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The theory of the interpolation of Banach spaces has been widely developed in recent 

years by  a number  of authors. I t  is natural  to expect tha t  the interpolation theory for 

Hilbert spaces should have a particularly simple character; that  this is in fact the case 

is shown in the present study where a complete description of exact quadratic interpola- 

tion norms and exact quadratic interpolation methods is given. Since the literature on 

interpolation theory has been characterized by  an expert  as impenetrable [11] it has 

seemed worthwhile to make the exposition as complete and detailed as possible. 

Our arguments depend in an essential way on the beautiful theory of monotone matr ix  

functions and Cauchy interpolation problems discovered by  Loewner in 1934, and our 

theory may  be regarded as a natural  application of Loewner's results. 

The description of the exact quadratic interpolation methods, given by  our Theorem 

2, has already been found by  Foils  and Lions [6] who establish a corresponding result 

under somewhat stronger hypotheses. I t  should be emphasized tha t  our definition of 

interpolation norms and interpolation methods differs only superficially from tha t  re- 

gularly used in the literature [3]. We should also remark tha t  the functions k(2) which 

give rise to the exact quadratic interpolations are the positive functions, concave of 

infinite order on the unit interval. This class has been studied by  Kranss [7] and also 

Bendat  and Sherman [4]. 

Let  V be a linear space over the complex numbers upon which there is defined a 

pair of norms IIx]]0 and ]lxlll. We shall usually assume tha t  those norms are compatible, 

tha t  is to say, tha t  any  sequence {xk} in V which is simultaneously Cauchy for both norms, 

(1) This paper was written while the author was a Temporary Member of the Courant Institute 
of Mathematical Sciences, New York University. This temporary membership is supported by the 
National Science Foundation, under grant number NSF-GP-1669. 
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and which converges to 0 for one of the norms,  necessarily converges to 0 for the other.  

We introduce the norm ]lx]12 defined b y  the equat ion Ilxll~ = ]lX][o ~ A-Hx[[~ and  the  Banach  

space 7/2, the  complet ion of V with respect  to t ha t  norm.  Since the  norm of 7/2 majora tes  

the initial norms  on V, it is evident  t ha t  these norms  m a y  be extended b y  cont inui ty  

to the whole of 7/2 in a unique way.  We write the ex tended  fo rms  in the same way,  viz. 

Hx[[0 and  ]]x]] 1 and  we note  t h a t  for these ex tended  functions the inequalities ][x]] 0 ~< ]Ix]Is 

and  Ilxlll ~< Ilxl12 are valid. The  ex tended  functions are obviously semi-norms on the  space 

7/2 and  our hypothesis  t h a t  the initial norms  were compat ib le  is equivalent  to the asser- 

t ion t ha t  the  ex tended  funct ions are norms  and not  mere ly  semi-norms on 7/2. 

A norm [[x[[, defined on 7/2 will be called an interpolat ion no rm there (relative to 

the  pair  of initial norms,  of course) if and  only if it is compat ib le  wi th  the  no rm of 7/2 

and  has the p rope r ty  tha t  every  linear t ransformat ion  T of 7/2 into itself which is contin- 

uous when tha t  space is given the norm I]x[]0 and which is also continuous when tha t  

space is given the  norm [[x[[ 1 mus t  also be continuous when the space is given the  norm 

]]x]l , .  I t  is no t  difficult to show tha t  this is equivalent  to the following more  formal  defi- 

nition. A norm [Ix]], on 7/2 is an interpolat ion norm there  if and only if 

(i) [[x]], is compat ib le  wi th  ]]x][ 2 

(ii) there exists a constant  C ,  such t ha t  any  linear t rans format ion  T on 7/2 into itself 

which satisfies [ITx[l~<<. ]Ix]Is for all x in 7/2 and  k = 0 ,  1 mus t  sat isfy [[TxH,<~C,[[x]] , for 

all x. 

Since the ident i ty  is such a linear t rans format ion  T, ev ident ly  C,  >~ 1. I t  is also clear 

t ha t  the t ransformat ions  T considered in our definition mus t  be continuous linear t rans-  

format ions  of 7/3 into itself of bound a t  most  1. We also note  t ha t  the inequalities occurring 

in the definition need only be supposed to hold for e lements  x belonging to V since V is 

dense in 7/3. The restr ict ion of an interpolat ion norm to V will be called an  interpolat ion 

norm on tha t  space. 

I t  would seem more  na tu ra l  not  to invoke the space 7/2 in the  definit ion of interpola- 

t ion norms  and to consider the family  of t ransformat ions  T mapp ing  V into itself which 

are continuous bo th  for the norm [[x[[ 0 as well as the  no rm Hx]li, however,  the  class of 

t ransformat ions  so de te rmined  m a y  be too restr ic ted for convenient  applicat ions of the  

theory;  we therefore take  t ransformat ions  mapp ing  V into 7/3. 

The  interpolat ion norms  are a lways continuous relat ive to the  no rm ]]x]l 2; there  exists 

a constant  i such t ha t  ]I~II,~<M]IxII2. This is a consequence of the fact  t ha t  the  space 

7/3 is complete relat ive to the no rm I]x]12+Hxl],; this norm is compat ib le  wi th  ]]x]] 2 and  

therefore is equivalent  to it. 
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An interpolation norm is called exact if the constant C .  of the definition may  be taken 

equal to 1. 

Throughout our discussion we will be concerned only with quadratic norms and 

quadratic interpolation norms. The space 7/2 will therefore be a Hilbert  space and the 

quadratic norm ]]x]] 0 will give rise to a positive, bounded operator in a known way. We 

will have ]]x]]~=(Hx, x)2 for all x in 7/2 and some operator H for which O<.H<~I, where 

I is the identi ty operator on 7/2. We see immediately tha t  ]]xll~=((I-H)x, xiz and tha t  

0 ~< I - H  ~< I .  The hypothesis tha t  the initial norms were compatible on V, which was 

equivalent to the hypothesis that  the initial norms on 7/3 were norms and not semi-norms 

is clearly equivalent to the hypothesis that  the numbers 0 and 1 do not occur as eigenvalues 

of the operator H. Later  in our discussion we will want to remove this hypothesis, to 

consider incompatible semi-norms on V, and to admit  the numbers 0 and 1 as eigenvalues 

of H, but  this is not convenient at  the outset. 

The specification of H is a complete description of the pair of initial norms. A quad- 

ratic interpolation norm similarly corresponds to a positive and bounded operator K 

where 2 l]xll, = (gx, x)~. 

