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S U M M A R Y  
We consider the behaviour of shear-wave splitting parameters that are made under 
the assumption of a single layer of anisotropic material when in fact two layers of 
differing anisotropic properties are present. It is shown that the resulting apparent 
splitting parameters are still meaningful quantities and in fact can (at fixed 
frequency) be written as trigonometric functions of the splitting parameters of the 
individual layers. These expressions reveal many properties of the apparent splitting 
parameters. For example, the apparent fast polarization 4, and delay time 6t, 
exhibit systematic variations as a function of incoming polarization with r / 2  
periodicity. The derived expressions can be used to invert for the individual 
properties of the two layers in many circumstances. We show that several stations 
along the San Andreas fault system display the properties of two layers, with the top 
layer being parallel to the local strike of the San Andreas fault. Finally, the derived 
expressions for the apparent splitting parameters are shown to be easily generalized 
to multiple layers. 
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INTRODUCTION 

Since Hess (1964) discovered seismic anisotropy in the 
oceanic mantle, seismologists have been attempting to 
characterize the anisotropy of the crust and mantle. One of 
the least ambiguous methods of examining seismic 
anisotropy is through the method of shear-wave splitting, or 
birefringence. In this method, seismic anisotropy is 
characterized by the polarization Cp of the leading shear 
wave, which yields the fast direction of anisotropy, and by 
the delay time 6t between the fast and slow directions, which 
gives a measure of the product of the anisotropic path length 
and the degree of anisotropy (e.g. Nur & Simmons 1969; 
Crampin 1981). The last decade has seen an explosion in the 
number of shear-wave splitting observations, both from local 
and teleseismic events. Most such observations are made 
under a set of simplifying assumptions concerning the 
character of the anisotropic medium. In particular, it is 
usually assumed that the medium possesses hexagonal 
symmetry with a horizontal symmetry axis and that the 
anisotropy is localized in a single homogeneous layer 
beneath the receiver. Under these assumptions, Cp and 6t 
have the important properties of being only a weak function 
of incident angle and backazimuth for near vertical 
incidence (the case usually encountered for teleseismic S 

waves), and being independent of the polarization direction 
of the incoming shear wave for fixed incidence angle. Thus 
measurements from many events for a given station can be 
averaged together. 

If a large enough range of arrival angles, backazimuths, 
and polarization directions is available, these assumptions 
can be tested. For example, a dipping symmetry axis will 
produce splitting parameters that possess 27r periodicity in 
backazimuth, as will the most general forms of laterally 
varying anisotropy. Even for a horizontal axis of symmetry, 
for large deviations from vertical, the splitting parameters 
will possess 7r periodicity (e.g. Crampin & Booth 1985). The 
existence of lower forms of symmetry, such as orthorhom- 
bic, rather than hexagonal, may produce large variations in 
splitting parameters even for rays coming in at near-vertical 
incidence. Finally, if two anisotropic layers are present, the 
splitting parameters become a function of polarization 
direction, even for fixed incidence angle. 

It is this last violation of our simplifying assumptions that 
we focus on in the present report. We will show that the 
effects of two layers are sufficiently distinct from these other 
complications that they can be detected in many 
circumstances. Furthermore we will show that the apparent 
splitting parameters Cp, and St,  obtained assuming one layer 
when in fact two are present, are still meaningful. In fact, #a 
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and St, can be written as explicit functions of the splitting 
parameters of the individual layers and the resulting 
expressions can be used to invert for these properties. 

In the case of teleseismic shear waves, there are many 
situations where more than one anisotropic layer may be 
present along the path. The discovery of anisotropy beneath 
some subduction zone events (Kaneshima & Silver 1992; 
Russo & Silver) means that for certain records, there will be 
source- and receiver-side anisotropy. Secondly, if there is 
both 'fossil' anisotropy in the lithosphere (Silver & Chan 
1988; Silver & Chan 1991; hereafter called SC) as well as 
anisotropy associated with asthenospheric flow, then there 
may be two anisotropic layers beneath the receiver. Finally, 
it may be that the crust and upper mantledhave different 
anisotropic propetties. The present report has in fact been 
motivated by a well-documented instance of inconsistent 
observations which, as we will argue, appear to indicate the 
existence of two layers. 

