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Vascular calcification is a major health risk and is highly correlated with atherosclerosis,

diabetes, and chronic kidney disease. The development of vascular calcification is an

active and complex process linked with a multitude of signaling pathways, which regulate

promoters and inhibitors of osteogenesis, the balance of which become deregulated in

disease conditions. SIRT1, a protein deacetylase, known to be protective in inhibiting

oxidative stress and inflammation within the vessel wall, has been shown as a possible

key player in modulating the cell-fate determining canonical Wnt signaling pathways.

Suppression of SIRT1 has been reported in patients suffering with cardiovascular

pathologies, suggesting that the sustained acetylation of osteogenic factors could

contribute to their activation and in turn, lead to the progression of calcification. There

is clear evidence of the synergy between β-Catenin and elevated Runx2, and with

Wnt signaling being β-Catenin dependent, further understanding is needed as to how

these molecular pathways converge and interact, in order to provide novel insight into

the mechanism by which smooth muscle cells switch to an osteogenic differentiation

programme. Therefore, this review will describe the current concepts of pathological soft

tissue mineralization, with a focus on the contribution of SIRT1 as a regulator of Wnt

signaling and its targets, discussing SIRT1 as a potential target for manipulation and

therapy.
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INTRODUCTION

Vascular calcification is a pathology highly correlated with cardiovascular mortality, and although
initially described as Monckeberg’s sclerosis (1), with calcium being deposited in the medial layer
of arteries, it is now known to be an active process, similar to bone development (2–4). Whilst
development of calcification occurs naturally in vessels as they age (5), increased calcification occurs
in those with diabetes and chronic kidney disease (CKD), in which constant high plasma glucose
and an augmented lipid profile; (comprising of low HDL cholesterol, elevated triglycerides, high
LDL cholesterol and high total cholesterol) (1) increases their risk of accelerating calcification
development. In healthy tissues, vascular smooth muscle cells (vSMCs) exist within the medial
layer of the vessel wall in a quiescent, contractile state, expressing a range of contractile proteins,
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including smooth muscle α-actin, smooth muscle myosin heavy
chain, calponin, and smoothelin. However, in response to these
local cues they lose expression of these proteins and gain the
capability to transdifferentiate from vSMCs to a more synthetic,
osteoblastic phenotype, stiffening, and narrowing the vessel wall
(6, 7) (Figure 1). Whilst the synthetic phenotype is thought
to possess a protective role, contributing to the deposition of
a fibrous cap and thus stabilize an atherosclerotic plaque, the
intimal SMCs are believed to be detrimental as they acquire foam
cell properties, leading to an inflammatory phenotype (8). Many
signaling pathway and transcription factors have been shown to
govern the contractile, osteogenic or synthetic features of the
vasculature (2, 4, 9–12), and with more understanding of the
influence of epigenetics on SMC regulation, their role in the
pathogenesis of human vascular disease will only expand (13).
In vitro models use glucose, calcium and inorganic phosphate as
inducers of calcificationwithin vSMCs,withdepositionof calcium
on the extracellular matrix, and an upregulation of osteogenic
markers including alkaline phosphatase (ALP), Runt-relative
transcription factor (Runx2), and osteocalcin (14). Calcifying
vascular cells (CVCs) are a sub-population of vSMCs susceptible
to calcification, which differentiate from stem cell progenitor
lineageswithin the vasculature (15–18).CVCs are characterized as
a highly proliferating cell with considerable phenotypic plasticity,
where the cells respond to local signals which are activated
in disease conditions, including bone morphogenetic proteins
(BMPs) andWnts, and are capable of downregulating contractile
proteins and remodeling the extracellular matrix to facilitate
migration and differentiation.

FIGURE 1 | The vessel wall during osteogenic differentiation. The vessel wall responds to the micro-environment within the circulation. During diabetes

hyperglycaemia and mineral ion imbalances lead to endothelial damage. The medial layer then responds via triggering a repair response, which often gets masked

and further damage ensues. Progenitor cells within the media, often referred to as calcifying vascular cells (CVCs), are believed to up-regulate osteogenic factors and

differentiate into bone-forming osteoblasts that contribute to vessel stiffening. These vascular progenitor cells directly sense extracellular signals, including a down

regulation of SIRT1 and activation of Wnt signaling, and the protective mechanisms are over-ridden, causing a differentiation of CVCs into bone-forming osteoblasts.

