
The Interprocedural Coincidence Theorem 

Jens Knoop * Bernhard Steffen t 

A b s t r a c t  

We present an interprocedural generalization of the well-known (intraprocedural) Coinci- 
dence Theorem of Kam mad Ullman, which provides a sufficient condition for the equivalence 
of the meet over all paths (MOP) solution and the maximal fi~ed point (MFP) solution to a 
data flow analysis problem. This generalization covers arbitrary imperative programs with re- 
cursive procedures, global and local variables, and formal value parameters. In the absence of 
procedures, it reduces to the classical intraprocedural version. In particular, Our stack-based 
approach generalizes the coincidence theorems of Barth and Sharir/Pnueli for the same setup, 
which do not properly deal with local variables of reeursive procedures. 

1 M o t i v a t i o n  

Data flow analysis is a classical method for the static analysis of programs that supports the gener- 
ation of efficient object code by "optimizing" compilers (cf. [He, MJ]). For imperative languages, it 
provides information about the program states that may occur at some given program points during 
execution. 

Theoretically well-founded are data flow analyses that are based on abstract interpretation (cf. 
[CC1]). The point of this approach is to replace the "full" semantics by a simpler more abstract 
version, which is tailored to deal with a specific problem. UsuMly, the abstract semantics is specified 
by a local semantic functionM, which gives abstract meaning to every program statement in terms 
of a transformation function from a lattice C into itself. The elements of C express the data flow 
information of interest. The (global) abstract semantics then results from one of the following two 
globalization strategies; the "operational" meet over all paths (MOP) strategy, and the "denotational" 
maximal fixed point (MFP) strategy ~ in the sense of Kam and Vllman [KU] 2. 

The MOP-strategy directly mimics possible program executions: it "meets" (intersects) all in- 
formation corresponding to program paths reaching the program point "under consideration. This 
specifies the optimal result of a globalization but is in general not effective. 

The MFP-strategy iteratively approximates the greatest solution of a system of equations that 
express consistency between pre-conditions and post-conditions that are given in terms of data flow 
information: the pre-condition of a statement must be implied by each of the post-conditions of thc 
predecessors, and the post-condition must be implied by the result of transforming the pre-condition 
according to the (abstract) meaning of the statement. In generM, this leads to a suboptimal but 
algorithmic description. 

The (intraproeedural) Coincidence Theorem of [KU] states the coincidence of the MOP-solution 
and the MFP-solution in the case of distributive (local) semantic functionals (see Section 2). In this 
paper, we present an interprocedural generalization of this theorem (cf. Interprocedural Coincidence 

*Institut flit Informatik und Praktische Mathematik, Christian-Albrechts-UniversitKt, Preu6erstr. 1-9, D-2300 Kiel 
1-Part of the work was done, while the author was supported by the Deutsche Forschungsgemeinschaft grant La 
426/9-2. 

tLehrstuhl flir Informatik II, Rheinisch-Westf'~lische Technische Hochschule Aachen, Ahornstr. 55, D-5100 Aachen. 
1These are the strategies that lead to the MOP-solutlon and MFP-solution, respectively. 
2The operational and denotational flavour of these two strategies becomes particularly apparent in the interproce- 

dural setting. 



126 

Theorem 5.3), which covers arbitrary imperative programs with recursive procedures, global and 
local variables, and formal value parameters. In the absence of procedures, it reduces to the classical 
intraprocedural version of Kam and Ullman. The point of our generalization is the introduction of 
stacks of lattice elements as data flow information, which is necessary to properly deal with local 
variables of recursive procedures. These stacks directly mimic the run-time stacks used by run-time 
systems for maintaining the activation records of different procedure incarnations. Whereas the 
operational (MOP) strategy exhaustively makes use of the stack structure, it turns out that the 
denotational (MFP) strategy only needs stacks of length at most two (Remark 4.7). 

Re la t ed  W o r k  

Semantically based reasoning about interprocedural data flow analysis was first considered by Cousot/ 
Cousot [CC2], Rosen [Ro], Jones and Muchnick [JM], and more recently by Bourdoncle [Bo]. 

Rosen [Ro] proved the correctness of an interprocedural data flow analysis algorithm computing 
a maximal fixed point solution that provides information whether a variable is used, modified or 
preserved. Thus his algorithm is tailored to specific problems, and it is not clear how to generalize 
his approach to arbitrary abstract interpretations. Such a general situation Was investigated in [CC2] 
and [JM], leading to highly technical definitions that are difficult to apply. Moreover, as in [Ro], these 
two papers only address the correctness aspect but no optimality. This holds also for the approach 
of [Bo], which considers correctness of data flow analyses with respect to the collecting semantics of 
a program. 

Both correctness and optimality were considered by Barth [Bal, Ba2] and Sharir/Pnueli [SP], who 
independently proposed an interprocedural version of the Coincidence Theorem of Kam and Ullman. 
However, their approaches do not properly deal with local variables of recursive procedures, which 
would require to store information about the local variables when treating a recursive procedure call. 

S t r u c t u r e  o f  the  Paper 
After sketching the intraprocedural setting in Section 2, we recall the formal framework for interpro- 
cedural data flow analysis in Section 3, and define two versions of abstract semantics for programs 
with procedures in Section 4: an "operational" one caused by the interprocedural meet over all paths 
strategy and a "denotational" one caused by the interproceduval maximal fixed point strategy. Sub- 
sequently, Section 5 presents the main results, Section 6 sketches some applications, and Section 7 
contains our conclusions. Finally, the Appendix provides the detailed data flow analysis algorithms. 

