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	e presence of ROS is a constant feature in living cellsmetabolizingO2. ROS concentration and compartmentation determine their
physiological or pathological e
ects. ROSoverproduction is a feature of cancer cells and plays several roles during the natural history
of malignant tumor. ROS continuously contribute to each step of cancerogenesis, from the initiation to the malignant progression,
acting directly or indirectly. In this review, we will (a) underline the role of ROS in the pathway leading a normal cell to tumor
transformation and progression, (b) de�ne the multiple roles of ROS during the natural history of a tumor, (c) conciliate many
con�icting data about harmful or bene�cial e
ects of ROS, (d) rethink the importance of oncogene and tumor suppressor gene
mutations in relation to the malignant progression, and (e) collocate all the cancer hallmarks in a mechanistic sequence which
could represent a “physiological” response to the initial growth of a transformed stem/pluripotent cell, de�ning also the role of
ROS in each hallmark. We will provide a simpli�ed sketch about the relationships between ROS and cancer. 	e attention will be
focused on the contribution of ROS to the signaling of HIF, NF�B, and Sirtuins as a leitmotif of cancer initiation and progression.

1. Introduction

ROS (Reactive Oxygen Species) production has been strictly
associated with cancer [1], ageing [2], diabetes [3], obesity
[4], neurodegeneration [5], and other age-related diseases
such as age-related retinopathy, cochlear degeneration, and
chronic in�ammatory diseases [6]. How can ROS contribute
to so many apparently di
erent clinical entities and what
are the common molecular targets and pathways altered by
ROS? In recent years, a great amount of information has
been produced to answer these questions. Interestingly, such
information stems from the study of the roles of ROS along
the tumorigenesis sequence [7].

	e complexity of relationships between ROS and cancer
pathogenesis is primarily due to the diverse species of ROS
produced by O2 metabolism and their properties, such
as chemical nature, half-life, reactivity and speci�city for

their biological targets, ability to di
use and travel among
subcellular compartments, type of changes produced in target
molecules, and, �nally, the importance of a
ected biological
functions [8]. Moreover, it is di�cult to identify the molecu-
lar targets and the numerous redundant pathways modi�ed
by ROS, with a signi�cant role in cancerogenesis. Besides,
biologically active or toxic concentrations of ROS result-
ing from the ratio between production and detoxi�cation
introduce additional important variables to be considered in
describing the ROS/cancer relationships [9].

Cancer pathogenesis may be described as a multistep
process including transformation, growth promotion and, in
clinically evident tumors, malignant progression [10]. During
the natural history of cancer a large number of genes,
molecules, and pathways contribute �rst to transformation
and promotion then to the manifestation of the malignant
cancer phenotype; most of these molecules and pathways
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interact with ROS in the cytosol, nucleoplasm, and intraor-
ganellar space.

A transformed cell is identi�ed by the loss of control
of proliferation and deregulation of apoptosis producing an
excess of cell number and forming a mass (tumor). 	e
disruption of cell cycle and apoptosis regulation is due to
mutations of genes with a gain-of-function (oncogenes) and
a loss-of-function (oncosuppressor genes), both leading to
an excessive proliferative signal [11, 12]. 	e deregulation
of apoptosis is due to mutations of genes involved in the
signaling controlling programmed cell death, with a gain-
of-function of genes (oncogenes) protecting from apoptosis
and a loss-of-function (oncosuppressor genes) promoting
apoptosis. Upstream, alterations of DNA repair mechanisms
may o�en facilitate the accumulation of crucial mutations
in a single stem cell giving rise to the transformed stem cell
responsible for the growth of the early small tumor [13].

	e initial growth of a small tumor occurs with absent,
insu�cient, or abnormal angiogenesis. 	is produces areas
of hypoxia of di
erent severity in which ROS increases,
favoring tumor cell survival, adaptation, and progression
[14]. Even though the precise mechanism through which
hypoxia increases ROS is still a matter of debate, it seems
that ROS production is due to the e
ects of hypoxia on the
mitochondria electron transport chain (ETC). In particular,
hypoxia would drive ROS increase by acting on complexes I,
II, and III of the ETC [15, 16]. In fact, the use of inhibitors for
each one of these complexes resulted in the inhibition of ROS
accumulation [15, 16]. Moreover, such ROS are mainly rep-
resented by H2O2 since forced expression of catalase or glu-
tathione peroxidase-1 completely reversed hypoxia-induced
ROS expression in isolated pulmonary artery myocytes [15,
16]. Interestingly, hypoxia-driven ROS increase would then
leave the mitochondria causing destabilization of Prolyl
Hydroxylases (PHD) and stabilization of HIF1� [15, 16].

HIF is the major transcription factor responsible for
triggering tumor progression [17]. In addition, in this phase,
ROS further increases contributing to the involvement of
NF�B and Sirtuins in the full acquisition of malignant
phenotype [18].

Here we will shortly review the contributions and mech-
anisms of ROS from cell transformation to the acquisition
of every single hallmark of a clinically signi�cant malignant
tumor, trying to correlate speci�c molecular targets to ROS
role.

2. ROS Compartmentation and Production

Five main compartments contain ROS: mitochondria, cyto-
sol, single membrane-bound organelles (peroxisomes, endo-
somes, and phagosomes), exosomes released by plasma
membranes by shedding, and extracellular �uids including
plasma [9]. As schematized in Table 1 and Figure 1, ROS
are produced in di
erent subcellular compartments by the
action of di
erent enzymes and then they can travel through
channels or vesicles. In particular, mitochondria produce
large amount of ROS that can be either detoxi�ed or can leave
the organelle through channels such as voltage dependent
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Figure 1: Subcellular compartmentation of ROS. 1. Mitochondrial
ROS which can travel to cytoplasm through VDAC (superoxide) or
through aquaporin (peroxides). 2. Cytosolic ROS. 3. Redoxosomes,
such as peroxisomes and endoplasmic reticulum derived vesicles. 4.
ROS included into exosomes and vesicles shedding from damaged
plasma membranes. 5. Extracellular ROS in extracellular �uids and
plasma, partly crossing the plasma membrane through aquaporin,
partly secreted with granules (i.e., activated leukocytes).

anion channel (VDAC) or aquaporin. Similarly ROS can be
produced by NADPH-oxidases (NOX) and other cytosolic
enzymes as well as by peroxisomes. Finally, ROS can be
released in the extracellular space through aquaporin or
exosomes (Figure 1).

	ree broad classes of ROS may be produced: hydroxyl
radicals, superoxides, and hydroperoxides, with distinctive
characteristics regarding their reactivity, half-life, target
speci�city, localization, and, very importantly, biological and
pathological e
ects (Table 1). At present, the acronym ROS
may include also several nitrogen-containing compounds
or RNS (Reactive Nitrogen Species), such as nitric oxide
(NO), nitroxyl anion (NO−), and peroxynitrite (ONOO−).
NO is produced by the activity of inducible nitric oxide
synthase (iNOS) and reacts with superoxide to give rise to
the other RNS. ROI (Reactive Oxygen Intermediates) and
RNI (ReactiveNitrous Intermediate) are additional acronyms
used to indicate ROS [8, 19].

