual

genomes. More generally, we have learned that popu-

lation size changes and gene flow from close relatives

with contrasting effective population size will influence

the distribution of deleterious alleles in species undergo-

ing rapid shifts in demography. The significance of our

results extends far beyond maize. For example, invasive

species that have recently experienced founder events fol-

lowed by expansion, endangered species subject to precip-

itous declines in Ne, species with a history of post-glacial

expansion, and new species expanding their range will all

likely show clear genetic signals of the interplay between

demography and selection. This interaction bears impor-

tantly on the adaptive potential of both individual popula-

tions and species. By fully characterizing this relationship,

we can better understand how the current evolutionary

trajectory of a species has been influenced by its history.

Methods

Samples, whole genome resequencing, and read mapping

A total of 31 maize landrace accessions were obtained

from the US Department of Agriculture (USDA)’s

National Plant Germplasm System and through collab-

orators (Additional file 2: Table S1). Samples were cho-

sen from four highland populations (Andes, Mexican

highlands, Guatemalan highlands, and southwestern US

highlands) and two lowland populations (Mexican and

South American lowlands) (Fig. 1a). In addition, four

open-pollinated parviglumis samples were selected from

a single population in the Balsas River Valley in Mex-

ico. DNA was extracted from leaves using a standard

cetyltrimethyl ammonium bromide (CTAB) protocol [72].

Library preparation and Illumina HiSeq 2000 sequenc-

ing (100-bp paired-end) were conducted by BGI (Shen-

zhen, China) following their established protocols. the

Burrows-Wheeler Aligner (BWA) v.0.7.5.a [73] was used

to map reads to the maize B73 reference genome v3

(GenBank BioProject PRJNA72137) [74] with default set-

tings. The duplicate molecules in the realigned bam

files were removed with MarkDuplicates in Picardtools

v.1.106 (http://broadinstitute.github.io/picard), and indels

were realigned with the Genome Analysis Toolkit (GATK)

v.3.3-0 [75]. Sites with mapping quality less than 30 and

base quality less than 20 were removed, and only uniquely

mapped reads were included in downstream analyses.

Demography of maize domestication and diffusion

The MSMC method [31], which models ancestral rela-

tionships under recombination and mutation and has

been used in several plant species [46, 47], was utilized

to infer effective population size changes in both

parviglumis and maize. SNPs were called via Haplo-

typeCaller and filtered via VariantFiltration in GATK

[75] across all samples. SNPs with the following metrics

were excluded from the analysis: QD <2.0; FS >60.0;

MQ <40.0; MQRankSum < –12.5; ReadPosRankSum

< –8.0. Vcftools v.0.1.12 [76] was used to further fil-

ter SNPs to include only bi-allelic sites. Following these

data filtering steps, our data set consisted of 49 mil-

lion SNPs. SNPs were phased using BEAGLE v.4.0 [77]

with SNP data from the maize HapMap2 panel [78]

used as a reference. Only sites with depth between half

and twice of the mean depth were included in analy-

ses. In addition, the software SNPable (http://lh3lh3.users.

sourceforge.net/snpable.shtml) was used tomask genomic

regions in which reads were not uniquely mapped. The

mappability mask file for MSMC was generated by step-

ping in 1-bp increments across the maize genome to gen-

erate 100-bp single-end reads, which were then mapped

back to the maize B73 reference genome [74]. Sites with

the majority of overlapping 100-mers mapped uniquely

without mismatch were determined to be “SNPable” sites

and used for the MSMC analyses. For effective population

size inference in MSMC, we used 5×4+25×2+5×4 as

the pattern parameter, and the value m was set as half of

the heterozygosity in parviglumis and maize populations,

respectively.

In order to explore the trend of genetic diversity away

from the domestication center, the correlation between

the percentage of polymorphic sites and the geographic

distance to the Balsas River Valley (latitude 18.099138,

longitude –100.243303) was examined via linear regres-

sion. Geographical distance in kilometers was calculated

based on great circle distance using the haversine trans-

formation [17]. The correlation between percentage of

heterozygous sites and distance away from domestica-

tion center was also explored in the SeeDs data set. SNPs

with more than 50% missing samples and samples with

more than 50%missing genotypes were removed from the

SeeDs data set.

