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The theory of the interpolation of Banach spaces has been widely developed in recent
years by a number of authors. It is natural to expect that the interpolation theory for
Hilbert spaces should have a particularly simple character; that this is in fact the case
is shown in the present study where a complete description of exact quadratic interpola-
tion norms and exact quadratic interpolation methods is given. Since the literature on
interpolation theory has been characterized by an expert as impenetrable [11] it has
seemed worthwhile to make the exposition as complete and detailed as possible.

Our arguments depend in an essential way on the beautiful theory of monotone matrix
functions and Cauchy interpolation problems discovered by Loewner in 1934, and our
theory may be regarded as a natural application of Loewner’s results.

The description of the exact quadratic interpolation methods, given by our Theorem
2, has already been found by Foias and Lions [6] who establish a corresponding result
under somewhat stronger hypotheses. It should be emphasized that our definition of
interpolation norms and interpolation methods differs only superficially from that re-
gularly used in the literature [3]. We should also remark that the functions k(A) which
give rise to the exact quadratic interpolations are the positive functions, concave of
infinite order on the unit interval. This class has been studied by Krauss [7] and also
Bendat and Sherman [4].

Let V be a linear space over the complex numbers upon which there is defined a
pair of norms |||/, and ||2|,. We shall usually assume that those norms are compatible,

that is to say, that any sequence {z;} in ¥V which is simultaneously Cauchy for both norms,

(1) This paper was written while the author was a Temporary Member of the Courant Institute
of Mathematical Sciences, New York University. This temporary membership is supported by the
National Science Foundation, under grant number NSF-GP-1669.
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and which converges to 0 for one of the norms, necessarily converges to 0 for the other.
We introduce the norm ||z||, defined by the equation ||z||3==||s + |||} and the Banach
space ,, the completion of V with respect to that norm. Since the norm of ¥, majorates
the initial norms on ¥V, it is evident that these norms may be extended by continuity
to the whole of }, in a unique way. We write the extended forms in the same way, viz.
lzllo and ||z||, and we note that for these extended functions the inequalities [[|,< |||,
and ||x||, <||z||, are valid. The extended functions are obviously semi-norms on the space
H, and our hypothesis that the initial norms were compatible is equivalent to the asser-
tion that the extended functions are norms and not merely semi-norms on #,.

A norm |||, defined on H, will be called an interpolation norm there (relative to
the pair of initial norms, of course) if and only if it is compatible with the norm of 3,
and has the property that every linear transformation 7' of H, into itself which is contin-
uous when that space is given the norm ||z[|, and which is also continuous when that
space is given the norm ||z|[, must also be continuous when the space is given the norm
||]]« It is not difficult to show that this is equivalent to the following more formal defi-

nition. A norm |||/, on ¥, is an interpolation norm there if and only if
(i) [|x[ls is compatible with ||z]|,

(ii) there exists a constant C, such that any linear transformation T on 3, into itself

which satisfies || Tz||, <||]|; for all x in ¥, and k=0, 1 must satisfy || 7|, <Oyfz[s for
all z.

Since the identity is such a linear transformation 7', evidently C, >1. It is also clear
that the transformations 7' considered in our definition must be continuous linear trans-
formations of I, into itself of bound at most 1. We also note that the inequalities occurring
in the definition need only be supposed to hold for elements z belonging to ¥V since V is
dense in ;. The restriction of an interpolation norm to ¥V will be called an interpolation
norm on that space.

It would seem more natural not to invoke the space ¥, in the definition of interpola-
tion norms and to consider the family of transformations 7' mapping V into itself which
are continuous both for the norm ||z||, as well as the norm ||x||,, however, the class of
transformations so determined may be too restricted for convenient applications of the
theory; we therefore take transformations mapping V into H,.

The interpolation norms are always continuous relative to the norm |z||,; there exists
a constant M such that ||z|, <M||z||;. This is a consequence of the fact that the space

#; is complete relative to the norm ||z, + ||z|4; this norm is compatible with ||z]|; and

therefore is equivalent to it.
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An interpolation norm is called exact if the constant C, of the definition may be taken
equal to 1.

Throughout our discussion we will be concerned only with quadratic norms and
quadratic interpolation norms. The space H, will therefore be a Hilbert space and the
quadratic norm |||\, will give rise to a positive, bounded operator in a known way. We
will have ||z||§=(Hz, ), for all » in I, and some operator H for which 0 <H < I, where
I is the identity operator on H,. We see immediately that ||z} =((1 — H)=, ), and that
0<I—-H<I. The hypothesis that the initial norms were compatible on ¥V, which was
equivalent to the hypothesis that the initial norms on ¥, were norms and not semi-norms
is clearly equivalent to the hypothesis that the numbers 0 and 1 do not occur as eigenvalues
of the operator H. Later in our discussion we will want to remove this hypothesis, to
consider incompatible semi-norms on ¥, and to admit the numbers 0 and 1 as eigenvalues
of H, but this is not convenient at the outset.

The specification of H is a complete description of the pair of initial norms. A quad-
ratic interpolation norm similarly corresponds to a positive and bounded operator K
where ||z||3 = (Kz, z),.

If T'is a continuous linear transformation on ,, the assertion that T is continuous
relative to the norm |||, is the assertion that there exists a positive number #, such that
for all  in W, || Tz||s <t,||=||5 and this inequality may be written (HTx, Tx), <ty(Hz, x),.
This is equivalent to the operator inequality 7*H7T <{,H. In a similar way, the continuity
of T relative to the other initial norm may be written T*(I —H)T <t,(I—H). Thus a
positive and bounded operator K corresponds to a quadratic interpolation norm if and
only if for any operator T on , the inequalities T*HT<H and T*I—-H)T<I—-H
together imply T*K T <C, K. The quadratic interpolation norm will be exact if C,, =1 here.