METHOD 

We assume that the action of an anisotropic layer is to split 
an incident shear-wave u( w )  _with polarization direction @ 
and propagation direction b onto the fast and slow 
polarization directions and P and then to time-shift these 
two components by 6t/2 (earlier) and _ -6t/2 (later), 
respectively. For an elasticity tensor C,Jk,, f and 0 are the 
two quasi-shear eigenvectors of the polarization matrix V 
defined by 

PV,, ~ i j J j G k  (1) 

(Backus 1965) with eigenvalues p: and p: corresponding to 
the two squared shear velocities. For small anisotropy, St  
can be conveniently expressed in terms of a relative 
perturbation in shear velocity Sp^ = p;'(Sp, - Sp,) as 

6t = p;'LSp^ 

where 6p,., = - Po and Po is the isotropic shear velocity 
defined such that Sp, + Sp, = 0. 

Following SC, the effect of an anisotropic layer can be 
conveniently described by a splitting operator r, defined as: 

(2) ff+ e-i"ar/z- ss. r = erwar/2" 

Assuming a shear wave in an isotropic medium can be 
written as 

u ( w )  = w(w)@ 

where w ( w )  is the wavelet function (Clarke & Silver 1991), 
then a split shear wave u , ( w )  can be written 

u,(w) = w(w)r * 3. (3)  

Following Yardley & Crampin (1991) we assume that the 
effect of two layers is to split the shear wave twice, into four 
individual phases (Fig. 1). This can be simply expressed by 
the application of 2 operators rl  and r,: 
u, = w(w)r2. r l  3 (4) 

where rl is the lower layer (applied first) and r2 is the upper 
layer (applied second). Assuming that only one layer is 
present is equivalent to assuming that there exists an 

f 
Anisotropic < Layer Two 

Anisotropic 
Layer One z- 

i 
Figure 1. Schematic of shear-wave splitting in the case of two 
anisotropic layers. The incoming shear wave is split twice, leading to 
four individual waves at  the receiver (from Yardley & Crampin 
1991). In most cases the individual arrivals are unresolved. 

apparent splitting operator r, that satisfies the relation 

r, .r, = Kr, (5) 
where K is a (possibly frequency dependent) complex scalar 
to allow for an arbitrary time shift satisfying IK(1 = 1 (because 
the splitting operators are unitary), and where it is assumed 
that the initial polarization direction @ is known either from 
the phase type (e.g. SKS, SKKS) ,  from a moment tensor for 
the event being studied, or from an estimate obtained 
directly from the data. 

We seek to determine the properties of the _apparent 
splitting parameters +, (the apparent direction o f f )  and St ,  
measured under the assumption of a single anisotropic layer 
as a function of +p (the direction of @) and the splitting 
parameters of the two layers. If we let (~ , . ,=2+, ,~ ,  where 

is the angle between +,, and the fast polarization 
direction of layer (1,2), let = wSt,,,/2, and define a,,, 
ap l ,  C,, C, by: 

ap = cos 8, cos 8, - sin 8, sin 8, cos ( a ,  - a l )  

apl = -sin 8,  sin 8, sin (a ,  - a, )  

C, = cos 8, sin 8, cos a2 + cos 8, sin 8, cos a l  
C, = cos sin e2 sin a2 + cos 8, sin 9, sin a, 
then, as shown in the Appendix, we can express the 
apparent splitting parameters a,, 8, as 

(6) 

(7) 

' (8) 
- c s  tan 8, = a,, I - 

C,y cos a, - C, sin a, ap sin a, - a,,, cos a, 

It is easily shown from (7)-(8) that the apparent splitting 
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is always positive. (ii) St,(4p) reaches a maximum at a point 
near where the discontinuous jump in 4,(4p) occurs. (iii) 
There are ‘null’ directions (directions for which the particle 
motion is nearly linear and the particle motion direction 
remains unchanged) for particular values of the polarization 
direction 4,,. As shown in the Appendix, 4,, will 
approximately correspond to a null direction if C,y = 0 or 

parameters possess a 812 periodicity in 4p. This particular 
property is very important in distinguishing it from other 
sources of variation in two important ways (see introduc- 
tion). First, if phases such as SKS are used (where 4p is 
equal to backazimuth), the splitting parameters from these 
other mechanisms will not exhibit a/2  variation as a 
function of backazimuth. Secondly, for fixed-propagation 
direction, the splitting properties for these other mechan- 
isms are independent of 4p. 