I f  T is a continuous linear transformation on 7/3, the assertion tha t  T is continuous 

relative to the norm IIx[10 is the assertion that  there exists a positive number  t o such tha t  

for all x in 7t2 II Txll~ ~<t0]]xll~ and this inequality may  be written (HTx, Tx)3 <~to(gx, x)3. 

This is equivalent to the operator inequality T*HT <~ toll. In  a similar way, the continuity 

of T relative to the other initial norm may  be written T * ( I - H ) T < ~ t l ( I - H  ). Thus a 

positive and bounded operator K corresponds to a quadratic interpolation norm if and 

only if for any operator T on 7/3 the inequalities T*HT<<.H and T * ( I - H ) T ~ I - H  

together imply T*KT <~ C, K. The quadratic interpolation norm will be exact if C. = 1 here. 

In  the present study we are concerned exclusively with the exact quadratic interpola- 

tion norms, hence we seek, associated with any  operator H on 7/3 for which 0 < H  < I 

the class of all positive and bounded operators K for which the hypothesis 

T * H T < H  and T * ( I - H ) T < ~ I - H  (1) 

implies T*K T <. K. (2) 

I t  is clear that  the class of such operators forms a convex cone, completely determined 

by  the operator H. Our principal result, Theorem 1 below, asserts tha t  this cone consists 

precisely of operators of the form K =k(H) where the function k(2) is given by  the formula 

~(~) = ~(i - ~) 
2s+  ( 1 - 2 )  (1 - s )  d~(s), (3) 

dQ(s) being a positive Radon measure on the unit interval 0 ~<s ~< 1. 
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T ~ o ~  ~. A norm I1~11, on ~, ~ an exact quadratic interpolat ion norm relative to 

the pair o/initial norms determined by H and I - H  i /and  only i/there exists a monotone 

non-decreasing bounded/unction ~(s) on the closed unit interval such that 

f [ I j  t(1 - - t )  d~(s) d(E~x, x)2, (4) 
Ilxll~*= ~ is+(1--1)(l-s) 

where H =  S~IdEa. 

The proof of the theorem is lengthy; before embarking on it we turn to the subject 

of exact quadratic interpolation methods. In  most applications of interpolation theory, 

one is presented with two spaces V' and V" on each of which is defined a pair of initial 

norms. As before we pass to spaces ~4~ and ~H~ and seek norms I1~'11. and 11~"11, on ~ach 

of these spaces which are to be compatible with the norms of those spaces and which are 

to be such that  the linear transformations T from W~ to ~ which are continuous when 

both spaces are provided with the norms I1~'110 and IWII0 respectively, and which are 

also continuous when the spaces are provided ~ t h  the norms I1~'111 and I1~"111 respectively, 

must be continuous when they are given the norms II~'ll* and I1~"11. respectively. An 

interpolation method is an assignment of such norms. I t  is necessary to give a somewhat 

pedantic definition. 

We consider the class of triples [:H~, I1~110, I1~1113 where :H~ is a Banach space with 

norm Ilxll~ and  11~11~, k = 0 ,  1 are norms on ~ for which I1~11~= II~llo~+ I1~11~; we also con- 

sider the class of pairs []B, [1~11,3 where B is a Banach space and I[~11, a n o r m  on ~ com- 

patible with the norm of B- We consider mappings M of the first class into the second; 

such mappings may be conveniently written 

M [ ~ . ,  I1~110, I1~111] = [M(~4~),  I1~11~]. 

An interpolation method is such a function M having the following two properties: 

(i) M ( ~ ) =  ~2 for all Banach spaces ~/~ and 

(ii) there exists a constant CM such that  if 

M[~4~, [[ x' IIo, II ~' 1113 = [~g, II ~' I1-3 

then every linear transformation T from :H~ to ~ for which IITx'll~< IIx'll~ for all x' in 

~H~ and k=O, 1 also satisfies the inequality II Tz'IIM~O~II~'II~ for an such ~'. 

The method is exact if GM may be taken equal to 1 and is quadratic if all of the norms 

appearing in the definition are quadratic and the spaces are Hflbert spaces. As a eonse- 
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quence of Theorem 1 we obtain the following description of all exact quadratic interpola- 

tion methods. 

THEOREM 2. The exact quadratic interpolation methods are in a one-to-one correspond- 

ence with the set o/ /unctions k(2) o/ the /orm (3); i~ M corresponds to k(,~), then the norm 

]lX]]M is given by ]NI~M=(k(H)x, X)~ where H represents ]]x]]~o in the Hilbert space :lt~. 

Proo/. We first show that  the methods described by  the theorem are indeed exact 

quadratic interpolation methods. Suppose k(2) given a n d  ~/~ and ~/~ two Hilbert spaces 

on each of which is defined a pair of quadratic initial norms. We form the direct sum 

of those spaces: ~ = ~//~ @ ~/~ and define on it initial norms and the  corresponding operators 

as follows. 

ll~llo ~ = II[x'; x " ] l l ~ :  IIx' l l~+ IIx'll~ = ( /~ ,  ~ ) :  (H,x,, x').+(H"x", x")~, 

I1~11~ = IIx'll~ + I Ix"l l~:  ( ( 1 - ~ ) ~ ,  ~) = ( ( I -H' )x ' ,  x') .+((l-H")x", x").. 

Now II~ll~,=(k(t~)~, ~ )= (k (H ' )~ ' ,  x' k Zr' x" )~ +(  ( ) , x")~ defines an interpolation norm on the 

space ~/. Those transformations T mapping the first factor into the second having bound 

at most 1 for the initial norms correspond then to transformations ~ on ~/ defined by 

T[x'; x"] =[0; Tx'], and T has bound at most 1 for the interpolation norm. Hence H Tx' ]], <~ 

IIx'll,. 
On the other hand, if we suppose that  M is an exact quadratic interpolation method, 

then, since the triples [~/~, Hx'Ho, ]Ix'Ill/and [~/~: ]lX"Ho, ]Ix"Ill/occurring in the definition 

may happen to coincide, the norm Hx'HAr must be an exact quadratic interpolation norm 

in the sense of Theorem 1. Hence there exists a function k(;t) which a priori depends on 