In the present study we are concerned exclusively with the exact quadratic interpola-
tion norms, hence we seek, associated with any operator H on ¥, for which 0<H<1I

the class of all positive and bounded operators K for which the hypothesis
T*HT<H and T*I-H)T<I-H 1
implies T*KT<K. (2)
It is clear that the class of such operators forms a convex cone, completely determined

by the operator H. Our priﬂcipal result, Theorem 1 below, asserts that this cone consists
precisely of operators of the form K =k(H) where the function k(1) is given by the formula

AMl=2)
k()= fls—%—(l A1 ——s)dg(s)’ ®)

do(s) being a positive Radon measure on the unit interval 0 <s<1.
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THEOREM 1. A norm |z||, on W is an exact quadratic interpolation norm relative to
the pair of initial norms determined by H and I--H if and only if there exists a monotone
non-decreasing bounded function o(s) on the closed unit interval such that

11 AM1—24
"x"i = fo fo st (1(__ 7) ()1 ey do(s) d(Ez, ), (4)
where H = [} AdE;.

The proof of the theorem is lengthy; before embarking on it we turn to the subject
of exact quadratic interpolation methods. In most applications of interpolation theory,
one is presented with two spaces ¥V’ and V" on each of which is defined a pair of initial
norms. As before we pass to spaces #; and H; and seek norms ||z’[|, and ||2”||« on each
of these spaces which are to be compatible with the norms of those spaces and which are
to be such that the linear transformations 7 from 5 to Hz which are continuous when
both spaces are provided with the norms |’|, and ||z"|, respectively, and which are
also continuous when the spaces are provided with the norms ||2’||, and ||”||, respectively,
must be continuous when they are given the norms [[2'|[, and |2”|, respectively. An
interpolation method is an assignment of such norms. It is necessary to give a somewhat
pedantic definition.

We consider the class of triples [H,, ||%||o, [|#]|.] Where ¥, is a Banach space with
norm ||z||, and ||z||x, £=0, 1 are norms on ¥, for which [z||f=||«|3+ ||z]|}; we also con-
sider the class of pairs [B, ||#[|,] where B is a Banach space and ||, a norm on B com-
patible with the norm of B. We consider mappings M of the first class into the second;

such mappings may be conveniently written

M He, [[=]lo, [1=]l:1 = [ (Ha), [|=]]a)

An interpolation method is such a function M having the following two properties:

(i) M(H,)=H, for all Banach spaces H, and
(ii) there exists a constant C,, such that if

MW, |2 [l [[2” [l = [He, [|=”[|a]
M3z, || {|o, [|2” [l = [Fe (|« [|aa]

then every linear transformation T from H; to ¥z for which || 7’|, <||2’|x for all 2’ in
H: and k=0, 1 also satisfies the inequality || 7’|} < Cpy|2’||s for all such 2.

The method is exact if '), may be taken equal to 1 and is quadratic if all of the norms
appearing in the definition are quadratic and the spaces are Hilbert spaces. As a conse-
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quence of Theorem 1 we obtain the following description of all exact quadratic interpola-
tion methods.

TrEOREM 2. The exact quadratic interpolation methods are in a one-to-one correspond-
ence with the set of functions k(1) of the form (3); if M corresponds to k(1), then the norm
|]|ae is given by ||2||3 = (k(H)z, x), where H represents ||z||5 in the Hilbert space Hs.

Proof. We first show that the methods described by the theorem are indeed exact
quadratic interpolation methods. Suppose k(1) given and ¥, and 7 two Hilbert spaces
on each of which is defined a pair of quadratic initial norms. We form the direct sum

of those spaces: 1= ® M, and define on it initial norms and the corresponding operators

as follows.
(2115 = [l[="; ="1]j§ = ||’ [I5 + ||l2" 1§ = (4, &) = (H'%’, &)y + (H"2", 2")s,
215 =23+ |l="|IF = (I —H)&, &) = (I - H)a', &)y + (I —H")x", 2")s.

Now ||£)|3 = (k(H)£, £)=(k(H")2', x')y+ (k(H") ", "), defines an interpolation norm on the
space H. Those transformations 7' mapping the first factor into the second having bound
at most 1 for the initial norms correspond then to transformations T on i( defined by
Ti2'; "1=[0; T'], and 7' has bound at most 1 for the interpolation norm. Hence || T%’ ||, <
ll# |1+

On the other hand, if we suppose that M is an exact quadratic interpolation method,
then, since the triples [Hs, [|]lo, ||#'[|1] and [Hz, |||, [|#"||1] occurring in the definition
may happen to coincide, the norm ||z’||,, must be an exact quadratic interpolation norm
in the sense of Theorem 1. Hence there exists a function k(1) which a priori depends on
M, H, and the initial norms such that |z||3;=(k(H)z, ), We have to show that k(1)
depends only on M. Corresponding to the spaces H5 and 3 each of which is provided with
a pair of initial norms we have two functions k'(4) and k”(1) so that ||’||3 =(*'(H')', #'),
and |[«”||3 =(k"(H")2", 2"),. As in the previous argument we pass to the direct sum b}
and consider the transformation 7' which embeds 4 into il: Tz'=[z’; 0]. Since T has
bound 1 for the initial norms we deduce that ||[z’; 0]||,<]||%’||s. Similarly, considering
the projection of 'fl .onto H; we deduce the opposite inequality, and it becomes clear
that ||[z'; #"]||3 = ||’ ||3 + ||="||%- Finally, since there exists a function %(1) of the form (3)

defining the norm ||£||, on # we have
(b(H)&, &), = (' (H')2', ')y + (k" (H")", 2");-

Since the spaces ¥, and J; are reducing subspaces of 3¢ for H we see that we may take
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k'(A)=k(2) and k"(1) =E(1), and if any of the spectra contain an interval the function k)
is uniquely determined, since all functions of the form (3) are analytic in the open unit
interval. Thus the exact quadratic interpolation method M is of the type described by
the theorem.