Extension to multiple layers 

The above formulation can easily be extended to multiple 
layers. For N such layers (5) is replaced by 

As shown in the Appendix, the values of a, and 8, retain 
the form of (7) and (S), except that the coefficients are now 
given by 

N - 1  N 

ap = S[I - 2 2 tan en tan en. cos (an - an.) 
L n = l  n ’ = n + l  

1 N-1 N 

n = l  n ’ = n + l  

N 

tan en cos a, + q tan3  e)  

1 N 

C, = s C tan en sin a, + q tan3  e) [,=, 
where 

N 

s =  fl C O S ~ , .  
n = l  

In the low-frequency limit only the terms proportional to 
tan 8 or tan’ 8 need to be retained. 

PROPERTIES OF THE A P P A R E N T  
SPLITTING PARAMETERS 

These expressions provide some useful insights into the 
behaviour of the apparent splitting parameters. One 
important property is that for two layers, the splitting 
operators do not commute. While a,,(l ,  2) = up(2, l ) ,  
Cc(l, 2 )  = CJ2, l), and C.,(l, 2) = CJ2, l ) ,  we note that 
a p I ( l ,  2) = -up,(2, 1 ) .  Thus it is possible to determine which 
of two layers is on top as long as up, is non-zero. This is also 
illustrated in Fig. 2, which shows 4, and S t ,  as a function of 
polarization angle 4p. The only difference between Figs 
2(a), (b) and 2(c), (d) is that the order of the operators has 
been reversed. 

Some other useful characteristics of 40(4bp) and St,( 4p) 
are the following: (i) 4, goes through a discontinuous jump 
of -a12 when the denominator of (7) vanishes, as seen in 
Figs 2 and 3. Away from this jump, +, is a monotonically 
increasing function of 4p, since its derivative 

(9) 

tan 8, sin a l  
t ane ,  s ina , ’  
-= -~ 

For example, if 8, = 8, (equal delay times in the two layers), 
the ‘null’ directions will be midway between the two fast 
polarization directions. As we will see in the next section, 
these regions are very important because they are near 
where abrupt changes in apparent splitting properties occur 
as a function of 4p, the most revealing features of two 
anisotropic layers. 

Other properties can be more easily seen in the low 
frequency limit O,,, << 1. To first order in el,,, (7) and (8) 
become 

C.S tan 8, -- 
sin a, 

[(12) is valid except when a, << e,,,]. Perhaps surprisingly, 
the non-commutative nature of the two operators persists at 
low frequency because of the presence of a p ,  which, like 
C,C,., is second order in 8. In this low-frequency limit, it is 
also useful to examine the special case of a ,  - a,. To first 
order in S a  = a2 - a , , 
tan a, - tan a , - ~a sec2 a ,  6,(2 - 6,) (13) 

where G I . ,  = 8,,,/8 and 8 = 8, + 8,. Assuming sec2 a I  is of 
order unity or less, this further simplifies to 

(14) a, - a 1 + 8CYG2(2 - 6,). 
This illustrates that in this limit, a ,  is a weighted average of 
a i  and a,. In the same limit, it is found that 

e, - e[ i  + ija cot 6,(6, - i)]. (15) 
Thus, 8, is approximately the sum of the two delay times of 
the two layers. Equivalently, if 4,  - 4, - n/2 then the delay 
times subtract. An example of this case is given in Fig. 3. 

