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Abstract

Although cancer chemotherapy has historically been con-
sidered immune suppressive, it is now accepted that certain
chemotherapies can augment tumor immunity. The recent
success of immune checkpoint inhibitors has renewed inter-
est in immunotherapies, and in combining them with che-
motherapy to achieve additive or synergistic clinical activity.
Two major ways that chemotherapy promotes tumor immu-
nity are by inducing immunogenic cell death as part of its
intended therapeutic effect and by disrupting strategies that

Introduction

Cancer treatment strategies are based on the rational integra-
tion of multiple distinct treatment modalities that together
achieve the highest rates of disease control. Surgery and radio-
therapies are used to debulk tumors and achieve locoregional
disease control. In contrast, systemic therapies are used in early
cancers to eradicate micrometastatic disease and increase cure
rates, or in widespread incurable cancers to achieve the greatest
disease control with the fewest side effects. Standard systemic
therapies may include chemotherapies, pathway-specific molec-
ular therapies, and/or tumor-specific monoclonal antibodies.
Rational combinations of these systemic therapies are typically
designed to impinge on distinct elements of tumor biology to
achieve additive or synergistic antitumor effects. Immunothera-
py—includingvaccines and immune checkpoint blockade—is the
newest class of systemic cancer therapies. The ultimate goal of
immunotherapy is to establish a durable population of highly
active, tumor-specific T cells that can lyse tumor cells and eradicate
cancers. Strategically combining immunotherapies with other
systemic therapies to harness potential synergies is critical for
maximizing their clinical activity and realizing the greatest ben-
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tumors use to evade immune recognition. This second strat-
egy, in particular, is dependent on the drug, its dose, and the
schedule of chemotherapy administration in relation to
antigen exposure or release. In this Cancer Immunology at
the Crossroads article, we focus on cancer vaccines and
immune checkpoint blockade as a forum for reviewing
preclinical and clinical data demonstrating the interplay
between immunotherapy and chemotherapy. Cancer Immunol
Res; 3(5); 436-43. ©2015 AACR.

efits for patients with cancer. Preclinical and clinical work has
evaluated mechanisms of immunomodulation by standard che-
motherapy agents, revealing drug- and dose-dependent effects on
various aspects of the immune system (1, 2). The schedule and
sequence of chemotherapy and immunotherapy also affects
tumor immunity in combination regimens (2). These critical
variables differentially engage the potential additive and syner-
gistic clinical activities of chemotherapy and immunotherapy,
and are important to consider when translating chemoimmu-
notherapy regimens to the clinic. This Cancer Immunology at
the Crossroads article summarizes the current understanding of
these issues and highlights future directions for research.

Immunotherapies: Vaccines and Immune
Checkpoint Antagonists

Cancer vaccines

The ultimate goal of cancer immunotherapies is to establish a
durable pool of T cells that have potent antitumor activity. Cancer
vaccines are designed to prime and expand tumor-specific T cells
by delivering tumor-associated antigens in an immunologic
milieu that drives effective T-cell activation (3). Various cancer
vaccine platforms with a range of potencies have been tested (4).
Short peptides derived from tumor antigens that contain CD8™"
T-cell epitopes generally activate a weak, short-lived T-cell
response. In contrast, mixtures of short peptides that deliver
CD8 ™ T-cell epitopes with peptides that deliver T-helper epitopes,
or long peptides that include both CD4" and CD8™" T-cell epi-
topes within the same peptide, activate a stronger, more durable T-
cell response. Recombinant bacterial or viral vectors engineered to
deliver tumor antigens both activate CD4* and CD8* T cells and
provide additional inflammatory signals that bolster vaccine-
activated immunity. Peptide-pulsed dendritic cells (DC) provide
an optimal means of effectively cross-priming the tumor-specific
immune response. Furthermore, DC-based vaccines derived from
whole tumor cells can activate both CD4" and CD8" T cells
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specific for a range of tumor antigens, decreasing the likelihood of
selecting for antigen loss variants as a means of immune escape.