As we remarked in the introduction, a form of Theorem 2 has been established by
Foias and Lions [6]; in our terminology these authors suppose that an exact quadratic
interpolation method M is defined by a function m(1) so that ||z||3 = (m(H)=, x), and deduce
that m(4) is necessarily of the form (3); conversely, they show that such functions define
exact quadratic interpolation methods.

Virtually all of the rest of the paper consists in the proof of Theorem 1.

Suppose, now, that K is a positive operator which gives rise to an exact interpolation
on the space ,. Thus the inequalities (1) imply (2). In particular, if ¥ is a projection
which commutes with the operator H, from the evident inequalities EHE<H and
E(I-H)E<I-—H we deduce that EKE<K. We invoke next the following elementary

lemma.

LemwMa 1. If E is a projection in Hilbert space and K a positive and bounded operator,
the inequality EKE <K tmplies that E commutes with K.

Proof. Choose z in the range of £ and y in its null space to form u=x-+£y where ¢

is any complex number. Now
(EKEBu, u) = (KEu, Eu) = (Kz, r) <(Ku, w) = (Kz, ) + |t|2(Ky, y) + 2Re[{(K=, y)].

Since ¢ is arbitrary, evidently (Kz,y)=0, whence (I —E)KE=0 or EKE=KZE. Taking
adjoints, we find that EKE<=EK=KE.

It follows from our lemma, then, that any subspace M of }, which is a reducing
subspace for H must also be one for K. If M is considered as a space in itself, the restric-
tion of H to M gives rise to the restriction of the pair of initial norms, and the restriction
of K corresponds to the restriction to M of the interpolation norm. Since any continuous
linear transformation 7T of M intd itself can be extended to a continuous linear transfor-
mation 7' of N, into itself in such a way that the bounds of T for the norms ||z, and
||]l, are not increased (we have only to set 7'=0 on the 6rthogonal complement of ),
it follows that the restricted interpolation norm is in fact an interpolation norm on M
relative to the restricted initial norms.

When the space H, is separable, the fact that K commutes with every projection
commuting with H imi)lies that K is a function of H [10]. We have K =k(H)=J k(A)dE,
if H={ AdE;, the function %(1) being measurable with respect to the projection valued
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measure dE;. The function %(1) is determined, of course, only up to a set of spectral
measure 0; in particular it is wholly undetermined on the complement of the spectrum of H.
Since K is a bounded and positive operator, we may always suppose that 0 <k(1)<| K]|[.
We shall show presently that there exists a canonical choice for k(1) which makes it a
continuous function on the spectrum of H.

These considerations make it clear that the hypothesis of separability of }, which
we introduced provisionally above makes no difference. For if K appears as a continuous
function of H on every separable reducing subspace we have only to verify that the same
function occurs for every such subspace as follows. We choose M, a separable reducing
subspace of I such that the spectrum of the restriction of H to M, coincides with the
spectrum of H relative to H,. On M, we have K =k(H) where k(1) is a continuous function
on the spectrum. If M, be any other separable reducing subspace, so also is the direct
sum M,® M, upon which K appears as a continuous function of H, necessarily the func-
tion k(4) above. Thus K =k(H) on any separable reducing subspace, hence everywhere.
There is also no loss of generality in our assuming the space separable in the sequel.

Throughout our arguments we shall make frequent use of this device for the study

of K and k(4); we descend to a reducing subspace for H and study K as a function of H
on the subspace.

Leuma 2. K =k(H) where k(1) is continuous and concave on the spectrum of H.

Proof. We first consider the case where the spectrum of H does not contain either
0 or 1; there exists therefore a small positive % such that the spectrum is contained in the
interval (, 1 —7). Choose 1, in the spectrum and a positive & for which e<#/2. Let M
be the reducing subspace of H associated with the interval (1,—¢, 4,+¢) and let T be

any unitary transformation of 7 into itself. For « in 7 then

+e&
—&

2¢

lafg= (1 +522) Dl

0 €

A
1728 < (o + &) | T |E = (Ao + &) |2l <3
0

and since A, — ¢ is at least /2 we have || Tz|§ <(1+4¢/7) | =] Similarly
(1Tl <(L+4e/) ||t
and hence ||Tz|% <(1+4¢/y) |3
Let M be the essential supremum of k(4) over the interval (1,—e, 4o+¢), that is to

say, the supremum of all numbers ¢ such that the set k(1) >t has positive spectral measure;

similarly m is the essential infimum of that function. Both numbers are finite and positive
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since k(1) gives rise on MM to a norm equivalent to that of 3. For a small ¢’ we can there-
fore find a set K, with positive spectral measure supporting a normalized element z, in
M such that k(1)>M —¢’ on E,; there is also another measurable set E, supporting a
normalized x, where k(1) <m +¢&' on E,. Evidently there exists a unitary transformation
T of M into itself which carries x, into ;.

Accordingly
M~ =M —¢') |z [E<]lz |} <X+ 4e/n) [z, < (1 +de/n) (m+) [|2,12

=(1+4¢/n)(m+¢),

and since ¢ is arbitrarily small, M/m <1 +4e/n, whence
M —m<dm en<4||K|e/n.
For such small £ we next define on the spectrum the functions

M (A) = essential sup k(1) over (A—¢, A+¢)
as well as m,(A) = essential inf k(1) over (d—e, A+e¢).
Evidently 0< M (A) —m () <4||K|e/n.