ROS are produced in the mitochondria as by-products of
fatty acid (FA)metabolism and oxidative phosphorylation for
ATP synthesis [8, 19]. Hydroxyl anion half-life is extremely

short (10−9 sec) interacting with and sometimes damaging
any biological molecule in its range. Superoxides encounter
two destinies: rapid detoxi�cation by mitochondrial MnSOD
(Mn-dependent superoxide dismutase) as hydrogen peroxide
or mitochondrial membrane crossing through the VDAC.
Hydroperoxides travel easily to cytosol through membrane
aquaporin [8] (Figure 2).

Cytosol can produce ROS from many endogenous
(growth factors, cytokines, and metabolisms) or exogenous
sources (nutrients, radiation, microbiome, and xenobiotics).
On the other hand, cytosol can accumulate ROS produced
by mitochondria and redoxosomes, especially superoxide
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Table 1: Classes of ROS and their properties.

Radical Structure Reactivity Half-life Production/localization Di
usion Targets
Biological
e
ect

Pathological
e
ect

Hydroxyl
radical

OH∙ High 10−9 sec

Mitochondria
Phagosome

Endoplasmic reticulum
(ER)

Highly
localized
where is
produced

Any cell
component

Unknown Toxicity

Superoxide O2
−

Low 1–15 minutes
Mitochondria cytosol

ER
Peroxisome

Localized, it
can di
use
through an

anion channel

Fe-S centers
Nitric oxide

Protein
modi�cation
(activation or
inhibition)

Protein
damage

Hydrogen
peroxide

H2O2
Moderate
Reversible

Hours to days
Mitochondria cytosol

ER
Peroxisome

Di
use, it can
travel through
aquaporins

Iron-sulphur
Cysteine residues

Activation of
signaling

Mutation,
accumulation,
and genomic
instability

Extracellular ROS

Leukocyte
granule
secretion

Release

Mito-ROS
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Sirtuins
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(hydrogen peroxide)
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Adaptation
Defense
Repair
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COX-2
5-LOX
HO-1

Target genes
Defense,
damage,

damage signaling
for distant tissues

Endogenous
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Oxygen

Other TFs
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Figure 2: ROS are producedmainly in the mitochondria. Superoxides are rapidly detoxi�ed bymitochondrial MnSOD as hydrogen peroxide
or can cross mitochondrial membranes through the VDAC. Hydroperoxides travel easily to cytosol through membrane aquaporin. In
addition to ROS coming frommitochondria, cytosolic ROS can originate frommany endogenous or exogenous sources, including nutrients,
radiation, microbiome, growth factors, cytokines, and other metabolisms. Proin�ammatory inducible enzymes such as NADPH-oxidases
(NOX), inducible nitric oxide synthase (iNOS), inducible cyclooxygenase (COX2), 5-lipoxigenase, and inducible heme-oxigenase-1 (HO-1)
may produce an additional burst of ROS. HIF1�, NF�B, and HDACs, especially Sirtuins, are activated by ROS in synergy with the speci�c
signaling from receptors andmetabolism. Target genes of activated TFs are aimed at adaptation to hypoxia, proin�ammatory harmful agents’
inactivation, and damage repair. ROS are also released in the extracellular space by secretion of granules of activated leukocytes or crossing
plasma membrane through anionic channels (superoxides) or aquaporins (hydroperoxides). Extracellular ROS are important for defense (as
in case of ROS released by eosinophils against macroparasite) and produce collateral damage not only in adjacent healthy tissues but also in
distant tissues and organs, signaling the local damage and activating improper mechanisms of adaptation, remodeling, and chronic damage.

and hydroperoxides. ROS and RNI, accumulating into the
cytosol, can di
use easily (depending on half-life) into the
nucleoplasm, interacting with nucleic acids and other nuclear
components [20].

In the cytosol and redoxosomes, proin�ammatory
inducible enzymes such as NADPH-oxidases (NOX),
inducible nitric oxide synthase (iNOS), inducible
cyclooxygenase (COX2), inducible 5-lipoxygenase (5-LOX),
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and inducible heme-oxygenase-1 (HO-1) may produce an
additional burst of ROS.

In particular, the di
erent isoforms of NOX, identi�ed
in many tissues and cells, are an important source of ROS
in response to di
erent stimuli including hypoxia [21]. NOX
is a multisubunit enzyme complex generating superoxide by
one-electron reduction of oxygen using reduced NADPH as
the electron donor [21]. NOX is widely distributed among
di
erent species, suggesting that such enzyme plays an
important role in the cell. However, the precise physiological
role of NOX is still unclear, whereas its pathophysiological
role is de�nitely lined to ROS production and ROS-induced
damage [22]. Finally, as for HIF (see below), mitochondrial
ROS accumulation following hypoxia can, in turn, activate
NOX through a mechanism requiring protein kinase C� and
leading to further ROS increase and cellular damage [23].

Hypoxia-induced ROS accumulation also increases
expression and activity of 5-LOX in pulmonary artery
endothelial cells with production of leukotrienes and
induction of cell proliferation [24].

	e presence of the cytosolic CuSOD (Cu-dependent
superoxide dismutase) and of a number of scavenging
molecules, that is, peroxiredoxins and glutathione perox-
idase, [22, 25, 26] detoxi�es the excess of cytosolic ROS
(Figure 2).

A special case of ROS production and utilization occurs
in the redoxosomes. A number of oxidases are localized in
specialized stable (peroxisomes) or transient (phagosomes,
multivesicular bodies, endosomes, etc.) single-membrane
bound organelles that can produce substantial amount of
ROS as typically occurs in the respiratory burst of activated
leukocytes (macrophages and eosinophils) or during peroxi-
some proliferation in response to xenobiotics [27].

Members of NOX family (NADPH-oxidases) and
myeloperoxidase are induced and con�ned in the vacuole
microenvironment where they produce a large amount
of ROS mainly aimed at killing bacteria and inactivating
harmful substances. 	is represents an e�cient defense
mechanism against bacteria and parasites [28].

