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THE INTERSECTION OF A MATROID
AND A SIMPLICIAL COMPLEX

RON AHARONI AND ELI BERGER

Abstract. A classical theorem of Edmonds provides a min-max formula re-
lating the maximal size of a set in the intersection of two matroids to a “cov-
ering” parameter. We generalize this theorem, replacing one of the matroids
by a general simplicial complex. One application is a solution of the case
r = 3 of a matroidal version of Ryser’s conjecture. Another is an upper bound
on the minimal number of sets belonging to the intersection of two matroids,
needed to cover their common ground set. This, in turn, is used to derive
a weakened version of a conjecture of Rota. Bounds are also found on the
dual parameter—the maximal number of disjoint sets, all spanning in each of
two given matroids. We study in detail the case in which the complex is the
complex of independent sets of a graph, and prove generalizations of known
results on “independent systems of representatives” (which are the special case
in which the matroid is a partition matroid). In particular, we define a no-
tion of k-matroidal colorability of a graph, and prove a fractional version of a
conjecture, that every graph G is 2∆(G)-matroidally colorable.

The methods used are mostly topological.

1. Introduction

The point of departure of this paper is a notion which has been recently developed
and studied, that of an independent system of representatives (ISR), which is a
generalization of the notion of a system of distinct representatives (SDR). As in
the case of SDR’s, an ISR is a choice function of elements from a system of sets
V1, V2, . . . , Vm, namely a choice of elements x1 ∈ V1, x2 ∈ V2, . . . , xm ∈ Vm. In the
case of SDR’s, the elements xi are assumed to be distinct. In the case of ISR’s they
are not necessarily distinct, but there is another element added, that of a graph G
on V =

⋃
1≤i≤m Vi. The system of representatives is then called and ISR if xi, xj

are not adjacent in G for i �= j. All graphs considered in this paper are assumed
to be loopless (namely, (v, v) is not an edge), and thus a vertex is not adjacent to
itself.
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4896 RON AHARONI AND ELI BERGER

Hall’s theorem [16] provides a necessary and sufficient condition for the existence
of an SDR: the union of every k sets Vi should be of size at least k. By contrast,
testing for the existence of an ISR is NP-complete, and hence a non-trivial necessary
and sufficient condition for it is not expected. What can be expected are non-
trivial sufficient conditions. Recently topological methods have been applied to
this end, and a sufficient condition has been found of topological nature: for every
I ⊆ {1, 2, . . . , m}, the simplicial complex of the independent sets of the graph
induced on G by

⋃
i∈I Vi should be of connectivity at least |I| − 2 (the definitions

of the above notions are given below). This criterion has been applied in various
ways to provide sufficient conditions of combinatorial nature.

The notion of an ISR does not lose generality by assuming that all sets Vi are
disjoint (in several papers on the subject this assumption is indeed made). The
reason is that there is a simple transformation reducing the general case to this
case: if a vertex v appears in two sets Vi and Vj , replace it by two copies of it,
put one of these copies in Vi and the other in Vj , and connect the two copies in G.
More generally, a vertex belonging to many Vi’s is replaced by a clique, each vertex
in the clique belonging to a different set Vi.

In the case that the sets Vi are disjoint there is another way of viewing ISR’s.
Let P be the partition matroid defined by the sets Vi, namely A ∈ P if |A∩Vi| ≤ 1
for every i ≤ m. An ISR is then a base of P which is independent in G. This
formulation calls for two generalizations: replacing P by a general matroid on V ,
and replacing the set of independent sets in G by a general simplicial complex C
(the notions of “matroid”, “simplicial complex” and related concepts are all defined
in subsequent sections). The case in which C is a matroid as well is the subject
of the celebrated theorem of Edmonds on the intersection of two matroids, which
(in one of its formulations) provides a necessary and sufficient condition for the
existence of a base in one matroid that is independent in the other. In the case
that C is a general simplicial complex, such a condition is again not to be expected,
and only non-trivial sufficient conditions may be sought. The main aim of this
paper is to find such a condition, formulated in topological terms. We shall find
that Edmonds’ theorem remains true when the rank function in the matroid is
replaced by a connectivity parameter of the complex (the two coinciding in the
case of matroids).