As ¢ approaches 0, the functions M, (1) diminish monotonically, converging uniformly to
a function &*(1) on the spectrum which is also the uniform limit of the monotone increasing
family m.(4). It is easy to see that k*(4) is continuous on the spectrum, and since the in-
quality m;(2) <k(1) <M,(A) holds almost everywhere for the spectral measure dE;, for all
small ¢, the function k¥*(1) is then equivalent to k(4) for that measure. This canonical
determination of k(1) is evidently unique. We now show that it is a concave function
on the spectrum of H. Let f, g be a pair of elements of I, and let 7' be the linear transfor-
mation defined by Tz =(x, g),f. Since K has a bounded inverse, we may write 7' in the
form Tz =(x, K-g),f, whence

7[5 =1 K2 g)e* | 111 =1 =, K72 9)a* (K, e

From the fact that equality can be attained in the Schwartz inequality we obtain the bound
of T when the space is given the interpolation norm: ||7||¥=(K-g, 9);(Kf, f); and by

the same calculation we obtain the bounds of 7T relative to either of the initial norms:

T2 = (H g, g)s(Hf, )y and ||T|[} = (I—H)™g, g)s((I —H)], f)s.

Since K corresponds to an exact interpolation, we find that for all f and g
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(K_lg, 9)2(Kf7 f)2<max [(H_lg: 9)2(Hf’ f)zr ((I_H)_lg! 9)2((I—H)f’ f)z]

Consider three points in the spectrum of H: 0<],<A,<13<1 and three elements
e, ¢; and e, each normalized in H, and belonging to the spectral subspaces for H associ-
ated, respectively, with the intervals (1, —&, 4, +¢), (1, —¢, d;+¢) and (A3 —¢, 43+¢) where
the positive ¢ is so small that these intervals are disjoint and contained in the interval
(7/2, 1 —n/2). We choose g=e, and f=ae, +fe; where the positive « and § are so chosen
that A,=a2d,+p%4,, and 1—A,=02(1—1))+8%1—12;). Now (H-g,g);<(l;—e)! and
(Hf, s <o?(Ay+8)+P*As+&) =15 +¢. Thus

2¢

(2,00, (B, Dy <1+ and similarly (I~ H) 2,0 ([~ B s <1+ T35,

Ay— ¢
and therefore (K¢, g)o(Kf, f)e <14 O0(¢).
From the uniform continuity of (A1) on the closed spectrum of H it follows that there
exists a positive w =w(e) which diminishes to 0 as ¢ does and such that (K-lg,g),>
(B(A2) + w)! and (Kf, f)a = a2k(A;) + 5%(A3) —w. Accordingly

o®k(Ay) + B2e(Ag) < [1+0(e)1[k(Ay) + w] +w,

where a24,+p%13=2,. As ¢ approaches 0 we obtain the concavity of k(1). If [a, b] is the
smallest closed interval containing the spectrum of H, it is evident that we can obtain a
concave positive function on [a, b] which coincides with k(1) on the spectrum by defining
the extended function so that it is linear on the complementary intervals. This function
is clearly Lipschitzian.

There remains the case when the spectrum of H is not contained in an interval of the
form (5, 1 —n). However, from the foregoing argument, if we consider the interpolation
norm on the reducing subspace for H associated with the spectral interval (n, 1 —7), we
see that k(A1) has a canonical determination as a continuous and concave function on that
interval. Thus k(1) may be defined at one or more of the end points of the unit interval,
neither of which is an eigenvalue for H, in such a way that k(1) is concave and continuous

on the whole spectrum. The proof is complete.

Lemwma 3. If H and H" are two operators with the same spectrum, and k(1) is a contin-
uous function on the spectrum such that K'=k(H') is an exact interpolation operator for H',
then K" =Fk(H") gives rise to an exact interpolation for H".

For the proof of Lemma 3 it will be necessary to make use of the following elementary
lemma.

17 — 672906 Acta mathematica. 118. Imprimé le 21 juin 1967.
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LeMwMmaA 4. If A and B are two positive operators with spectrum in the interval (n, 1 —n)
where 0<9<}, and if | A — B|| <e and 2 >1 then for transformations T of bound 1 the inequa-
lity T*AT <A implies T*BT <A(1+2 ¢/n) B.

The proof is quite straightforward:

T*BT = T*(B—A) T+ T*AT <AA +el = AB+A(A — B) +£I <AB+12¢1 <AB+2¢/3B.

Proof of Lemma 3. As before; we first suppose that the spectrum of H' and H" is
bounded away from the end points of the unit interval, and therefore contained in an
interval of the form (7, 1 -7). Since the function k(1) may be taken to be a Lipschitzian
function on the whole interval, we may suppose that its Lipschitz constant is at most 1,
because k(A) gives rise to an exact interpolation norm if and only if Ck(1) does, where C
is any positive constant.