Immune checkpoint antagonists

Whereas vaccines prime the tumor-specificimmune response by
driving T-cell activation and expansion, immune checkpoint
antagonists abrogate negative signals that diminish T-cell activa-
tion during the priming process, or inhibit effector T-cell activity at
the tumor site (5). Immune checkpoints, represented by the
interaction of the cell-surface proteins cytotoxic T lymphocyte
antigen-4 (CTLA-4) and programmed death-1 (PD-1) with their
respective ligands, transmit a negative signal to T cells. Immune
checkpoint signaling thus decreases T-cell function, including
proliferation, cytokine release, and cytotoxic granule secretion.
CTLA-4 binds to its coreceptors B7-1 (CD80) or B7-2 (CD86),
providing a negative feedback signal at the T cell-antigen-present-
ing cell (APC) interface. PD-1 binds to its ligands PD-L1 (B7-H1)
and PD-L2 (B7-DC), which are present on APCs, host stromal cells
at the tumor site, and tumor cells themselves. Tumors co-opt these
immunoregulatory pathways to circumvent immune surveillance
and promote their growth and progression. Blocking immune
checkpoints with antagonist monoclonal antibodies "takes the
brakes off," restoring immune surveillance and unleashing T-cell
function. Ipilimumab (Yervoy; Bristol-Myers Squibb) is a human-
ized IgG; monoclonal antibody thatblocks CTLA-4 signaling and is
FDA approved for advanced melanoma (6). Pembrolizumab (Key-
truda; Merck) and nivolumab (Opdivo; Bristol-Myers Squibb) are
humanized IgG, monoclonal antibodies that are FDA approved for
metastatic melanoma (7); nivolumab received FDA approval in
March of 2015 for squamous non-small cell lung cancer (NSCLC).
Agents that target the PD-1 pathway also have clinical activity in a
range of other cancer types, including some (urothelial bladder
cancer and triple-negative breast cancer) that have been tradition-
ally considered immunologically inert (7).

Evasion of Immune Attack by Cancers

As with other systemic cancer therapies, resistance to immuno-
therapy may lead to therapeutic failure. Defining these mechan-
isms, and developing strategies for overcoming immune resistance,
is critical for the optimal efficacy of immunotherapy. Tumor cells
are known to evade immune surveillance by a variety of mechan-
isms (8). They downregulate tumor antigens, MHC class I and II
proteins, and other molecules involved in antigen processing and
presentation. Cross-talk between cancer cells and the host immune
system results in the intratumoral accumulation of immune sup-
pressive cells, including regulatory T cells (Treg), interleukin (IL)-
17-secreting T cells, myeloid-derived suppressor cells (MDSC),
and tumor-associated macrophages (TAM). Tumor cells may
express immune checkpoint ligands, such as PD-L1, either through
constitutive oncogene-driven expression or through upregulation
inresponse to interferon (IFN)-y released by T cells at the tumor site
(5). High levels of immune-suppressive cytokines within the tumor
microenvironment, including transforming growth factor-8
(TGF), tumor necrosis factor-o. (TNFa), and IL10, further shut
tumor-specific immune responses down (8).

Mechanisms of Immunomodulation by
Chemotherapy—Standard Doses

Standard cancer chemotherapy can promote tumor immunity
in two major ways: (i) inducing immunogenic cell death as part
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of its intended therapeutic effect; and (ii) disrupting strategies
that tumors use to evade the immune response. A large body of
data demonstrates that some chemotherapy drugs at their stan-
dard dose and schedule mediate their antitumor effect, at least
in part, by inducing immunogenic cell death (Fig. 1; ref. 9). This
process involves the concomitant release of tumor antigens and
the emission of danger-associated molecular patterns (DAMP)
in the tumor microenvironment during cell death. Anthracy-
clines activate expression of the pattern recognition receptor
(PRR) Toll-like receptor-3 (TLR3), the rapid secretion of type I
IFNs, and the release of the chemokine CXCL10; a type I IFN
gene signature predicted response to anthracycline therapy in
breast cancer patients (10). Phylogenetically conserved chemo-
kine signaling by CXCLS8 increases the exposure of calreticulin
on the tumor cell surface, which is critical for the recognition
and engulfment of dying tumor cells by DCs (11). High mobility
box binding protein-1 (HMGB-1) or ATP released into the
tumor microenvironment bind to their respective PRRs, TLR4,
and the purinergic receptor P2RX7. This activates the NLRP3
inflammasome, with resulting IL1B secretion and activation of
IFNY-secreting CD8™" T cells (8, 12). Underscoring the possible
clinical relevance of these pathways, TLR4 and P2RX7 loss-of-
function polymorphisms are associated with a higher risk of
breast cancer relapse after adjuvant anthracycline-based chemo-
therapy (13, 14), and TLR4 loss-of-function polymorphisms
with shorter progression-free survival (PFS) and overall survival
(OS) in patients with advanced colorectal cancer (15) and
squamous cell head and neck cancer (16). Loss-of-function
polymorphisms in TLR4 or P2RX?7 fail to affect clinical outcome
in patients with NSCLC (17), suggesting that tumor biology,
chemotherapeutic agent, or both may influence whether tumor
cell death is immunogenic, and which cell death pathway is
activated. Other forms of immunogenic chemotherapy-induced
cell death include autophagy (18) and necroptosis (19).