BMPs, Bone Morphogenic Proteins; MSX2, msh homeobox 2; RUNX2, Runt related transcription factor 2; OCN, Osteocalcin; CVC, Calcifying Vascular Cells; vSMC,

vascular Smooth Muscle Cells.

Sirtuin 1, (SIRT1) has been identified as a highly conserved
nicotinamide adenine dinucleotide-dependent deacetylase,
interacting with a range of protein targets involved in Wnt
signaling, glucose homeostasis, insulin regulation, and calcium
signaling (19), making SIRT1 an attractive candidate for control
of calcification. Smooth muscle specific acetylation sites have
been identified which allow repression or access to the cellular
transcriptional machinery and are regulated via a range of stimuli
including transforming growth factor beta (TGF-β), platelet-
derived growth factor (PDGF) and oxidized phospholipids,
which execute their actions by modulating SMC chromatin
structure (20). Wnt signaling and its downstream mediators
affect a range of biological processes, first identified in embryonic
development (21). The Wnt family is a highly conserved group
of 19 genes encoding cysteine-rich-secreted glycoproteins, first
identified in Drosophilia melanogaster as a mutant wingless gene
(22). Subsequent studies demonstrated sequence homology with
the Int-1 gene present in vertebrae and thus the nomenclature
Wnt was coined in 1991 (23). Being highly conserved and
well-studied in eukaryotes, Wnt signaling became recognized as
one of the cornerstones for embryonic development, regulating
cellular proliferation, polarity, and apoptosis and subsequently
becoming suppressed in adults (23). Recent studies have shown
a reactivation of Wnt signaling in a variety of cardiovascular
pathologies (24, 25), acting as a cell fate determination switch,
allowing cellular differentiation to occur, where aberrant Wnt
signaling is diverted toward disease progression. This review
will discuss the role of SIRT1 in vascular calcification, as well
as an overview on Wnt signaling and a summary of potential
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therapeutic interventions that could modulate osteogenic
differentiation, thus linking both SIRT1 and Wnt signaling to
vascular calcification.

MODULATION OF SIRT1 AND
OSTEOGENIC REPROGRAMMING

The development of smooth muscle calcification occurs
in the presence of hyperphosphatemia, often coupled with
hyperglycaemia, in patients with diabetes and CKD. The histone
deacetylase SIRT1, known to ameliorate calcification (26),
is shown to be decreased in diabetic models (27, 28). The
suppression of SIRT1 within blood or tissue allows a build-up
of sodium-dependent phosphate co-transporters (29), increasing
the concentration of phosphate systemically and within vessels,
which is recognized as a key trigger in the development of
calcification. Furthermore, diabetic SIRT1 +/– mice exhibited a
greater propensity to undergo calcification within the aorta (30).
Elevated phosphate within the circulation increases expression
of systemic osteogenic and inflammatory factors, activating Wnt
signaling and osteogenic transcription factors Msx2 and Runx2
(31). Subsequently, levels of osteocalcin, RANKL, Sclerostin,
Osterix, BMPs, and ALP (32, 33) activity are increased. Elevated
BMPs form a positive feedback loop, activating the SMAD
pathway, sustaining Wnt activation and its downstream targets,
Msx2 and Runx2. Runx2 has also been linked to vascular
fibrosis, in the absence of overt calcification, highlighting the
important role of SIRT1 regulated signals in the multistep
processes that control osteogenic programming and calcium
deposition (34).

This influx of pro-osteogenic activators coincides with the
loss of endogenous contractile vSMC genes such as SM22α
and smooth muscle-actin, with a concordant up-regulation
of calcification inhibitor proteins including osteopontin in
an attempt to counteract the effect. However, under disease
conditions the inhibitory effects are masked by the more
dominant stimuli and this generally leads to a change in cellular
morphology and an increase in extracellular matrix deposition
(35). Whilst CVCs have historically been reported to be
differentiated vSMCs (36), staining of cells within atherosclerotic
plaques have identified both macrophage and stem cell markers,
suggesting that CVCsmay be sourced from a range of progenitor-
like cells within the media or adventitia (18, 37, 38). Recently,
SIRT1 has been shown to translocate to the nucleus during
neuronal differentiation and repress the Notch3 target Hes1
(39), suggesting a role for SIRT1 during cellular differentiation.
Notch3 and Hes1 have also been associated with osteogenic
differentiation of vSMCs in vitro (9) and mutations in Notch
have been shown to lead to aortic valve calcification (40).
Therefore, the loss of SIRT1 in diabetes may allow activation
of Notch3 and Hes1, leading to osteogenic differentiation of
vSMCs and subsequent deposition of a calcified matrix. Whether
Wnt, SIRT1, and Notch signaling pathways directly interact,
in terms of vSMCs osteogenic differentiation merits further
study.