Let g(1) be a monotone increasing function on the unit interval which assumes only
a finite number of values, and for which uniformly |g(2)—2| <& on the spectrum of H’
where &£ <%/2. We also require that the finite set of numbers which g(1) assumes be points
of the spectrum of H’. We form the operators G’ =¢(H’') and G"=g(H") and note that
|[H"—@"||<e and ||H —@'||<e. The operators G’ and G” have the same spectrum, and
the function %(1) is unambiguously defined on that spectrum; we form therefore K; =k(G"')
and K,=k(@"). Now K,—K'=k(G')—k(H'), and the Lipschitz constant of k(1) being 1,
we infer that ||K, —K'[| <¢ as well as |[K,—K"||<e. We may take 5 a lower bound for
k(A) on the spectrum. The hypothesis T*G'T <& and T*(I — @) T <(I —G’) for operators
T of bound 1, implies, by virtue of Lemma 4, the inequalities T*H'T < (1 +2¢/n)H’ and
T*I-HYT<(142¢/n)(I—H') and because K’ gives rise to an interpolation norm for
H' we then have T*K'T<(1+2¢/n)K’, whence by Lemma 4, T*K, T <(1+2¢/n)*K,.
Since there is a unitary equivalence between ¢ and G” and K, and K,, at least when the
spectrum of H’ has no isolated points, it follows that the hypothesis T*G"T<@" and
T*I -G T<(I—@") implies that T*K,T <(1 +2¢/n)2K,. Accordingly, T*H"T <H" and
T*I—-H"T<I—-H" together imply T*G"T<(1+2¢/n)G" and T*(I—G")YT <(1+2¢/n)
(I—-@") and therefore T*K,T <(1+2¢/5)2K,. Because of Lemma 4, finally, T*K"T <
(1+2¢/n)*K". Since the ¢ was arbitrary, T*K"T <K" is then a consequence of the inequa-
lities. The lemma, is therefore proved when the spectrum of H’ has no isolated points and
is bounded away from the end points of the interval.

In this argument we have supposed that there were no isolated points in the spectrum
of H' in order that the operators G’ and @” should be unitarily equivalent. Even if there

were such isolated points, they would occur as eigenvalues of H’ and H” and if these eigen-
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values had the same multiplicity that unitary equivalence would still exist and our pre-
vious argument would hold. We have now to show that the multiplicity of these eigenvalues
is immaterial. Obviously there is a reducing subspace for H' such that the part of A’ in
that subspace has the same spectrum as that of H' on 3, and such that the isolated points
of it occur as eigenvalues of unit multiplicity. On that subspace k(1) gives rise to an exact
quadratic interpolation, and there is no loss of generality if we suppose that these isolated
points.occur as eigenvalues of unit multiplicity for H'.

If K"=k(H"y does not give rise to an exact interpolation for H" there exists a linear
transformation 7' of bound 1 in H, such that T*H"T<H” and T*(I-H")T<I—H’" and
a normalized z in ¥, for which (K"Tx, Tx),> (K"z, x),. We write the expansion of z
and Tz as follows:

=2 afi+f*
Te=2bfi +f*

Here the elements f*, f'* are orthogonal to the linear span of the eigenspaces F{; associated
with isolated eigenvalues of H”; the elements f, and f; both belong to M, and are norma-
lized. We take U as a unitary transformation on 3, which reduces to the identity on
the orthogonal complement of the M, and which leaves each I, invariant, but carries
fi into f,. Evidently U commutes with H”, and if we form S=UT we have S*H"S<H"
as well as S*(I—-H")S<I—H" and also (K"Sz, 8x),>(K"z, x),. Passing finally to the
reducing subspace of H” determined by the orthogonal complement of the M, as well
as the span of the sequence {f;} we see that the part of H” in that subspace cannot admit
k(1) as an exact interpolation function, although the isolated points of its spectrum are
eigenvalues of unit multiplicity. This is a contradiction.

The proof of the lemma will be complete if we consider finally the case when the
spectrum of H’ is not bounded away from the end points of the unit interval. We argue
as before: if K" =Fk(H") does not give rise to an exact quadratic interpolation for H” there
exists T' for which T*H"T <H" as well as T*(I —H")T<I—H" and a normalized z in },
such that (K"Tz, Tx),>(K"x, x),. The latter inequality may be written in integral form

f 1k(l) (B} Tx, Tx), > flk(l) d(E) z, x),.
0 0

Since the end points carry no positive mass for these measures, there evidently exists a
small positive # for which
i-n

f ) A T, Ta), > f k(A) d(E,, 2),.

n n
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Accordingly, if M=P;(},) where P;=FEi_, — E, the function k(1) cannot give rise to an
exact quadratic interpolation associated with the part of H” in M; this, in turn contradicts
the part of the lemma which has been provéd, since k() does give rise to such an inter-
polation for the part of H’ in the range P,(},) where P, =E;_, — E,. The proof is complete.

In view of the previous lemmas we are able to formulate our problem as follows.
Associated with every closed subset F of the unit interval which does not contain the
end points of that interval as isolated points, there exists a convex cone C of non.negative
functions continuous on F such that if k(1) belongs to Cr and H is any positive operator,
the spectrum of which is a subset of F, then K =Fk(H) gives rise to an exact quadratic
interpolation for H. Moreover, every function giving rise to such an interpolation is con-
tained in the cone O where F' is the spectrum of H. If F' is a subset of F”, the restric-
tions to F’ of functions in Cp- belong to Cp. Our purpose is to show that for all F the
functions in O} are precisely the restrictions to F of functions of the form (3); this is the

content of Theorem 1. Half of the theorem is established by the next lemma.

Lemma 5. If k(A) is of the form (3) and F arbitrary, the restriction of k(A) to F belongs
to Cp.

Proof. If there exists an operator H for which K=Fk(H) is not an exact quadratic
interpolation then there exists a 7T of bound 1 on ¥, for which T*HT <H and T*(I-H)T <
I—H and a normalized x in N, for which (K7Tz, Tx),>(Kz, x),. Since the property of
being an exact interpolation function depends only on the spectrum of H, we may suppose
that H has a complete set of eigenvectors, the corresponding eigenvalues forming, of
course, a dense subset of the spectrum. The inequality above may then be written in

integral form:

;k(}vi) I (Te, /t)zlz > ? k(4y) I (=, ff)zlz = (Kz, x)s,
and for sufficiently large N we have
X 2
21: k()| (T, f)s]* > (Kz, z)s.
If we take P as the projection on the first N eigenvectors this may be written

(KPTx, PTx), > (Kz, x)s.