M, ~/~ and the initial norms such that  l]xH2M=(k(H)x, x)2. We have to show that  k(,~) 

depends only on M. Corresponding to the spaces ~/~ and ~/~ each of which is provided with 

a pair of initial norms . . . .  we have two functions k'()t) and k"(2) so that  IIx'l]~ = (k ~ '(H')x, '  x') 2 

a n ( ~  pr 2 ~p pt ~t H x IIM= (k ( H ) x ,  x")2. As in the previous argument we pass to the direct sum 

and consider the transformation T which embeds ://~ into ~ :  Tx' =[x'; 0]. Since T has 

bound 1 for the initial norms we deduce that  H[X'; O]]]M<]]X'HM" Similarly, considering 

the projection of ~ on to  ~/~ we deduce the opposite inequality, and it becomes clear 

that  H[x'; x"]H2M = Hx!H~M+ Hx"H~M. Finally, since there exists a function $(2) of the form (3) 

defining the norm I[~11~ on ~ we have 

(/r ~), = ( k ' ( H ' ) x ' ,  x ' ) ,  + (k"(H").", x"),~ 

Since the spaces ://~ and ~ are reducing subspaces of ~ f o r / t  we see that  we may take 
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k'(~t) =~c(~t) and k"(~)=$(~t), and if any of the spectra contain an interval the function ]c(~t) 

is uniquely determined, since all functions of the form (3) are analytic in the open unit 

interval. Thus the exact quadratic interpolation method M is of the type described by  

the theorem. 

As we remarked in the introduction, a form of Theorem 2 has been established by  

Foias and Lions [6]; in our terminology these authors suppose tha t  an exact quadratic 

interpolation method M is defined by a function re(X) so that  ]]XH2M = (m(H)x, x)~ and deduce 

tha t  m()l) is necessarily of the form (3); conversely, they show that  such functions define 

exact quadratic interpolation methods. 

Virtually all of the rest of the paper  consists in the proof of Theorem 1. 

Suppose, now, tha t  K is a positive operator which gives rise to an exact interpolation 

on the space :H2. Thus the inequalities (1) imply (2). In  particular, if E is a projection 

which commutes with the operator H, from the evident inequalities EHE<<.H and 

E ( I - H )  E ~ I - H  we deduce tha t  E K E  <<.K. We invoke next  the following elementary 

lemma. 

LEMMA 1. I /  E is a projection in Hilbert space and K a positive and bounded operator, 

the inequality E K E  ~ K implies that E commutes with K. 

Proo/. Choose x in the range of E and y in its null space to form u = x § ty where t 

is any  complex number. Now 

(EKEu,  u) = (KEu, Eu) = (Kx, x)<. (Ku, u) = (Kx, x)+ ]tl2(Ky, y)+ 2Re[/(Kx, y)]. 

Since t is arbitrary,  evidently (Kx, y)=0,  whence ( I - E ) K E = O  or E K E = K E .  Taking 

adjoints, we find that  E K E  = E K  = K E .  

I t  follows from our lemma, then, tha t  any subspace ~ of ~4~ which is a reducing 

subspace for H must  also be one for K. I f  ~ is considered as a space in itself, the restric- 

tion of H to ~ gives rise to the restriction of the pair of initial norms, and the restriction 

of K corresponds to the restriction to ~ of the interpolation norm. Since any  continuous 

linear transformation T of ~ into itself can be extended to a continuous linear transfor- 

mation ~ of ~2 into itself in such a way that  the bounds of T for the norms ]lx[10 and 

]]x]l 1 are not increased (we have only to set T = 0  on the orthogonal complement of ~ ) ,  

it follows tha t  the restricted interpolation norm is in fact an interpolation norm on 

relative to the restricted initial norms. 

When the space ~H2 is separable, the fact that  K commutes with every projection 

commuting with H implies tha t  K is a function of H [10]. We have K = k ( H ) = ~  k(X)dE~ 

if H =~ 2dEx, the function k(2) being measurable with respect to the projection valued 
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measure dE~. The function k(2) is determined, of course, only up to a Set of spectral 

measure 0; in particular it is wholly undetermined on the complement of the spectrum of H. 

Since K is a bounded and positive operator, we may always suppose that  0~<k(~)~< IlK H. 

We shall show presently that  there exists a canonical choice for k(2) which makes it a 

continuous function on the spectrum of H. 

These considerations make it clear that  the hypothesis of separability of ~//2 which 

we introduced provisionally above makes no difference. For if K appears as a continuous 

function Of H on every separable reducing subspace we have only to verify that  the same 

function occurs for every such subspace as follows. We choose ~0,  a separable reducing 

subspace of H such that  the spectrum of the restriction of H to ~ 0  cohlcides with the 

spectrum of H relative to ~/2- On ~ 0  we have K = k(H) where/r is a continuous function 

on the spectrum. If ~ t  he any other  separable reducing subspace, so also is the direct 

sum ~ 0  @ 7tll upon which K appears as a continuous function of H, necessarily the func- 

tion k(~) above. Thus K ~k(H) on any separable reducing subspace, hence everywhere. 

There is also no loss of generality in our assuming the space separable in the sequel. 

Throughout our arguments we shall make frequent use of this device for the study 

of K and k(2); we descend to a reducing subspace for H and study K as a function of H 

on the subspace. 

LEMMA 2. K=k(H) where k(~) is continuous and concave on the spectrum o/H.  

Proo/. We first consider the case where the spectrum of H does not  contain either 

0 or 1; there exists therefore a small positive ~/such that  the spectrum is contained in the 

interval (*/, 1-*/).  Choose 20 in the spectrum and a positive e for which e <,//2. Let  

be the reducing subspace of H associated with the interval (~0-e, 20+E ) and let T be 

any unitary transformation of ~ into itself. For x in ~ then 

_<,~o+e ( 2 e )  
IlTxllo~<(~o+~)iIT~ll~=(~o+~)ll~ll~o- ~ I[~ll~= x +~-~-_ II~llo ~, 

and since ~o--e is at least ~1/2 we have II T~ II~ < (1 + 4 ~/~)II x I1~- Similarly 

II Tx][~ < (t + 4C~)I]xl[~ 

and hence II Tx 112, < (1 + 4 e/V) II x ll~,. 

Let  M be the essential supremum of k(~t) over the interval (~to- G ;to+e), that  is to 

say, the supremum of all numbers t such that  the set k(2) J>t has positive spectral measure; 

similarly m is the essential infimum of that  function. Both numbers are finite and positive 
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since ]r gives rise on ~ to a norm equivalent  to t ha t  of ~n. For  a small e' we can there- 

fore find a set E 1 with positive spectral measure support ing a normalized element x 1 in 

such tha t  k ( ~ ) > M - e '  on El;  there is also another  measurable set E 2 support ing a 

normalized x 2 where ]c(2)<m + e '  on E n. Evident ly  there exists a un i t a ry  t ransformat ion 

T of ~ into itself which carries x n into x r 

Accordingly 

M - e '  = ( M  - e') II Xl I1~ ~ 11 xlll~, ~< (1 + 4 e/'7) II ~2 I1~, ~< (1  -t- 4 e/~7) ( m  + e') II ~2 I1~ 

= (1 + 4 t/~/) ( m +  e'), 

and  since ~' is arbitrari ly small, M/m < 1 + 4e/~, whence 

M - m  <.4m e/~ <4][Kll~/n. 