Variable ROS concentrations have been measured in
many extracellular �uids, such as blood plasma and sper-
matic, peritoneal, and pleural �uid [29, 30]. Free extracellular
ROShave twoorigins: fromcytosol crossing the plasmamem-
brane through aquaporins (hydroperoxides) and some anion
channels (superoxides) and by secretion (external opening
of phagosomes and granules) as typically occurs in activated
degranulating leukocytes [31, 32]. 	e range of action of
extracellular ROS is determined by their half-life, reactivity,
velocity of di
usion, and the possibility to travel with plasma.
More reactive and short-living ROS (hydroxyl anion and
superoxide) act in a short range damaging local biological
structures (i.e., macroparasites and adjacent tissue cells),
while hydroperoxides may travel with plasma contributing to
determining the redox levels of the blood and thus in�uenc-
ing the activity and the life of blood cells and of important
plasma proteins [33, 34]. ROS are also released in the extracel-
lular space by secretion of granules of activated leukocytes or
crossing plasmamembrane through chloride and other anion
channels (superoxides) and aquaporins (hydroperoxides)

[35]. Extracellular ROS are important for defense (as in case
of ROS released by eosinophils against macroparasite) and
produce collateral damage not only in adjacent healthy tissues
but also in distant tissues and organs, signaling the local
damage and activating improper mechanisms of adaptation,
organ remodeling, and chronic damage (Figure 2).

Recent literature has recognized the functional impor-
tance of exosomes. Exosomes are small (50–90 nm) vesicles
originating from invagination of multivesicular bodies and
plasma membrane and are released in small amount by
normal cells and in large number by cell under various
types of stress and by cancer cells, di
using and traveling
through extracellular biological �uids [36, 37]. 	eir content
is largely determined by the local cytosolic composition
where exosomes are formed and therefore, their content,
includeswater, ions, solublemetabolites proteins nucleic acid,
and ROS. 	eir membrane contains membrane-associated
proteins including ligands which can allow exosomes to
interact with distant cells and tissues expressing the corre-
sponding receptor. A�er this interaction external and internal
molecules can enter target cells initiating signal cascades that
can in�uence cell physiology and pathology. In particular,
exosomalmicroRNAandproteins have been demonstrated to
play a role in distant organ remodeling and damage develop-
ing multiorgan diseases as observed in complex patients [37].

3. ROS Biological Functions and
Damaging Effects

	e increase of ROS following hypoxia has been extensively
documented using di
erent techniques. However, precise
numbers indicating the level of ROS generation in tumors are
di�cult to obtain due to the multiple antioxidant pathways
and molecular mechanisms activated by tumors to survive to
such an increase and to thrive. An important aspect is the
interaction of ROS with di
erent cellular components that
produces di
erent types of changes depending on the classes
of ROS. In particular, as shown in Table 1, hydroxyl radicals
are highly reactive causing sublethal or lethal degradation
(toxicity), whereas superoxide and hydrogen peroxide have
a lower reactivity but can cause local damage or activation
of signaling cascade when present at physiological concen-
tration. Lipids, proteins, and nucleic acids (sugar backbone
and N-bases) are the most signi�cant targets of ROS-induced
damage [38].

Chronic oxidative stress exerts detrimental e
ects during
the multistage process of carcinogenesis, including DNA
damage, impaired DNA repair, mutations in tumor suppres-
sor genes, epigenetic changes, altered apoptosis, disruption of
signal transduction pathways responsible for maintaining the
normal cellular homeostasis, angiogenesis, and metastasis.
For a comprehensive description of ROS-induced DNA
damage we refer the reader to the reviews of Ziech et al. and
Caputo et al. [39, 40].

Lipoperoxidation has the most signi�cant impact on
plasma membrane structure and permeability. Plasma mem-
brane damage disrupts ionic gradients: the entry of Na+

and water leads to cell swelling (one of the most frequent
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cell alterations in mammalian tissue pathology). However,
the necrotic catastrophe is associated with the entry of
extracellular Ca++. Disruption of Ca++ homeostasis leads to a
rapid cell degradation through (1) a further increase of ROS
production and damage [41], (2) an abnormal function of
cytoskeletal components (supercontracture) [42, 43], and (3)
an abnormal activation of Ca++-dependent proteases, such as
calpains, caspases, and proteasomes [44]. To this e
ect it is
important to consider that Ca++ homeostasis maintenance
depends on the cellular compartment roughly as follows:

(i) cytosolic ([pCa
i

++] = 10−9M); (ii) endoplasmic reticulum

cisternae ([pCa++] = 10−6M); (iii) mitochondrial ([pCa
m

++]
= 10−5M); (iv) extracellular ([pCa

e

++] = 10−3M).
Superoxides react rapidly with iron-sulphur groups of

proteins or with NO generating peroxynitrite, which, in turn,
acts on proteins (tyrosine nitration and S-glutathionylation)
[45]. Hydroperoxides act by oxidizing cysteine residues in
proteins and in�uencing deeply their activity. Mitochondrial
DNA and nuclear DNA undergo several alterations that may
result inmutation accumulation and genomic instability [46].
Mitochondria undergo mtDNA alterations and metabolic
dysfunction with increase in ROS production. Nuclear DNA
undergoes point mutations, breaks and consequent deletion,
inversion, and translocation, all conditions that can activate
oncogenes or inactivate oncosuppressor genes.

Several proteins, targets of ROS, play a crucial role during
tumor progression. Herewith we will focus the attention on
HIF, NF�B, and Sirtuins. It is interesting to note that a full
activation of HIF, NF�B, and Sirtuins occurs in synergy with
speci�c signaling from receptors or other pathways following
a previous interaction with ROS.

3.1. ROS May Induce Cell Transformation through Mutations.
ROS are at the early origin of cancer. Radiations, UV,
xenobiotics, chemical carcinogens, nutrients, and chronic
in�ammation are sources of mitochondrial and cytosolic
ROS. In the nucleus they damage in di
erent ways DNA
producing random mutations including those that allow a
normal cell to lose the control of cell cycle and of the apoptosis
[47]. Most of the times, mutations are corrected by one of
the DNA repair mechanisms such as double strand break
(DSB) repair, base excision repair (BER), mismatch repair
(MMR), and, possibly, nucleotide excision repair (NER)
[48]. Alternatively, the cell can undergo apoptosis. In these
conditions, the chances to select a transforming combination
of mutations are substantially increased by defective DNA
repair mechanisms, by predisposing germline mutations and
by defective ROS detoxifying systems. In conclusion, ROS
mediate the mutagenic action of a number of carcinogenetic
agents playing a prevalent role in the initial transformation of
a normal cell into a tumor cell.

3.2. ROS Promote Growth and Genomic Instability in Already
Transformed Cells. A second contribution to cancerogenesis
is given by additional ROS constitutively produced in trans-
formed cells by mutated oncogenes. In particular, oncogenes
such as Ras andMyc, o�en overexpressed in tumor cells, have
been linked to deregulation of cell proliferation with increase

of ROS that, in turn, cause DNA damage [49]. In fact, both
Ras and Myc induce metabolic reprogramming of cancer
cells with increased glucose and glutamine metabolism and,
consequently, increased proliferation and ROS production.
In this case, ROS species are represented by superoxide that
accumulates a�er Ras and Myc overexpression. However, the
precise mechanism through which Ras and Myc induce ROS
increase is still unknown and does not depend on mitochon-
drial superoxide production [50]. Another important family
of transcription factors linked to Ras is represented by the
STAT family that is inactivated by increased ROS through
oxidation of cysteine residues [51]. Alternatively, increased
STAT3 and 5 determine a decrease in mitochondrial ROS
production [51]. Interestingly, malignant transformation of
mouse embryo �broblasts by activated Ras oncogene also
requires mitochondrial STAT3 and decreased ROS accumu-
lation [52].