Alternatively, chemotherapy can modulate distinct features of
tumor immunobiology (Fig. 2) in a drug-, dose-, and schedule-
dependent manner (reviewed in ref. 2). The optimal integration of
immunotherapies with standard cancer therapies to minimize
antagonistic interactions and engage potential synergies is there-
fore of great importance. One obvious strategy is to give immu-
notherapy in the setting of minimal residual disease, after the
tumor mass has been optimally reduced with surgery and syste-
mic chemotherapy. This sequencing strategy minimizes the neg-
ative impact of tumor bulk on the potency of the antitumor
immune response. It also allows chemotherapy to modulate the
immune phenotype of any residual tumor cells. In addition to
inducing immunogenic cell death and type I IEN secretion,
anthracyclines promote the CCL2/CCR2-dependent recruitment
of functional APCs into the tumor site, but not into tumor-
draining lymph nodes (20). Distinct chemotherapy drugs may
modulate the intrinsic immunogenicity of tumor cells through a
variety of mechanisms (reviewed in ref. 2). Chemotherapy can
enhance tumor antigen presentation by upregulating the expres-
sion of tumor antigens themselves, or of the MHC class I mole-
cules to which the antigens bind. Alternatively, chemotherapy
may upregulate costimulatory molecules (B7-1) or downregulate
coinhibitory molecules (PD-L1/B7-H1 or B7-H4) expressed
on the tumor cell surface, enhancing the strength of effector
T-cell activity. Chemotherapy may also render tumor cells more
sensitive to T cell-mediated lysis through fas-, perforin-, and
Granzyme B-dependent mechanisms.

Cancer Immunol Res; 3(5) May 2015
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Figure 1.

Mechanisms of immunogenic tumor cell death induced by chemotherapy. Certain chemotherapy agents can cause immunogenic cell death through diverse
pathways. A, anthracyclines, cyclophosphamide, and oxaliplatin induce immunogenic cell death through the release of tumor antigens, the translocation of
CRT (an eat-me signal for phagocytosis by DCs) to the cell surface, and the secretion of the danger-associated molecules HMGB1 and ATP (a find-me

signal for phagocytosis by DCs). These cell death-associated molecules bind their respective receptors, the calreticulin receptor (CRTR), the TLR4 receptor (TLR4R),
and the P2RX7 receptor. This results in activation of the NRLP3 inflammasome, the production of pro-IL13, DC maturation, and the secretion of IL1B to
support the evolution of tumor-specific CD8™ T cells. B, tumor cell death induced by anthracylines results in the release of dsRNA, which binds to TLR3 and results in
the tumor cell autonomous secretion of type | IFNs. This pathway is analogous to the response to viral infection and supports the evolution of tumor immunity.

CRT, calreticulin; HMGBT, high mobility binding box 1; NRLP3, inflammasome.