Set y =Pz and pass to the transformation S=P7TP on the space M =P(H,); since M is a
reducing subspace for H we have S*HS<H and S*I—-H)S<I—-H. Moreover, PTz=
Sy +PT(I—P)z, and with increasing N the second term converges to 0. Thus (KSy, Sy),
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converges to (KPTx, PTx),> (Kx, x);=>(Ky, y), and so for large enough N (KSy, Sy),>
(K9, y),- It follows that k(1) does not give rise to an exact quadratic interpolation for the
finite dimensional space 7. Thus it will be necessary to show only that functions %(1)
of the form (3) give rise to exact quadratic interpolations for finite dimensional spaces,
i.e., that such functions belong to Cp for finite sets F.

The class of functions of the form (3) is obviously a convex cone, and therefore we
have only to show that the suitably normalized extreme points, the functions

Al—2)

ks(l)=ls+(1_l) sy 0<s<1,

are exact interpolation functions on any finite set F. Now it is trivial that for s=0 or s=1
the resulting functions, k(1) =2 and k,(1) =1 — A belong to Cf; we therefore suppose 0 <s <1.

On the finite dimensional space H, the operators I, H, I —H, K,=k(H) give rise to
four different, but equivalent quadratic norms, viz. ||||s, ||2||e [|2]l1 [|2]s- These norms
then give rise to four equivalent norms on the finite-dimensional operator space which
we denote with the same subscripts: || 7|y, || 7)o, || T']|, and ||T||;. We have only to show
the exactness of the interpolation, namely the inequality

17lls <max (| Tllo, 17]].)

and since all three functions are norms, a fortiori continuous, it is enough to show this

for a dense subset of the operator space, viz. the operators 7' which have inverses.
Now it is easy to show that on a finite dimensional Hilbert space the operator inequa-

lity 0 <4 < B is completely equivalent to the inequality 0 <B-!<A4-1; our hypothesis (1)

therefore reads
H—l < T—lH—lT*—l

and (I —H) < T-Y(I — H)y-1T*1
and we want to prove K;' < TK;1T*1,

From the form of k,, however, K;' =s(I — H)! + (1 —s) H-1, that is to say, K; ! is a convex
combination of H-* and (I —H)™! and the proof of Lemma 5 is complete.

The proof of the necessity in Theorem 1 is a good deal harder than the proof of the
sufficiency; before embarking on it we make a few remarks serving to simplify the problem.
First of all, it is enough to prove the theorem for finite sets F, since if k(1) belongs to Cy
for some infinite F, and if {F,} is an increasing sequence of finite subsets of F, the union
of which is dense in F, the restriction of k(1) to F, is of the form (3) when the theorem
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is true for finite sets. Accordingly, there exists a sequence k,(4) of functions of the form
(3) converging on F to k(1) and which are uniformly bounded on the closed interval 0 <A<1.
It is therefore clear that k(A) is the restriction to F of a function of the form (3).
Hitherto we have been studious to avoid semi-norms and to speak only of norms;
thus we always had the hypothesis that the spectrum of H did not contain the points 0
or 1 as eigenvalues. In general, that hypothesis was not necessary for our considerations
and we shall return to this point later. At the moment we content ourselves with the
following remark: if k(1) is an interpolation function associated with a positive definite
operator H on the Hilbert space H,, and if we extend k(1) so that k(0) =0, and if, more-
over, we extend the space H, by taking its direct sum with some further Hilbert space
M to obtain i(='-u2®'m and consider the operator A on 3¢ which coincides with H on
H, and which vanishes on M, then the extended £(A) gives rise to.an interpolation semi-
norm for the operator A. Indeed, if we write the generic element of 'i-l in the form f=[x; 2]

where z is in ¥, and z in 1 then
14113 = =[5 = (&7, h
IA1% = ell3+ Nl2ll* = (T =B, ),

and the one initial form is a semi-norm on 7 while the other is a norm. We have || fli=
k(A ], )= (k(H)x, )= lz||3 which is surely a seminorm on % compatible with the norm
of the space. If 7' is a linear transformation of 21 into itself which is continuous for the
semi-norm ||f||, then evidently ||f[|,=0 implies || 7f||,=0, i.e., the subspace M is invariant
under 7'. If then E is the projection in 3 onto H, we have | Tf|l«= || ET Ef||« for all {.
But ETE maps N, into itself, accordingly, if 7' has bound 1 relative to each of the initial
semi-norms, so also does ETE, and therefore the restriction of ETE to H,, and since
[|||« is an exact interpolation norm on ¥, we have |||« <||f|+

In a similar way the point A=1 bmay be adjoined to F and the function k(4) extended
by the definition %(1)=0. By a slight modification of the argument used in the proof of
Lemma 2 we can show that the extended function is also concave. This fact is sufficient
to prove Theorem 1 in the special case when F contains only two points; the linear function
which coincides with k(1) on such an F is non-negative throughout the unit interval and
ig therefore of the form (3), the mass dp(s) being concentrated at the points s=0 and s=1.
Since the theorem is a triviality when F is a one-point set, we will suppose in the sequel
that F consists of at least three points.