The strongest dependence of the apparent splitting 
parameters on 4p occurs when upl is relatively large, i.e. 
S t ,  - St ,  and 30” < 4, - 4 , < 60”. This is where we would 
expect to obtain the strongest constraints on the two layers. 
In contrast, weak dependence of the apparent splitting 
parameters on 4p occurs for small a p L ,  which occurs when 
either St,,, >> St,.,, (in which case 4, - 4,., and St, - St,,,), 
or +, is approximately perpendicular or parallel to 4, (in 
which case the medium appears as one layer and the delay 
times add or subtract). Under these circumstances, it would 
be difficult to constrain the properties of the two layers. The 
relations (7) and (8) thus not only provide a way of 
predicting the behaviour of apparent splitting parameters, 
but also may be used as the basis for an inversion procedure 
to determine the splitting parameters of the individual 
layers, as shown below. 
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Figure 2. Curves for predicted apparent splitting parameters +a and 6f, as a function of incoming polarization direction &, using eqs (7)-(8). 
We consider two cases: (i) 4, = 90°(-900) (bottom layer) and (a) and &fa (b). (ii) Same as 
case (i) [4a (c) and St,  (d)] except that 4, and 42 are reversed: 4, = 140"(-40") (bottom layer) and 42 = 90°(-900) (top layer). Straight lines 
are 4, (solid) and & (dotted). Curved lines are analytic results at periods of 5 s (dotted), 8 s (solid) and 20 s (dashed). Note that the two cases 
give very different results, illustrating that it is possible to determine which layer is on top even at low frequencies. Also shown, estimates of 
splitting parameters from synthetic data (using method of SC) generated using the splitting parameters for the two cases above (see also Figs 4 
and 5). Filled symbols are well-constrained measurements, while open symbols are those that would normally be considered 'null' results. For 
nulls, 4 is plotted as polarization direction + 90". Measurements made on truncated sinusoids with period 5 s, 8 s, and 20 s denoted 
by circles, triangles and squares respectively. Note good correspondence between the measurements and analytic expressions. 

= l4Oo(-4O0) (top layer), 6t, = tit, = 1.0s for 

and 

Synthetic examples: two layers 

In order to test the above expressions and to illustrate the 
effect of two anisotropic layers on seismic data, we have 
created synthetic wavelet functions consisting of one cycle of 
a sinusoid with a period of 8s, the typical dominant period 
for the data we have been utilizing. We then estimated the 
apparent splitting parameters by the method of SC. Shown 
in Fig. 4 is such a doubly split shear wave with splitting 
parameters 4, = 90"( -90")6t, = 1.0 s, & = 140°( -40"), at, = 
1.0 s, and 4 = 60" (angles measured clockwise from north). 
Note that, as predicted from the equations, for a frequency 
localized signal, one apparent operator is very successful in 
removing the anisotropy. The resulting value of +a is 
intermediate between the two values while St ,  is less than 

the sum of the delay times of the two layers. A second case 
is shown in Fig. 5 with the same splitting parameters but 
with +p = 30". This case is an example of a null result. Note 
that the particle motion is nearly linear, as expected. 
4p = 30" is close to the null value of +p = 25" predicted from 

Figure 2 compares measured apparent splitting para- 
meters with the analytic expressions as a function of +p for 
two sets of splitting parameters. We note that the 
correspondence between the predicted values evaluated at 
5 s,  8 s and 20 s period and the estimates from a truncated 
sinusoid with the same period is reasonably good, with the 
exception of the region where there is abrupt change in 
splitting properties. This is also the null region where 
splitting would not be detected. Finally, we have found that 

(10). 
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Figure 3. Same as Fig. 2(a), (b), except for a case when 41 - &, 
i.e. bl = -40" and 

using the measurement procedure of SC, that 4p is typically 
estimated with errors of 10 per cent or less. Thus, for signals 
that are similarly localized in frequency, it is possible to use 
the analytic expressions to model the two layers. 