Population structure, genetic diversity, and inbreeding

coefficients

We first evaluated population structure using principal

component analysis (PCA) with ngsCovar [79] in ngsTools

[80] based on the matrix of posterior probabilities of

SNP genotypes produced in Analysis of Next Generation

Sequencing Data (ANGSD) v.0.614 [81], and then utilized

NGSadmix v.32 [82] to investigate the admixture pro-

portion of each accession. The NGSadmix analysis was

conducted based on genotype likelihoods for all individ-

uals, which were generated with ANGSD (options -GL 2

-doGlf 2 -SNP_pval 1e − 6), and K from 2 to 10 was set

to run the analysis for sites present in a minimum of 77%

http://broadinstitute.github.io/picard
http://lh3lh3.users.sourceforge.net/snpable.shtml
http://lh3lh3.users.sourceforge.net/snpable.shtml
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of all individuals (24 in 31). A clear outlier in the Mexican

highland population was detected, RIMMA0677, a sam-

ple from relatively low altitude, which was suspected to

contain a divergent haplotype. A neighbor-joining tree

of SNPs within an inversion polymorphism on chromo-

some 4 that includes a diagnostic highland haplotype [5]

was constructed with the R package phangorn [83]. The

sample RIMMA0677 was not clustered with other high-

land samples, but embedded within lowland haplotypes

(Additional file 1: Figure S11), so it was removed from

further analyses.

The genetic diversity measures Watterson’s θ and θπ

were calculated in ANGSD [81] for each population. The

neutrality test statistic Tajima’s D was calculated with an

empirical Bayes approach [84] implemented in ANGSD

by first estimating a global site frequency spectrum (SFS)

then calculating posterior sample allele frequencies using

the global SFS as a prior. The three statistics were sum-

marized across the genome using 10-kb non-overlapping

sliding windows.

Inbreeding coefficients for each individual were esti-

mated with ngsF [85] with initial values of FIS set to be

uniform at 0.01 with an epsilon value of 1e − 5.

In addition, SNPs were polarized using the Tripsacum

dactyloides genome to assess the frequency of derived

homozygous sites in each maize landrace population.

T. dactyloides short reads were downloaded from the

National Center for Biotechnology Information (NCBI)

Sequence Read Archive (SRA) database (SRR447804–

SRR447807), mapped to the B73 reference genome v3

[74] with BWA [73], and incorporated into SNP calling as

described above.

Runs of homozygosity

SNPs were down-sampled to contain one SNP in a 2-kb

window to identify segments representing homozygos-

ity by descent (i.e., autozygosity) rather than by chance.

PLINK v.1.07 [86] was applied to identify segments of

ROHs in a window containing 20 SNPs, among which the

number of the maximum missing SNPs was set to 2 and

the number of the maximum heterozygous sites was set to

1. The shortest length of final ROHs was set to be 300 kb.

Physical distances were converted into genetic distances

based on a recent genetic map [87].

Detection of introgression

To assess per-genome evidence of population admixture

between maize landraces and teosinte, we calculated the

D statistic using ANGSD [81]. The statistic was cal-

culated using trees of the form (((X, low),mexicana),T.

dactyloides). One accession from the Mexican lowland

population was randomly sampled as the “low” taxon,

and each sample from all other populations except the

Mexican lowland was set as "X". The mexicana accession

TIL25 from the maize HapMap2 project [78] was treated

as the third column species. The D statistic was calcu-

lated in a 1-kb block, and then jackknife bootstrapping

was conducted to estimate significance.

In addition, the f̂d statistic [37] was calculated based

on a similar tree form (((P1,P2),P3),O), but using allele

frequencies across multiple individuals for each position

on the tree. We fixed P1 as the Mexican lowland popula-

tion, P3 as two lines of mexicana (TIL08 and TIL25), and

T. dactyloides as the outgroup. P2 was set to each of

the four highland populations and the South American

lowland population.

The f̂d statistic was calculated in 10-kb non-

overlapping windows across the genome with the

python script egglib_sliding_windows.py (https://github.

com/johnomics/Martin_Davey_Jiggins_evaluating_

introgression_statistics), which makes use of the EggLib

library [88]. The input file was generated by first identify-

ing genotypes using ANGSD (-doMajorMinor 1 -doMaf

1 -GL 2 -doGeno 4 -doPost 1 -postCutoff 0.95 -SNP_pval

1e − 6) followed by format adjustments with a custom

script (see “Availability of data and materials”). Outliers

were detected by setting the 95% quantile of the f̂d distri-

bution in the South American lowland population as the

cutoff.

Estimating burden of deleterious mutations

We estimated the individual burden of deleterious alle-

les based on GERP scores [89] for each site in the maize

genome, which reflects the strength of purifying selec-

tion based on constraint in a whole genome alignment

of 13 plant species [90]. The alignment and estimated

GERP scores are available at iplant (https://doi.org/10.

