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Abstract—This paper describes how to exploit the scheduling slack in a real-time system to reduce energy consumption and achieve

fault tolerance at the same time. During failure-free operation, a task takes checkpoints to enable recovery from failure. Additionally,

the system exploits the slack to conserve energy by reducing the processor speed. If a task fails, it will restart from a saved checkpoint

and execute at maximum speed to guarantee that the deadlines are met. The paper shows that the number of checkpoints and their

placements interact in subtle ways with the power management policy. We study two checkpoint placement policies for aperiodic tasks

and analytically derive the optimal number of checkpoints to conserve energy under each. This optimal number allows the CPU speed

to be slowed down to the level that yields minimum energy consumption, while still guaranteeing recoverability of tasks under each

checkpointing policy. The results show that traditional periodic checkpointing is not the best policy for the combined purpose of

conserving energy and guaranteeing recovery. Instead, better energy savings are possible through a nonuniform distribution of

checkpoints that takes into account the energy consumption and reliability factors. Depending on the amount of slack and the

checkpointing overhead, energy can be reduced by up to 68 percent under nonuniform checkpointing. We also demonstrate the

applicability of these checkpoint placement policies to periodic tasks.

Index Terms—Checkpointing, fault tolerance, frequency scaling, power management, real-time systems, reliability, voltage scaling.

�

1 INTRODUCTION

SLACK that exists in a schedule has been used for fault
tolerance purposes, for example, to restart a task, or a

part of a task, after a fault occurs [9], [18], [20], [21], [30],
[33]. Checkpoints may need to be inserted in situations
where the slack in scheduling may not allow an entire task
to be restarted [8]. This paper presents a study showing
how this slack can also be exploited to simultaneously
tolerate failures and reduce the energy consumption of the
system. The idea behind this work is simple and intuitive.
During failure-free operation, we exploit the slack to
conserve energy by slowing down the processor such that
the tasks can meet their deadlines and also recover from
potential failures. If a failure occurs, we set the processor to
operate at maximum speed (and, consequently, maximum
energy consumption) to reexecute the lost computation.

Power management has recently attracted a large body

of research [7], [11], [12], [23], [24], [27], [28], [32], [35], [36],

[37]. This increasing attention has beenmotivated initially by

the limitations on battery life in portable devices. There are

several aspects to the problem, including controlling the

powerof theprocessor,display,disk subsystem,andmemory

[6]. The interactions of these techniqueswith failure recovery

are notwell understoodandweare not aware of anyprevious

study that simultaneously addresses both fields of research.
Our work is relevant in real-time systems where reliability
and low power consumption are required. Examples include
autonomous airborne and seaborne systems working on
limited battery supply, space systems working on a limited
combination of solar and battery power supply, or time-
sensitive systems deployed in remote locations where a
steady power supply is not available.

In this paper, we present two checkpoint placement
policies. The first is the standard, straightforward periodic
checkpointing. Under this policy, we compute the optimal
number of checkpoints that must be inserted to minimize
the energy consumption, subject to the constraints of
recovering from a single failure and completing before the
task’s deadline. The second checkpoint placement policy
takes a more aggressive approach at reducing processor
speed, resulting in more energy savings than can be
obtained by the uniform placement alone. It places
checkpoints in a manner where the frequency of check-
pointing starts slowly at the beginning and increases as we
approach the task deadline. An analysis shows that,
depending on the workload, this method can achieve up
to 68 percent energy savings while tolerating one potential
failure and meeting the task deadline.

The scope of this paper is limited to the analysis of
energy conservation in the context of a fault-tolerant real-
time system. We also discuss some issues for possible
implementation of the algorithms presented here. However,
the focus is on the fundamental issues and the theoretical
derivation to analyze the potential for energy conservation
in the context of the checkpointing policies under study.

This paper is organized as follows: In Section 2, we
present the real-time, power consumption, fault, and
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recovery models. In Section 3, we derive the necessary
conditions for determining the optimal number of check-
points that minimize energy consumption, when check-
points are placed uniformly in a task. Section 4 presents and
analyzes results when the checkpoints are placed nonuni-
formly in the tasks and Section 5 describes how to apply our
scheme to periodic tasks and discusses an illustrative
example. Implementation issues are discussed in Section 6,
while Section 7 presents related work. The paper then
concludes with Section 8.

2 MODELS

2.1 Task and Real-Time Models

A typical real-time system model assumes that a task, � , has
a worst-case execution time and a deadline, D, which is
derived from hard real-time constraints. Without loss of
generality, we assume that a task is ready at time 0 and,
therefore, D can be seen as the time interval within which �
is allowed to execute. However, given that variable voltage
CPUs are available, the time to execute task � depends on
the processor speed. We therefore characterize a task � by a
fixed quantity, namely, its worst-case number of CPU cycles,
C, needed to execute the task.

To simplify analysis and to allow for the derivation of
analytical formulas, we would like to assume that C is
independent of the CPU speed for a given processor
architecture. This assumption, however, does not hold if
the speed of the memory system is independent of the
speed of the CPU since memory references will consume a
larger number of cycles when the processor speed is high,
thus increasing the total number of cycles needed to execute
the program. For this reason, we assume that C is the worst-
case number of CPU cycles needed to execute a program at
the maximum processor speed.

We have conducted a number of simulation experiments
using the Simple-Scalar simulator to determine the degree
of pessimism in the definition of C. These experiments
show that, with on-chip caches and low cache miss rates, C
does not change substantially with the processor speed. For
the Li, Perl, Go, and Compress programs from the SPEC
benchmarks [4], changing the processor’s speed from
700 MHz to 300 MHz changed the number of CPU cycles
needed to execute the benchmarks by 0.01 percent,
1.2 percent, 1.9 percent, and 0.6 percent, respectively. The
main reason for the small change in the number of cycles is
the small cache miss rate. In all the experiments, the default
simple-scalar configurations of 16K data and instruction L1
caches and 256K L2 cache are used. No disk I/O is
performed during execution since, without this assumption,
it is extremely hard to estimate the execution times of tasks.
For the rest of this paper, we normalize the units of C such
that the maximum processor speed is 1. That is, if the
maximum processor speed is S cycles per second, then we
express the number of cycles in units of S cycles and thus
normalize the maximum processor speed to Smax ¼ 1.

The difference between the deadline, D, and the worst-
case execution time, C, is defined in this paper as the static
slack, or simply, the slack. This is different from the
dynamic slack which results at runtime when a task

consumes less than its worst-case execution time. In this
paper, we will mainly be concerned with the static slack
and briefly discuss the dynamic slack in Section 6.3.