Application to data 
We have applied this technique to several stations along the 
San Andreas fault system: BKS, MHC and SAO (of the 
U.C. Berkeley Regional Network), which are within close 
proximity at the northern end of the fault, and which we 
group together as NSAN (Northern San ANdreas), and the 
station LAC (run by Lawrence Livermore National Labs; 
see Savage & Silver 1993 for details). We note from Fig. 
6(a) that the splitting parameters, as a function of 
backazimuth,, are well constrained (based on the error 
analysis of SC) but are internally inconsistent (see also Figs 
2 and 3 of Savage & Silver 1993). As shown in Figs 6(b) and 
(c), however, as a function of polarization angle c $ ~ ,  the 
splitting parameters exhibit a/2 periodicity, which is most 
clearly shown by the simplicity of Fig. 6(c) in which 4, and 
St ,  are plotted versus C#J~ modulo a/2. We have used the 
expressions for apparent splitting parameters given in the 
previous section to retrieve the splitting parameters from 
each layer by searching for those values that best fit the 
measured values of C#I and 6t as a function of &. For the 

= -So, and at, = at, = 1.0 s. 

calculated values, we used a period of 8s,  corresponding to 
the dominant period of most of the records at NSAN and 
LAC (see Figs 2 and 3 of Savage & Silver 1993). The criteria 
weighted most heavily in our qualitative fits to the data were 
the location of the 'jumps' and the trends of the plots. 

The best-fitting parameters are ($,, S t , )  = (YO", 0.9 s), 
(&, st,) = (140", 1.1 s) for NSAN and (+1 ,  St, )  = 
(60", 0.6 s), (&, S t , )  = (llOo, 0.8 s) for LAC. There is some 
trade-off between the parameters that limits the accuracy of 
these measurements to about +25" in 4, and &0.3s in St ,  
(see Savage & Silver 1993 for discussion). The major 
features of the data, the a/2 periodicity and the position and 
direction of the jumps in St, and 4, are fit well at both 
stations. That such a simple four-parameter model does such 
a good job of accounting for the data suggests that we are 
modelling the correct phenomenon. The most noticeable 
misfit is between the measured and calculated 4, at NSAN 
over the range from 35 to 70 degrees in +,,, where the data 
are systematically lower than the predicted values. This may 
indicate that our model is too simplistic. Possible 
modifications could include a dipping symmetry axis, or 
laterally varying anisotropy, in one of the layers (see also 
Ozalaybey & Savage 1994, for a direct, waveform inversion 
of the data). 

The results are tectonically intriguing, in that for both 
NSAN and LAC the upper layer is locally parallel to the 
strike of the San Andreas fault, although the lower layer is 
at a high angle to this direction (see Savage & Silver 1993, 
for tectonic discussion). Thus far, no other stations we have 
examined appear to require the presence of two layers. 