2 The Intraprocedural Setting 
In this section we summarize the intraprocedural setting for data flow analysis, which is characterized 
by a separate and independent investigation of the procedures of a program. Here it is common to 
represent procedures as directed flow graphs G = ( N , E , s , e )  with node set N and edge set E. 3 
Nodes n E N represent the statements and edges (n,m) E E the nondeterministic branching 
structure of the corresponding procedure, preda(n)=dS { m I (m, n) E E } and succa(n)=dS { m I 
(n, m) E E } denote the set of all immediate predecessors and successors of a node n, respectively. 
s and e denote the unique start node and end node of G, which are assumed to possess no 
predecessors and successors, respectively. A finite path in G is a sequence (n~,...,  nq) of nodes 
such that (nj,nj+~) q E for j E { 1 , . , q -  1}. P[m,n] denotes the set of all finite paths from m to 
n, and P[m,n) the set of all finite paths from m to a predecessor of n. Moreover, lgth(p) denotes 
the number of node occurrences in p, and e the unique path of length 0. Finally, we assume that 
every node n E N lies on a path from s to e. 

SThe construction of flow graphs is described in [All]. 



127 

Given a complete semi-lattice (C, Iq, t:::, .L, T),  whose elements are intended to express the relevant 
data flow information, the local abstract semantics of a flow graph G is given by a semantic functional 

! l :  N-~  (C =* C) 

which gives meaning to every node n E N in terms of a transformation on C. For simplicity, it is 
assumed that  s and e are associated with the identity on C. 

The local abstract semantics ! ] can easily be extended to cover finite paths as well. For every 
path p =  (nl, . . . ,nq) E P[m,n] ,  we define: 

!de if p -  e 
[ P ] =a! [ (n2 ..... nq) ] o { n, ! otherwise 

The  (global) abstract semantics then results from one of the following two globalization strategies: 
the "operational" meet over all paths (MOP) strategy, and the "denotations!" maximal fixed point 
(MFP) strategy in the sense of Kam and gi lman [KU]. 

The MOP-strategy directly mimics possible program executions: it "meets" (intersects) all in- 
formations, which belong to a program path reaching the program point under consideration: 

T h e  MOP-Solut ion:  V n E N V co E C. MOP, o ( n ) = [7 { [p ] (co ) IP  E P[s ,n)  } 

This directly reflects our desires but is in general not effective. 
The MFP-strategy iteratively approximates the greatest solution of a system of equations which 

specifies the consistency between pre-conditions and post-conditions that  are expressed in terms of 
C: 

E q u a t i o n  S y s t e m  2.1 

f co if n = s pre(n)  
I'-] { pos t (m)  I m E prede(n) } otherwise 

pos t (n )  --- [ n ] ( p r e ( n ) )  

Denoting the greatest solution of Equation System 2.1 with respect to the start information co E C 
by pr%0 and post~o , the solution of the MFP-strategy is defined by: 

T h e  MFP-Solut ion:  Vn  E N Vco E C. MFP~o(n ) = pr%0(n ) 

In general, this leads to a suboptimal but algorithmic description. 

Thus we have two global notions of semantics here, an operational one, which precisely mimics our 
intention, and a denotations! one, which has an algorithmic character. In fact, we consider the MOP- 
strategy as a mean for the direct specification of data  flow analysis problems, and the MFP-strategy 
as an algorithmic realization of such problems 4. This view rises the question of correctness (safety) 
or even completeness (optimality) of such algorithms. For the elegant answer to these questions we 
need two further notions: given a complete semi-lattice (C, FI, E,  .L, T),  a function f : C ~ C is called 

�9 monotonic iff Ve, d E C. c E: d implies f (e)  C_ f (d )  

�9 distribntive iff YC'C_C. f([-]C') = 17 {/(c) lc e c ' }  

It is well-known that dlstributivity is a stronger requirement than monotonicity in the following 
sense: 

4Explicit algorithms are presented in Appendix A. 



128 

L e m m a  2.2 
A function f : C--*C is monotonic iff V C ' C C .  f(l"]C') C [ - l { f ( c ) l c ~  C'} 

As in this lemma, C will always denote a complete semi-lattice. We have (el. [KU]): 

T h e o r e m  2.3 (Safe ty  T h e o r e m )  
Given a flow graph G = ( N, E,  s, e) ,  the MFP-solution is a correct (or safe) approximation of the 
MOP-solution, i.e. Vn  E N Veo E C. MFP~(n)  C MOP~.(n), if all the semantic functions In  ] 
are monotonic. 

Distributivity of the semantic functions yields completeness (optimality). This follows from the 
well-known intraprocedural Coincidence Theorem 2.4 of [KU]: 

T h e o r e m  2.4 ( C o i n c i d e n c e  T h e o r e m )  , 
Given a flow graph G =  ( N , E , s , e ) ,  the MFP-solution is complete (or optimal) for ~the MOP- 
solution, i.e. Vn  E N Vco q C. MOP~o(n)=MFP~(n),  if all the semantic functions I n ]  are 
distributive. 

3 Interprocedural  Not ion s  

In the interprocedural setting we represent programs II as systems (Tro, 7r~,., ~rk) of (recursive) proce- 
dure definitions, where every r E I I  has a list of formal value parameters and a list of local variables. 
~ro is assumed to denote the main program and therefore cannot be called. ~r~ up to 7rk are the 
procedure declarations of II. For simplicity we assume that there is no (static) procedure nesting 
except that fro encloses ~rl up to ~rk. s Thus, the variables of the main program are global variables 
of the procedures, and can be accessed by them. 

The denotational (IMFP) approach and the operational (IMOP) approach require different rep- 
resentations of programs II: flow graph systems and interprocedural flow graphs. 