Last, when describing the periodic model in Section 5,
each task �i has associated with it a period, Ti, which
represents the minimum interarrival of consecutive in-
stances of the task. Let U ¼PN

i¼1

Ci

Ti
be the total utilization of

the task set under the maximum processor speed. In order
for U to be dimensionless, Ti is expressed in terms of the
number of CPU cycles at the maximum processor speed of
Smax ¼ 1. It is a well-known result that, if U � 1 and Earliest
Deadline First (EDF) scheduling is used, then each instance
of every task will terminate execution before the end of its
period, thus meeting its deadline [22].

2.2 Power Consumption Model

Variable-voltage CPUs can reduce power consumption
quadratically or cubically at the expense of linearly increased
delay (reduced speed) [14]. Thus, any effective Variable
Voltage Scaling (VVS) scheme should be able to vary the
voltage fed to the system component and the frequency of the
system clock. The power consumption of the processor under
the speed S is given by gðSÞ, which is assumed to be a strictly
increasing convex function, representedbyapolynomial of at
least the second degree [14]. If task �i occupies the processor
during the time interval ½t1; t2�, then the energy consumed
during this interval isEðt1; t2Þ ¼

R t2
t1
gðSðtÞÞdt. For the rest of

this paper, we use the notation E without parameters when
no confusion arises. We assume that the CPU speed can be
changed between a minimum speed Smin (minimum supply
voltage necessary to keep the system functional) and a
maximum speed Smax and that 0 � Smin � Smax ¼ 1.

2.3 Fault and Recovery Models

We assume a real-time system that is subject to transient
and intermittent faults, which are faults that have instanta-
neous duration [17]. Furthermore, we start with the
assumption that no more than one fault can occur before
the task’s deadline. For the periodic task model, we
consider two schemes, one assumes that at most one fault
occurs in each task’s instance and the other assumes that
faults are separated in time by intervals Tmax, where Tmax is
the longest period.

The possible causes of transient faults include limitations
in the accuracy of electromechanical devices, electromag-
netic radiation received by interconnections (such as long
buses acting like receiving antennas), power fluctuations
not properly filtered by the power supply, and the effects of
ionizing radiation on semiconductor devices [3]. Our focus
is on the transient fault tolerance scheme because it has been
shown that transient faults are significantly more frequent
than permanent faults [3], [16].

We assume a real-time system with tasks that take
checkpoints in main memory and use them to restart if a
fault occurs. We assume that the system will detect a fault
before the next checkpoint is taken, for instance, by running
internal integrity tests, using hardware assistance, or
employing techniques from test theory. We assume that
the overhead of running the self-tests and the error
detection is included in the checkpointing overhead. This
is a reasonable assumption, given that the previous
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checkpoint cannot be discarded before ensuring that the
new checkpoint is complete and that it represents a correct
state of the system. Therefore, it will be necessary to run
diagnosis and self-tests after taking each checkpoint and,
thus, one can include the cost of these tests as part of the
checkpointing overhead.

Although main memory checkpointing cannot recover
from a total system failure, the timing constraints of real-time
systems make traditional disk-based checkpointing imprac-
tical. Battery-backedRAM, shielded, or stable semiconductor
memory could be used if a restart from a total system failure
or crash is desired. Either way, for the purpose of this
presentation, it suffices to assume that the system can recover
from transient faults. We do not address, in this paper, the
engineering aspects of checkpointing, but we remark that,
due to the real-time nature of these applications, the
checkpointing mechanism must be predictable.

In the absence of power consumption considerations, the
checkpoints must be placed such that the tasks can recover
from failures and still meet their deadlines. Thus, if there is
slack t in the schedule within a interval T , checkpoints must
be placed such that no more than t amount of execution is at
risk. This simple view becomes more complex when
exploiting the slack for power management. In the next
section, we discuss how the placement of checkpoints is
affected by the competing desires for reducing power
consumption and tolerating failures.

3 POWER MANAGEMENT UNDER UNIFORMLY

DISTRIBUTED CHECKPOINTS

We study the placement of checkpoints to guarantee
recovery from failures without missing deadlines, while
reducing the energy by lowering the processor speed. In
this section, we derive the optimal number of checkpoints
in the case where tasks take regular checkpoints.

3.1 Description

Assume that task � takes n periodic checkpoints to enable
recovery from failures and that at most one fault can occur
during the execution of � . If a fault occurs, the task rolls
back to the most recent checkpoint and reexecutes. Let r be

the number of cycles needed to create a checkpoint and run
self-tests and diagnosis, where, typically, r is much smaller

than C, the maximum number of cycles needed to execute � .
Our goal is to try to use the time slack between the deadline,
D, and the completion time of � for both fault tolerance and
energy management.

Fig. 1 illustrates this reasoning: A computation is

represented by a rectangle whose area is the number of
CPU cycles needed for execution. The width of the rectangle
represents the CPU execution speed and its length represents
the time taken for execution. Fig. 1a and Fig. 1b show the
execution of � , at the maximum speed, without checkpoints

and with n ¼ 4 checkpoints, respectively. Fig. 1c shows that
we can reduce the speed of executing � (with the four
checkpoints) to S as long as the difference between the
deadline,D, and the time for executing � at speed S is at least

enough for the overhead of checkpoints (nr) and the time
necessary for a potential rollback, ðCnÞ, at maximum speed.
Note that, since failures arenot frequent, recovery froma fault
proceeds at the maximum speed rather than at speed S, thus
leaving more slack to be used for speed reduction.

More specifically, the speed, S, that allows � to finish on

time while minimizing energy consumption and allowing
for the checkpointing overhead and the time to roll back
from a fault, should satisfy the following:

D � C þ nr

S
þ C

n
: ð1Þ

To simplify the presentation, denote C
D and r

D by � and �,
respectively. The higher the value of �, the less the amount

of slack available. Similarly, � represents the overhead of
checkpointing relative to the total available time to execute.
Simple algebraic manipulation of (1) leads to the following
solution for the speed, S:

S � max
n�þ n2�

n� �
; Smin

� �

: ð2Þ

This equation eliminates the impractical solutions where the
operating voltage cannot be reduced below a given

minimum. Since the energy, E, consumed during the
execution of � is proportional to the time it takes to execute
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the task and to the square of the speed during execution
[10], we obtain:

E ¼ cS2
C þ nr

S
¼ cD

nð�þ n�Þ2
n� �

; ð3Þ

where c is a proportionality constant and the lower bound
for S is temporarily ignored.

We can derive the value of n which minimizes E by
differentiating (3) with respect to n and equating the result
to zero. This gives a cubic equation in n with two
nonpositive solutions (which we ignore) and one optimal
positive value of n, given by:

n ¼ �

4
3þ

ffiffiffiffiffiffiffiffiffiffiffi

9þ 8

�

s
 !