Let F* be the set obtained from F by reflecting it through the point A=4%. If k(1)
belongs to Cp, the function k*(A) defined on F* by k*(1) =k(1 — 1) is evidently in Crs, since
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all that has been done is to interchange of H and I—H. Less obvious is the following
lemma, which we prove only for finite sets I in the open unit interval, although it is true

in general.

LeEmMA 6. If k(1) belongs to Cp, where F is a finite subset of 0<<A<1, then the function
Je(A) =A(1 —A)/ k(1 — 2) belongs to Cps.

Proof. In view of the previous remark, it is enough to show that the function g(1) =
ML —A)/k(4) belongs to Cp, and this is equivalent to showing that the operator G=
K-1H(I—H) gives rise to an exact quadratic interpolation. We may suppose that the
Hilbert space 3, is finite dimensional. Since ¥ is the spectrum of H and is bounded away
from O and 1 it follows that the operators H, I —H, K and G are all positive commuting
operators with inverses. We let S be the positive square root of H(I—H) and note that
SK-1S =@ as well as ST1HS1=(I—H)™! and S-(I —-H)S81=H-1. In order to show that
@ corresponds to an interpolation norm we must show that the inequalities T*HT <H
and T*(I —H)T<I-H imply T*GT <@, and it is sufficient to show this for operators 7'
which have inverses. In the calculation which follows we make use of the fact that 0 <A< B
implies B-1<A4-1 as well as T*AT <T*BT for any T.

From T*(I—H)T <I—H we have

(I—H)y1<TY(I-H)1T*1,
T(I-H'T*<(I-H),

TS HST*<SHS,
STSHS1T*S<H,
M*HM < H where M =S-1T*8.

In a similar way, from T*HT <H we obtain M*(I —~H)M <I— H, whence, since K gives
rise to an interpolation norm, M*K M < K, and therefore

K< M1K-1M*,
ME-TM*<K-,
S1T*SK-18STS-1< K-,
T*SKST<SK-'8=@,
T*GT <@, as required.

It is convenient to change variables by the mapping Z(4) =2/(1 —4) carrying the unit
interval into the right half-axis. To the function k(A1) in Cr we associate a function ¢(z)
defined on Z(F) by the equation
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¢(z)=(z+1)k(z_f_1).

For the extreme points of the class of functions k(1) of the form (3) we obtain the corre-
spondences: ko(d) =1 and ¢y(z) =2; k() =1—1 and ¢,(z) =1; while for

_ Al=2)
ky(4) Tt (=2 (l=s) O<s<l,
we obtain és(z) = ™™ Where m=1;8>Oand
0w—z o 8

w=(s —1)/s<<0. The functions of the form (3) therefore correspond to functions ¢(z),
positive and regular on the right half-axis, which have positive imaginary part in the
upper half-plane. This class of functions, studied at length in [2] and [9] is denoted by the
letter P’ in [2] where the letter P is reserved for the general class of functions, analytic
in the upper half-plane with positive imaginary part. Since the most general function in
the class P’ may be written

0
¢(z)=az+ﬂo+f [1 -—l:l du(w), (5)

o~z @

where o>0, 8,20 and du is a positive measure for which § (du(w))/(w(w—1)) is finite, we
see that the functions of the form (3) correspond precisely to the functions in P’. Our
object, then, is to show that k(4) in C» corresponds to a function ¢(z) defined on Z(F)
which is the restriction to that set of a function in the class P’.

Let » be an integer > 1 and suppose that Z(F) contains the following set of 2» positive

numbers
E1<m <&<me<...<& <7y (6)

Let V be an n-dimensional Hilbert space. It is easy to show that there exists a self-adjoint
operator 4 on ¥V having the numbers {&;} for its spectrum, and a one-dimensional pro-
jection E such that the operator B=A4 +cE for an appropriate positive ¢ has the numbers
{n} for its spectrum. Evidently 4 < B. Next we form the direct sum of V with itself to
obtain W=V @V with generic element f=[z; y]. Naturally ||f||%=|z||%+ ||l¥||%, and we
let L denote the operator defined by L[xz; y]=[4x; By]. On W we introduce the initial

norms
”f"g = (4z, z)y + (By, y)v = (L}, iw

and I1E =M=l + Ny ll% =N £1%-

Accordingly I3 =(L+1)], Dw
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and therefore 118 = (HF, Yo =L+ I) H, fyw=(Lf, Pw,

whence H = (L + I)~1L. Since the spectrum of L consists of the 2n numbers (6), the spectrum

of H is a subset of ' and we may use the function k(1) in C; to obtain an interpolation
norm. We obtain

A% = (&Y. a = (L+DEE], Hw = SD)]. Hws
and since the factor spaces making up W are invariant under L
I3 = (¢(A)=, )y +(S(B)y, 9)v-

Now for the transformation 7' defined on W by T[x; y]=[y; 0] we have

litys 0 <Ml lI% + =% = liT=: 510,

ITy: 01 = (Ay, y)v < (A=, 2)v + (By, y)v = [|[=; ¥1[l3.
since 4 < B. Hence for the interpolation norm

Ily; 011 = (¢(A)y, y)v<(d(A)=, 2)y+($(B)y, y)v = [|[2; 9]|[3-

In particular, for elements with =0, we have (¢(4)y, ¥)y <(¢(B)¥, ¥)y for every y in V.
From a theorem of Loewner [9] then the determinant

det

P(&) — S ;) l
&i—mny
is non-negative.
Let Z=Z(F) consist of the points

2 <2, <23<..<z;, 2,>0, (8)

and let P(Z) denote the convex cone of all real functions f(z) defined on Z which are the
restrictions to that set of functions in the class P, real and regular on an interval containing
the closed interval z; <z<z; similarly let P’'(Z) denote the smaller cone of restrictions
to Z of functions in the class P’. For any real f(z) defined on Z and any subset S of Z
consisting of an even number of points we write S in the form (6) and compute the cor-
responding determinant of the type (7); this determinant is called the Loewner determinant
of f associated with S. Evidently there are as many Loewner determinants as there are
subsets of § of even cardinality. In another publication on the Loewner theory [5] the
author has established the following theorem, which does not require the hypothesis z, >0.