CONCLUSION 

The expressions we have developed for the properties of 
observed splitting parameters measured under the assump- 
tion of one layer, when in fact two layers are present, allow 
for the interpretation of splitting parameters in more 
complex media. The actual measurements still have meaning 
in that they can be related in a straightforward manner to 
the splitting parameters of the two layers. We have shown 
that the dependence of the apparent splitting parameters on 
incoming polarization can be used to invert for the splitting 
properties of the two layers. Such models can in principle be 
tested under certain circumstances. If the two layers are in 
contact, then the properties of the converted phases at the 
interface between two anisotropic layers can be predicted 
(Farra et al. 1991). Finally, the fact that for most kinds of 
data, the individual observations are well behaved for the 
two-layer case, emphasizes the importance of obtaining, if 
possible, precise splitting parameters for a wide range of 
polarization directions and looking carefully for the 
diagnostics of two layers. 
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Figure 4. Illustration of the effect of two layers on seismic data. (a) Synthetic data consists of a truncated sinusoid (8s period) plus Gaussian 
random noise on  the radial component, which has been split twice with splitting parameters 4, = No S t ,  = 1.0 s, 42 = 140", St ,  = 1.0 s, 
backazimuth = 60". For a vertically propagating wave, the resulting waveforms are shown for the vertical (top, no signal), transverse (middle) 
and radial (bottom) components. Circles with arrows mark the interval used to make the measurement. The estimated apparent splitting 
parameters are found to be 4, = -55" (125") and St, = 1.6 s. (b) Two top traces: original transverse and radial components. Bottom two traces: 
corrected components. (c) Top two traces: superposition of fast (4,) and slow components (4, + 90") uncorrected (left) and corrected (right). 
Bottom: particle motion for fast and slow components uncorrected (left) and corrected (right). Corrections made using estimated values of 
(4,, St,). (d) Contour plot of the energy on the corrected transverse component as a function of 4, and Sf,. Minimum value (dot) shown with 
95 per cent confidence region (double contour) and multiples of that contour level. Note that a single splitting operator does a very good job of 
accounting for the splitting, with the possible exception of unmodelled high-frequency energy at the ends of the waveform (b and c). 
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Figure 4. (Continued.) 
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Figure 5. Same as Fig. 4 except that the backazimuth is 30". In this case, however, no splitting is detected (which we refer to as a 'null' result). 
This is close to the predicted null direction of 25" given by eq. (10) (see text for details). 
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Figure 6. High-quality measurements of I$ and 6t as a function of backazimuth from stations MHC, BKS, and SAO along the northern San 
Andreas fault (NSAN), and station LAC. Circles are SKS,  triangles S K K S ,  and squares S. Closed symbols represent well-constrained 
observations of splitting, while open symbols represent cases where splitting is not detectable (null measurements). In this second case, q5 is 
plotted as polarization direction 4 and & + 90". Solid horizontal line gives weighted average values of q5 and 6t. (b) High-quality individual 
measurements of I$ and 6t as a function of polarization direction I$v modulo 180" from NSAN and LAC. Compare with (a) and note the clear 
systematic pattern that has emerged, with a period of 90". Also included are curves calculated for the double-layer anisotropic parameters given 
in text. Symbols are the same as in (a). (c) Same as (b) but modulo 90". Note that this simple four-parameter model fits the observations 
reasonably well. 
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Figure 6. (Continued.) 
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APPENDIX 

Expressions for apparent splitting parameters 

Two-layer case 

It is convenient to write the splitting operator r, defined in 

r =  cos 81 + i sin eu 
where 8 = wfit /2,  I is the identity and u = E- 3. If we 
consider the coordinate system defined by the initial 
polarization direction fi and the perpendicular direction @L, 
then we can express u as 

P), as 

(Al l  

u = cos ae, +sin aeh (A2) 

where a = 2 4  and 4 is the angle between the fast 
polarization direction f̂ and the initial polarization direction 
@ and 

Then r can be written as 

r = cos 81 + i sin e[cos ae, + sin ae,]. (A4) 

Thus, the dot product of the two operators can be written 

r2 - rl = [cos 8,l + i sin B,(cos a2eo + sin a2eh)]. 

[cos ell + i sin e,(cos alen +sin aleb)] 

which, using relations (A3) can be written as 

r2 - r, = [COS 8, cos 8, - sin 8, sin 8, cos (a ,  - al)]l 

+ ~[(COS 8, sin 8, cos a, + cos 8, sin 8, cos a,)e, 

+ (cos 8, sin 8, sin a,  + cos 8, sin 8, sin aI)eh] 

+ sin 8, sin 8, sin (a ,  - a,)e, (A5) 

where e, = e, eb = -eh * e, = @B, - $J. Using (A5) and 
noting that e, * e, = eb eh = I, 

r2 r, $ = (ap + iC,)p + (apI + iC,)@, (A6) 

where 
ap = cos 8, cos 8, - sin 8, sin 8, cos (a ,  - a,) 

C, = cos 8, sin 8, cos a2 + cos 8, sin 8, cos a ,  

C, = cos 8, sin 8, sin a, + cos 8, sin 8, sin a 1  

apI = -sin 8, sin 8, sin (a2 - a , )  

(same as eq. 6 in body of text). We seek an operator such 
that 

r2 rl fi = r, - p' ('47) 

p' = K[cos y@ + sin y@J (A8) 

where p' is defined as 

K is a complex scalar (which allows for an arbitrary time 
shift) of unit norm (because the splitting operators are 
unitary), and the angle y allows for a possible apparent 
rotation of the initial polarization vector. In this case, using 
eq. (A4)1 

r, p' = ~ { c o s  e,[cos y@ + sin y@J 
+ i sin e,[cos a,(cos y@ - sin $L) 