4. ROS and Hypoxia: Tumor Necrosis
and Adaptation

Initial growth of transformed cells, leading to the initial
tumor mass, occurs in the absence of or with ine�cient
angiogenesis. When tumor diameter and the intercapillary
distances reach 200�m (which is the di
usion limit of the
oxygen from blood) the tumor tissue becomes hypoxic, with
important e
ects for the tumor microenvironment and for
the metabolism of transformed cell itself that becomes more
glicolytic [53] (Figure 3). In order to better understand the
characteristics of the tumor microenvironment, it is impor-
tant to consider that average oxygen partial pressure (pO2)
of tumors, measured by a polarographic pO2 sensor, is about
8–10mmHg or 1.1–1.3%. By contrast, pO2 in various human
tissues has an average of 35mmHg or 4.6% [54]. 	erefore, it
is now a consolidated fact that hypoxia is a characteristic of
solid tumors and represents a negative prognostic indicator
[54].

As previously described, during this phase, a third
prominent role of ROS is evident: hypoxia produces ROS
which activate HIF1�, by inactivating its inhibitor, PHD
(Prolyl Hydroxylase Domain) [53]. Even though this review
is focused on the interplay among ROS, HIF1�, and NF�B,
it is important to keep in mind that hypoxia-driven ROS
activates also other transcription factors such as NRF2.
NRF2 has an important role in regulating transcription of
proteins involved in antioxidant defense thereby reducing
ROS accumulation [55]. Importantly, NRF2 and HIF1� may
act together or independently in regulating, for example,
HO-1 expression. Moreover, HIF1� regulates NRF2 in some
colorectal cell lines [55], whereas silencing NRF2 expression
results in HIF1� and VEGF reduction indicating a complex
and yet unraveled network between these players [55]. In
addition, the situation gets complicated by the observation
that many human cancers show a signi�cant upregulation
of NRF2 correlating with a poor prognosis [55]. For an
exhaustive description of NRF2 function in physiological and
pathological conditions, we remand the reader to the recent
review by Moon and Giaccia [56].
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In the early tumor growth, in the absence of angiogenesis, the central regions of tumoral mass, more distant from vessels, undergo necrosis,
while peripheral regions survive and adapt to the hypoxia thanks to the HIF-dependent gene expression. Cancer stem cells seem to adapt
more easily than di
erentiated cancer cells [53].

A further ROS increase causes DNAdouble strand breaks
with increase in mutations (genomic instability) and cell
damage (lipoperoxidation) leading to necrosis of cells that
are more distant from vessels. However, the activation of
HIF1� by ROS in sublethally damaged tumor cells closer to
the vessels allows the expression of HIF1�-driven genes that
contribute to their survival and growth thereby increasing
their commitment to malignancy.

Necrotic damage includes plasma membrane fragmenta-
tion and release of intracellular molecules, some of which
constitute alarmins or DAMPs (Damage-AssociatedMolecu-
lar Patterns) [57]. 	e interaction of released alarmins with
their receptors triggers a proin�ammatory gene expression
in various cell types: resident innate immunity cells or
leukocytes, usually expressing a number of alarmin receptors
[58]. Importantly, tumor cells may also express alarmin
receptors following hypoxia and HIF1� activation. Alarmin
receptor signaling leads to the activation of NF�B and then to
the proin�ammatory gene expression. 	is proin�ammatory
microenvironment can contribute to tumor progression (see
below).

Activation of HIF1� leads to the expression of hundreds
of genes. Some important HIF1�-dependent genes with their
role in cancer cell as well as the e
ect of ROS are reported in
Table 2. Many of these genes provide a �rst impulse (com-
mitment) toward tumor progression. For example, VEGFs
and their receptors are responsible for neoangiogenesis and
for the possibility to grow above the limit of 400 microns
in diameter [59]. Telomerase activation increases the prolif-
erative potential [60]. Finally, changes in intermediate and
energymetabolismprovide a growth advantage to tumor cells
that can quickly use glucose and glutamine [61, 62].

5. ROS, HIF1�, and HIF1�-Dependent Genes

ROS produced during hypoxia have a central role in sta-
bilizing and activating HIF1� which in turn triggers the
molecular mechanisms important, for instance, to sustain
survival, growth, motility, metastasis, and metabolic changes
of a transformed cell. However, in some cases, ROS can also
directly in�uence the activity of a number of gene families
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Table 2: HIF-dependent genes in hypoxia adaptation in determining malignancy hallmarks.

HIF-dependent genes Adaptation phenotype ROS e
ect References

VEGFs and VEGFRs Neoangiogenesis, repair Indirect [63–65]

TERT (telomerase) ↑ telomere length and proliferative potential Direct and indirect [66–69]

Cyclin D1, cyclin D2 Increased proliferation Indirect [70]

TERT; c-Myc, SOX2, OCT4, KLF4, Notch Stem cell renewal, di
erentiated cell reprogramming Indirect [71, 72]

ABC transporter Drug resistance Indirect [75–77]

ALDA, PGK, GLUT-1 Changes in energy metabolism Indirect [61, 78]

PDGF, chemokine receptors Motility and polarized migration Indirect [104, 105]

MMP9, MMPs Integrity of basement membrane; invasiveness Direct and indirect [97–100]

Alarmin (DAMPs) receptors NF�B activation; IRR gene express Indirect [80–82]

playing a critical role in pushing a transformed cell toward
the acquisition of many hallmarks of malignancy.

5.1. ROS and VEGFs and VEGFRs. Increased expression of
VEGFs and their receptors VEGF-R1 and R2 is due to the
activation of HIF1� by ROS and has the fundamental role
of activating a tumor-speci�c neoangiogenesis, allowing the
early tumor to grow over the dimensions (200–300�m),
imposed by the simple di
usion of oxygen and nutrients
[63]. Alternatively, ROS can also activate the MAPK pathway
leading, again, to the increased expression of VEGF [64].
Interestingly VEGF, VEGF-R1, and R2 are expressed in
human colorectal samples as well as in human colon cancer
cell line, whereas no expression is observed in human normal
colonic cell lines. 	is suggests that VEGF can be produced
and secreted by cancer cells to sustain their proliferation and
migration. Accordingly, VEGF silencing in colon cancer cells
resulted in decreased growth and motility of colon cancer
cells [65].

5.2. ROS and Telomerase. 	ere are indications about a
direct role of ROS on telomerase activity in hepatocellular
carcinoma [66]. However, it is believed that the role of
ROS may depend on their amount in the cells with low or
mid levels being able to activate and high levels to inhibit
telomerase activity [67]. Moreover, the e
ect of ROS on
telomerase activity may depend on HIF1� as previously
demonstrated [68]. Recently, a role of telomerase in regulat-
ing cell survival, signaling, and mitochondrial function has
been also proposed [69].