: ð4Þ

The value obtained for n should result in a speed, S,
which is larger than Smin. If not, then n should be chosen
such that Smin ¼ ðn�þ n2�Þ=ðn� �Þ. Also, if (4) gives a
noninteger value for n, then either the floor or the ceiling of
this value should be taken, according to which number
would produce a lower energy consumption value. This
point is further discussed next.

3.2 Analysis

Intuitively, themore checkpoints are taken, the lesswork is at
risk and, therefore, the portion of the slack reserved for
rollback-recovery is smaller, allowing the remaining slack to
be used for further reduction of processor speed. However,
the overhead of checkpointing consumes a part of the
available slack that would be used to reduce speed.
Consequently, the more checkpoints are taken, the less the
opportunity to reduce speed. Fig. 2 shows the consumed
energy as it varies with the number of checkpoints.1 The
figure reveals a couple of interesting points. First, the
minimum energy consumption is usually obtained at non-
integer values of n, whichmeans that the solution of (4) is not
usually an integer. This is true for most cases and, therefore,
an approximation to an integer value must be computed by

checking the integer neighboring values, which gives an
optimal solution due to the convexity of the energy function
given by (3). Second, the optimal number of checkpoints is
typically low and there is a large increase in the energy
consumption if the number of checkpoints increases.

In Fig. 3, we plot the energy level for the optimal number
of checkpoints derived from (4). The figure shows that the
energy consumed increases as � increases since there is less
slack in the system and therefore fewer opportunities to
slow down the processor. Moreover, the energy consump-
tion increases as the overhead of checkpointing increases.
Note that some of the curves (with higher energy con-
sumption) are not “complete”: This is because the higher
values of � and � yield infeasible solutions. The figure also
shows the energy consumption assuming that no check-
points are taken (NoFT). This curve is given in order to
compare the energy consumption with and without fault
tolerance.

Table 1 shows the number of checkpoints taken under two
scenarios and for various combinations of values for � and �.
In the first scenario, denoted by FT-Only, checkpoints are
taken only to support recovery, but no power management
takes place. In the second, denoted by FT + EC, checkpoints
are taken to support reliability and speed is controlled to
conserve energy. Additionally, the table shows the percen-
tage energy savings that is obtained from the second scenario
compared to the first. The number of checkpoints computed
for the first scenario is the minimum number of checkpoints
that can allow recovery, from (1) with S ¼ 1. The number of
checkpoints shown for the second scenario is obtained by
computing the optimal value n in (4), then computing the
energies for both the floor and the ceiling of the result, and
choosing the one that gives lower energy consumption.
Although the choice of � ¼ 0:005 may appear too low, for
small values of � (e.g., � ¼ 0:3), this corresponds to a
reasonable checkpointing overhead (when � ¼ 0:3, the over-
head is actually 1.5 percent of the computation time, C). This
is in line with published numbers in the literature [5]. Last,
empty entries within the table indicate situations where
checkpointing cannot be used because the combination of
available slack and checkpointing overhead makes it
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impossible to guarantee recovery by the deadline, even

when executing at maximum speed.
Table 1 shows two predictable trends. As expected, when

the slack is relatively large (e.g., � ¼ 0:3), substantial energy

saving can be obtained by adding checkpoints. However, as

the slack becomes relatively smaller, the speed reduction

yields predictably smaller energy saving until the savings

practically disappear at � ¼ 0:8. This is not due to the

ineffectiveness of the speed reduction, but rather because

the slack does not even accommodate checkpointing for the

purpose of recovery alone, much less energy savings. The

second trend is that the efficiency of checkpointing is

extremely important. When the overhead is high (� is 0.10

or larger), the resulting energy saving is very low and

disappears quickly with larger values of �.

4 POWER MANAGEMENT WITH NONUNIFORM

DISTRIBUTION OF CHECKPOINTS

4.1 Motivation and Intuition

In this section, we explore whether further speed reduction

is possible through an alternative checkpoint placement

policy. The intuition behind this exploration takes the

optimistic view that failures are not frequent. Therefore, if a
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failure occurs, it is conceivable that we let the task execute
at maximum speed not only during rollback, as in Section 3,
but also following the rollback and recovery when the task
executes the remainder of the computation. Of course,
execution under maximum speed is not optimal for energy
consumption, but we force the task to run at maximum
speed only following a presumably rare failure and only
until the deadline expires. This scheme, however, requires
nonuniform checkpoint placement and allows execution at
a lower speed than in the case of uniform checkpointing. To
see why, consider that the task executes at a low speed,
exploiting the slack. Yet, at the beginning of execution, the
task hasn’t “consumed” much of “available” slack and,
therefore, low frequency of checkpoints is possible because
most of the slack is available to accommodate a large
amount of work at risk if we need to recover at maximum
speed. As the task continues to execute, however, it slowly
“consumes” the slack available. Gradually, the remaining
slack can accommodate decreasing amounts of work at risk
and, hence, there is a need for increasing the frequency of
the checkpointing to accommodate the decreasing ability of
the remaining slack to handle work at risk as the task
approaches the deadline.

4.2 Technical Description

Assume that the n checkpoints are placed in � such that the
C cycles of � are divided into n sections, P ð1Þ; . . . ; P ðnÞ with
each P ðkÞ requiring CðkÞ CPU cycles to execute. Note that, in
the previous section, we have assumed that CðkÞ ¼ C

n , for
k ¼ 1; . . . ; n.

When a fault is detected in P ðkÞ, then the reexecution of
P ðkÞ as well as the execution of P ðkþ1Þ; . . . ; P ðnÞ can proceed
at the maximum processor speed, as described in
Section 4.1. This means that the minimum speed, S, should
satisfy the following, for k ¼ 1; . . . ; n:

D �
X

k

i¼1

ðrþ CðiÞÞ
S

þ CðkÞ þ
X

n

i¼kþ1

ðrþ CðiÞÞ: ð5Þ

The term
Pk

i¼1

ðrþCðiÞÞ
S represents the execution at a

reduced speed up to a failure in section P ðkÞ. The term
CðkÞ represents the time it takes to reexecute section P ðkÞ,

while
Pn

i¼kþ1
ðrþ CðiÞÞ represents the time to execute the

remainder of the task at maximum speed after a failure in

section P ðkÞ. The goal is thus to find Cð1Þ; . . . ; CðnÞ and the

minimum value of S such that (5) is satisfied and

X

n

i¼1

CðiÞ ¼ C: ð6Þ

The minimum value of S that satisfies (5) and (6)

simultaneously is obtained if we can find a solution for the

system of (5) and (6) with the inequality in (5) replaced by

an equality. The next lemma, which is proven in the

Appendix, sets the stage for finding such a solution.