One example of an immunomodulatory standard-dose che-
motherapy is gemcitabine, which has pleiotropic immune
effects. It induces tumor cell apoptosis and enhances the
cross-priming of CD8" T cells in animal models (21). It also
reverses defective cross-presentation of tumor antigens by
tumor-infiltrating DCs (22). Giving gemcitabine "before" vac-
cination or a CD40 agonist augmented the survival of mice
treated with chemoimmunotherapy (21, 23). Conversely,
gemcitabine + cisplatin given "after" immunotherapy with an
adenoviral vector expressing IFNo, (AdIFNa) also had greater
antitumor activity than either chemotherapy or AdIFN« alone,
by increasing antigen-specific tumor-infiltrating lymphocytes
(TIL) numbers, activation, and trafficking (24). Another study
showed that, although levels of antigen-specific peripheral T
cells were decreased, concomitant gemcitabine increased the
efficacy of a DC-based vaccine by both increasing T-cell traf-
ficking and sensitizing tumor cells to T cell-mediated lysis
(25). Decreased peripheral immunity was avoided by giving
gemcitabine after two cycles of vaccination. In addition, gem-
citabine significantly reduced MDSCs in preclinical animal
models (24, 26, 27). These principles were explored in the
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TeloVac study, a phase III clinical study designed to strategi-
cally harness the impact of standard-dose gemcitabine on
immunity and clinical responses to the promiscuous MHC
class II telomerase vaccine GV1001 given with GM-CSF adju-
vant (28). This study randomized 1,062 patients with
advanced or metastatic pancreatic cancer 1:1:1 to standard
gemcitabine/capecitabine chemotherapy (GemCap arm 1),
two cycles of GemCap followed by vaccination days 1, 3, and
5, then weekly x 3, and at week 6, then monthly thereafter
until disease progression at which time patients returned to
GemCap chemotherapy (sequential arm 2), or concurrent
GemCap for six cycles with GV1001 + GM-CSF given as in
arm 2 (concurrent arm 3). The primary endpoint of this study
was OS. OS in the concurrent arm was virtually identical to the
control GemCap arm, with a trend toward inferior OS in the
sequential arm. Objective response rates and PFS were signif-
icantly worse in the sequential arm relative to those of the
other two arms. Importantly, the sequential arm of this study
was designed based in part on the data summarized above, in
which a short course of chemotherapy prior to vaccination
could enhance antigen cross-presentation, and a return to
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Figure 2.

Chemotherapy modulates tumor immunity by mechanisms distinct from immunogenic cell death. Various chemotherapy drugs can modulate the activity of distinct
immune cell subsets or the immune phenotype of tumor cells through enhancing antigen presentation, enhancing expression of costimulatory molecules
including B7.1 (CD80) and B7.2 (CD86), downregulating checkpoint molecules such as programmed death-ligand 1 (PD-L1), or promoting tumor cell death through

the fas, perforin, or Granzyme B pathways. Reviewed in greater detail in ref. 2.

chemotherapy after vaccination could boost vaccine-primed
immunity by releasing tumor antigens and DAMPs. Synergy
between chemotherapy and immunotherapy in the TeloVac
study may have been prevented by at least three factors. First,
many patients on the sequential arm never returned to che-
motherapy due to rapid disease progression after beginning
the vaccination phase of the sequence. This problem supports
an argument for testing such a strategy in patients with a slower
pace of disease, giving vaccination time to establish a deep and
robust antitumor immune response (29). Second, the induc-
tion of tumor cell apoptosis is necessary for the enhancement
of antigen cross-presentation by gemcitabine (21); analysis of
apoptosis induction by GemCap in the TeloVac study revealed
that apoptosis was induced in <25% of patients. Even in
patients with evidence of apoptosis induction, there was no
evidence of an enhanced peripheral immune response after
vaccination (G. Middleton and colleagues; unpublished data).
In addition, the outcome of patients returning to chemother-
apy after vaccination was no better than the outcome of
patients treated with chemotherapy alone (28). Finally, mod-
ulation of the tumor microenvironment by chemotherapy may
also have been limited by the stromal characteristics of pan-
creatic cancer, as therapeutic synergy between vaccine and
gemcitabine in preclinical pancreas tumor models was seen
with subcutaneous pancreas tumors but not when the same
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pancreatic cancer cells were implanted orthotopically (25).
Also of relevance, analysis of MDSCs in 19 patients receiving
standard GemCap failed to demonstrate a reduction in Lin~
DR CD11b* MDSC numbers, but MDSC numbers decreased
in 19 of 21 patients receiving GemCap concurrently with
GV1001 + GM-CSF (30). Nine of these 21 patients developed
T cells specific for GV1001, and MDSCs declined in 8 of 9 of
these patients.