Flow G r a p h  S y s t e m s  

The denotational approach works on systems S = (Go, G1,., Gk) of flow graphs with disjoint sets o1" 
nodes Ni and edges El,  in which every procedure ~r of H (including tile main program 7r0) is 
represented as a directed flow graph G =  (N, E, s, e) in the sense of Section 2. NS=d /U{Ni l i  E 
{0,., k}} denotes the set of all nodes of S, E s =dJ U{Ei l i E {0,., k}} the set of all edges of S, and 
N~__.N s the set of all nodes representing procedure calls. Finally, we need the following functions, 
where 7 ~ denotes the power set operator: 

�9 fg : N s ~ S with fg(n)=dt Gi iff n E Ni, 

�9 callee : N~ ~ S with eallee(n)=d! Gi iff n repesents a procedure call of Gi, 

�9 caller: S ~ 79(N~) with caller(G,)=dl {n I callee(n) = G,}, 

�9 start : S---~ {So,.,sk} with start(Gi)=dysi for all i G {0,.,k} and 

�9 end  : S ~ {Co,., ek} with end(Gi)=dy ei for all i E {0,., k}. 

Intuitively, fg maps every node of a flow graph system to its corresponding flow graph, callee every 
call node to the called procedure, caller every procedure to its set of call nodes, and start and end 
every procedure to its start node and its end node, respectively. 

An illustrative flow graph system is given in Figure 1. 

SIntegrating static procedure nesting is straightforward. 



129 

~ 0  

s0=l l  / I s,=71 I 
1 r ' '  

I I ~ I I 9 1 ocall .,~ 
2 k. k / 

f ] 1 f 
al I 4[ "call .~" I 1~ I 

51 I e , - - i l l  I 
t 

e~ I 
Figure 1: The Flow Graph System 

In te rprocedura l  Flow Graphs  

The operational approach requires an explicit representation of the interprocedural control flow 
caused by procedure calls. This is achieved by combining the flow graphs of S to an interprocedural 
flow graph G* = (N*,E*,s*,e*), where s* is given by So mad e* by e0 (cf. [My, SP]). In detail, G* 
results from S by applying the following two step procedure to every node n of N~ : 

Algor i thm 3.1 Let S be a flow graph system, and n E N~.  Then 

1. Replace n by two new nodes, the call node no and the return node nn such that nc  has the 
same set of  predecessors as n but no successors and nn has the same set of  successors as n 
but no predecessors 6. 

2. Draw an edge from na to start(callee(n)) and from end(caUee(n)) to nn. 

N~ and N~ denote the set of all call nodes and return nodes in N*, respectively, and pred*(n)=d! 
{ m I (re,n) E E* } the set of all immediate interprocedural predecessors of n. In the following, we 
will identify the set N s of nodes of S with the set N*\ N~ of nodes of G* to get an interpretation 
independent notion of program point. 

Figure 2 shows the interprocedural flow graph that corresponds to the flow graph system of Figure 
1. 

In te rproeedura l  Pa ths  

The notion of finite path as introduced in Section 2 naturally applies to interprocedural flow graphs 
as well. However, due to the special nature of procedure calls not every finite path p E P[m, n] 
represents a valid execution. For example in Figure 9. the path (2, 4c, 7, 8,10,11,4n) is possible, 
while the path (2,4o, 7, 8,10, l l ,9n)  is not. This led to the following definition of interprocedural 
(valid) paths [SP]: 

Definition 3.2 ( In terprocedura l  Path)  

1. Let p E P[m,n~ Then p is an interproeedural path i f f  the tuple (ml,  . ,m, ) ,  which results from 
p by deleting all nodes in N*\(  N~ U N~ ), is well-formed in the following sense: 

�9 i f  there is no return node in (ml,., m~), then (ml,., my) is well-formed, 

6 n c  is ca l led  t o  raalch nR a n d  v ice  ve r sa .  



130 

s * = l [  

I 
L 

51 

e * = 6 ]  

l 
J k 

4c I 

4rt[ 

f 

f 

J 

8 [ .  

I k . _ _ _ _ )  

I ' l~ j I 
I 
I 
I 11[ 
k. _ J  

( 
I 

9cl 

f 
I 

I 

Figure 2: The Interprocedural Flow Graph 

I 
k . _ _ _ . . J  

I 
J 

s otherwise, let j be the smallest index in {1,.,r} such that mj is a return node. Then 
(ml , . ,m , )  is well-formed iff j > l  and mj-1 is a call node r mj,  and the remain- 
ing sequence after deleting mj-1 and mj is well-formed too. 

~. A call node and a return node of p are said to correspond to each other, if they are eliminated 
simultaneously in the procedure above. 

3. IP[m, n] denotes the set of all interprocednral paths from m to n, and IP[m, n) the set of all 
interprocedural paths from m to a predecessor of n. 

Complete  Interproeedural  Paths  

In order to determine the semantics of procedure calls, we need to deal with complete interprocedural 
paths p from start(fg(n)) to n, which are characterized by the fact that a l l  procedure calls in p 
have been completed by a subsequent return. This guarantees that the occurrences of start(fg(n)) 
and n belong to the same procedure incarnation. 

Definition 3.3 (Complete  Interprocedural  Path)  

1. An interprocedurol path p= (hi, ..., nk) E IP[start(fg(n) ), n] is called complete if it possesses 
equally many occurrences of procedure call and return nodes: 

I { i l n i ~  Nb}l  = I { i l n i ~ N ; ~ } [  

~. CIP[start(fg(n)), n] and CIP[start(fg(n)), n) denote the set of all complete interprocedural 
paths from start(fg(n)) to n, and from start(fg(n)) to a predecessor of n, respectively. 

That this actually realizes our intention is a consequence of the following property of interprocedural 
paths: 

Lemma 3.4 Let p=(nl , . . . ,nk)  e IP[m,n] be an interprocedural path and (nl, nj) and (ni,,nj,) 
two of its pairs of corresponding call and return nodes. Then the integer intervals [i : j] and [i' : j'] 
are either disjoint or one is included in the other. 



131 

p= (m,... ,ne,,. . . ,nc,,. . . ,nR, ..... nc,,...,nc,,...,nr~ . . . . .  n n ~ , . . . , n n ,  .... ,n) �9 IP[m,n] 

i , , i ,  , i i  
Figure 3: Complete Interprocedural Paths 

This pattern is illustrated in Figure 3, where { (nv, ,nn~)[i  E {1 .... 4} } are assumed to be pairs of 
corresponding call and return nodes of p. 