Lemma 1. When
Pn

i¼1
CðiÞ ¼ C, the n equations

D ¼
X

k

i¼1

ðrþ CðiÞÞ
S

þ CðkÞ þ
X

n

i¼kþ1

ðrþ CðiÞÞ k ¼ 1; . . . ; n; ð7Þ

are equivalent to the following n equations:

CðnÞ ¼ D� C þ nr

S
ð8Þ

CðkÞ þ r ¼ Cðkþ1Þ þ r

S
k ¼ 1; . . . ; n� 1: ð9Þ

We illustrate in Fig. 4 the rationale used to write (5)

assuming n ¼ 4. Fig. 4a and Fig. 4b show the execution of �

under the maximum speed without and with checkpoints,

respectively. Fig. 4c shows that the minimum speed, S, that

can be used for executing � should allow it to finish at or

before D� Cð4Þ to allow for the recovery, at maximum

speed, from a fault in Cð4Þ. Fig. 4d shows that if a fault is

detected at the end of the execution of Cð3Þ (at speed S), then

the remaining time should be large enough to allow the

reexecution of Cð3Þ and the execution of Cð4Þ, both at

maximum speed. Fig. 4e and Fig. 4f show the recovery from

faults at the end of Cð2Þ and Cð1Þ, respectively.
We need to find the value of S that simultaneously

satisfies the nþ 1 ((6), (8), and (9)). For this, we first observe

that the repeated application of (9) gives
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CðkÞ þ r ¼ CðnÞ þ r

Sn�k
k ¼ 1; . . . ; n� 1;

which, when substituted in (6), gives

ðCðnÞ þ rÞ 1

Sn�1
þ . . .þ 1

S
þ 1

� �

¼ C þ nr

ðCðnÞ þ rÞ 1� Sn

Sn�1 � Sn
¼ C þ nr:

By substituting for CðnÞ from (8), using � ¼ C
D and � ¼ r

D ,
and, after simple algebraic manipulation, we obtain

S ¼ 1� �þ n�

1þ �

� �

Snþ1 þ �þ n�

1þ �
: ð10Þ

Hence, given �, �, and n, we can solve (10) for S to find the
minimum allowable CPU speed that guarantees completion
by the deadline, even with a recovery from a single fault. In
the absence of faults and recovery, the energy consumed
during the execution of � at speed S is given by:

E ¼ cS2
C þ nr

S
¼ cDSð�þ n�Þ; ð11Þ

where c is again a proportionality constant.
Similar to the case described in Section 3, for a given �

and �, the optimum value of E depends on the number of
checkpoints n. Given the form of (10), however, it is very
difficult to find the optimum n analytically for a given � and
�. Nevertheless, it is straightforward to iteratively solve (10)
and find S for any given n. The optimum n that minimizesE
can thenbe foundbysearching thepossiblevaluesofn. This is
reasonable because the number of checkpoints is typically
small. For example, for cD ¼ 1, � ¼ 0:05, and � ¼ 0:5 (the
same case considered in Section 3), (10) gives the solutions
S ¼ 0:75,S ¼ 0:72,S ¼ 0:74,S ¼ 0:77, andS ¼ 0:82 forn ¼ 2,
n ¼ 3, n ¼ 4, and n ¼ 5, respectively (the case for n ¼ 1 is not
feasible). Using (11), these S values yield E ¼ 0:45, E ¼ 0:47,

E ¼ 0:51, and E ¼ 0:58, respectively, which shows that the
energy consumption is minimized at n ¼ 2.

Using the computed values of n and S, determining the
checkpoint placements is straightforward. Using Lemma 1,
one can compute the value of CðnÞ, then recursively
compute the values Cðn�1Þ; . . . ; Cð1Þ.

4.3 Analysis

In this section, we analyze the nonuniform checkpoint
placement scheme. First, we show the CPU speed settings
as a function of the number of checkpoints (see Fig. 5). As
we can see, in this scheme, when the slack offered by the
system is low (i.e., high value of �), the CPU is typically set
at a high speed. This is because there is a need to
compensate for the checkpoints, which are done during
slack. On the other hand, as the slack increases, the CPU
speed decreases as a function of the number of checkpoints
and then increases very quickly; intuition leads us to expect
the biggest gains to be during the minimum speed settings.
We can also see that the more slack there is in the system,
the more checkpoints can be taken (not necessarily should be
taken). To illustrate this point, when � ¼ 0:6, 0:5, and 0:4,
the maximum number of checkpoints that maintains
feasibility of the schedule is 5, 8, and 11, respectively (that
is, the curves do not go beyond those points). Similarly, the
smallest number of checkpoints is also restricted.

As can be seen from Fig. 6, the intuitive behavior alluded
to above is not observed: The biggest energy savings are not
always when the CPU speed is set to the smallest value. The
top line corresponds to the smallest slack in the system and
it can be seen that the energy consumption increases almost
linearly with the number of checkpoints. This is because
there is a need to increase the speed of the CPU if more
checkpoints are being taken since there will be less time for
the computations to use the CPU, within the required
deadlines. Other values of � behave differently, which can
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be accounted for by observing that the formulas depend not
only on n, but also on � and �. Of particular interest is the
curve for � ¼ 0:5, which has smaller speed when n ¼ 3, but
smaller energy when n ¼ 2 due to the overhead of
checkpointing.

Next, we compare the uniform checkpoint distribution
scheme of Section 3 with the nonuniform scheme presented
in this section. Table 2 shows a comparison between the two
checkpointing placement policies. The table shows the
number of checkpoints under the nonuniform and the
FT-Only schemes. The table also shows the energy savings
that results from the nonuniform checkpointing compared
to FT-Only and the additional savings that are obtained
from the nonuniform scheme compared to the uniform
placement. The table shows that the nonuniform scheme is
very effective in reducing energy, reaching a reduction of
up to 68 percent. The comparison shows that the nonuni-
form checkpointing policy is also more effective in conser-
ving energy than uniform checkpointing. The additional
savings reached about 8 percent in the best case, in addition
to the savings that can be obtained by the uniform
checkpointing policy itself. Therefore, we conclude that
relying on the low probability of faults and taking a more
aggressive stance yield better conservation than a more
passive approach.

5 POWER MANAGEMENT AND ERROR RECOVERY IN

PERIODIC TASKS

Consider the case of N periodic tasks, �1; . . . ; �N , where each
task, �i is specified by thenumber ofCPUcycles,Ci, needed to
execute the task and the period,Ti, of the task.Without loss of
generality, we assume that T1 � T2 � . . . � TN . We also
assume thatU ¼PN

i¼1

Ci

Ti
� 1, as defined in Section 2. In other

words, EDF scheduling is able to complete execution of each
instance of every task before the end of its period, thus

meeting its deadline. In this section, we show that if U is
sufficiently less than 1, then the slack, 1� U , can be used for
fault recovery and, at the same time, for slowing down the
processor speed to save energy. We again consider two
checkpointing schemes. In the first scheme, the checkpoints
are uniformly placedwithin each task in the system,while, in
the second scheme, the checkpoints are not uniformlyplaced.