Other clinical trials have shown that standard chemothe-
rapy may inhibit immunotherapy. A phase II study integrated
pancreas GVAX with standard adjuvant therapy in 60 pati-
ents with stage II and III pancreatic cancer (31). In this clinical
trial, participants developed mesothelin-specific T-cell re-
sponses after one vaccination prior to surgery, then went on
to adjuvant 5-fluorouracil (5-FU)-based chemotherapy before
receiving three additional boost vaccinations. The vaccine-
induced mesothelin-specific T-cell response was reduced
during adjuvant chemotherapy and was restored by boost
vaccinations (E. Lutz and colleagues; unpublished data). A
phase III study tested prostate GVAX combined with standard-
dose docetaxel chemotherapy, randomizing patients to GVAX
every 3 weeks with docetaxel but no prednisone, or docetaxel
with prednisone, 10 mg daily (32, 33). The study was closed
after 408 patients were randomized because of an imbalance of
deaths on the vaccine arm relative to the control arm. At least

Cancer Immunol Res; 3(5) May 2015
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two major factors may have contributed to the failure of this
study. Although docetaxel has been reported to suppress
MDSC and enhance DC function (34), and also to induce
translocation of calreticulin (35), this vaccine had never been
tested with full-dose docetaxel in the clinic. The chemotherapy
may thus have impaired vaccine-induced immunity. In addi-
tion, prednisone is a critical component of standard docetaxel
therapy for these patients, and it was omitted from the vaccine
arm due to concern that it could inhibit T-cell responses. In
another trial, the activity of the canary pox vaccine ALVAC-
CEA-B7.1 was tested in combination with 5-FU + leucovorin +
irinotecan in 118 patients with metastatic colorectal cancer,
where three cycles of vaccine alone followed by vaccination
combined with chemotherapy was given to two groups, and
four cycles of chemotherapy followed by vaccination in
patients without disease progression on chemotherapy was
given to the last group (36). No significant differences between
the groups emerged, and chemotherapy did not inhibit CEA-
specific T cells. Finally, a phase II trial of a pox virus-based
vaccine encoding mucin-1 (MUC-1) and IL2 (TG4010)
enrolled 148 patients with MUC-1" tumors who received six
cycles of gemcitabine + cisplatin or vaccination with TG4010
and concurrent chemotherapy with six cycles of gemcitabine +
cisplatin, where vaccination continued until disease progres-
sion (37). CD16"CD56"CD69™" natural killer cells were pres-
ent at normal levels in 73.2% of patients, and were associated
with a more favorable safety profile, improved time to pro-
gression (HR, 0.5), and OS (HR, 0.6) in patients receiving
TG4010. Patients with high levels of activated natural killer
cells who received TG4010 had worse outcomes. On the basis
of these data, a phase III trial is in the planning stages. Multiple
small trials enrolling 10 to 28 patients have shown that
concurrent or phased standard chemotherapy does not inhibit,
and may enhance vaccine-induced immunity (2).

Immune checkpoint antagonists have also been combined with
standard-dose chemotherapy, either concurrently or in sequence.
A seminal phase III trial tested the CTLA-4 antagonist ipilimumab
or placebo combined with standard-dose dacarbazine (850 mg/
m?) in 502 patients with stage IV melanoma (38). This study
demonstrated improved survival with ipilimumab combined
with dacarbazine relative to dacarbazine alone. Two clinical trials
examined concurrent versus phased chemotherapy with ipili-
mumb in 204 patients with NSCLC (39) and 130 patients with
extensive-stage small-cell lung cancer (SCLC; ref. 40). In these
trials, standard paclitaxel (175 mg/m?) and carboplatin (AUC 6)
were used. Patients received four cycles of chemotherapy +
ipilimumab, followed by two cycles of chemotherapy, or two
cycles of chemotherapy followed by four cycles of chemotherapy
+ ipilimumab. For NSCLC, improved immune-related and stan-
dard PFS were observed if patients received phased treatment with
chemotherapy first, followed by chemotherapy + ipilimumab,
whereas for SCLC improved immune-related but not standard
PFS was observed for this same phased therapy. Finally, a small
clinical trial tested recombinant soluble LAG-3 immunoglobulin
(Ig) fusion protein, IMP321, as one component of first-line
paclitaxel therapy in 30 patients with metastatic breast cancer
(41).IMP321 binds with high avidity to MHC class II, resulting in
activation of APCs and subsequent activation of memory T cells.
The 6-month PFS rate was 90%, and biomarker analyses revealed
a sustained increase in activated APCs and a greater percentage of
natural killer and CD8™ effector memory T cells.