THEOREM A. 4 real function f(z) defined on Z belongs to P(Z) if and only if
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1. Every Loewner determinant of f is non-negative and

I1. If a Loewner determinant vanishes, so also do all other Loewner determinants of the

same or higher order.

We have already seen that if ¢(z) is defined on Z=Z(F) by $(z) =(z+1)k(z/(z+1))
where k(1) belongs to O, then the Loewner determinants of ¢(2) are non-negative, and this
remains true when 0 is adjoined to Z and ¢ extended by the definition ¢(0)=0.

If we consider next F*, the reflection of F through =%, we find that Z(F*) is the
set Z* of reciprocals of numbers in Z =Z(F). The function k*(1) defined on F* by k*(2) =
k(1 —2) corresponds to ¢*(z) defined on Z* by the equation ¢*(z) =2¢(1/z), and the Loewner
determinants of this function are non-negative, even when 0 is adjoined to Z* and ¢*
extended by the definition ¢*(0) =0. In a similar way we can consider 7(:(1) =A(1 =2)/(k(1 —24))
defined on F* which corresponds to gZ(z) defined on Z* by the equation J(z):[qS(l /2174
if we set <;VS(0) =0 we obtain a function all of whose Loewner determinants are non-negative.

The proof of Theorem 1 will then be almost complete if we invoke another theorem

from the Loewner theory.

THEOREM B. If Z is of the form (8), z, >0 and Z* the set of reciprocals of numbers in
Z, then a real function [(z) defined on Z belongs to P'(Z) if the following three conditions

are satisfied.

III. When f is defined at z=0 by f(0) =0, the extended function belongs to P(Z U 0).
IV. The function f*(z) defined on Z* U0 by f*0)=0 and f*(z)=z2f(1/z) belongs to
P(Z*y 0).
V. The function f(z) defined on Z* U 0 by f(0) =0 and f(2) = [f(1/2)]* belongs to P(Z* U 0).

We remark that the function l/m is of the form (3) and hence, in view of Lemma
5, belongs to every Cj; under the mapping Z(4) it corresponds to the function Vz in P".
It is well known that no Loewner determinant of ¥z vanishes. If k(4) belongs to Oy, so also
does k{2) —}-em for small positive ¢, as well as the two associated functions &*(4) +
eijj and I::(ﬂ) +em. From these, we obtain the corresponding functions defined
on Z and Z*, viz. ¢(z) +el, ¢*(2) +¢Vz and <;(z) +¢Vz. For all three functions the Loewner

determinants are non-negative, and for all sufficiently small positive ¢ those determinants
are even strictly positive, since those determinants, of which there are only a finite number
in all, are polynomials in &. If one of the polynomials vanished identically, it would follow
that the coefficient of the highest power of ¢ also did, and such a coefficient is a Loewner
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determinant of V;, none of whose Loewner determinants vanishes. Thus, for sufficiently

small positive ¢ k(l)-l—em is of the form (3), and hence k(A) is too. This completes
the proof of Theorem 1.

In the proof of the theorem we were compelled to consider, at least in the case of a
finite-dimensional space, the possibility of the exact quadratic interpolation of semi-norms.
It is worth-while to review our argument with this in mind. Had we begun with a pair
of possibly not compatible norms on ¥, the passage to H, would have given rise to a pair
of semi-norms on that space, the null spaces of which would intersect only in the zero
vector. The exact quadratic interpolations would have to give rise to semi-norms ||z
rather than norms, in general, on . The content of the lemmas which we established
would still be valid, except the assertion about the continuity of k(1) on the spectrum;
Lemma 2 would guarantee only that k(A1) was continuous at every point of the spectrum
which was not 0 or 1, and that k(1) was concave. Since the class of interpolation functions
is convex, we see that the functions we must consider in this more general case are those
which, on the open interval, are of the form (3) and which are so defined at the end points
that they are non-negative and lower semi-continuous. We may therefore state a slight
generalization of Theorem 1, and the corresponding obvious generalization for interpola-

tion methods.

TurorREM 1. A semi-norm |||, on Hy is an exact quadratic interpolation semi-norm
relative to the pair of initial semi-norms determined by H and I —H if and only if there exists
a non-negative, lower semi-continuous function k(1) on the closed unit interval which, on the

open interval, coincides with a function of the form (3) such that for all x in H,

o
ol - [ u aiz
where H = _f% AdE;.

THEOREM 2'. The exact quadratic interpolation methods for semi-norms are given by

functions k(A) of the type of Theorem 1.

Let us remark that various interpolation methods based on the three-lines theorem
[1,8,12] in the case of quadratic norms correspond in our notation to interpolations de-

scribed by the functions
k() =27%1-2)% 0<a<l.

The functions ¢(z) of the form (5) introduced in the proof of Theorem 1 often appear
more naturally in the applications of the interpolation theorem than the functions k(4).
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Thus, if 4 is a measure on some measure space X and w(z) a non-negative measurable

function and ¥V an appropriate space of measurable functions, the initial norms

lull = [ uPdue) ana Nulli= [ [ute) ofe) e

give rise to the family of interpolation norms

el [ [} o) dito,

where ¢(z) belongs to the class P’, i.e. is of the form (5).
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