The following lemma, which can easily he proved, will be important: 

L e m m a 3 . 5  Let s E {So,...,sk}, p = ( n l , . . . , n k )  �9 IP[s,n] and (n~,nj) a pair o f  corresponding 
call and return nodes. Then we have: 

(ni+,, ...,nj_,) E CIP[start(callee(nl)), end(callee(ni))] 

R e m a r k  3.6 If the underlying program II has no procedures, the flow graph system S and the 
interprocedural flow graph G* collapse to the flow graph Go of to. In this special case our framework 
coincides with the standard intraprocedural framework. 

Convent ions :  Throughout the rest of this paper we assume an arbitrary but fixed program 
II = (~r0, 7rl,., ~ra) with flow graph system S = (Go, G1,., Gk) and interprocedural flow graph G*= 
(N*,E*,s*,e*). Moreover, m and n, possibly indexed, are nodes of S or G*, and for every node 
n E N s ,  nc  and nn denote its corresponding call node and return node in N ' ,  respectively. 

4 A b s t r a c t  S e m a n t i c s  

In this section we present new interprocedural versions of the meet over all paths strategy and the 
maximal fixed point strategy. They define the (global) semantics for interprocedural flow graphs and 
flow graph systems, respectively. The point of this presentation is the extension of the data flow 
information in a way that mimics run-time stacks as used in run-time systems. 

4.1  T h e  L o c a l  S e m a n t i c  F u n c t i o n a l  

As its intraproeedural counterpart, the interprocedural meet over all paths (IMOP) solution directly 
records all possible program executions that lead to a particular program point. However, in the 
presence of recursive procedures it is necessary to work on stacks of lattice elements instead of the 
lattice itself, in order to record the part of the history which will become relevant after returning 
from (nested) procedure calls. Thus the local semantic functional has type 

[ ] : N* ---r ( S T A C K  --* S T A C K )  

where S T A C K  denotes the set of all non empty stacks with components of C, which can be manip- 
ulated by means of the following operations: 

�9 newstack : C --~ S T A C K  

�9 push : S T A C K  • C ---* S T A C K  

�9 pop : S T A C K  ---* S T A C K  

�9 top : S T A C K  --~ C 



132 

Intuitively, nemstack(c) creates a new stack with single component c, push puts a new component 
on the top of the argument stack, pop removes the top component, and top delivers the content of 
the top component, while not affecting the argument stack r. Thus only the top components of the 
stacks can be affected by these operations. 

S T A C K  is an abstract version of the run-time stacks used by run-time systems for maintaining 
the activation records of different procedure incarnations. Intuitively, the top component of a stack 
contains the data  flow information corresponding to the currently valid activation record s , while 
the data  flow informations of the remaining stack components correspond to activation records of 
preceding but not yet finished procedure calls. However, in contrast to a concrete run-time stack, 
where variables that  are global for the currently activated procedure are accessed by means of static 
and dynamic link chains, the components of a data flow analysis stack are assumed to contain all 
information related with the current procedure incarnation, i.e. also the information related to global 
variables s. Thus the data  flow analysis stacks directly reflect .the nesting of procedure incarnations 
according to the current call sequence. 

Formally, the local semantic functional [ ]* for this setting is defined by 

V n  E N* V s t k  E STACK.  

push(pop(s tk) ,  [n] ' ( top ( s t k ) ) )  if n e N * \ ( N ~ U  N~) 
[ , r C s t k ) = ~  push(stk ,  [nl'(top(ak))) if n E N$ 

push(pop(pop(stk)) ,  Tr top(pop(stk)),  [ n ] '( top(stk)) ) ) 
if h E  N~ 

where [ ll' : N* ---, (C ---, C) denotes the straightforward extension of the semantic functional of Section 
2 to interprocedural flow graphs 1~ and TO, : C • C ~ C is a function as described below. 

The intuition behind this definition is as follows: 
The execution of an ordinary statement (i.e. n E N*\(  N~ U N~ )) only affects the currently valid 

activation record. Thus it can be modelled by simply modifying the top component of the stack 
representing the current data  flow information. 

A procedure call (i.e. n E N$ ) requires the generation of a new activation record. This is 
reflected by pushing a new element on the top of the stack, which results from modifying the top 
component of the stack according to the parameter transfer. 

The treatment of return statements (i.e. n E N~)  demonstrates the necessity of introducing 
stacks into the framework. Returning from a procedure call (i.e. n E N~ ) essentially requires 
removal of the activation record belonging to the called procedure and reactivation of its predecessor. 
However, one observation is important here. The effect of a (directly) recursive procedure to a global 
variable needs to be maintained, whereas the local variables must be reset to their values at call time. 
Thus we need to consider the data  flow information valid immediately before entering the procedure 
( available in top(pop(stk))  ), as well as the ififormation valid after executing its body ( available in 
[ n ] '( top(stk))  ), in order to compute the data flow information being valid after returning from the 
called procedure. The function Tdn : C x C --" C models this computation. Thus popping the top 
component of the stack and replacing the subsequent component by 

TO.,,(top(pop(stk)), [ n ]' ( top( s tk  ) ) ) 

reflects the whole process of completing a procedure call. 

rWe consider the operation newstack instead of the usual emplystack : ---* STACK here, in order to exclude empty 
stacks, which are irrelevant in our framework. 

STherefore, we are never dealing with empty stacks. 
9Static and dynamic llnk chains are just a technical mean for getting efficient implementations of run-time systems. 

In our abstract framework, however, this aspect can be neglected without any harm (of. Remark 4.7). Moreover, it 
allows us to work with local semantic funetionals that affect only the top components of data flow analysis stacks. 