SIRT1 SUPPRESSION AND ACTIVATION
OF CANONICAL WNT SIGNALING:
DRIVING FACTORS FOR VASCULAR
CALCIFICATION

Wnt signaling is controlled by the Wnt ligand; a 350 residue
hydrophobic protein with a post-translational fatty acid O-
acylation modification (41), which is essential for secretion and
signal propagation. Post translational modification ofWnt occurs
in the endoplasmic reticulum (42) before shutting to the golgi and
exportation to the extracellular space (43). Secretion of Wnt is
tightly regulated via the wntless transmembrane protein, allowing

both paracrine and autocrine activation of the Wnt pathways
(44). Activation of Wnt triggers one of three different pathways,

all dependent on the Wnt protein firstly becoming palmitoylated
on conserved serine residues, then glycosylated and binding to a

frizzled cell membrane receptor, propagating signaling within the
cell via Disheveled (45–47) (Figure 2). The canonical pathway,
involving β-Catenin, has the strongest links to cardiovascular
disease and vascular dysfunction (48). Classically, Wnts have
been characterized into pro and anti-osteogenic factors, where
Wnts such as Wnt5a (49) and Wnt3a are osteogenic, whereas
Wnt1 is anti-osteogenic, enforcing a contractile phenotype
(46). However, recent work has demonstrated a more complex
pathway, in which not only does the active Wnt ligand dictate
cell fate, but its interaction with the co-factors and cell surface
receptors dictate the emerging osteogenic profile.

Activation of the canonical pathway is characterized
by the accumulation of β-Catenin in the cytoplasm and
subsequent translocation to the nucleus. When inactive, β-
Catenin is constantly degraded via the β-Catenin complex,
firstly phosphorylated (50, 51) then ubiquitinated and degraded

(52). Conversely when Wnt activates the canonical pathway by

binding the transmembrane Frz protein complex (53) it disrupts

the β-Catenin complex (54) allowing its translocation to the
nucleus (53–55). Without ubiquitination β-Catenin becomes
acetylated (56), potentially facilitated by the loss of SIRT1, and
binds to target gene promotor elements, triggering increased
transcription of a range of osteogenic genes (48). Whilst the role
of β-Catenin in diabetes is still illusive, there is clear evidence that
hyperglycaemia increases nuclear accumulation of β-Catenin,
creating an osteogenic environment. Chronic hyperglycaemic
conditions are also shown to displace and inactivate SIRT1
from within the nucleus, allowing acetylation of β-Catenin via
p300 (57), promoting the glucose-dependent amplification of
Wnt-dependent transcription of osteogenic factors. However,
the p300 related acetyltransferase CBP is also engaged in SIRT1
regulatory circuits, including the HIF pathway, which is central
in bone formation, Wnt signaling, and vascular calcification. It
is increasingly clear that the epigenetic roles of p300 and CBP
are distinct, and the role of SIRT1 and CBP in vascular Wnt
signaling remains to be elucidated (58–60).

Whilst Wnt signaling is a recognized orchestrator of vascular
development within embryos, increasing neovascularisation and
proliferation (61) it has been shown to be cell type dependent,
with SIRT1 demonstrating varied responses under normal and
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FIGURE 2 | Summary of the interactions between SIRT1 and the canonical Wnt pathway. In healthy homeostatic conditions SIRT1 binds to p300, diminishing its

ability to acetylate the β-Catenin complex, comprised of Dvl, GSK3β and β-Catenin. Additionally, SIRT1 deacetylates both β-Catenin and HMGB1 thus inhibiting their

translocation to the nucleus, inactivating Wnt signaling and stopping the development of vascular calcification. In the absence of SIRT1 the β-Catenin complex is

activated by p300-mediated acetylation and GSK3β-catalyzed phosphorylation, inhibiting its ability to degrade β-Catenin. Additionally, HMGB1 and β-Catenin are also

acetylated via p300, facilitating their translocation to the nucleus. Subsequently β-Catenin binds cofactors TCF/LEF and following their acetylation transcription of

osteogenic factors Runx2 and BMPs is induced. Whilst the epigenetic roles of CBP and p300 are distinct, the role of CBP still remains an area for further investigation.