5.3. ROS and Proliferation. A further contribution to the
proliferative potential is given by the HIF1�-dependent acti-
vation of typical proproliferative genes such as c-Myc and
cyclinD1 [70]. As discussed below, the increased proliferation
of tumor cells, in which HIF1� is active, is also linked to the
metabolic reprogramming of these cells.

5.4. ROS and Stem Cell Maintenance and Reprogramming. In
addition, HIF1� activates OCT4 and Notch facilitating stem
cell renewal, contributing to the immortalization and increas-
ing survival of cancer stem cells [71, 72]. 	ese observations
derive from studies conducted using hematopoietic stem cells

(HSC). In fact, HSC pool is present in hypoxic regions of
the bone marrow and shows a high expression of HIF1� that
is essential to maintain stem cell cycle quiescence through a
mechanism involving p16/p19 proteins [73]. Moreover, SOX2
andKLF4 can also be activated alongwith ROS accumulation
in glioblastoma cells thereby increasing the number of stem
cells [74]. 	e observation that the canonical stemness genes
are all overexpressed suggests the possibility that reprogram-
ming di
erentiated tumor cells can have a role in increasing
and maintaining the tumor stem cell compartment.

5.5. ROS and Resistance to Chemotherapy. Resistance of
tumor cells and particularly of cancer stem cells is achieved
by overexpression of ABC transporters driven by the HIF1�
transcription factor activated by reduced oxygen tension
and/or ROS in the tumor microenvironment [75]. In partic-
ular, HIF1� has been shown to increase expression of MDR1
[76]. Interestingly, also in this case, the level of ROS achieved
inside tumor cells plays an important role. In fact, high levels
have been shown to reducedHIF1� andMDR expression and
survival in spheroids from prostate tumor cells [77].

5.6. ROS and Changes in TumorMetabolism. ROS andHIF1�
activation are responsible for the large metabolic reprogram-
ming of cancer cells that requires other transcription factors
such asMyc and proceeds with the overexpression of proteins
such as glucose transporter 1 (GLUT1) for glucose uptake,
glutaminase for glutamine usage, hexokinase II (HKII) for
glycolysis, and carbonic anhydrase IX (CAIX) for control of
intracellular pH, which assures the glucose and glutamine
dependency and the fast growth of tumors [61, 78].

5.7. ROS Contribution to Invasion and Metastasis. ROS
increase in tumor cells contributes to the activation of
proteases involved in the recognition and degradation of
basement membrane as well as in the formation of invadopo-
dia [79]. Importantly, most of the invasion and metastasis
genes are cocontrolled by HIF1� and by NF�B, as also
discussed in the next paragraph. In particular, ROS activates
intracellular signaling mechanisms involving MAPK that
depend on NF�B and are upstream of MMPs [79]. Moreover,
ROS also activates the recruitment of a series of actin-
associated proteins such as co�lin and fascin as well as
adhesion (integrins) and signaling (c-Src tyrosine kinases)
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Table 3: NF�B-dependent genes and their role in tumorigenesis.

NF�B-dependent gene families Proin�ammatory phenotype and malignancy hallmark ROS e
ect References

Inducible enzymes Vasodilatation, migration Indirect [87–89]

Cytokines and receptors Local ampli�cation of IRR Direct and indirect [90–94]

MMPs and TIMPs Invasion, migration Direct and indirect [97–100]

Adhesion molecules and their counterreceptors Detachment, homing Indirect [101–103]

Chemokines and receptors Migration, homing Direct and indirect [104, 105]

VEGFs and VEGFRs Angiogenesis, repair Indirect [63–65, 106]

Growth and survival factors Proliferation, antiapoptosis, repair Indirect [107, 108]

Acute-phase proteins IRR ampli�cation, chemotaxis, repair Indirect [109–113]

SOCS-1 Negative regulator of IRR Indirect [114–116]

proteins that assemble together to form the invadopodia [79].
	erefore, themetastatic potential of transformed tumor cells
can be increased following upregulation of ROS production.

5.8. ROS and Receptors for Alarmins. In the presence of
a hypoxic environment a number of cell types, including
cancer and normal stem cells, express de novo or overexpress
di
erent alarmin receptors (similar to those present in
activated leukocytes or CD45+ cells) [80, 81]. RAGES, P2X7,
TLRs, and others, upon activation by alarmins released by
necrotic cells, converge in the activation of NF�B with a
robust proin�ammatory gene expression. 	is represents the
key event to bridge the hypoxia to the adaptation with the
expression of hundreds of genes related to the IRR and, very
importantly, to the acquisition of classical properties of the
malignant phenotype.	is picture includes also the so-called
EMT (epithelial-mesenchymal transition), in which involved
genes can be HIF1�- and/or NF�B-dependent target [82].

6. ROS, NF�B Activation, and the Full
Acquisition of Hallmarks of Malignancy

	e in�ammatory response is �nalized to defend cells by
eliminating or detoxifying the harmful agents and to repair
cell/tissue damage through di
erentiation of resident or
recruited stem cells or by forming a scar of connective tissue.
ROS are important players in both defensive and repairing
functions of the in�ammatory-reparative response (IRR).
However, ROS can also cause cell damage, depending on the
type, on the local concentration, and on how long and how
speci�cally they interact with cell components [38, 83].

In the classical (“physiological”) IRR, defense and repair
are e�ciently coordinated by NF�B [84]. 	is transcrip-
tion factor becomes fully activated through many synergic
and con�rming signals, such as cytosolic ROS, exogenous
alarmins (i.e., virus, bacteria, other parasites, crystals, and
�bers), and endogenous alarmins released by damaged and
necrotic cells [85]. 	is signaling leads to NF�B nuclear
translocation and activation and expression of ROS produc-
ing enzymes such as NADPH-oxidases, COX2, iNOS, and 5-
lipoxygenases [86].

Once NF�B has been activated, a complex gene response
occurs, with the expression of genes belonging to spe-
ci�c gene families including a large number of members

functionally related to the in�ammatory and reparative
response (see Table 3). Individually most of these genes have
been implicated in the acquisition of crucial properties of
the malignant phenotype, providing a coherent theoretical
framework to explain the acquisition ofmost of themalignant
hallmarks as an integrated response and adaptation to the
tumor environment.