10 [ n ]*(stk), n E N~, is only defined for stacks with at least two components, a fact, which is automatically taken 
care of in any reasonable analysis context. 



133 

4 . 2  T h e  S t r u c t u r e  o f  t h e  S e m a n t i c  F u n c t i o n s  

Let ~'=~, [STACK --4 STACK] denote the set of all functions from STACK t o  STACK and 

:To =~! { f �9 ~'l V stk �9 STACK. pop(f(stk)) = pop(stk) } 

~'c=ay { f �9 Y: lVs tk  �9 STACK. pop(f(stk)) = stk } 

~'n=d! { f �9 ~ ' lV stk �9 STACK. pop(f(stk)) = pop(pop(stk)) } 

Then we have: 

L e m m a  4.1 

I. V n � 9  In ]*  �9 Yo 

e. V n e  N $ . [ n l ' e Y r c  

S. u 1 4 9  N~. [ h i *  �9 Y'n 

Intuitively this means that the semantic function of an ordinary statement only affects the top 
component of the argument stack, that the semantic function of a call statement simply adds a new 
top component to the argument stack, and that a return statement replaces the upper two components 
of the argument stack by a new component. The following lemma is an easy consequence of these 
properties of -~'o, ~'c and ~'R. 

L e m m a 4 . 2  V f r E ~ ' a  Vfo, f~oEYZo VfcEYrc .  foof~o, f r o f o o f c E . F o  

The formal development of the paper requires the following derived notions of monotonicity and 
distributivity: 

Definit ion 4 . 3  ( S - M o n o t o n i c i t y ,  S-Dis t r ibu t lv i ty)  
A function f E :YoU ~FcU ~rR is called 

�9 s-monotonic iff f ,  is monotonic 

�9 s-distrlbutive iff fo is distributive 

where f , ,  the significant part of f ,  is defined according to the following two cases: 

�9 f �9 ~'oUSrc: here .f, : C-~C is defined by: f~(c)=d! top(f(newstack(c))) 

�9 f E Yrn: here f ,  : C • C ~ C  is defined byn: f~(c~,e2)=a! top(f(push(newstack(c~),c2))) 

The following lemma shows that the effort for checking the preconditions of the Interprocedural 
Safety Theorem 5.2 and the Interprocedural Coincidence Theorem 5.3 is comparable to the effort 
necessary for their intraprocedural counterparts (eL Section 2 and 5). 

L e m m a  4.4 For all n E N* we have that [ n ]* is s-monotonic (s-distributive) if 

n E N~ : ! n ]' and R ,  are monotonic (distributive) 

n r N~ : [ n ]' is monotonic (distributive) 

Convent ions :  In the following we consider s-monotonlcity (s-distributivity) as a generalization of the 
usual monotonicity (distributivity) by identifying lattice elements with their unique representations 
as one-component stacks. Moreover, we extend the meet operation ['1 to work on stacks in the 
following way: 

V STKCSTACK.  I-]STK =dS newstack(r-]{top(stk) l stk �9 STK}  ) 

Thus, the meet over a set of stacks is just the one-component stack containlngthe meet of all the 
top components in its single component. 

llNote that C x C is a lattice, whenever C is. 



134 

4 . 3  T h e  I n t e r p r o c e d u r a l  M e e t  O v e r  a l l  P a t h s  S o l u t i o n  

Analogously to Section 2 the local abstract semantics [ ]* can be extended to cover finite inter- 
procedural paths. For every path p = (n~,..., nq) e IP[m, n], we define [ p ]* : STACK ~ STACK 
by 

{idsr~tvg if p = e 
[P ]* =dl [ (n2,..., nq) ]* o [n t  ]* otherwise 

Now, as its intraprocedural counterpart (cf. [KU]), the interprocedural meet over all paths (IMOP) 
solution directly records all possible program executions leading to a particular program point. Here 
it is important that for any interprocedural path p E IP[s*,n) and any stack stk E STACK, 
top(~ p ]*(stk)) is the only data flow information relevant for node n after executing p, since all other 
components of [p]*(stk) correspond to activation records that are not valid after p. Identifying 
one-component stacks with the content of their unique component, the formal definition of the 
interprocedural meet over all paths solution is given by: 

The  IMOP-Solution: Vn  E N* V co E C. IMOPco(n) = [-1 { [p l*(newstack(co)) IV E IP[s*,n) } 

4 . 4  T h e  I n t e r p r o c e d u r a l  M a x i m a l  F i x e d  P o i n t  S o l u t i o n  

In addition to the equational characterization of the intraprocedural case (Equation System 2.1)' 
flow graph systems need a preprocess, which determines the meaning of call nodes in terms of the 
meaning of the called procedures. This requires the introduction of an auxiliary semantic functional 
| ~, which gives meaning to whole flow graphs. Essentially, ~ n ] transforms data flow information 
that is assumed to be valid at the entry of the procedure that contains n into the corresponding data 
flow information being valid before an execution of n. In particular, [ e i ]  is the meaning function 
of the i-th procedure 12. Formally, the full preprocess for determining the meaning [ n ] of call nodes 
n E N s is characterized by: 

Defini t ion 4.5 [ | : N s --* (STACK -* STACK) and [ ] : N s --* (STACK --* STACK) are defined 
as the greatest solution of the equation system given by: 

and 

I ids~'aCK if n E { So, ..,sk } 
|ni=dl I-]{[ m ] o | m  ] I m ~ ~ed/n(~)(n)} otherwise 

I n ] *  if n E N S \ N ~  
[nl=,~s [~R] 'o [e ,~d(~a t tee (n) )~o[ncr  otherwise 

where idsTxOtr denotes the identity on STACK, and I"-1 the "componentwise" meet operation on 
~"O 13 

The effect of a procedure call n E N s is determined in three steps reflecting the three phases of its 
execution: 

�9 Entering the called procedure: [ nc ~* creates a new activation record by transforming the 
content of the top component of the stack according to the semantics of the call node and 

pushing it onto the stack. - Usually, the semantics of call nodes will reflect the parameter 

transfer. 

l~Remember, [e/|J=4t idc. Thus, el is related to the identity on STACK. 
laV f, f E ~'o. fl-I ff=dl f E ~Co with Yak E STACK. top(f'(stk))= top(.f(stk)) n top(f(stk)). As usual, "n ~ 

induces an inclusion relation "_C " on -~o by: f _E f iff f 17 fl = f .  