5.1 Uniformly Distributed Checkpoints

In this section, we assume that checkpoints are uniformly

inserted in each task every � interval (measured in

CPU cycles). That is, for each task, �i, dCi

� e checkpoints are

inserted, one every � of the Ci cycles of �i (including one at

the beginning of the task). With the addition of these

checkpoints, the execution of �i takes Ci þ dCi

� eri cycles

every period in the absence of faults, where ri is the

overhead of checkpointing for task �i. If �i executes at a

speed S, then the execution will take
CiþdCi� eri

S time and the

effective utilization of �i is

Ci þ Ci

�

l m

ri

TiS
:

In order to allow for rollback after a fault, a slack of
� cycles will be reserved for error recovery every interval
T1. As stated in the following lemma (proven in the
Appendix), this slack will guarantee that each task finishes
at least � time units before its deadline and, thus, has time
for recovery from a fault in any task.

Lemma 2. Given a set of tasks, �1; . . . ; �N , where each task �i has

a worst-case execution time of Ci and a period of Ti, if
PN

i¼1

Ci

Ti
� 1� �

T1

, then, in EDF execution of the tasks, each

task finishes at least � time units before the end of its period.
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If the speed of the system in the absence of faults is set to

S and recovery is allowed at the maximum speed, then the

utilization of the system is given by

�

T1

þ
X

N

i¼1

Ci þ Ci

�

l m

ri

TiS
:

In order to fully use the available slack, 1� U , for error

recovery and power management, we can set the above

utilization to 1, from which we find that

S ¼
X

N

i¼1

Ci þ Ci

�

l m

ri

Ti

1

1� �
T1

: ð12Þ

From the above equation, it is clear that the minimum

processor speed that guarantees that the deadlines are met

depends on the checkpoint separation, �. The choice of �

affects the speed S and, thus, the energy consumption. The

following lemma, which is proven in the Appendix,

specifies how to chose � so as to minimize the energy

consumption.

Lemma 3. If, in each task in the system, checkpoints are separated
by �, then the total energy consumption is minimized when �

is given by

� ¼ �3bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9b2 þ 8abT1

p

2a
; ð13Þ

where, a ¼
PN

i¼1

Ciþri
Ti

and b ¼
PN

i¼1

Ci

Ti
ri.

In other words, to minimize power consumption,
checkpoints should be placed in each �i separated by � as
given by (13). Of course, if Ci is not a multiple of �, then the
number of cycles between the last checkpoint and the end of
�i will be less than �. After finding the optimal checkpoint
interval, �, the CPU speed during fault-free operation can
be found from (12).

Note that the reservation of a slack of � every period T1 is
sufficient to guarantee that, when a fault occurs in a task �i,
there will be enough time reserved for recovery. However,

observe that, when a fault occurs in �i, recovery consumes
� time units, which is equivalent to �i executing for Ci þ �

time, rather than Ci. Thus, until the end of the period Ti, the
conditions of Lemma 2 are not satisfied. After the end of the
period Ti, each instance of �i will execute again for only Ci.
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Furthermore, the � units of slack will get replenished after
T1 units of time. Hence, the slack needed for recovery will
be available and the conditions of Lemma 2 will be satisfied
at most TN ¼ maxfTig after the occurrence of a fault. In
other words, the system can tolerate faults that are
separated by TN .

5.2 Nonuniformly Distributed Checkpoints

The scheme applied in this section is simple and relies on

distributing the utilization slack to the N tasks such that the

time allocated for each instance of �i is increased from Ci

(under the maximum speed) to a quantity Di (recall that Di

can be interpreted as the deadline of a task or the interval

within which the task is allowed to execute). The slack for a

task is then the difference Di � Ci, which will be used to

add checkpoints to �i and slow down the CPU speed for the

execution of each instance of �i in a manner identical to the

one described in Section 4. Assuming that, after the addition

of checkpoints and with the reduced speed, each instance of

�i is allocated a time Di, then the EDF schedulability theory

guarantees that each instance will meet its deadline if and

only if
PN

i¼1

Di

Ti
� 1. By defining �i ¼ Ci

Di
and setting �i ¼ U

for i ¼ 1; . . . ; N , we guarantee that

X

N

i¼1

Di

Ti
¼ 1

U

X

N

i¼1

Ci

Ti
¼ 1: ð14Þ

With the above distribution of the slack 1� U to all the
tasks, we may apply (10) and (11) to find the optimal
number of checkpoints and the optimum speed for the
execution of each task �i. According to (10) and (11), the
optimum processor speed depends on the values of � and �.
The value of �i ¼ U is equal for all tasks, while the value of
�i for task �i is equal to

ri
Di
, where ri is the number of cycles

needed for performing a checkpoint in task �i. In the general
case, where �i depends on the task �i, the optimal number of
checkpoints and the optimum speed will be different for the
different tasks. However, we consider, in this section, two
special cases.

First, we consider the special case where �i ¼ � inde-
pendent of the particular task �i. That is, the time to take a
checkpoint in task �i is proportional to the computation
time, Ci, of �i. Although this is not true for general tasks, it
is true for many applications in which the space require-
ments of the application are proportional to its computa-
tional requirements. Examples of such applications are
matrix and image processing operations.

If �i ¼ � for i ¼ 1; . . .N , the optimum speed obtained

from (10) and (11) will be identical for all the tasks. In

this case, the convexity of the power function implies that

this speed is the one that minimizes the energy con-

sumption for the entire system and this implies that our

decision to distribute the slack 1� U to the tasks in

proportion to the utilization, Ci

Ti
, of each task was an

optimal decision. Specifically, consider two tasks, �i and

�j. If the proportional distribution of slack leads to the

selection of the same optimum speed, S, for executing

within Di and Dj, then any different distribution of slack

that would result in D0
i ¼ Di þ � > Di and D0

j ¼ Dj � � <

Dj (or vice versa), with D0
i þD0

j ¼ Di þDj, will lead to two

speeds Si ¼ S Di

D0
i
< S and Sj ¼ S

Dj

D0
j
> S for execution within

D0
i and D0

j. When the energy is a function of the square of

the speed and the time of execution of the task, this

execution at two different speeds increases the energy

consumption since it can be shown that

S2

iD
0
i þ S2

jD
0
j > S2ðDi þDjÞ:

The second case that we consider is the one in which the
time for a checkpoint, ri, is constant for any task, which
makes �i ¼ ri

Di
different for different tasks. In this case, to

facilitate the analysis, we use a more conservative fixed
value for �i, i ¼ 1; . . . ; N , to obtain the same speed in all the
tasks (this has the advantage of avoiding CPU speed
changes during fault-free operation). We use the conserva-
tive value of � ¼ max

N
i¼1

�i to obtain the same number of
checkpoints, n, and speed, S, for all N tasks.