7946/P2WS60). Scores above 0 may be interpreted as his-

torically subject to purifying selection, and mutations at

such sites are likely deleterious. We identified Sorghum

bicolor alleles in the multiple species alignment as ances-

tral and defined the non-Sorghum allele as the deleterious

allele. Only biallelic sites were included for our evaluation.

Inclusion of the maize B73 reference genome when calcu-

lating GERP scores [90] introduces a bias toward under-

estimation of the burden of deleterious alleles in maize

versus teosinte populations. Therefore, we corrected the

GERP scores of sites where the B73 allele is derived fol-

lowing [7]. Briefly, we divided SNPs where the B73 allele

is ancestral into bins of 1% derived allele frequency based

on maize HapMap3 [91] and used this frequency distribu-

tion to estimate the posterior probability of GERP scores

for SNPs where the B73 allele is derived.

The sum of GERP scores multiplied by deleterious allele

frequency for each SNP site was used as a proxy of individ-

ual burden of deleterious alleles under an additive model

(HET ∗0.5+HOM ∗1). This burden was calculated under

a recessive model as the sum of GERP scores multiplied

https://github.com/johnomics/Martin_Davey_Jiggins_evaluating_introgression_statistics
https://github.com/johnomics/Martin_Davey_Jiggins_evaluating_introgression_statistics
https://github.com/johnomics/Martin_Davey_Jiggins_evaluating_introgression_statistics
https://doi.org/10.7946/P2WS60
https://doi.org/10.7946/P2WS60
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by one for each deleterious homozygous site (HOM ∗ 1).

For a better understanding of the variation of individ-

ual burden among sites under varied selection strength,

we partitioned the deleterious SNPs into four categories

(–2 <GERP ≤0, nearly neutral; 0 < GERP ≤2, slightly

deleterious; 2 < GERP ≤4, moderately deleterious; GERP

>4, strongly deleterious) and recapitulated the preceding

statistics.

Additional files

Additional file 1: Figure S1. Demography of maize populations. A.
MSMC results before and after masking candidate regions under selection
during domestication. B. Percentage of heterozygous sites versus distance
from the Balsas Valley in 3520 samples from the SeeDs data set. Figure S2.
Boxplot of multiple population genetic statistics. Watterson’s theta (A), θπ

(B), and Tajima’s D (C) are based on values in 10-kb non-overlapping
windows across the genome. Percentage of derived homozygous sites was
calculated for each individual and reported per population (D). Figure S3.
Cumulative length of ROHs in cM across populations. Lines indicate median
values in each population. ROH runs of homozygosity. Figure S4.
Calculation of D statistic across populations. Evidence of introgression from
mexicana into Mexican highland, Guatemalan highland, and southwestern
US highland maize populations. The dashed lines correspond to Z-scores

equal to −10 and 10. Figure S5. f̂d statistic results. Loess regression of f̂d in
10-kb nonoverlapping windows across all chromosomes. Figure S6.
Relative burden of deleterious alleles under additive model between maize
and teosinte (A; mean value in teosinte population was used as the
standard to calculate the relative burden) and among maize populations
(B; mean value in Mexican lowland population was utilized as the standard
to calculate the relative burden). Figure S7. Relative burden of deleterious
alleles under both additive and recessive models with different Genomic
Evolutionary Rate Profiling (GERP) partitions between maize and teosinte
(A; mean value in teosinte population was used as the standard to
calculate the relative burden) and among maize populations (B; mean
value in Mexican lowland population was utilized as the standard to
calculate the relative burden). Figure S8. Domestication candidate genes
exhibited lower θπ ratio between maize and teosinte, a signal of selection
in these genes. Distribution of ratio of θπ between maize and teosinte in
420 domestication candidate genes (mean value is indicated with red line)
against 10,000 replicates of genome-wide sampling of 420 random genes.

Figure S9. Distribution of number of deleterious sites per bp in 420
domestication candidate genes (indicated with blue line) compared to
genome-wide random samples under an (A) additive model and (B)
recessive model.Figure S10. Site frequency spectrum (SFS) of deleterious
SNPs in five populations. GuaHigh is not included since the small sampling
limited power for the SFS. Figure S11. Neighbor-joining tree of SNPs from
an inversion on chromosome 4 with a diagnostic haplotype for highland
Mexican material. (PDF 877 kb).

Additional file 2: Table S1. Basic information regarding the sampled
maize landrace accessions. NM New Mexico. (XLSX 11 kb).
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