The rest of the paper is devoted to applications and generalizations of this the-
orem, and to combinatorially-formulated lower bounds on the connectivity of a
complex. One application is related to Ryser’s conjecture. The latter is a general-
ization of König’s theorem to r-partite r-graphs, and it can be given a matroidal
generalization in the same way that Edmonds’ theorem generalizes König’s theo-
rem. We give a proof of the case r = 3 of this matroidal conjecture, generalizing the
recent solution of the same case of Ryser’s conjecture. The main tool here, apart
from the main theorem of the paper, is a lower bound on the connectivity of the
intersection of matroids.

Another application is to coloring-type problems, namely problems on the min-
imal number of simplices from a given complex needed to cover its ground set. In
particular, we shall be interested in the case that the complex is the intersection
of given matroids. König’s line-coloring theorem treats this question in the case of
partition matroids. It says that if the common ground set of two partition matroids
M and N is decomposable into k sets belonging to M and is also decomposable
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into k sets belonging to N , then it is decomposable into k sets in M∩N . This fails
for general matroids, but we prove that for general matroids the same conditions
imply that the ground set can be decomposed into 2k sets in the intersection of the
matroids. This yields a weakened version of a conjecture of Rota.

In a more general setting, we wish to decompose the ground set into sets be-
longing to the intersection of a matroid and a general complex. A conjecture which
has drawn some attention of late is concerned with the case that the matroid is a
partition matroid P, and the complex is that of the independent sets of a graph.
In such a case it is conjectured that it is possible to decompose the ground set into
no more than max(∆(P), 2∆(G)) sets in the intersection of the complex and the
matroid, where ∆(G) denotes, as usual, the maximal degree of a vertex in G, and
∆(M) of a matroid M is defined as the maximum, over all subsets A of the ground
set, of |spM(A)|/|A| (in the case of a partition matroid, this is just the size of the
largest part). We conjecture that the same is true also for general matroids, and
prove a fractional version of this conjecture. For this purpose we prove a weighted
version of the main theorem, in the case when the complex in question is that of
the independent sets of a graph (in fact, we suspect that this weighted version is
valid for any complex).

Wishing to make the paper accessible to a wide audience, we shall not assume
familiarity with the topological notions used. For this reason, the next section is
devoted to topological preliminaries. A similar section is included on concepts from
matroid theory.

2. Topological preliminaries

A non-empty hypergraph C is called a simplicial complex (or plainly a complex)
if it is hereditary, meaning that σ ∈ C and τ ⊆ σ imply τ ∈ C. The edges of C
are called its simplices. We choose a set containing all the simplices of the complex
and call it the ground set of C. This set is denoted by V (C). The elements of V (C)
are called vertices. Throughout the paper we assume that the ground set is finite.
The maximal size of a simplex in C is denoted by µ(C). For a subset X of V (C)
we denote by C � X the set of simplices in C contained in X. The complex of
independent sets in a graph G, namely the sets containing no edges, is denoted by
I(G).

There is also a geometric definition of the notion of simplicial complex. A geo-
metric simplex is the convex hull of k points in R

n, where k ≤ n+1, and the points
are in general position. A face of a simplex is a simplex spanned by a subset of
its vertex set. A collection F of simplices in R

n is called a geometric simplicial
complex if every two simplices meet, if at all, in a face common to both. The union
of all these simplices is denoted by ||F||. The support supp(x) of a point x in the
complex is the smallest (with respect to inclusion) face containing x. Given two
complexes C and D, a function f : ||C|| → ||D|| is called simplicial if f sends every
vertex to a vertex and f is linear on each simplex.

It is well known and easy to show that every combinatorial simplicial complex
can be realised as a geometric complex in R

n for some n, and that this can be
done in a unique way, up to isomorphism. By “realisation” we mean the existence
of a bijection between the simplices of the two complexes. We shall usually not
distinguish between a complex and its realisation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4898 RON AHARONI AND ELI BERGER

The link lkC(σ) of a simplex σ in a complex C is the complex consisting of all
simplices τ ∈ C such that τ ∩ σ = ∅ and τ ∪ σ ∈ C. We shall use this notion only
for singleton simplices, {x}, and then write lkC(x) for lkC({x}). For a vertex x we
denote the complex {σ ∈ C : x �∈ σ} by C − x.