The energy consumed during the execution of each
instance of a task �i during fault-free operation is given
from (11) by

cDiSð�þ n�iÞ:

Hence, the energy consumed during an LCM period is

E ¼
X

N

i¼1

cDiSð�þ n�iÞ
LCM

Ti

� �

¼ cSð�þ n�ÞLCM
X

N

i¼1

Di

Ti
;

which, by virtue of the fact that we set
PN

i¼1

Di

Ti
¼ 1, gives

E ¼ cS �þ n
X

i¼1

N�i

 !

LCM: ð15Þ

5.3 Analysis

The scheme described in Section 5.2 allows for the recovery
from a fault in each instance of a task, which is different
from the scheme described in Section 5.1, which allows for
the recovery from a fault in each period TN . Given that each
of the two schemes result in different error recovery
capabilities, it is not useful to statistically compare the
power consumption of the two schemes. In fact, there is a
trade off between the power consumption and the error
recovery capability and it is not fruitful to statistically
analyze this trade off for general task systems because of the
interplay between the many parameters that may affect the
outcome (N;T1; . . . ; TN ; C1; . . . ; CN ; r). However, for a given
task system (for example, one resulting from an embedded
system), it is possible to compare the two schemes and pick
the most suitable one according to the required reliability
and power consumption. In this section, we demonstrate
the application of the two schemes to the example task set
shown in Fig. 7a. The example is chosen to be very simple to
simplify the illustration of the two schemes.

Consider a set of two periodic tasks, �1 and �2, with
C1 ¼ 4, T1 ¼ 10, C2 ¼ 3, and T2 ¼ 15. At maximum speed,
this task set has a utilization U ¼ 0:6 and, thus, there is
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40 percent slack in the system, which can be used to

guarantee error recovery and/or save power consumption.

Let us assume that the cost of a checkpoint is fixed at

r ¼ 0:15.
If we are to apply the scheme of Section 5.1, we get a ¼

0:625 and the solution found from (13) is � ¼ 1:5. That is,

three checkpoints should be inserted in C1 and two in C2, as

shown in Fig. 7b. The optimum speed is found from (12) to

be S ¼ 0:783 and the energy consumption during the LCM

is found from (17) to be E ¼ 0:52LCM. Note that, at

S ¼ 0:783, the checkpoints are separated in time by �
S ¼ 1:92

time units and the checkpoints consume r
S ¼ 0:192 time

units. After adding the checkpoints, the utilization of �1 is
4:45
10

1

0:783 ¼ 0:568 and that of �2 is 3:3
15

1

0:783 ¼ 4:215
15

¼ 0:281.

Adding the utilization of the slack reserved for recovery

at maximum speed, namely, 1:5
10

¼ 0:15, the total system

utilization is 0.999, which guarantees that the two tasks are

schedulable by EDF and that a slack of 1.5 is available every

period T1 for recovery.

On the other hand, if we apply the scheme of Section 5.2,

we would increase the original utilizations of �1 and �2 by a

factor of 1

U ¼ 1:66. That is, the allocation of �1 is increased from

4 to 6.66 time units every period T1 ¼ 10 and the allocation of

�2 is increased from 3 to 5 time units every T2 ¼ 15 time units.

The new allocation of each task is used to add its own

recovery slack and to slowdown its own computation. Given

that �1 ¼ 0:15
6:66 ¼ 0:02 and �2 ¼ 0:15

5
¼ 0:03, we use � ¼ 0:03 and

� ¼ 0:6 forboth tasks toderive thenumberof checkpoints and

speed,which leads to the same speed for both tasks and, thus,

avoids speed changes in the absence of faults. From Table 2,

we find that three checkpoints should be used for each task

and, from (10), we find that the speedS should be set to 0.817.

For �1, (8) and (9) with r ¼ �D1 ¼ 0:3 � 6:66 ¼ 0:2 give

C
ð3Þ
1

¼ 1:04, C
ð2Þ
1

¼ 1:32, and C
ð1Þ
1

¼ 1:64. Thus, at speed

S ¼ 0:817,
C

ð3Þ
1

S ¼ 1:27,
C

ð2Þ
1

S ¼ 1:62 and
C

ð1Þ
1

S ¼ 1:98 (see Fig. 7c).
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For �2, the same equations give C
ð3Þ
2

¼ 0:78, C
ð2Þ
2

¼ 0:98, and

C
ð1Þ
2

¼ 1:24. Thus, at speed S ¼ 0:817,
C

ð3Þ
2

S ¼ 0:96,
C

ð2Þ
2

S ¼ 1:20,

and
C

ð1Þ
2

S ¼ 1:52. Over the LCM, the energy consumption

during fault free operation is thus obtained from (15) to be

E ¼ 0:56LCM, which is higher than the first scheme, but

allows for the recovery from one fault in every task instance.
Finally, for comparison purposes, consider that, with no

power management and with no checkpoints, the energy
consumption during an LCM period is 0:6LCM. If two
checkpoints are added to each task, which will allow for
rollback after a fault in each task instance, and the system is
run at the maximum speed (no power management), then
the energy consumption during an LCM period increases to
0:65LCM. If no checkpoints are taken and the entire slack is
used to reduce the CPU speed, then the energy consump-
tion during an LCM period is reduced to 0:36LCM. Table 3
summarizes these results.

6 IMPLEMENTATION ISSUES

6.1 Error Detection and Recovery

Our assumptions about the failure model are standard and
have been used by other researchers [33]. We address here
some of the engineering issues in realizing this model in
practice. First, we have focused on the common case where
it is assumed that there is at most a single failure within a
period of a periodic task or by the deadline of an aperiodic
task. In practice, the period or deadline is usually short,
making this assumption a realistic one. Nevertheless, it is
straightforward to extend the results to k faults per period
or per deadline task. The slack in this case must be enough
for k rollbacks and the equations given in the paper may be
easily modified to take multiple rollbacks into account. One
can conjecture, though, that the maximum potential benefit
in energy savings will be significantly reduced as the
number of tolerated failures increases.