6.1. ROS and Inducible Enzymes (NOX, COX2, 5-LOX, and
iNOS). Inducible enzymes produced in activated leukocytes
upon activation of NF�B are responsible for the production
of mediators such as prostaglandins, leukotrienes, plasmalo-
gens, and NO, leading to the manifestation and ampli�cation
of the IRR. 	eir presence in tumor microenvironment and
their expression by tumor cells have been two of the earliest
observations involving in�ammation in the pathogenesis and
progression of cancer [87]. Molecules produced by these
enzymes contribute to many aspects of tumor progression
such as neoangiogenesis, recruitment of leukocyte to the
tumormicroenvironment, and changes for EMT [88]. Almost
15 years ago a landmark epidemiological study suggested that
the use of low-dose aspirin for cardiovascular prevention
drastically reduced the risk for colon cancer [89]. 	ese
epidemiological observations stimulated a number of other
retrospective studies and controlled clinical trials on aspirin
and other COX2 inhibitors in preventing tumors and their
progression, giving rise to a new era in understanding the role
of in�ammation in tumor pathogenesis.

6.2. ROS, Cytokines, and �eir Receptors. ROS have been
shown to induce cytokine synthesis in di
erent systems either
directly or following activation of NF�B [90, 91]. Cytokines
have a direct in�uence on IRR by targeting leukocytes, by
polarizing the response as 	1 or 	2 and by stimulating
the proliferation of target cells (CD45+) to reinforce and
amplify the IRR [92]. Cytokines are present in most human
tumor microenvironment, being produced by cancer cells
themselves and/or by leukocyte in�ltrate [93, 94]. Interest-
ingly, tumor cells also express receptors for various cytokines
in parallel with their degree of malignancy [92]. 	erefore,
thanks to the presence of cytokine receptors, tumor cells can
be strongly in�uenced in their biology, such as proliferation
rate (IL-2), and in their polarization (	1 cytokines) and,
probably, in the expression of adhesion molecules and their
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counterreceptors, thus in�uencing the homing for metastasis
[95, 96].

6.3. ROS and MMPs and TIMPs. Matrix metalloproteinases
(MMPs) and tissue inhibitor of metalloproteinases (TIMPs)
are HIF1�- and NF�B-dependent genes normally expressed
in activated leukocytes. ROS can activate MMP synthesis
either directly [97] or, more frequently, through NF�B [98,
99]. It is well known that disruption of the MMP/TIMP
activity ratio with a gain-of-function of proteasic activity
over basement membrane and extracellular matrix proteins
is present in malignant tumors and parallels the invasive
potential [100]. 	erefore, the key event for demolishing the
physiological tissue barrier and starting invasion is basically
controlled by both HIF1� and NF�B through the expression
of these genes.

6.4. ROS, Adhesion Molecules, and �eir Counterreceptors.
	e activation of NF�B in leukocytes �nely reprograms
the expression of adhesion molecules for migration and for
homing at constitutive district tissue or at damaged site. A
ROS-induced NF�B-dependent and/or cytokine-dependent
new expression of adhesive molecules occurs also in tumor
cells, allowing for a number of biological changes typically
related with malignancy [101, 102]. 	ese changes include the
ability to detach from the original tissue (i.e., cadherins), the
ability to migrate following a speci�c chemotactic gradient
and a path of ECM molecules (receptors for chemokines
and integrins), and, �nally, the identi�cation of the homing
site represented by activated endothelial or other tissue cells
(ICAM-1, selectins, and their counterreceptors) [103].

6.5. ROS, Chemokines, and �eir Receptors. Tumor cells
express both chemokines and their receptors in parallel
with their degree of malignancy [104]. 	e production
of chemokines gives rise to a gradient which is probably
the main responsible for the attraction of leukocytes and
mononuclear in�ltration in advanced tumors [104]. More
importantly, the expression of chemokine receptors is a
crucial event for the occurrence of metastasis. In fact,
detachment from the primary tumor tissue must be fol-
lowed by a vectorial migration along a chemotactic gradient,
which implies the presence of speci�c receptors for the
chemoattractant. CXCR4, a receptor for SDF1�, is the best
characterized receptor in tumor cells and has been de�nitely
associated with progression and prediction of metastasis in
many human tumors [104]. Interestingly, ROS can enhance
CXCR4 function in prostate cancer cells [105]. Moreover,
chemokines and their receptors are under the control of
NF�B and can be, therefore, induced by ROS.

6.6. ROS, VEGFs, and VEGFRs. As also described above
when talking about the role of ROS in inducing HIF1� and
VEGF, in order to be clinically relevant and detectable by
the present imaging techniques, a tumor needs to grow at
the dimension of a few mm in diameter. At the same time,
this tumor must activate a process of neoangiogenesis, with
an adequate expression of VEGFs and VEGFRs. VEGFs can

be produced by activated leukocytes and mesenchymal cells
present in the tumor microenvironment or, more impor-
tantly, by tumor cells themselves under the in�uence of acti-
vated HIF1� and NF�B [63, 106]. In the last case, it has been
demonstrated that cancer cells (probably tumor stem cells
and progenitors) may express also VEGFRs, suggesting the
possibility that tumor cells can contribute to the formation of
their new vascular tree [65].

6.7. ROS, Growth, and Survival Factors. HIF1� and NF�B
control a number of growth and survival factors and their
receptors.	is has been demonstrated in activated leukocytes
(involved in tissue repair) and in hypoxia activated tumor
cells. 	is is an additional advantage for tumor growth
and a prerequisite for the establishment of a secondary
metastatic tumor. 	e “seed and soil” hypothesis predicts
that a favorable tissue environment is relevant for the
occurrence of a metastasis [107]. In this case, growth and
survival factors can be provided by activated leukocytes or
mesenchymal cells of the microenvironment and by tumor
cells themselves in which proliferative pathways are already
activated (transforming oncogenes) or in which these genes
are overexpressed upon ROS-dependent NF�B activation
[108].

6.8. ROS and Acute-Phase Proteins. Acute-phase proteins
have been considered as plasma markers useful to evaluate
the systemic IRR. 	ey include soluble and cell bound
isoforms, such as C reactive protein, pentraxin-3, and other
pentraxins; their functions are only partially elucidated. Sim-
ilar to the other NF�B-dependent genes, they are expressed
or overexpressed in hypoxia-activated tumor cells and in
activated leukocytes. 	eir function in tumor progression is
still debated. On one hand, they seem to inhibit tumor cell
proliferation and to decrease with progression [109]; on the
other hand they can be highly expressed in malignant cells
compared to the host normal tissue [110–113].

6.9. ROS, SOCS, and Negative Regulators. NF�B activation
includes also the expression of a number of proteins that
function as negative key-regulator of IRR, such as SOCS-1
[114].	is latter protein is amember of SOCS family that sup-
presses the cytokine signaling via JAK/STAT, downregulates
TLR expression and signaling, and decreases NF�B activity
and duration [115]. 	is family and other negative regulators
are considered as part of the normal feedback control of the
IRR. As predicted by our hypothesis, SOCS-1 decreased in
hypoxia-activated cells, as a physiological response of HIF1�-
NF�B integrated activation [116].