We shall use two notions of “union” of complexes C and D. One is just C ∪ D.
The second notion, denoted by C ∨D, is the complex {σ∪ τ : σ ∈ C, τ ∈ D} . The
union C ∨ C . . . ∨ C of a complex C with itself k times is denoted by

∨k C. If the
ground sets of two complexes C and D are disjoint, then C ∨D is denoted by C ∗D,
and is called the join of C and D. The join is defined also for general complexes,
by first taking copies of the complexes on disjoint ground sets.

The basic concept used in ISR theory is that of connectivity of a complex. It
indicates which “holes” in the complex can be filled, and which cannot. A “hole”
here is a homeomorph of a sphere.

Here is a more rigorous definition. A piecewise linear n-sphere (or PL-n-sphere,
for short) is a geometric simplicial complex C homeomorphic to Sn, the boundary
of the n + 1-dimensional ball Bn+1. Piecewise linear balls are similarly defined.

A complex C is said to be k-connected if for every i ≤ k and every simplicial
function ψ from a PL-i-sphere S into C there exists a simplicial extension of ψ to a
PL-i+1-ball with boundary S. As a matter of definition, −1-connectedness means
being non-empty.

We denote by η(C) the largest k for which C is k-connected, plus 2. (The addition
of 2 simplifies the formulations of certain results. Combinatorially, it signifies the
number of vertices of the simplices used to fill the spheres.) If C is k-connected for
every k, we write η(C) = ∞.

Here are some basic facts about the connectivity parameter η. Recall that a
subspace X of a topological space Y is said to be a retract of Y if there exists a
continuous mapping from Y to X that sends each point of X to itself. We say that
a simplicial complex C is a retract of a simplicial complex D if the topological space
||C|| is a retract of the topological space ||D||. (The retraction function does not
have to be simplicial.)

Observation 2.1. If C is a retract of D, then η(C) ≥ η(D).

A basic fact about connectivity relates the connectivity of the join to the con-
nectivity of its factors.

Lemma 2.2. For every pair C,D of complexes,

η(C ∗ D) ≥ η(C) + η(D).

Let us give here an outline of the proof of this theorem. Let c = η(C) and
d = η(D). It is not hard to reduce the problem to the case where c = µ(C) and
d = µ(D). (In other words, we can ignore simplices with “too many” vertices.)
Now let UC

c be the simplicial complex on the same ground set as C whose simplices
are all sets with size at most c and similarly, let UD

d be the simplicial complex on
the same ground set as D whose simplices are all sets with size at most d. It can
be shown that C is a retract of UC

c and D is a retract of UD
d , and hence C ∗ D is a

retract of UC
c ∗UD

d . Finally, it is not hard to calculate that η(UC
c ∗UD

d ) = c+d. This
proves the lemma. (The proof of the cases that c = ∞ or d = ∞ is a bit different,
but the main idea is the same.)
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The following properties of the connectivity function follow directly from basic
algebraic topological results such as the Hurewicz theorem, Van-Kampen’s theorem
and the Mayer-Vietoris theorem.

Lemma 2.3. For any pair A,B of complexes,
(1) η(A∪ B) ≥ min(η(A), η(B), η(A∩ B) + 1),
(2) η(A∩ B) ≥ min(η(A), η(B), η(A∪ B) − 1),
(3) η(A) ≥ min(η(A∩ B), η(A∪ B)).

(Note that the “∪” operation is identical when viewed in the simplicial sense,
that is, the union of the sets of simplices, and in the topological sense, namely the
union of the topological spaces. The same goes for the “∩” operation.)

We shall mainly use the following corollary of part (1) of Lemma 2.3.

Corollary 2.4. For every vertex x of a simplicial complex C,

η(C) ≥ min(η(C − x), η(lkC(x)) + 1).

To keep this paper as elementary as possible, we give this corollary also a trian-
gulative (that is, simplicial) proof.