The second aspect of the fault model concerns the issues
of detecting failures and ensuring the integrity of the
checkpoints. We assume that, as part of the checkpointing
process, some self-test and diagnosis are run before the
checkpoint is committed. The time it takes to perform these
tests can be considered as part of the overhead �. Several
references exist on how to perform such tests and we do not
address them here [2]. We also assume that the checkpoints
will be stored in main memory to ensure predictability and
fast response time, which are required in any real-time
system. This can subject the checkpoints to contamination
due to transient failures. Again, good engineering solutions
exist for protecting the checkpoints while they are stored in

main memory. These range from duplex memory to using
sophisticated encoding schemes that can detect and correct
one or more errors [17]. Of course, these methods differ in
the degree of protection that they offer to the data in the
checkpoints. Therefore, there is a trade off between cost,
performance, and the desired degree of reliability that must
be considered in any practical situation. Our techniques for
power management are orthogonal to, and compatible with,
these fault tolerance mechanisms.

The third aspect of the fault model is the time it takes to
detect a failure and start recovery. Realistically, the failure
will be detected either through time-outs or during the self-
test prior to taking the checkpoint. In either case, restoring
the state from a previous checkpoint and starting recovery
cannot be done in zero time. We have not included this
overhead in our analysis, but it can be incorporated into an
implementation very easily, by moving the deadline
forward. That is, if the time it takes to restore a checkpoint
is tr, then we set the deadline to be Dr ¼ D� tr and use Dr

in the analysis without change. This engineering change
accommodates the time to perform recovery without
affecting the fundamental conclusions of the theoretical
analysis. If no failure occurs, the extra cycles available
between Dr and D can be used for other computations or to
shut down the processor completely if desired.

6.2 Voltage and Frequency Scaling

An assumption made in this paper is that the CPU voltage
can be changed to any value within a continuum bracketed
by the maximum and minimum voltages. In practice,
however, the CPU voltage is usually set to a discrete
number of values to simplify the implementation and
circuitry. A simple approach to apply our results to the case
of discrete CPU voltage setting is to apply the techniques
described in this paper to find the optimum speed, S and
then to set the CPU voltage to the closest available that can
allow a speed larger than S. Such an approach may slightly
increase energy consumption, but is necessary since
selecting a speed smaller than S cannot guarantee that
deadlines can be met. Note that the effect of having discrete
speeds decreases when the granularity of the discretization
is small. Current variable speed processors allow the
CPU speed to change in increments of 33 MHz [7]. Smaller
speed increments should be possible in the near future.

Finally, in the analysis presented in this paper, the
overhead of changing the CPU speed is ignored. Never-
theless, we change the speed only when recovery starts and,
therefore, the time overhead of changing the CPU speed can
be easily incorporated into the recovery time. The power
overhead of changing the speed will not affect the analysis
in the paper since the goal of that analysis is to minimize the
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energy consumption during fault-free operation. In prac-
tice, the use of our techniques will be precluded in
situations where the time to change the voltage and
frequency is a substantial portion of the deadline or period.
This typically occurs when the deadline or the period is
extremely short. Note that, in such situations, the limitation
is not confined to our work—power management may not
be feasible in the first place, regardless of the desire to
implement fault tolerance or not.

6.3 Dynamic Slack Reclamation

The power management considered in this paper follows a
standard practice of considering the worst-case parameters
for the workload involved. The values of � and �,
respectively, represent the maximum number of cycles to
execute a task and the maximum number of cycles to
perform diagnosis and checkpointing. This practice ensures
the feasibility of the schedule under any circumstances and
is commonly followed among engineers who implement
real-time systems. During operation, however, it is usually
the case that tasks do not need the estimated worst-case
execution time, yielding more slack to the system. The
management of such a dynamically created slack is not
discussed in this paper, but the techniques that have been
proposed for managing this slack to reduce power
consumption may be applied at runtime to further reduce
energy consumption beyond the reduction obtained in this
paper [14], [19], [35].

7 RELATED WORK

7.1 Power Management

Research in power management has picked up some
momentum, driven by the needs of portable devices that
operate on low power supply. There have been a number of
studies of specific power management mechanisms and
policies and a set of standards has been developed for the
mechanisms, specifying the interfaces between power-
management software and hardware. Examples of such
architectures include the industry standard Advanced
Configuration and Power Interface or ACPI [6] and
Microsoft’s OnNow initiative [29]. Many of these are
directly aimed at laptop environments, but the mechanisms
provided should prove useful to a system that uses the
processor speed adjustment as described here.

Modern microprocessors and microarchitectures incor-
porate power-saving features. Examples include the mobile
processors available from Intel with its SpeedStep [15]
technology and the Transmeta Crusoe processor with
LongRun [7]. The physical underpinnings and fundamental
issues with these techniques can be found in [10], [25].

In the realm of real-time systems, variable voltage
scheduling focuses on minimizing energy consumption of
the system, while still meeting the deadlines. The seminal
work by Yao et al. [37] provided a static offline scheduling
algorithm, assuming aperiodic tasks and worst-case execu-
tion times. Heuristics for online scheduling of aperiodic
tasks while not hurting the feasibility of offline periodic
requests are proposed in [13]. Concentrating on a periodic
task set with identical periods, the effects of having an upper
bound on the voltage change rate are examined in [14],
along with a heuristic to solve the problem.

Recent work in variable voltage scheduling includes the
exploitation of idle intervals by slowing down the processor
whenever there is a single task eligible for execution and its

worst-case completion time is earlier than the first future
arrival [35]. Although this One Task Extension technique was
originally proposed in the context of Rate Monotonic
Scheduling, it is easy to see that the idea can be applied
to any periodic scheduling discipline. Cyclic and EDF
scheduling of periodic hard real-time tasks on systems with
multiple voltage levels, including dynamic energy reclaim-
ing heuristics, have been investigated in [1], [19].

7.2 Fault Tolerance

To the best of our knowledge, this paper is the first work
that attempts to bring together concepts from real-time
systems, power management, and fault tolerance. Fault
tolerance has been studied extensively in real-time systems
and an encompassing literature survey is not in the scope of
this paper. In some real-time systems such as satellites and
space shuttles, transient faults occur at a much higher
frequency than in general purpose systems [2]. In [2], an
orbiting satellite containing a microelectronics test system
was used to measure error rates in various semiconductor
devices, including microprocessor systems. The number of
errors caused by protons and cosmic ray ions mostly ranged
between 1 and 15 in 15-minute intervals and was measured
to be as high as 35 in such intervals. Physical redundancy
[9], [31] and temporal redundancy [30] have been used to
tolerate permanent and transient faults in real-time systems.

Transient faults in real-time systems are generally
tolerated using time redundancy, which involves the retry
or reexecution of any task running during the occurrence of
a transient fault [9], [18], [34]. This is a relatively
inexpensive method of providing fault tolerance since not
much extra hardware is required. In space and aviation
applications, reducing the hardware is important since that
decreases weight, size, power consumption, and cost. Other
studies have dealt with real-time scheduling providing
tolerance to transient faults using a timeline and a primary-
backup approach [20], [21], [26].