LRP5/6, Low-density lipoprotein Receptor-related Protein 5/6; APC, Adenomatous Polyposis Coli; GSK3β, Glycogen Synthase Kinase-3 beta; Dvl, Dishelved Protein;

TCF/LEF, T-Cell Factor/Lymphoid enhancer factor; Runx2, Runt-Related Transcription Factor; BMPs, Bone Morphogenic Proteins; HMGB1, High Mobility Group Box

1; ROS, Reactive Oxygen Species; Ac, Acetylation; P, Phosphorylation.

disease conditions (47). SIRT1 knock-out (62) and knock-in mice
(63) clearly demonstrate that a reduction of SIRT1 activates
Wnt/β-Catenin signaling (64, 65) and loss of SIRT7 enhances
osteogenesis of mesenchymal stem cell differentiation via Wnt
signaling (66, 67), both of which contribute to osteogenic
differentiation. Therefore, it seems reasonable to suggest that
Wnt may be involved in cell fate determination of vSMCs,
stimulating their switch to an osteoblastic-like phenotype, and
increasing calcified matrix deposition.

BMPs belong to the TGF-β superfamily and are responsible
for orchestrating much of the tissue architecture throughout the
body (68). Whilst BMPs are key regulators of bone ossification
(69) the relationship between BMPs, SIRT1, Wnt signaling, and
vascular calcification remains unclear regarding which acts as the
initial trigger, or whether they act in concert (70, 71). BMPs are
secreted throughout the vessel wall, predominately by pericytes
and endothelial cells in a paracrine manner (46) and by vSMCs
in an autocrine loop (72). Of the twenty BMPs discovered,
BMP2 (73), BMP4 (74), and BMP9 (75) are the most widely

reported inducers of bone ossification and vascular calcification
in both in-vitro and in-vivo models. The BMP signaling
pathway is activated when BMP binds serine/threonine receptor
kinases BMPRI and BMPRII, causing them to heterodimerise
and phosphorylate one another (76). Once bound, BMPRI/II
phosphorylate receptor-regulated SMADs (R-SMADs) (77, 78),
which subsequently bind with co-SMAD4, allowing gene specific
promotor binding and osteogenic gene expression (79).

Whilst elevated BMP2 independently induces calcification
(80), when combined with β-Catenin activation, the effect is
synergistic, increasing mineralized matrix deposition (71, 81).
BMP2 is upregulated by hyperglycaemia (82), activating the
ligand high mobility group box 1 (HMGB1), which translocates
to the nucleus, binding to a cAMP response element (CRE)
region of the BMP2 promoter, inducing its expression (83).
In contrast, deacetylation of HMGB1 via SIRT1, prevents
upregulation of BMP2 (84) (Figure 2), reducing induction of
inflammatory markers, including TNFα and reactive oxygen
species (85), thus limiting an inflammatory environment
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conducive to calcification progression. Hyperphosphatemia
stimulates BMP2 production, which in turn increases Pit-1
co-transporter expression throughout the cell membrane,
allowing an influx of phosphate ions (86). Increased
phosphate can downregulate SIRT1 production (28), allowing
sustained acetylation of downstream proteins and facilitating
hyperacetylation of β-Catenin (87) and Runx2 (88) via p300,
thus accelerating calcification.

Although activation of BMP in adults is associated with
increased cardiovascular risk and the development of
calcification, BMPs have been shown to mediate increased
vascular development during embryogenesis, via β-Catenin
activation (89). Wnt also controls the development and stability
of newly formed bones (90), and as only a proportion of vSMCs
calcify within the vessel, it may be suggested that this process is
in overdrive by the reactivation of the CVCs, causing bone-like
development to form along vessel walls. Downstream of BMPs,
phosphorylation of Smad proteins dictates the duration and
efficacy of osteogenic gene expression (91). Degradation of
β-Catenin, coupled with the inhibition of Smad signaling (79),
and prevention of the subsequent signaling pathways impedes
the progression of osteogenic differentiation of vSMCs. However,
activation and binding of BMPs to their cognate receptor, allows
Smad phosphorylation and acetylation via p300 (91), inhibiting
Smad ubiquitination (79) and thus propagating the activation of
downstream osteogenic genes (92). The suppression of SIRT1
in CVD patients, leads to a reduction in competitive inhibition
of p300, thereby increasing BMP/SMAD/p300 signaling and
subsequent osteogenic gene transcription.