For  such small e we next  define on the spectrum the functions 

M~(~t) = essential sup ]c(~t) over (~t-e, ~t+e) 

as  well as me(k ) = essential inf k(~t) over () l -e , )~+e) .  

Evident ly  o < M~(~) - ~n~(~) < 411Klle/~. 

As e approaches 0, the functions M~(2) diminish monotonically,  converging uniformly to 

a funct ion k*(X) on the spectrum which is also the uniform limit of the monotone  increasing 

family me(~t ). I t  is easy to see t h a t  k*()l) is continuous on the spectrum, and since the in- 

qual i ty  m~(2)~< k(~t)~< M~(2) holds almost  everywhere for the spectral measure dEa, for all 

small e, the funct ion k*(~) is then equivalent  to k()~) for t ha t  measure. This canonical 

determinat ion of k(2) is evidently unique. We now show tha t  it is a concave funct ion 

on the spectrum of H. L e t / ,  g be a pair of elements of ~2 and let T be the linear transfor- 

mat ion defined by  Tx = (x, g) j .  Since K has a bounded inverse, we m a y  write T in the 

form Tx = (x, K-ig) , / ,  whence 

II T ,  I1~, = I(~, K - ~  g)* I ~ II / I1~, = I(~, K-~g)* I ~ (K[,/)n. 

From the fact  t ha t  equali ty can be a t ta ined in the Schwartz inequali ty we obtain the bound  

of T when the space is given the interpolation norm: IITII2,=(K-lg, g)2(K/,/)3 and by  

the same calculation we obtain  the bounds of T relative to either of the initial norms: 

[[T[[~ = (H-lg, g)n(H/, /)3 and  [[T[]~ = ( ( I -H) - Ig ,  g)2(( I -  H)/, /) n. 

Since K corresponds to an  exact  interpolation, we find tha t  for all / and g 
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(K-lg, g)3(K/, /)3 ~<max [(H-~g, g)3(H/, /)3, ( ( I -H) - Ig ,  g )3( ( I -H) / ,  /)3]- 

Consider three points in the spectrum of H:  0 < h l < h a < h a < l  and three elements 

el, e 2 and e a each normalized in ~/3 and belonging to the spectral subspaees for H associ- 

ated, respectively, with the intervals (h i - e ,  h i+e) ,  (ha-e ,  h3+e) and (ha-e ,  ha+e) where 

the positive e is so small tha t  these intervals are disjoint and contained in the interval 

(~/2, 1-v/ /2  ). We choose g=e~ a n d / = ~ e l + f l %  where the positive a and fl are so chosen 

tha t  23=~2hl+f12;ta, and 1-~3=r162 Now (H-lg, g)3<~(h3-e)-i and 

(H/, /)3 < ~3(hl + e) + fi3(h a § e) = h3 + e. Thus 

28 2~ 
(H-lg, g)3 (H/,/)3 ~< 1 + ~- and similarly ((I - H) -1 g, g)a ((I - H) / , / )3  ~< 1 

(1 h3) A3 8 

and therefore (K-lg, g)3 (K/,/)3 <~ 1 + O(c). 

From the uniform continuity of/c(h) on the closed spectrum of H it follows tha t  there 

exists a positive w=w(e) which diminishes to 0 as e does and such tha t  (K-lg, g)2>~ 

(k(h2) +w) -1 and (K/,/)3>~ ~k(hl)+fi2k(ha)-w. Accordingly 

(~2]~(,~1) +~2]r • [1 + 0(8)] []r +O)] +(9,  

where a2hl§ As e approaches 0 we obtain the concavity of k(h). If  [a, b/ is the 

smallest closed interval containing the spectrum of H, it is evident tha t  we can obtain a 

concave positive function on [a, b /which  coincides with/c(h) on the spectrum by  defining 

the extended function so that  it is linear on the complementary intervals. This function 

is clearly Lipschitzian. 

There remains the case when the spectrum of H is not contained in an interval of the 

form (~, 1 - ~ ) .  However, from the foregoing argument,  if we consider the interpolation 

norm on the reducing subspace for H associated with the spectral interval (~/, 1 - ~ ) ,  we 

see tha t  k(~) has a canonical determination as a continuous and concave function on tha t  

interval. Thus k(h) may  be defined at  one or more of the end points of the unit interval, 

neither of which is an eigenvalue for H, in such a way tha t  b(h) is concave and continuous 

on the whole spectrum. The proof is complete. 

LEMMA 3. I] H' and H" are two operators with the same spectrum, and It(h)is a contin- 

uous/unction on the spectrum such that K' =Ir is an exact interpolation operator/or H', 

then K" =k(H") gives rise to an exact interpolation/or H". 

For the proof of Lemma 3 it will be necessary to make use of the following elementary 

lemma. 

1 7 -  672906 Acta mathematica. 118. Imprim6 le 21 juin 1967. 
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LEM~A 4. I /  A and B are two positive operators with spectrum in the interval (~/, 1-7) 

where 0 < 7 < � 8 9  and i~ IIA - BII < e and ,~ >~1 then/or trans/ormations T o/bound 1 the inequa- 

lity T*A T <~ 2A implies T*B T <~ ~(1 + 2 e/T ) B. 

The proof is quite straightforward: 

T*BT = T*(B - A )  T + T*A T ~),4 + eI = 2B +2(A - B) + e l  <-2B +22ei <~ 2B +22e/~B. 

Proo/ o/Lemma 3. As before, we first suppose tha t  the spectrum of H '  and H" is 

bounded away from the end points of the unit interval, and therefore contained in an 

interval of the form (7, 1 - 7 ) .  Since the function k(2) may  be taken to be a Lipschitzian 

function on the whole interval, we may  suppose that  its Lipschitz constant is at  most 1, 

because k(2) gives rise to an exact interpolation norm if and only if Ck(2) does, where C 

is any  positive constant. 