440 Cancer Immunol Res; 3(5) May 2015

Mechanisms of Immunomodulation by
Chemotherapy—Immune-Modulating
Doses

Various chemotherapy drugs, including cyclophosphamide,
paclitaxel, cisplatin, and temozolomide, can be used at low
doses in a schedule-dependent manner to modulate tumor
immunity (reviewed in ref. 2). Of these, the adjuvant activity
of cyclophosphamide has been most studied. A single low dose
of cyclophosphamide given 1 to 3 days before antigen exposure
overcomes systemic immune tolerance to enhance both anti-
body and T-cell responses, whereas the same treatment given
after or at the same time as antigen exposure induces antigen-
specific tolerance (2). In preclinical models, low-dose cyclo-
phosphamide depletes Tregs, promotes DC maturation, shifts
the CD4" T-helper phenotype from type 2 to type 1, induces the
differentiation of T-helper type 17 cells, and promotes the
evolution of a durable CD44™ T-cell memory response through
IFNa secretion (2). Clinically, cyclophosphamide doses of 200
to 300 mg/m? given 1 day prior to vaccination or 600 mg/m?
given 7 days prior to vaccination can decrease Tregs; metro-
nomic cyclophosphamide is similarly effective (42, 43). The
taxanes also have pleiotropic immune-modulating effects. Low-
dose paclitaxel promotes the TLR4-dependent maturation of
DC in mice (44) and shifts the CD4" T-helper phenotype from
type 2 to type 1, thereby promoting proinflammatory cytokine
secretion and enhancing the priming and lytic activity of CD8™"
T cells (45). Doxorubicin also has immunomodulatory prop-
erties, although the precise mechanisms remain unclear (1). In
preclinical models of tumor antigen-specific immune toler-
ance, a low dose of cyclophosphamide or paclitaxel given 1 day
prior to cell-based vaccination depletes Tregs, augments vac-
cine-induced T-cell responses, and promotes tumor-free sur-
vival in tumor-bearing mice (45). Moreover, a low dose of
doxorubicin given 7 days after vaccination enhances vaccine
activity and delays tumor outgrowth. Combining cyclophos-
phamide and doxorubicin at this low dose and schedule results
in the greatest effect, curing some of the mice. In this model,
cyclophosphamide selectively depletes Tregs, allowing the
recruitment of high-avidity tumor-specific T cells specifically
in animals cured of their tumor (not in mice whose tumors
grew; ref. 46).

Cyclophosphamide has historically been used in the clinic to
inhibit the influence of suppressor T cells based on how they were
defined in the 1970s and 1980s. Several clinical trials showed that
patients who received 300 mg/m? of cyclophosphamide given
3 days before vaccination with a sialy-Tn-keyhole limpet hemo-
cyanin (KLH) vaccine developed higher antibody titers and
lived longer than patients who received the vaccine alone (47).
On the basis of these data, a phase III clinical study randomized
patients with metastatic breast cancer, with 523 patients to receive
300 mg/m? cyclophosphamide followed by vaccination with
sialyl-Tn-KLH 3 days later, and 505 patients to receive 300 mg/m?
of cyclophosphamide followed by vaccination with KLH alone
(48). PES and OS were no different between the two groups,
though an unplanned subset analysis showed a trend toward
improved survival in those patients on concurrent endocrine
therapy. Thus, like the TeloVac study and the phase III study of
prostate GVAX, this study failed. In this case, it is possible that the
trial design was flawed, as there may have been some immuno-
modulatory activity associated with the control intervention. In
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addition, concurrent endocrine therapy could have confounded
theresults. A third limitation is that the vaccine only delivered one
antigen, setting the stage for immune escape.

More recently, a phase II clinical trial enrolled 68 patients with
advanced renal cell carcinoma to receive 17 vaccinations with the
multipeptide vaccine IMA901 (49). In this trial, 33 patients
received 300 mg/m? of cyclophosphamide 3 days before vacci-
nation with IMA901 + GM-CSF adjuvant, and 35 patients
received vaccination with IMA901 + GM-CSF adjuvant alone.
This single-dose of cyclophosphamide reduced Tregs by 20%
within 3 days relative to baseline, with a decrease in the percentage
of proliferating Tregs relative to all Tregs noted; these effects were
not seen in the group of patients who received IMA901 alone.
There was no change in absolute lymphocyte count on either arm.
Interestingly, the immune response rates between the two groups
were not different, suggesting that cyclophosphamide did not
alter the induction of tumor antigen-specific T cells. Among
immune responders, patients who received cyclophosphamide
and IMA901 had longer OS than patients who received IMA901
alone (HR, 0.38; P = 0.01); there was no difference related to
cyclophosphamide in immune nonresponders (HR, 0.92; P =
0.87). Overall, there was no difference in PFS between the two
groups, but there was a trend toward longer OS in patients who
received cyclophosphamide with IMA901 compared with those
who received IMA901 alone (median OS, 23.5 vs. 14.8 months).
Patients who developed multipeptide immune responses sur-
vived longer than those who did not, suggesting that clinical
benefit may track with a diverse tumor-specificimmune response.
Finally, among six predefined MDSC populations, two were
prognostic for OS, and among over 300 serum biomarkers,
APOA1 and CCL17 were predictive for immune response to
IMA901 and OS.