Human T Cell/Lymphoid Enhancing-Factor (TCF/LEF) (93)
regulates cell fate markers, including Wnt, by binding β-catenin
alongside co-factors within the nucleus at the TCF response
element, to govern gene expression (92), thus causing the
progression of vascular calcification. Multiple TCF/LEF response
binding elements are present throughout the promotor region of
the BMP2 gene (94) which, when bound by a β-Catenin/TCF
complex, increases BMP2 transcript production. Inhibition of
this activation is achieved via endogenous inhibitor Noggin,
suggesting that a positive feedback loop exists between the
activation and inhibition of β-Catenin and TCF binding onto
the BMP2 promotor (72). Modulation of these proteins within
individuals may be the missing link to distinguish between
patients more susceptible to calcification and those who appear
to be protected.

WNT AND RUNX2: KEY REGULATORS OF
OSTEOGENIC DIFFERENTIATION

Runx2; a key osteoblastic transcription factor (95), is essential
for chondrocyte maturation and osteogenic differentiation.
Originally thought to be expressed solely during bone
development, it is now known to be activated in both the
intimal and medial layers of the vasculature during calcification
development. The activation of Runx2 triggers expression of
a range of downstream osteogenic effectors, leading to the
differentiation of vSMCs from a contractile to an osteogenic
phenotype in a diabetic environment. Hyperphosphatemia

downregulates the expression of secreted frizzled-related
proteins (SFRPs) (96), which act as a decoy for Wnt signaling,
inhibiting internalization of phosphate transporters (97), thereby
facilitating the constant entry of phosphate into the cells and
propagating the development of calcification. SIRT1 has been
shown to regulate SFRPs via deacetylation, directly contributing
to their aberrant epigenetic silencing within histone 3 and 4 (47).

Sclerostin, a selective inhibitor of Low-density lipoprotein
Receptor-related Protein (LRPs), a member of the Frz membrane
complex downstream of Wnt, is increased during CVC
differentiation (98). Increased activation of Sclerostin decreases
Wnt signal propagation via competitive inhibition, temporarily
halting calcification until phosphate and calcium build up
within the serum, reactivating the Wnt pathway and further
calcifying the vessel. β-Catenin nuclear translocation induces
Runx2 expression via SMAD activation in vSMCs (99), binds
to the proximal region of the SOST promotor, activating
osteogenic transcription, similar to that which occurs in bone
(100). Runx2 together with Osterix (Osx) may actively limit
the expression of Sclerostin, with polymorphic variations of
Runx2 transcriptionally regulating Sclerostin expression in
a negative feedback loop (101). Additionally, SIRT1 may
decrease SOST gene expression in bone via the deacetylation
of histone 3 at lys9 within the promotor region, inhibiting the
mechanical loading and subsequent transcription (102). With the
development of vascular calcification considered the paradox of
bone development, the reduction of SIRT1 in the CVD patient
may lead to a decrease in SOST, perpetuating Wnt signaling and
vascular calcification.

Runx2 expression is controlled by Wnt signaling via the
direct binding of TCF/LCF co-transcription factors. Direct β-
Catenin binding to TCF/LEF at the Runx2 promotor site is
enhanced by p300 acetylation (23), propagating the Runx2
signaling pathway. Additionally, indirect DNA binding of
SMADs and TCF via protein-protein interaction enhances Runx2
expression (57) alongside production of downstream osteogenic
proteins. β-Catenin binding to TCF1 at TB1 and TBE2 sites
within the Runx2 promotor region has been shown to increase
endogenous Runx2 expression 10–20-fold, with damage to these
sites attenuating selective Runx2 expression (99). It is clear that
vascular calcification involves a network of signaling pathways,
not restricted to SIRT1, Runx2, and Wnt and that further
studies involving analysis of vSMCs harvested from relevant
patient groups could provide insight into the profile of vSMCs
during early and late osteogenic differentiation, offering stratified
treatment plans to combat calcification development.