135 

�9 Evaluating the call: | end(callee(n)) ] computes the effect of the procedure body. Note that 
this affects the top component of the argument stack only. 

�9 Leaving the called procedure: [ nn ]* removes the activation record related with the current 
procedure call by popping the top component from the stack, and replacing its subsequent 
component by the data flow information representing the effect of the procedure call relative 
to its call site. 

Applying Lemma 4.2, we obtain 

L e m m a 4 . 6  V n E N  s. | n i l ,  [ n ] E ~ ' o  

R e m a r k  4.7 Lemma 4.6 is important, since it shows that all the stacks occurring during the 
iterative computation of the IMFP-solution will have at most two components 14. This is in contrast 
to the IMOP-strategy, where the size of stacks contributing to the IMOP-sotution is in general 
unbounded. Moreover, it allows us to prove termination in the usual way. 

After fixing the meaning of call nodes, [[ ] plays essentially the same role as the local (abstract) 
semantic functional of Section 2. Formally, the interprocedural maximal fixed point strategy is char- 
acterized by Equation System 4.8. As its intraprocedurai counterpart, this strategy labels every node 
n of N s with a pre-information pre,o(n ) and a post-information post~0(n), whose top components 
are the greatest solution of this equation system with respect to co E C. 

Equation Sys t em 4.8 

pre(n) = 
newstack( co ) 
I-1 { [ m e  ]*(pre(m)) [ m ~ caller(fg(n))} 
I-1 { post(m) I m C predjgr ) } 

post(n)  = | n l ( p r e ( n ) )  

if n = So 
if n E {sl , . ,sk} 
otherwise 

As before, identifying a stack having a single component only with the content of this component, 
we obtain as in the intraprocedural case: 

The  IMFP-Solut ion:  Vn E N s VCO E C. IMFP~o(n) = prep(n)  

5 M a i n  R e s u l t s  

The main step in the proof of our main results is taken by proving the following Main Lemma 5.1, 
whose proof is given in full detail in [KS1]. 

L e m m a  5.1 (The  Main  L e m m a )  
For all n E N s ,  we have, if the semantic functions [ m r ,  m E N*, are 

I. s-monotonic: [ n ] E  I- ' l{[p]*lp E CIP[nc, nn]} 

e. s-distributive: I n ]  = r - ] { [ p l * l p E  cIP[nc ,  nn] } 

t4This is because the computation starts from a one-component stack newstack(ea) (el. Equation System 4.8 and 
Algorithm A.3). 



136 

After having established this result, the Interprocedural Safety Theorem 5.2 and the Interproeedural 
Coincidence Theorem 5.3 can be proved almost as in the intraprocedural case. Thus we omit these 
proofs here is. 

As in the intraprocedural case, the first theorem states that the IMFP-solution is a correct approx- 
imation of the ]MOP-solution, whenever all the local abstract semantic functions axe s-monotonic: 

T h e o r e m  5.2 ( In t e rp rocedura l  Safety  T h e o r e m )  
Given a flow graph system S =  (Go, G1, ., Gk ) and its corresponding interprocedural flow graph 
G*=(N*,E*,s*,e*), the 1MFP-solution is a correct approximation of the 1MOP-solution, i.e. 
Vn E N s Vco E C. 1MFP~o(n) ~ 1MOe~.(n), if the abstract semantics In ]*  of all nodes n E N* 
is given by an s-monotonic function. 

Again, as in the intraprocedural case, s-distributivity of the semantic functions yields optimality (or 
completeness): 

T h e o r e m  5.3 ( In t e rp rocedura l  Coinc idence  T h e o r e m )  
Given a flow graph system S = (Go, Gl,., Gk) and its corresponding interprocedural flow graph 
G*= (N*,E*,s*,e*), the IMFP-solution and the ]MOP-solution coincide, i.e. Vn E N s Vco E 
C. IMOP~o(n)=IMFP~(n), if the abstract semantics I n ] *  of all nodes n E N* is given by an 
s-distributive function. 

Note that Lemma 4.4 allows to check the s-monotonicity or s-distributivity of the semantic functions 
n ]* simply by checking these properties for the semantic functions [ n] t  and the reduction functions 

7~n. Thus the only additional effort in comparison to the intraproeedural case arises from checking 
the reduction functions. 

6 Applications 
In this section we sketch two applications of the Interprocedural Coincidence Theorem 5.3. We omit 
details here, since both examples require their own setup. 

In [SK2] we propose an algorithm for interprocedural constant propagation and constant folding, 
which generalizes and improves all previous techniques for interprocedural constant propagation (cf. 
[CC2, CCKT, JM]). This algorithm determines all finite interprocedural constants, which are the 
interprocedural analogue to the set of finite constants introduced in [SK1]. As in the intraprocedural 
case, finite interprocedural constants have a purely operational characterization in the sense of the 
IMOP-strategy, and a purely denotational characterization in the sense of the IMFP-strategy. The 
Interprocedural Coincidence Theorem 5.3 yields the equivalence of these characterizations. 

The second example concerns the interprocedural versions of the classical bit-vector data flow 
analyses, e.g. determining available expressions, reaching definitions, live variables, very busy (antic- 
ipatable) expressions (cf. [He]) 18, and, more sophisticatedly, the optimal elimination of interprocedu- 
rat partial redundancies 17. In all these cases, the Interprocedural Coincidence Theorem 5.3 allows us 
to prove the optimality of our algorithms for programs with recursive procedures, global and locM 
variables, and formal value parameters [KS2] TM. 