Let  g(2) be a monotone increasing function on the unit interval which assumes only 

a finite number  of values, and for which uniformly I9(/t)-), I <e  on the spectrum of H '  

where e <7/2. We also require that  the finite set of numbers which g(/t) assumes be points 

of the spectrum of H' .  We form the operators G'=g(H') and G"=g(H") and note tha t  

]]H"-G"][ <e  and HH'-G'H <~. The operators G' and G" have the same spectrum, and 

the function k(~t) is unambiguously defined on that  spectrum; we form therefore K 1 = k ( G ' )  

and K2=k(G" ). Now K 1 - K ' = k ( G ' ) - k ( H ' ) ,  and the Lipschitz constant of k(~) being 1, 

we infer tha t  HK1-K'I [  <e  as well as HK~-K"]] <e. We may  take ~ a lower bound for 

k(2) on the spectrum. The hypothesis T*G'T~G'  and T * ( I - G ' ) T < ~ ( I - G ' )  for operators 

T of bound 1, implies, by  virtue of Lemma 4, the inequalities T*H'T<~(1 +2e/~)H '  and 

T * ( I - H ' )  T~<(1 +2e /~) ( I -H ' )  and because K '  gives rise to an interpolation norm for 

H '  we then have T*K'T <~ (1 +2e/~)K' ,  whence by  Lemma 4, T*K 1T <~ (1 +2e/~)2K1. 

Since there is a unitary equivalence between G' and G" and K x and Ks, at  least when the 

spectrum of H '  has no isolated points, it follows tha t  the hypothesis T*G"T<~G" and 

T*(I -G") T <~ (I -G") implies tha t  T*K~ T ~ (1 + 2e/~)2K~. Accordingly, T*H"T <~ H" and 

T * ( I - H " ) T < ~ I - H "  together imply T*G"T<~(1 +2e/~)G" and T*(I -G")  T < ( l + 2 e / ~ )  

( I - G " )  and therefore T*K~T<~(I+2e/~)aK2. Because of Lcmma 4, finally, T*K"T<~ 

(1 +2e/~)4K ". Since the ~ was arbitrary, T*K"T<~K" is then a consequence of the inequa- 

lities. The lemma is therefore proved when the spectrum of H' has no isolated points and 

is bounded away from the end points of the interval. 

In  this argument  we have supposed tha t  there were no isolated points in the spectrum 

of H '  in order tha t  the operators G' and G" should be unitarily equivalent. Even  if there 

were such isolated points, they would occur as eigenvalues of H' and H ~ and if thes e eigen- 
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values had the same multiplicity tha t  unitary equivalence would still exist and our pre- 

vious argument would hold. We have now to show tha t  the multiplicity of these eigenvalues 

is immater ia l .  Obviously there is a reducing subspace for H '  such tha t  the par t  of H '  in 

that  subspace has the same spectrum as that  of H '  on 742 and such tha t  the isolated points 

of it occur as eigenvalues of unit multiplicity. On tha t  subspace k(2) gives rise to an exact 

quadratic interpolation, and there is no loss of generali ty if we suppose tha t  these isolated 

points occur as eigcnvalues of unit multiplicity for H ' .  

If  K" =k(H")  does not give rise to an exact interpolation for H" there exists a linear 

transformation T of bound 1 in ~/2 such that  T*H"T <~H" and T * ( I - H " ) T < ~ I - H "  and 

a normalized x in ~/2 for which (K"Tx, Tx)2 > (K"x, x)2. We write the expansion of x 

and Tx as follows: 

Z b,/; + /'*. 

Here the e lements /* , / '*  are orthogonal to the linear span of the eigenspaces ~ associated 

with isolated eigenvalues of H"; the elements/~ and/~' both belong to ~ and are norma- 

lized. We take U as a unitary transformation on ~42 which reduces to the identi ty on 

the orthogonal complement of the 7 ~  and which leaves each 7 ~  invariant,  but  carries 

/; into/~. Evidently U commutes with H", and if we form S = U T  we have S*H"S<.H" 

as well as S * ( I - H " ) S < . I - H "  and  also (K"Sx, SX)~>(K"x, x)2. Passing finally to the 

reducing subspace of H" determined by  the or thogonaI  complement of the 7 ~  as well 

as the span of the sequence {/~} we see that  the par t  of H" in that  subspace cannot admit  

k(2) as an exact interpolation function, although the isolated points of its spectrum are 

eigenvalues of unit multiplicity. This is  a contradiction. 

The proof of the lemma will be complete if we consider finally the case when the 

spectrum of H '  is not bounded away from the end points of the unit interval. We argue 

as before: if K" = k(H") does not give rise to an exact quadratic interpolation for H" there 

exists T for which T*H"T <~H" as well as T*(I-H")T<~ I - H "  and a normalized x in ~//~ 

such tha t  (K"Tx, Tx)2> (K"x, x)~. The latter inequality may  be writ ten in integral form 

k(l) d(E'~ Tx, Tx)2 > k(l) d(E'~ x, x)2. 
0 

Since the end points carry no positiv.e mass for these measures, there evidently exists a 

small positive ~ for which 

1-~(~) d(E'~ Tx, Tx)~ > k(l) d(E'~ x, x),. 
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Accordingly, if ~ = P ~ ( ~ )  where P~ = E~_, - E ~  the function k(~) cannot give rise to an 

exact quadratic interpolation associated with the par t  of H" in )~; this, in turn contradicts 

the par t  of the lemma which has been proved, since 1r does give rise to such an  inter- 

polation for the par t  of H' in the range P ~ ( ~ )  where P~ = E~_, - E~. The proof is complete. 

In  view of the previous lemmas we are able to formulate our problem as follows. 

Associated with every closed subset F of the unit  interval which does not  contain the 

end points of that  interval as isolated points, there exists a convex cone Cp of non-negative 

functions continuous on F such tha t  if k(2) belongs to Cr and H is any  positive operator, 

the spectrum of which is a subset of F ,  then K = k ( H )  gives rise to an exact quadratic 

interpolation for H. Moreover, every function giving rise to such an interpolation is con- 

rained in the cone CF where F is the spectrum of H. I f  F '  is a subset of F ", the restric- 

tions to F' of functions in C~- belong to CF.. Our purpose is to show tha t  for all F the 

functions in CF are precisely the restrictions to F of functions of the form (3); this is the 

content of Theorem 1. Half  of the theorem is established by the next  lemma. 

L~M~X 5. I/k(2) is o/the/orm (3) and F arbitrary, the restriction o/k(2) to F belongs 

to CF. 

Proo/. I f  there exists an operator H for which K=]r is not  an exact  quadratic 

interpolation then there exists a T of bound 1 on ~2 for which T*HT <~H and T * ( I - H )  T <. 