SIRT1 MODULATORS AS FUTURE
CALCIFICATION THERAPIES

Activation of Sirtuins, in particular SIRT1, has been shown to
decrease Wnt signaling and reduce the risk of cardiovascular
disease in both animal and human models (103–105), and
administration of resveratrol has been shown to reduce arterial
calcification, in both non-human primates and in uremic
rats (106, 107) suggesting SIRT1 may be a good candidate
molecule for sustained control of vascular calcification. SIRT1
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regulates metabolic pathways including 5’AMP and canonical
Wnt signaling, both of which underpin key biological events,
such as proliferation and differentiation. Developmental studies
have demonstrated the crucial role of β-Catenin signaling in bone
development, with Wnt-floxed mice developing spontaneous
fractures and an inability to develop mature osteoblasts (108).
Additionally, the fate of resident stem cells appears to be
regulated via the upregulation of the SIRT1/Wnt/β-Catenin
pathway, in which MSCs undergo an osteogenic differentiation
programme (109, 110). Taken together, it can be suggested that
CVCs are part of a resident stem cell population not dissimilar to
bone, responding to the absence of SIRT1 and the upregulation
of Wnt, causing bone to develop within the vasculature. Bone
deposition in the vessel wall is thought to occur in conjunction
with bone loss, where calcium and mineral is released from bone,
and taken up in the vessel wall, inducing aberrant signaling
pathways that result in an osteogenic differentiation of progenitor
cells residing in the vessel wall. With the close links between
SIRT1 and Wnt signaling, and the activation of Wnt signaling
in driving an osteogenic differentiation program by vSMCs (99),
understanding Wnt signaling-related interactions with SIRT1
will add insight into the pathogenesis of vascular calcification and
enable the development of anti-calcification strategies. Thus, in
a pathology where vSMCs are thought to undergo an aberrant
differentiation programme, further understanding of SIRT1
signaling in this context, could allow the development of SIRT1
modulators for prevention of this debilitating process (111–113).

Sirtuin activators have generally been described for SIRT1,
and resveratrol, a natural compound found as a constituent of
grapes and red wine (114), is the most commonly used activator
of SIRT1. Resveratrol has been shown to cause resistance to
oxidative stress and inflammation and is used widely in the
diabetic and age-related decline in heart function and neuronal
loss (115, 116). However, because of its modest bioavailability,
resveratrol has been reformulated with more efficient small
molecules being designed commonly known as synthetic
sirtuin activating compounds (STACs) (105, 117), (resVida,
Longevinex R©, SRT501) (106, 107). Furthermore, molecules that
are structurally unrelated to resveratrol (SRT1720 and SRT2379)
have been also developed with increased potency, although most

have not yet reached the clinic (118, 119). SRT2104 was used
recently in a small group of diabetic patients (NCT01031108).

It was well-tolerated, but had little beneficial effect on a
range of measures of cardiovascular health. However, the study
was small, not focussed on human vascular calcification and
further investigations will be required to confirm any enhanced
metabolic effects (120).

CONCLUDING REMARKS

With an increasingly aging population throughout the Western
world, vascular calcification has become a major health concern,
correlating with cardiovascular disease development and
mortality. Although, the molecular mechanism underpinning
vascular calcification remains closely linked to bone formation,
the association between loss of SIRT1, activation of Wnt
signaling and the upregulation of major osteogenic factors add
to the growing armament of deranged osteogenic signaling
pathways occurring under pathological conditions in the vessel
wall. Additionally, SIRT1, a longevity factor and deacetylase, may
act at an epigenetic level to control these converging pathways
and cardiovascular risk factors. Furthermore, SIRT7 and SIRT1
have been shown to co-ordinately enhance Sp7/Osx activity and
support orthotropic bone formation, and thus further studies
could add to the understanding of the role of osteotropic signals
during mineralization in skeletal and vascular environments.
Indeed, it may be, that other members of the sirtuin family,
may contribute to cardiovascular Wnt signaling (121) and either
osteoporosis or vascular calcification.

Although the hyperglycaemia and hyperphosphatemia
present in many CVD patients is known to suppress SIRT1
expression, there is a growing need for a comprehensive single-
cell differentiation pathway for vSMC phenotypic switching, to
identify the temporal activity of relevant signaling pathways,
and the importance of their early inhibition and reactivation
at later time-points. Only then, will we be able to extend our
current knowledge of osteogenic vSMC differentiation, which
potentially could have implications for future research and
clinical application in this field.
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