+ sin a,(cos y@, + sin $)I} 
= K[{cos 8, cos y + i sin 8,[cos a, cos y 

+ sin a, sin y]}P 

+ {cos 8, sin y + i sin 8,[-cos a, sin y 

+ sin a, cos y]}$,]. (A9) 

Equating the terms proportional to @ and BL: 
K[cos 8, cos y + i sin 8, cos (a,  - y)] = a,, + iC, 
K[cos 8, sin y + i sin 8, sin (a,  - y ) ]  = apI + iC,. 
Note that there are four unknowns: e,, a,, y and the phase 
of K. Although there appear to be four equations (real and 
imaginary parts of the coefficients multiplying @, Bl), only , 

three of these are independent, since a: + + Cz + Cg = 
1. In most cases we can fix y = 0. For example, the initial 
polarization can be known either because of phase type 
(such as with SKS) or from a moment tensor. More 
generally, it can be shown that y is a quadratic function of 
frequency, so that in the low-frequency limit it will be very 
small. This means that @ can be estimated directly from the 

(A10) 
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data with little error, so that y will be typically close to zero. 
Using this value of y in (A10) and eliminating K leads to 

apl + iC, 
i sin e, sin au' 

Multiplying by cos 0, and equating real and imaginary 

(Al l a )  

(Al lb)  

- - ap + iC, 
cos e, + i sin e, cos a, 

parts, 

-sin aaCc tan 0, = apI - cos aaC, tan 8, 

sin ",a, tan 0, = C, + cos a,api tan 0, 

which yields 

a 
tan 0, = 

C, cos a, - C, sin a, 

or 

tan 0, = 
c s  

a,, sin a, - apL cos a, 

Using (A12) to eliminate 0, and solving for a,, 

(A12a) 

(A12b) 

Once a, is found, (A12) can be used to compute 0,. 
Generalization to multiple layers. In the case of multiple 

layers, the above formalism can be easily generalized. In 
place of (5) we substitute 

for N layers. Using (Al)  in (A14) and defining 
N 

s = n cos e,, 
n = l  

- C- c tan en tan envan - a,,. 
n = l  n ' = n + l  

N - 2  N - l  

n = l  n ' = n + l  n"=n'+l 

Using definition (A2) leads to terms analogous to (A5) 
and an equation analogous to (A6), except that the 

coefficients in (A6) are now defined by 

N - l  N 

1 - C tan en tan en. cos (a,  - a,,.) 
n = l  n ' = n + l  

N - 1  N 

apI  = S[ C. tan en tan en. sin (a,, - a,,,) 
n = l  n ' = n + l  

('416) 

1 
1 

N 

tan e,, cos a, + q tan3  e) 

tan en sin a,, + q tan3  e) . 
N 

Thus the formulae for a, and 0, still have the same form as 
(A12) and (A13). We note that in the low-frequency limit, 
only the terms proportional to t a n 8  and tan28 need be 
retained, leading to relatively compact expressions for this 
more complicated case. 

Determination of null directions of 4p 
We term the null directions those values of 4p for which the 
initial polarization is left virtually unchanged by the splitting 
operators. In the case of two layers this corresponds to 
setting the term multiplying 3, in eq. (A6) equal to 0. Since 
apL and C, are both real, they must both be zero. apL = 0 is 
satisfied by either 8, = nw or 8, = nn, or a2 - a1 = nn. But 
apI is not a function of 4p so that there will be no special 
null directions. C, = 0 gives the closest case to a null, and it 
can be satisfied exactly for 

tan e2 s ina ,  
t ane ,  sina, '  
-- -- - 

For example, if 8, = e l ,  then the 'null' directions will be 
halfway between the two fast directions. Because apL is only 
identically zero for special kinds of anisotropy, the 6, 
component will never be identically zero in general. 
However, we note that it is quadratic in o, and hence at low 
frequency it will be small compared to the other terms. Thus 
(A17) should approximately give the location of the null 
direction. 
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