I - H  and a normalized x in ~42 for which (KTx, Tx)~>(Kx, x)2. Since the proper ty  of 

being an exact interpolation function depends only on the spectrum of H, we may  suppose 

tha t  H has a complete set of eigenvectors, the corresponding eigenvalues forming, of 

course, a dense subset of the spectrum. The inequality above may  then be written in 

integral form: 
OQ 

~k(~,) I (T~,/,)~1 > = (Kx, x)., 

and for sufficiently large N we have 

N 

k(l~) [ (Tx, /~), Is > (Kx, x),. 
1 

I f  we take P as the projection on the first N eigenvectors this may  be written 

(KPTx, PTx)2 > (Kx, x)2. 

Set y =Px and pass to the transformation S =PTP on the space ~ = P ( ~ ) ;  since ~ is a 

reducing subspace for H we have S*HS<~H and S * ( I - H ) S < ~ I - H .  Moreover, P T x =  

Sy + P T ( I - P ) x ,  and with increasing N the second term Converges to 0. Thus (KSy, Sy)2 
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converges to (KPTx, PTx)~> (Kx, x)~>~ (Ky, y)~ and so for large enough N (KSy, Sy)~> 

(Ky, Y)2. I t  follows that  k(2) does not give rise to an exact quadratic interpolation for the 

finite dimensional space ~ .  Thus it will be necessary to show only that  functions k(2) 

of the form (3) give rise to exact quadratic interpolations for finite dimensional spaces, 

i.e., that  such functions belong to Cp for finite sets F. 

The class of ftmetions of the form (3) is obviously a convex cone, and therefore w e  

have only to show that  the suitably normalized extreme points, the functions 

2(1-~) 
ks(it) ~ + ( 1 - ~ ) ( 1 - 8 ) '  0 ~ s < l ,  

are exact interpolation functions on any finite set F. Now it is trivial that  for s =0  or s = 1 

the resulting functions, ko(2 ) =2 and k1(2 ) = 1 - 2  belong to Cy; we therefore suppose 0 <s  < 1. 

On the finite dimensional space ~/2 the operators I, H, I - H ,  Ks=k~(H) give rise to 

four different, but  equivalent quadratic norms, viz. Ilxl12, Hx[[0, I[xlll, IIxH~. These norms 

then give rise to four equivalent norms on the finite-dimensional operator space which 

we denote with the same subscripts: HTH2, IITH0, lIT]J1 and HTII~. We have only to show 

the exactness of the interpolation, namely the inequality 

HTHs ~<max (llTIIo, ]]T[I~) 

and since all three functions are norms, a for t io r i  continuous, it is enough to show this 

for a dense subset of the operator space, viz. the operators T which have inverses. 

Now it is easy to show that  on a finite dimensional Hilbert space the operator inequa- 

lity 0 <A < B is completely equivalent to the inequality 0 < B  -~ <A- l ;  our hypothesis (1) 

therefore reads 
H-1 <~ T-1H-1T*-I 

and 

and we want to prove 

( I - H )  -1 <~ T - I ( I - H ) - I T  *-I 

K~ 1 <~ T-1K~IT*-I. 

From the form of ]r however, K~ 1 =s(I - H )  -1 + (1 - s ) H  -1, that  is to say, K~ 1 is a convex 

combination of H -1 and ( I - H )  -1 and the proof of Lemma 5 is complete. 

The proof of the necessity in Theorem 1 is a good deal harder than the proof of the 

sufficiency; before embarking on it we make a few remarks serving to simplify the problem. 

First of all, it is enough to prove the theorem for finite sets F,  since if ]c(2) belongs to C~ 

for some infinite F,  and if {Fn} is an increasing sequence of finite subsets of F, the union 

of which is dense in F, the restriction of k(2) to Fn is of the form (3) when the theorem 
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is true for finite sets. Accordingly, there exists a sequence kn(~ ) of functions of the form 

(3) converging on iv to k(2) and which are uniformly bounded on the closed interval 0 ~2  ~ 1. 

I t  is therefore clear tha t  k(~) is the restriction to iv of a function of the form (3). 

Hitherto we have been studious to avoid semi-norms and to speak only of norms; 

thus we always had the hypothesis tha t  the spectrum of H did not contain the points 0 

or 1 as eigenvalues. In  general, that  hypothesis was not necessary for our considerations 

and we shah return to this point later. At the moment  we content ourselves with the 

~ollowing remark: if #(2) is an interpolation function associated with a positive definite 

operator H on the Hilbert space ~2, and if we extend k(2) so tha t  k(0)= 0, and if, more- 

over, we extend the space :H2 by  taking its direct sum with some further Hilbert  space 

to obtain ~ = ~ @  ~ and consider the ope ra to r /~  on ~ which coincides with H on 

~ and which vanishes on ~ ,  then the extended $(2) gives rise t o  an interpolation semi- 

norm for the operator /~.  Indeed, if we write the generic element of ~ in the form / = [x; z] 

where x is in ~4~ and z in ~ then 

II/ll0 ~ = II~ll~ = ( , q / , / ) ,  

iI/111 ~ = i lx l l#+  i1~11 ~ = ( ( Z - H ) / ,  1), 

~ n d  the  one in i t ia l  f o r m  is a semi -norm on ~ whi le  the o ther  is a norm.  W e  have  Iltll~, = 

( $ ( ~ ) i , / )  = (~(H)x, x), = i1~11~, which is surely a seminorm on ~ compatible with the norm 

of the space. I f  T is a linear transformation of ~ into itself which is continuous for the 

semi-norm H/ll0 then evidently ]]/ll0 = 0  implies I[ T/llo =0,  i.e., the subspace m is invariant  

under T. If  then E is the projection in ~ onto ~4~ we have I]T/H,=]]ETE/I], for al l / .  

But  E T E  maps ~2 into itself, accordingly, if T has bound 1 relative to each of the initial 

semi-norms, so also does ETE, and therefore the restriction of ETE to ~2, and since 

Hx]]. is an exact interpolation norm on ~2 we have ]] T/]]. <. H/H.- 

In  a similar way the point 2 = 1 may  be adjoined to F and the function ]c(~) extended 

b y  the definition ]c(1)=0. By a slight modification of the argument  used in the proof of 

Lemma 2 we can show that  the extended function is also concave. This fact is sufficient 

to  prove Theorem 1 in the special case when iv contains only two points; the linear function 

which coincides with k(2) on such an F is non-negative throughout the unit interval  and 

is therefore of the form (3), the mass d~(s) being concentra.ted at  the points s = 0  and s = 1. 