15Both proofs are given in [KS1]. 
16This application has also been suggested (without giving any details) by Sharir and Pnue]i [SP]. 
tTThis problem is heuristically dealt with in [Mo, MR]. 
ISA detailed presentation of interprocedural bit-vector data flow analyses is given in [KS3]. 



137 

7 C o n c l u s i o n s  

We have presented an interprocedural generalization of the well-known intraprocedural Coincidence 
Theorem of Kam and Ullman [KU], which covers arbitrary programs with recursive procedures, 
global and local variables, and formal value parameters. Our theorem, which reduces to the classical 
intraprocedural version in the absence of procedures, delivers a sufficient condition for the coinci- 
dence of the interprocednral meet over all paths strategy and the interprocedural maximal fixed point 
strategy, and it generalizes previous results (cf. [Bal, Ba2, SP]), which do not deal properly with 
local variables of recursive procedures. Our results are formulated within the framework of abstract 
interpretation, thus covering a wide range of data flow analyses. 

R e f e r e n c e s  �9 

[All] 

[Ball 

[Ba2] 

[Bo] 

[CCl] 

[cc2] 

[CCKT] 

[He] 

[JM] 

[Ki] 

[KS1] 

[KS2] 

Allen, F. E. Control flow analysis. SIGPLAN Not. 5, 7 (1970), 1 - 19. 

Barth, G. Interprozedurale DatenfluBsysteme. Habilitationsschrift, University of Kaisers- 
lautern, Germany, 1981. 

Barth, G. Interprocedural data flow systems. In Proceedings 6 ~h GI-Conference, Dortmund, 
Germany, Springer-Verlag, LNCS 145 (1983), 49 - 59. 

Bourdoncle, F. Interprocedural abstract interpretation of block structured languages with 
nested procedures, aliaslng and recursivity. In Proceedings 2 ~ PLILP, LinkSping, Sweden, 
Springer-Verlag, LNCS 456 (1990), 307 - 323. 

Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model for static 
analysis of programs by construction or approximation of fixpoints. In Proceedings $th 
POPL, Los Angeles, California, 1977, 238 - 252. 

Cousot, P., and Cousot, R. Static determination of dynamic properties of recursive pro- 
cedures. In: Neuhold, E. (Ed.). Proceedings of the ~2 ~d IFIP TC-2 Working Conference on 
Formal Description of Programming Concepts, St. Andrews, N. B., Canada, 1977, 237 - 
277. 

Callahan, D., Cooper, K. D., Kennedy, K. W., and Torczon, L. M. Interprocedural constant 
propagation. In Proceedings SIGPLAN'86 Syrup. on Compiler Construction, SIGPLAN 
Not. 21, 7 (1986), 152 - 161. 

Hecht, M. S. Flow analysis of computer programs. Elsevier, North-Holland, 1977. 

Jones, N. D., and Muchnick, S. S. A flexible approach to interprocedural data flow analysis 
and programs with recursive data structures. In Proceedings 9 ~h POPL, Albuquerque, New 
Mexico, 1982, 66 - 74. 

Kildall, G. A. A unified approach to global program optimization. In Proceedings 1 *t POPL, 
Boston, Massachusetts, 1973, 194 - 206. 

Knoop, J., and Steffen, B. The interprocedural coincidence theorem. Aachener Informatik- 
Berichte Nr. 9!-27 , Rhelnisch-Westfglische Technische Hochschule Aachen, Aachen, Ger- 
many, 1991. 

Knoop, J., and Steffen, B. Optimal interprocedural partial redundancy elimination. In Ad- 
denda to Proceedings $th CC, Paderborn, Germany, October 5-7, 1992. Technical Report, 
Department of Computer Science, University of Paderborn, Germany, 1992. 



138 

[KS31 

[KU] 

[La] 

[Mo] 

[My] 

[MJ] 

[MR.] 

[~1 

[SKll 

[SK2] 

[sP] 

Knoop, J., and Steffen, B. Efficient and optimal bit-vector data flow analyses: A uniform 
interprocedural framework. To appear. 

Kam, J. B., and Ullman, J. D. Monotone data flow analysis frameworks. Acta Inforrnatica 
7, (1977), 309- 317. 

Langmaack, H. On procedures as open subroutines. Part I. Acta Informatica 2, (1973), 
311 - 333. 

Morel, E. Data flow analysis and global optimization. In: Lorho, B. (Ed.). Methods and 
tools for compiler construction. Cambridge University Press, 1984, 289 - 315. 

Myers, E. W. A precise inter-procedural data flow algorithm. In Proceedings 8 th POPL, 
Williamsburg, Virginia, 1981, 219 - 230. 

Muchnick~ S. S., and Jones, N. D. (Eds.). Program flow analysis: Theory and applications. 
Prentice Hall, Englewood Cliffs, New Jersey, 1981. 

Morel, E., and Renvoise, C. Interprocedural elimination of partial redundancies. In [M J], 
1981, 160 - 188. 

Rosen, B. K. Data flow analysis for procedural languages. Journal of the A CM 26, 2 (1979), 
322 - 344. 

Steffen, B., and Knoop, J. Finite constants: Characterizations of a new decidable set of 
constants. In Proceedings 14 ~h MFCS, Por~bka-Kozubnlk, Poland, Springer-Verlag, LNCS 
379 (1989), 481 - 491. An extended version appeared in: Theoretical Computer Science 80, 
2 (1991), 303- 318. 

Steffen, B., and Knoop, J. Finite interprocedural constants. To appear. 

Sharir, M., and Pnueli, A. Two approaches to interprocedural data flow analysis. In [M J], 
1981, 189 - 233. 