8 CONCLUSIONS

We have presented two checkpointing policies that allow a
real-time system to recover from failure and reduce power
consumption. Both policies enable the reduction of the
processor speed to the level that yields minimum energy
consumption during failure-free operation. If a failure
occurs, the processor reexecutes the lost work at maximum
speed to guarantee recovery and meet the task’s deadlines.

The first policy places checkpoints uniformly within a
task, as in traditional, periodic checkpointing schemes. We
derived the optimal number of checkpoints that yields the
lowest energy consumption, subject to the constraints of
recovering from one fault and meeting the task’s deadline.
The analysis shows that, compared to a system that takes
checkpoints only for the purpose of recovery, our policy can
substantially reduce energy consumption and yet guarantee
the same level of fault tolerance and timeliness.

The second policy takes the position that, since failures
are rare, it is acceptable to put the processor at maximum
speed once a failure occurs and until the deadline expires,
and not just during failure recovery. This yields additional
energy savings for some workloads, but requires nonuni-
form placement of checkpoints. We derived the optimal
number of checkpoints for minimum energy consumption
under this policy and derived the necessary formulas for
checkpoint placement.
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The results show that standard, periodic checkpointing is
not the best policy for checkpoint placement when energy
consumption is to be reduced. We then discussed how these
results could also be applicable to periodic tasks. To our
knowledge, this is the first work that combines the aspects
of real-time scheduling, power consumption, and reliability.
Future work will include how these ideas could be carried
to replication-based systems and the engineering aspects
that must be addressed for actual implementations of these
theoretical concepts.

APPENDIX

In this Appendix, we present the proofs of the lemmas used
in the paper.

Proof of Lemma 1. First, (8) is directly obtained by
considering k ¼ n in (7) and using

Pn
i¼1

CðiÞ ¼ C.
Next, consider k ¼ n� 1 in (7), which gives

D ¼
X

n�1

i¼1

ðrþ CðiÞÞ
S

þ Cðn�1Þ þ rþ CðnÞ

¼ ðnrþ CÞ
S

� ðrþ CðnÞÞ
S

þ Cðn�1Þ þ rþ CðnÞ:

By using (8) in the above equation, we conclude that
(9) is correct for k ¼ n� 1. The proof of (9) for k < n� 1

proceeds by induction. Specifically, assuming that

CðuÞ þ r ¼ Cðuþ1Þ þ r

S
; ð16Þ

we prove that (9) is true for u� 1. Starting from (7), we
get

D ¼
X

u�1

i¼1

ðrþ CðiÞÞ
S

þ Cðu�1Þ þ
X

n

i¼u

ðrþ CðiÞÞ

¼
X

n

i¼1

ðrþ CðiÞÞ
S

þ Cðu�1Þ þ
X

n

i¼u

rþ CðiÞ � ðrþ CðiÞÞ
S

� �

¼ ðnrþ CÞ
S

þ Cðu�1Þ � ðrþ CðuÞÞ
S

þ ðrþ CðnÞÞ:

The last step is obtained by expanding the last
summation term and using (16). By using (8), we obtain

Cðu�1Þ þ r ¼ CðuÞ þ r

S
;

which completes the induction proof and, thus, the proof
of the lemma. tu

Proof of Lemma 2. Consider a modified task set in which

task �i, for some i, is replaced by another task, ��i�i with the

same period, Ti, but with computation time Ci þ �. Since

T1 � Ti, the utilization of the new task set is
PN

i¼1

Ci

Ti
þ �

Ti
� 1. Hence, in EDF execution, every task in

the set, including ��i�i, will finish before the end of its

period. If ��i�i executes only for Ci rather than Ci þ �, then

it will finish � units before the end of the period Ti. In

other words, in the EDF execution of �1; . . . ; �N , task �i
finishes execution � units before its deadline. This

argument is true for any i between 1 and N and, thus,

every task will finish � time units before its deadline. tu

Proof of Lemma 3. In the absence of faults, the energy

consumed during the execution of each instance of a

task �i is proportional to the product of S2 and the time

to execute that instance. That is,

cS2
Ci þ Ci

�

l m

ri

� �

S
;

where, as before, c is a proportionality constant.

Denoting by LCM the least common multiple of all the

periods, T1; . . . ; TN , the energy consumed during an

LCM period is

E ¼
X

N

i¼1

cS Ci þ
Ci

�

� 	

ri

� �

LCM

Ti
;

which, combined with (12), yields

E ¼ c
X

N

i¼1

Ci þ Ci

�

l m

ri

Ti

0

@

1

A

2

1

1� �
T1

LCM: ð17Þ

Now, to find the checkpoint interval, � which

minimizes the energy consumption, we need to differ-

entiate (17) with respect to �. For this, we first bound dCi

� e
by Ci

� þ 1 and use a ¼PN
i¼1

Ciþri
Ti

and b ¼PN
i¼1

Ci

Ti
ri to

rewrite (17) as

E ¼ c aþ b

�

� �2
1

1� �
T1

LCM;

which, when differentiated with respect to � and equated

to zero, gives

a�2 þ 3b� � 2bT1 ¼ 0

and, thus, after ignoring the negative root, results in the

optimal value of � given by (13). tu
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Aggressive Scheduling Techniques for Power-Aware Real-Time
Systems,” Proc. IEEE Real-Time Systems Symp. (RTSS ’99), Dec.
1999.

[2] A. Campbell, P. McDonald, and K. Ray, “Single Event Upset Rates
in Space,” IEEE Trans. Nuclear Science, vol. 39, no. 6, pp. 1828-1835,
1992.

[3] X. Castillo, S. McConnel, and D. Siewiorek, “Derivation and
Calibration of a Transient Error Reliability Model,” IEEE Trans.
Computers, vol. 31, no. 7, pp. 658-671, July 1982.

[4] The Standard Performance Evaluation Corp., http://www.
specbench.org, 2003.

[5] E. Elnozahy, L. Alvisi, Y.-M. Wang, and D. Johnson, “A Survey of
Rollback-Recovery Protocols in Message Passing Systems,”
technical report, Carnegie Mellon Univ., 1999.

[6] Compaq et al., “ACPI Specification, Version 2.0,” 2000.

230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 2, FEBRUARY 2004



[7] M. Fleischmann, “Crusoe Power Management: Cutting x86
Operating Power through LongRun,” Embedded Processor Forum,
June 2000.

[8] S. Ghosh, R. Melhem, D. Mossé, and J. Sarma, “Fault-Tolerant
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