Since the theorem is a triviality when F is a one-point set, we will suppose in the sequel 

tha t  iv consists of at  least three points. 

Let  iv* be the set obtained from F by  reflecting it through the point 2 = �89 I f  k(2) 

belongs to Cr, the function #*(2) defined on F* by  b*(2)=k(1-2)  is evidently in Cp., since 
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all tha t  has been done is to interchange of H and I - H .  Less obvious is the following 

lemma, which we prove only for finite sets F in the open unit interval, although it is true 

in general. 

L]~MMA 6. I] k(2) belongs to CF, where F is a/ ini te subset o / 0 < ; t < l ,  then the/unction 

]~(;t) =~(1- ; t ) /k (1- ; t )  belongs to CF,. 

Proo]. In  view of the previous remark, it is enough to show that  the function g(2)= 

2(1-2)/k(X) belongs to Cp, and this is equivalent to showing that  the operator G =  

K - I H ( I - H )  gives rise to an exact quadratic interpolation. We may  suppose tha t  the 

Hilbert space :H2 is finite dimensional. Since F is the spectrum of H and is bounded away 

from 0 and 1 it follows tha t  the operators H, I - H ,  K and G are all positive commuting 

operators with inverses. We let S be the positive square root of H ( I - H )  and note tha t  

SK-1S=G as well as S - 1 H S - I = ( 1 - H )  -1 and S - I ( I - H ) S - I = H  -1. In  order to show tha t  

G corresponds to an interpolation norm we must  show tha t  the inequalities T * H T < H  

and T * ( I - H ) T  <. I - H  imply T*GT <.G, and it is sufficient to show this for operators T 

which have inverses. In  the calculation which follows we make use of the fact that  0 < A <~ B 

implies B -1 ~<A -1 as well as T ' A T  <~ T * B T  for any  T. 

From T * ( I - H )  T ~ I - H  we have 

( l - H )  -x <~ T ~ I ( I - H ) - I T  *-1, 

T ( I - H ) - I T  * <. ( I : H )  -1, 

TS-1HS -1 T* <. S-1HS -1, 

S TS-1HS -1T*S <~ H, 

M*HM <~H where M =S-1T*S. 

In  a similar way, from T*HT<.H we obtain M * ( I - H ) M < . I - H ,  whence, since K gives 

rise to an interpolation norm, M * K M  <~ K, and therefore 

K-1 <<. M-1K-1M*-I, 

MK-1M* <<. K- l ,  

S-1T*SK-xS TS-1 ~ K -1, 

T*SK-1ST ~ SK-1S = G, 

T*GT <. G, as  required. 

I t  is convenient to change variables by  the mapping Z(A) =1/(1 -A) carrying the unit  

interval into the right half-axis. To the function k(X) in Cr we associate a function ~b(z) 

defined on Z(F) by the equation 
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k Z 

For the extreme points of the class of functions k(2) of the form (3) we obtain the corre- 

spondences: ko(2)=2 and r k1(2 ) = 1 - 4  and r while for 

~(1-4) 
k,(2) ~ t s + ( 1 - 2 ) ( 1 - s ) '  0 < s < l ,  

l - s > 0  m m where m - - ~  and we obtain r c o - z  co 

o~=(s-1)/s<O. The functions of the form (3) therefore correspond to functions ~(z), 

positive and regular on the right half-axis, which have positive imaginary part in the 

upper half-plane. This class of functions, studied at  length in [2] and [9] is denoted by the 

letter P '  in [2] where the letter P is reserved for the general class of functions, analytic 

in the upper half-plane with positive imaginary part. Since the most general function in 

the class P '  may be written 

o 1 
cA(z) =~z + flo + J_~LCO- z ( [ -  1]  d/~(e0), (5) 

where a>~0, fl0>~0 and d/~ is a positive measure for which j" (d/~(r is finite, we 

see that  the functions of the form (3) correspond precisely to the functions in P'. Our 

object, then, is to show that  k(2) in Ce corresponds to a function r defined on Z(F) 

which is the restriction to that  set of a function in the class P'. 

Let n be an integer ~> 1 and suppose that  Z(F) contains the following set of 2n positive 

numbers 

~1 < ~1 < ~2 < ~2 < " "  < ~n <~n" (6) 

Let V be an n-dimensional tIilbert space. I t  is easy to show that  there exists a self-adjoint 

operator A on V having the numbers {~t} for its spectrum, and a one-dimensional pro- 

jection E such that  the operator B =A +cE for an appropriate positive c has the numbers 

{~} for its spectrum. Evidently A <B.  Next we form the direct sum of V with itself to 

obtain W= V@ V with generic element /=[x;  y]. Naturally I[/l[~= J[xl[~+ Ilyll~, and we 

let L denote the operator defined by L[x; y] = [Ax; By]. On W we introduce the initial 

norms 

II / ll0 ~ --(Ax, x)v+ (By, y)v--(LI,/)w 

and 

Accordingly 

II/I1~ ~ II �9 ll~ + I[ y I1~ = I I / I I% .  

I I / l l~ = ( ( L  + 1 ) / , / ) w ,  
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and therefore II/Ilg = (HI, 1)~ = ((L + Z) HI, l)w = (L/, l)w, 

whence H = (L + I)-IL. Since the spectrum of L consists of the 2n numbers (6), the spectrum 

of H is a subset of F and we may  use the function k(2) in C~ to obtain an interpolation 

norm. We obtain 

II/ll~, = (gl ,  1)~ = ((L + I)Ic(H) /, /)w = (r /, /)w, 

and since the factor spaces making up W are invariant under L 

I]/H2, = (r X)v+(r Y)v. 

Now for the transformation T defined on W by  T/x; y /=  [y; 0] we have 

lily, 01111 < Ily 11% + II xll% = II[x; y]ll~, 

IIEy; o]l lg = (Ay, y)~ <. (A~, ~)~+ (By, y)v  = 11[~; Y]llo ~, 

since A ~< B. Hence for the interpolation norm 

][ [Y; 0] I]2, = (r y, Y)v ~< (r x, x)v + (r Y)v = [] [x; y/I1~,. 

In  particular, for elements with x=O, we have (r y)v<~(r Y)v for every y in V. 

From a theorem of Loewner [9] then the determinant 

I 
is non-negative. 