These two studies used a dosage of 300 mg/m? of cyclophos-
phamide for immune modulation based on its ability to deplete
suppressor T cells as they were historically defined, not based on
its ability to augment antigen-specific immune response induced
by vaccination. A distinct study tested an HER2*, GM-CSF-
secreting breast tumor vaccine alone, or with a range of low,
immune-modulating doses of cyclophosphamide and doxorubi-
cin given in a specifically timed sequence defined by preclinical
modeling (45, 50). This study used an innovative response surface
design to detect interactions among the vaccine, cyclophospha-
mide, and doxorubicin, where the vaccine was held constant. The
study was designed to test cyclophosphamide at doses of 0, 200,
250, or 350 mg/m? 1 day prior to vaccination, and doxorubicin at
doses of 0, 15, 25, and 35 mg/m2 7 days after vaccination in order
to identify doses of chemotherapy that optimized HER-2-specific
immunity. Vaccination alone induced new HER-2-specific
delayed-type hypersensitivity (DTH), with low levels of HER-
2-specific antibody also induced. Cyclophosphamide given at
200 mg/m? maintained the DTH response, and enhanced the
HER-2-specific antibody response; higher doses of cyclophos-
phamide abrogated HER-2-specific DTH and did not augment
HER-2-specific antibody responses. The optimal chemotherapy
dose combination tested as measured by the magnitude of
HER-2-specific antibody responses was cyclophosphamide at
200 mg/m” and doxorubicin at 35 mg/m?, which is close to the
doses predicted by response surface analysis at 193 and 25 mg/m?,
respectively. Detailed analyses showed that the lowest doses of
cyclophosphamide tested induced the selective apoptosis of
CD4" Tregs relative to effector T cells, creating a window for the

www.aacrjournals.org

Interactions between Chemotherapy and Immunotherapy

effective activation of effector T cells by the vaccine (51). These
data highlight the importance of innovative trial designs and
appropriate biomarker analyses in order to identify meaningful
interactions between chemotherapy and immunotherapy in
patients.

Few studies have examined low-dose chemotherapy in com-
bination with immune checkpoint blockade. One study in a
model of cervical cancer showed that anti-PD-1 antibody com-
bined with low-dose cyclophosphamide synergistically induces
antigen-specific immunity, the infiltration of CD8" and CD4"
FoxP3™ T cells into the tumor, and tumor-free survival (52). The
addition of anti-PD-1 to cyclophosphamide augments and pro-
longs the effect of cyclophosphamide in decreasing both systemic
and tumor-infiltrating Tregs. To date, there are no clinical trials
exploring low-dose immune-modulating chemotherapy with
immune checkpoint blockade in patients.

Conclusions and Future Directions

The success of immune checkpoint antagonists heralds the
dawn of a new age in cancer therapy, in which harnessing the
power of the immune system to treat cancer is becoming a key
strategy for clinical management. Combination therapies that
integrate distinct immunotherapies, including immune check-
point antagonists and cancer vaccines, with chemotherapy, radio-
therapy, and targeted molecular therapy are under active inves-
tigation. Understanding the cellular and molecular mechanisms
underlying the interplay of traditional cancer therapies, and their
dose- and schedule-dependent activities, will be essential for
effective translation to the clinic. Novel trial designs that arise
from and build upon clinically relevant preclinical data to inves-
tigate dose and schedule will be essential. Careful assessment of
patterns of clinical response and appropriate clinical endpoints
will be key for success. Biologic correlates that not only evaluate
the most relevant immunologic endpoints (tumor antigen-spe-
cific CD8" T cells, for example) but also dissect mechanisms of
interaction between chemotherapy and immunotherapy are also
important to build into trials testing chemotherapy in combina-
tion with vaccines and immune checkpoint modulators. The first
generation of clinical trials described here has yielded important
insights that can inform the way forward as harnessing the
antitumor immune response becomes the backbone of cancer
therapy.
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