A A l g o r i t h m s  

This section provides algorithms that compute the IMFP-solution. First, we have an algorithm for 
the preprocess that determines the semantics of call nodes: 

A l g o r i t h m  A.1 ( C o m p u t a t i o n  of t he  Seman t i c  Funct ionals  [ ] and  | ~) 

I n p u t :  A flow graph system S = ( G o ,  G1, . ,Gk),  a complete semi-lattice C, for every node n E 
N S \ N  s an s-monotonic function [ n ]* : STACK --* STACK E s which is the identity for all 
nodes in {so, ..., sk, co, ..., ek}. Moreover, for every node n E N ~  two s-monotonic functions [ nv ]* : 
STACK ~ STACK E 5cc and [nn  l* : STACK --* STACK E Yrn. All semantic functions [ n ]*, 
n E N*\  N~ ,  are assumed to map stacks with top component T to stacks with top component "I-. 
Analogously, all semantic functions [ n r ,  n E N~ ,  are assumed to map stacks with upper two 
components T to stacks with top component T .  

O u t p u t :  An annotation of S with functions I n  ~ : STACK ~ STACK (stored in gtr)  and [ n ] : 
STACK ---, STACK (stored in ltr ) that satisfy Definition 4.5. 

R e m a r k :  T~- o : STACK .--r STACK E .~'o denotes the "universal" function which is assumed to 
"contain" every function f E .~ro, and ids'racK is the identity on STACK.  The variable workset 
controls the iterative process. Its elements are tuples, whose f irst  components are nodes m E N s of 
the flow graph system S, and whose second components are functions f : STACK --* STACK E 5to 



139 

that specify a new approximation for the function [ m | of the node of the first component. Note that 
due to the mutual interdependence of the definitions of [ ] and [ ] the iterative approximation of 
| | is super-posed by an interpracedural iteration step which updates the semantics [ ] of call nodes. 

(Initialization of the annotation arrays gtr and ltr and the variable workset ) 
F O R A L L  m E N s D O  

9tr[m] := T~-o; 
IF  ~ e N g  T H E N  Itr[,n] := r~-o ELSE  Itr[~] := [ ~ ]* F I  

OD; 
workset :---- { (s, idsTACK)Is e {so, ..., sk} }; 

( Iterative fixed point computation) 
W H I L E  workset ~ $ D O  

L E T  (m, f )  E workset 
B E G I N  

workset := workset\{ (m, f )  }; 
I F  gtr[m] D gtr[m] rq f 

T H E N  
~ r [ m ]  := gtr[ml n f; 
IF  m E {e~ l i  E { 0 , . , k } }  

T H E N  
F O R A L L  I e caller(fg(m)) DO 

ltrtl] := [ IR 1" o 9tr[m] o [ Ic r ;  
workset := workset U {(n, ItrIt] o gtr[ll) } n e suc%(o(l ) } 

OD 
E L S E  

workset := workset U { (n, ltr[m] o gtr[m]) I n ~ suc%(,.)(m) } 
F I  

F I  
E N D  

OD. 

In order to simplify the formulation of the central property of this algorithm, we abbreviate the values 
of Itr[n] and gtr[n] after the k-th execution of the while-loop by Itr~[n] . and gtrk[n], respectively. 
The following theorem ca~ now be proved in a straightforward fashion (cf. [KID: 

T h e o r e m  A.2 V n E N  s. 1"1  = N{ltr~[-] Ik_>0} ^ | . 1  = D{gt~k[n] Ik_>0} 
In particular, we have V n e N s.  | n ] = gtr[n] A [ n I = ltr[n] after termination of Algorithm A. 1. 

The second algorithm computes the IMFP-Solution: 

A l g o r i t h m  A.3 ( C o m p u t a t i o n  of  the  IMFP-Solution) 

Inpu t :  A flow graph system S = (Go, G,,. ,  Gk) , the semantic functional [ ], for every node n E N~ 
the function [ nc ]*, and a start information co E C. All semantic functions [ n ] and [ nc  ]* are 
assumed to be s-monotonic and to map stacks with top component T to stacks with top component 
T. 

O u t p u t :  An annotation of S with data flow informations, i.e. an annotation with pre-informations 
(stored in pre) and post-inforraations (stored in post) of one-component stacks that characterize valid 
data flow information at the entry and at the exit of every node. 



140 

R e m a r k :  newstack(T) denotes the "universal" data flow information, which'is assumed to "con- 
tain" every data flow information. The variable workset controls the iterative process. Its elements 
are tuples whose first components are nodes m E N s of the flow graph system S and whose second 
components are elements of STACK specifying a new approzimation for the pre-information of the 
node of the first component. 

(Initialization of the annotation arrays pre and post and the variable workset ) 
F O R A L L  m G N s D O  (pre[m], post[m]):= (newstack(V), newstack(T) ) OD; 
workset := { (So, newstack(co)) }; 

( Iterative fixed point computation) 
W H I L E  workset ~ 0 DO 

L E T  (m, stk) E workset 
B E G I N  

workset :=  wor~et\ { (m, stk) }; 
I F  pre[m] -1 pre[m] n s tk  

T H E N  
p,~[m] := pre[m] n stk; 
post[m] := [ m ](pre[m]); 
workset := workset U { (n, post[m]) In ~ svcciy(,q(m) }; 
I F  m E N~ 

T H E N  workset := workset U { ( start ( callee ( m ) ), [ mo ]'(pre[m])) } 
F I  

F I  
E N D  

OD. 

As before, given a start information Co, we abbreviate the values of pre[n], and post[n] after the 
k-th execution of the while-loop by prek[n], and postk[n]. In analogy to Theorem A.2 we have: 

T h e o r e m  A.4 Vn E N s. IMFPeo(n) = [']{prek[n] [k > 0} 
In particular, we have Vn  G N s. IMFPce(n)= pre[n] after termination of Algorithm A.3. 