Let  Z =Z(F)  consist of the points 

(7) 

Zl <Z2 <Z3 <. . .  <Z/, Zl>O , (8) 

and let P(Z) denote the convex cone of all real functions/(z) defined on Z which are the 

restrictions to that  set of functions in the class P, real and regular on an interval containing 

the closed interval zl~z<~zz; similarly let P'(Z) denote the smaller cone of restrictions 

to Z of functions in the class P'. For any  real / (z)  defined on Z and any  subset S of Z 

consisting of an even number  of points we write S in the form (6) and compute the cor- 

responding determinant of the type (7); this determinant is called the Loewner determinant  

of / associated with S. Evidently there are as many  Loewner determinants as there are 

subsets of S of even cardinality. In  another publication on the Loewner theory [5] the 

author has established the following theorem, which does not require the hypothesis z 1 > 0. 

THEOREM A. A real/unction/(z) de/ined on Z belongs to P(Z) i/ and only i/ 
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I. Every Loewner determinant o/ / is non-negative and 

II.  I / a  Loewner determinant vanishes, so also do all other Loewner determinants o/ the 

same or higher order. 

We have already seen that  if r is defined on Z=Z(F)  by q~(z)=(z+l)lc(z/(z+l)) 

where k(2) belongs to Cp then the Loewner determinants of r are non-negative, and this 

remains true when 0 is adjoined to Z and r extended by the definition r =0. 

If  we consider next F*, the reflection of F through 2 = �89 we find that  Z(F*) is the 

set Z* of reciprocals of numbers in Z =Z(F) .  The function k*(2) defined on F* by k*(2)= 

/c(1-2) corresponds to r defined on Z* by the equation r =zC(1/z), and the Loewner 

determinants of this function are non-negative, even when 0 is adjoined to Z* and r 

extended by the definition r --0. In a similar way we can consider k(2) =2(1 -2 ) / (k (1 -2 ) )  

defined on F* which corresponds to ~(z) defined on Z* by the equation r [r 

if we set ~(0) = 0 we obtain a function all of whose Loewner determinants are non-negative. 

The proof of Theorem 1 will then be almost complete if we invoke another theorem 

from the Loewner theory. 

THEOREM B. I/Z i8 O/the/orm (8), z l>0  and Z* the set o/reciprocals o/numbers in 

Z, then a real /unction ](z) defined on Z belongs to P'(Z) i/ the ]ollowing three conditions 

are saris/led. 

III .  When ] is de/ined at z=O by/(0) =0, the extended/unction belongs to P(Z U 0). 

IV. The /unction /*(z) de/ined on Z* U 0 by /*(0)=0 and ]*(z)=z/(1]z) belongs to 

P(Z* O 0). 

V. The ]unction f(z) defined on Z* U 0 by ](O) =0 and ](z) = [](1/z) ] -1 belongs to P(Z* U 0). 

We remark that  the function ~'2(1-2) is of the form (3) and hence, in view of Lemma 

5, belongs to every Cp; under the mapping Z(2) it corresponds to the function Wz in P' .  

I t  is well known that  no Loewner determinant of Vzz vanishes. If k(2) belongs to Cp, so also 

does k(2)+~ ~ ] /~ -2 )  for small positive e, as well as the two associated functions k*(2)+ 

el/~(1-2) and/~(2) + e ~ ) .  From these, we obtain the corresponding functions defined 

on Z and Z*, viz. r +el/z, r § and r +s~z. For all three functions the Loewner 

determinants are non-negative, and for all sufficiently small positive e those determinants 

are even strictly positive, since those determinants, of which there are only a finite number 

in all, are polynomials in s. If one of the polynomials vanished identically, it would follow 

that  the coefficient of the highest power of e also did, and such a coefficient is a Loewner 



T H E  I N T E R P O L A T I O N  O F  Q U A D R A T I C  N O R M S  269 

determinant of ~zz, none of whose Loewner determinants vanishes. Thus, for sufficiently 

small positive e k ( 2 ) + e ~  is of the form (3), and hence 2(2) is too. This completes 

the proof of Theorem 1. 

In  the proof of the theorem we were compelled to consider, at  least in the case of a 

finite-dimensional space, the possibility of the exact quadratic interpolation of semi-norms. 

I t  is worth-while to review our argument  with this in mind. Had  we begun with a pair 

of possibly not compatible norms on V, the passage to ~42 would have given rise to a pair 

of semi-norms on that  space, the null spaces of which would intersect only in the zero 

vector. The exact quadratic interpolations would have to give rise to semi-norms ]]xl] , 

rather  than norms, in general, on ~ .  The content of the lemmas which we established 

would still be valid, except the assertion about the continuity of /c(~) on the spectrum; 

Lemma 2 would guarantee only tha t  k(2) was continuous at  every point of the spectrum 

which was not 0 or 1, and that  ]c(2) was concave. Since the class of interpolation functions 

is convex, we see that  the functions we must  consider in this more general case are those 

which, on the open interval, are of the form (3) and which are so defined at  the end points 

tha t  they are non-negative and lower semi-continuous. We may  therefore state a slight 

generalization of Theorem 1, and the corresponding obvious generalization for interpola- 

tion methods. 

T~EOR]~M 1'. A semi-norm Hx[I, on ~ is an exact quadratic interpolation semi-norm 

relative to the pair o/initial semi-norms determined by H and I - H  i /and only i/there exists 

a non-negative, lower semi-continuous/unction k(2) on the closed unit interval which, on the 

open interval, coincides with a/unction o/ the/orm (3) such that/or all x in 74~ 

where H = S 1 ~ dE~. 

II x II , = d(E  x, 

THEOREM 2'. The exact quadratic interpolation methods/or semi-norms are given by 

]unctions lc(,~) o/the type o/Theorem 1'. 

Let us remark tha t  various interpolation methods based on the three-lines theorem 

[1, 8, 12] in the case of quadratic norms correspond in our notation to interpolations de- 

scribed by  the functions 
k~(~t)=~tl-~(1-~t) ~, 0~<a~<l. 

The ftmctions r of the form (5) introduced in the proof of Theorem 1 often appear  

more naturally in the applications of the interpolation theorem than the functions k(2). 
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Thus,  if ;u is a measure  on some measure  space X a n d  w(x) a non-nega t ive  measurab le  

funct ion  and  V an  a p p r o p r i a t e  space of measurab le  funct ions,  the  in i t ia l  no rms  

f x  lu(x)12 dlz(x) a n d  ]1 ull~ = ~x lu(x)l~ w(x)d/~(x) H Ull 2 

give rise to  the  f ami ly  of in te rpo la t ion  norms  

II I1 , = f r 

where  r belongs to  the  class P ' ,  i.e. is of the  form (5). 
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