7. ROS and Sirtuins in Modulating Cell Redox
Status and HIF1�/NF�B Pathway

In mammals there are seven Sir2 homologs (SIRTs 1–7). Sir-
tuins are either class III nicotinamide adenine dinucleotide-
(NAD+-) dependent deacetylase, desuccinylase, demalony-
lase, deglutarylase, or ADP-ribosyltransferases [117, 118].
	eir dependence on NAD+ directly links Sirtuins activity
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to the metabolic state of the cells and to ROS. For this
reason, Sirtuins have been implicated in many physiological
functions such as gene silencing, cell death, longevity, in�am-
mation, cancer and, importantly, the regulation of ROS levels
through both ROS production and detoxi�cation [117]. In
addition, Sirtuins deacetylate and then directly regulate the
activity of both HIF1� and NF�B. However, while only for
SIRT1, 2, 3, and 6 this regulatory function has been clearly
demonstrated, it is now clear that also the other Sirtuins
in�uence a number of metabolic pathways, converging in
ROS regulation.

7.1. SIRT1. SIRT1 can be a target of damaging ROS and this
may cause its relocalization, inactivation, and degradation. In
particular, ROS can oxidize SIRT1 cysteine residues thereby
inhibiting its activity and targeting the protein towards pro-
teasomal degradation [119]. In fact, oxidative stress associated
with in�ammation downregulates the expression and the
activity of SIRT1 and [119, 120] SIRT1 can be cleaved in
in�ammatory conditions [121, 122].

Another mechanism through which ROS can reduce
SIRT1 activity involvesNAD+. In fact, oxidative stress reduces
the cellular level of NAD+ suppressing the SIRT1-mediated
signaling [123]. Interestingly, the increase of oxidative stress
observed during aging in several rat tissues is accompanied
by a concurrent decrease in the level of NAD+ and in the
activity of SIRT1 [124]. Similar changes were observed in
human skin [125]. Recently, it was shown that, in mammalian
cells, oxidative stress (H2O2) causes a cytosol to nucleus
translocation of SIRT1 followed by its chromatin binding
[126]. At least part of the SIRT1 pool appears to be targeted to
double strand breaks, where it promotes repair and genomic
stability. Genes that are normally silenced by SIRT1 become
derepressed, leading to an altered pattern of transcription
that resembles that of the aging brain, which is known to
be subjected to signi�cant oxidative stress. Finally, oxidative
stress also activates PARP-1, which consumes cellular NAD+

storage thereby decreasing SIRT1 activity [127].

On the other hand, downstream e
ects of SIRT1 on
various transcription factors can a
ect directly ROS produc-
tion and decrease or increase ROS resistance by in�uenc-
ing ROS detoxifying/scavenging systems. Importantly, SIRT1
deacetylates both HIF1� and NF�B. In the case of NF�B,
SIRT1 has been shown to deacetylate and inactivate the
p65/relA component with inhibition of the NF�B complex
[128]. In fact, both in vitro and in vivo observations have
shown that SIRT1 or activation of SIRT1 by resveratrol
and other polyphenols decreases in�ammatory response by
deacetylating and inhibiting NF�B [129]. 	ese results are
particularly interesting considering the central role of NF�B
in many cellular pathways involved, for instance, in�am-
mation, aging, and cancer. Controversial results have been
reported, instead, for SIRT1/HIF1� signaling. In fact, it is
not yet clear if SIRT1 is in�uenced or not by hypoxia. Some
reports indicate that hypoxia increases SIRT1 levels, whereas
others indicate that hypoxia decreases SIRT1 [130, 131]. Under
hypoxia SIRT1 deacetylates HIF1�; however, such reaction
in some cases decreases HIF1� activity, whereas in others

it increases HIF1� activity. Obviously, more data must be
accumulated on di
erent cell lines, tissue, in vivo models,
and tumors before the real function of SIRT1 on HIF1� can
be delineated. Moreover, it is also possible that SIRT1 action
of HIF1� di
ers in di
erent tissues and organs. Given the
widespread actions of SIRT1 in mammalian cells, it is likely
that we have only scratched the surface of how this Sirtuin
in�uences and interacts with ROS.

7.2. SIRT2. 	e connection between SIRT2 and ROS is
still at the beginning. However, some results have shown
that oxidative stress increases SIRT2 expression and nuclear
accumulation. Nuclear SIRT2 then deacetylates and acti-
vates DNA binding of Foxo3a transcription factor that, in
turn, results in increased transcription of its target genes
and �nally a decrease of ROS [132]. SIRT2 has also been
shown to inhibit ROS production following LPS treatment
of macrophages by suppressing NF�B activation [133]. In
fact, SIRT2 has been shown to deacetylate subunit p65 of
NF�B on lysine 310 (K310) in the cytoplasm [134]. In this way
SIRT2 inhibits NF�B activation and transcription of NF�B
target genes following TNF stimulation [134]. In fact, SIRT2
silenced cells have an increased activation of NF�B and a
lower percentage of cell death following TNF exposure [134].
Finally, addition of a cell permeable PEP-1-SIRT2 protein to
murinemacrophages resulted in a reduction of ROS due to an
increase in antioxidant enzymes such asMnSOD and catalase
[135]. 	e precise role of SIRT2 in tumors is still a matter
of debate with some reports showing a correlation between
SIRT2 levels and poor prognosis in non-small-cells lung
cancer or progression of cervical cancer [136, 137], whereas
others report a correlation between low levels of SIRT2 and
non-small lung cancer [138]. However, the current literature
points to an oncogenic role of SIRT2 since its inhibition
results in an impaired growth of lung, cervical, sarcomas,
gliomas, and so forth by regulating cell cycle and autophagy
[139, 140].

7.3. SIRT3. 	e expression and deacetylating activity of the
mitochondrial Sirtuin SIRT3 have been extensively associated
with a decrease of oxidative stress and an increase of cell vital-
ity and lifespan. In particular, in arsenic-treated adipocytes,
reduction of ROS by SIRT3 is due to the activation of
transcription factors such as FOXO3a that, in turn, increases
expression of ROS scavenging enzymes [141]. Deacetylation
of FOXO3 by SIRT3 decreases proteasomal degradation of
the former and increases resistance to ROS [141]. Decrease
in ROS production a�er SIRT3 overexpression or activation
(resveratrol) has been documented in di
erent systems and
pathologies such as age-related dysfunction of the auditory
system [142], doxorubicin toxicity of cardiomyocytes due
to oxidative stress [143], and hypoxic stress of endothelial
cells [144]. In fact, SIRT3 control of HIF protein stability is
achieved by controlling ROS levels as well as other metabolic
pathways [145]. In particular, by decreasing ROS levels, SIRT3
stabilizes HIF degrading enzyme Prolyl Hydroxylase (PHD)
lowering HIF1� levels [146]. Interestingly, SIRT3 de�ciency
is associated with tumor growth in xenogra�s and SIRT3
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expression is lowered in several cancers and cancer cell lines
[146].

7.4. SIRT4. Very little is known about this mitochondrial Sir-
tuin and its role in the regulation of oxidative stress response.
However, SIRT4 ADP-ribosylates and inactivates glutamate
dehydrogenase 1 (GDH-1) decreasing insulin secretion in
pancreatic cells [147]. Interestingly, SIRT4 seems to increase
sensitivity of HeLa cells to oxidative agents and such e
ect
has been linked to GDH-1 inhibition [148]. 	e mechanism
involves a SIRT4-dependent opening of the permeability
transition pore in the mitochondria with increased cell death
following exposure of cells to oxidative stress [148]. Given the
fact that SIRT4 is involved in the regulation of mitochondrial
metabolism, it has been postulated that this Sirtuin must play
an important role duringmetabolic reprogramming of cancer
cells [149]. In particular, SIRT4 has been reported to have
a tumor suppressive role because of its ability to suppress
glutamine metabolism by ADP-ribosylation and inhibiting
GDH [150]. In fact, SIRT4 suppresses Myc-induced B cell
lymphoma and survival of human colorectal cancer cells
[151, 152].

7.5. SIRT5. As in the case of SIRT4, the study of the role
of this mitochondrial Sirtuin in oxidative stress response
is still at the beginning. One study has shown that SIRT5
desuccynilates and activates Cu/ZnSOD, an e
ect that is
accompanied by a reduction of ROS levels [153].Other studies
have, instead, linked SIRT5 desuccynilating activity to the
inhibition of glutamine metabolism that produces glutamate
necessary for the production of the antioxidant glutathione
[154]. 	erefore, in this case, SIRT5 could determine an
increase in ROS. Of note, many tumors show a decreased
expression of SIRT5 and an increased glutamine metabolism
[155, 156]. Moreover, increased glutamine metabolism deter-
mines the production and di
usion of ammonia that, in
turn, stimulates autophagy that limits ROS and DNA damage
and inhibits tumor initiation [157]. However, autophagy has
also a central role in the survival of established tumors
by removing damaged organelles and toxic agents [158]. It
must be concluded that the role of glutamine metabolism,
mitochondrial Sirtuins, and ROS depends on the cancer type
and,more interestingly, on the stage and context of the tumor.

7.6. SIRT6. SIRT6 has been linked toROS, in�ammation, and
cancer by several studies. In particular, the expression of this
nuclear Sirtuin is reduced in endothelial cells in the presence
of ROS with acquisition of a senescent phenotype [159]. On
the other hand, SIRT6 deacetylation of histone H3 regulates
genes important for metabolism and telomeres maintenance
thereby promoting resistance to oxidative stress damage
[160]. SIRT6 controls cell metabolism by deacetylating and
inactivating transcription factors such asHIF,NF�B, andMyc
[161]. In fact, SIRT6 protects cardiomyocytes from hypoxia
by increasing Bcl-2 and decreasing NF�B expression [162].
	e inhibition of NF�B by SIRT6 determines its control
over in�ammation. Accordingly, SIRT6 downregulation is
followed by an increase of NF�B transcriptional activity and

release of in�ammatory cytokines such as IL-1� or synthesis
of COX2, MMPs, and adhesion molecules [163]. Moreover,
overexpression of SIRT6 prevented in�ammation in a mouse
model of collagen-induced arthritis [164]. Finally, SIRT6 has
also been linked to malignancy. To this e
ect, SIRT6 is
considered as a tumor suppressor because it deacetylates and
inactivates HIF and NF�B but, more importantly, because it
regulates the activation of the DNA repair machinery a�er
both double strand breaks (DSB) and base excision repair
(BER). In fact, SIRT6 declines with age or SIRT6 downregu-
lation is associated with a decrease of BER [165]. On the other
hand, however, the increased lifespan associated with SIRT6
could imply that SIRT6 may promote tumor formation and,
in fact, recently an increase of SIRT6 has been associated with
enhancement of tumorigenicity of hepatocellular carcinoma
cells in the presence of TGF-�1, H2O2, and HOCl [166].

7.7. SIRT7. Initially identi�ed as an activator of RNA poly-
merase I [167], SIRT7 is now also linked to tumor transfor-
mation by controlling cellular proliferation and survival. In
fact, SIRT7 has been shown to reduce DNA damage markers
following doxorubicin treatment of osteosarcoma cells as well
as cell cycle arrest markers such as p21. Moreover, SIRT7
decreased apoptosis and p53 response pathway [168]. Fur-
thermore, SIRT7 inactivation suppresses migration of cancer
cells and tumormetastasis formation in amousemodel [169].
However, SIRT7, at least in cardiomyocytes, has an important
role for cell survival and function because of its ability to
deacetylate and inhibit p53, to protect from oxidative stress,
and to reduce in�ammation. In fact, SIRT7-de�cient mice
develop cardiac hypertrophy and in�ammation and have a
shorter lifespan [170].

In conclusion, giving the fact that Sirtuins regulate
both HIF1� and NF�B and the central role that these two
transcription factors have during tumor progression, the
possibility to act on Sirtuins in order to control HIF1�
and NF�B has drawn much attention. 	erefore, presently,
great deals of e
orts have been put in producing Sirtuins
modulators. Several natural compounds such as resveratrol,
quercetin, piceatannol, and other polyphenols have been
shown to modulate Sirtuins function and particularly SIRT1
[171, 172]. However, their action is not limited to SIRT1
but in�uences other enzymes such as phosphodiesterases
(PDEs) and AMP kinase (AMPK) [173]. Unfortunately, so
far, no speci�c inhibitors or activators for other Sirtuins are
available.

8. Conclusions

	is review has been an occasion to summarize evidences
that cell redox status is the milieu where many players can
contribute initially to the cell transformation and successively
to the progression of the malignancy. Initially there is the
formation of early small tumors in the absence of angiogene-
sis which then progress to grow as a vascularized clinically
evident tumor, with the acquisition of all the hallmarks
of malignant phenotype. From a molecular point of view,
two transcription factors, namely, HIF1� and NF�B, may be
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Figure 4:	enatural history of a tumor from initial cell transformation to progression occurs and develops in aROS-richmilieuwhich deeply
in�uences, reinforces, and ampli�es the di
erent steps of the progression, the role of various molecular players, especially DNA repairing
mechanisms, HIF, NF�B, and Sirtuins, and the full acquisition of all hallmarks of malignant phenotype.

considered as master regulators of tumor cell adaptation to
ROS. In fact, both HIF1� and NF�B are induced by ROS
and, in turn, can regulate ROS production to sustain tumor
cell survival and growth. An overview of the di
erent aspects
discussed in this review is summarized in Figure 4 in which
ROS production and signaling as well as ROS e
ect on tumor
cell metabolism and behavior are indicated. Figure 4 also
indicates the important role of hypoxia and transcription
factors HIF1� and NF�B in orchestrating the tumor cell
response to ROS. 	erefore, it is conceivable that a number
of exogenous agents and strategies aimed at in�uencing their
activity could be used to reduce tumor transformation and
progression.
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