Proof. Let k = min(η(C − x), η(lkC(x)) + 1) − 2, let S be a PL-k-sphere in C and
let ψ : S → C be a simplicial function. Suppose that there exists some vertex v
of S with ψ(v) = x. Then the complex lkS(v) is a PL-k − 1-sphere and ψ(lkS(v))
is contained in lkC(x). Since η(lkC(x)) ≥ k + 1, there exist a PL-k-ball B with
boundary lkS(v) and a continuous extension of ψ to B with ψ(B) ⊆ lkC(x). In
fact, we can linearly extend ψ to be defined on all of v ∗B. By this we triangulated
a “cap”, in which ψ can be extended. Consider now the PL-k-sphere (B ∪ S) − v,
and repeat the same procedure with it. In this way we excise caps from S, until we
obtain a PL-k-sphere T not containing any vertex in ψ−1(x). Since η(C−x) ≥ k+2,
there exists a PL-k +1-ball D to which ψ can be extended. Adding all excised caps
to D yields a PL-k + 1-ball filling S in which ψ can be extended. �

In some cases we shall need another connectivity parameter, which behaves like
η, but is always finite. For that end we define η(C) = min(η(C), µ(C)). There is
still another parameter that serves that goal, which is more natural in some sense.
Replace each vertex v ∈ V (C) by two copies of it, v′ and v′′, and each simplex σ by
all simplices in which for every v ∈ σ precisely one of v′, v′′ appears. In other words,
every simplex in C is replaced by the join of the appropriate number of copies of S0.
(Note that this is the same operation used to make the sets Vi in the definition of
an ISR disjoint.) The resulting complex is called in the literature the deleted join
of the complex. In this paper we denote the deleted join of a complex C by Ĉ.

We write η̂(C) = η(Ĉ). The parameter η̂ pinpoints the “essence” of the connec-
tivity, getting rid of connectivity arising for fortuitous reasons. For example, we
have

Lemma 2.5.
η̂(C) ≤ η(C).

Proof. A simplex of maximal size v1, v2, . . . , vk in C gives rise to a generalized
octahedron Ω in Ĉ, whose vertices are v′1, v

′′
1 , v′2, v

′′
2 , . . . , v′k, v′′k , which is a PL-k-

sphere. It cannot be filled in Ĉ, since the latter does not contain any simplices of
size k + 1, which are needed for the filling. This shows that η̂(C) ≤ µ(C). The
inequality η̂ ≤ η is easy. �
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Another way in which η̂ is “tamer” than η is the following continuity-type prop-
erty.

Lemma 2.6. η̂(C − x) ≥ η̂(C) − 1 for any x ∈ V (C).

Proof. Put A = Ĉ − x′, B = Ĉ − x′′ in part (2) of Lemma 2.3. Then A ∪ B =
Ĉ, A ∩ B = ˆ(C − x). Note that A can be viewed as obtained from Ĉ by identifying
the points x′ and x′′, hence η(A) = η(B) ≥ η̂(C). This observation, together with
Lemma 2.3, yield the desired result. �

3. Concepts from matroid theory

For easy reference, we repeat the basic definitions and some of the basic facts
on matroids. For facts not proved here, the reader is referred to [22]. A non-empty
simplicial complex M is called a matroid if whenever σ, τ ∈ M and |τ | > |σ| there
exists x ∈ σ\τ such that τ+x ∈ M. A set belonging to M is also called independent
in it. The rank ρM(A) of a set A is the maximal size of a set σ ∈ M, σ ⊆ A. A
maximal set in M is called a base, and a minimal dependent set a circuit. The rank
of the entire ground set is denoted by ρ(M). The span spM(A) of a set A is the set
of all elements x such that σ + x �∈ M for some σ ∈ M, σ ⊆ A. If spM(A) = A,
then A is called a flat. The dual M∗ of M is the matroid whose bases are the
complements of the bases of M. We write ρ∗ for the rank function in M∗. For a
subset X of V we denote by M.X the matroid consisting of those subsets τ of X
such that τ ∪ σ ∈ M for all σ ∈ M, σ ∩ X = ∅. By M/X we denote the matroid
M.(V \ X).

Remark 3.1. For σ ∈ M we have lk(σ) = M/σ.

A partition matroid P is defined by a partition P1, P2, . . . , Pm of the ground set,
the definition being that σ ∈ P if and only if |σ ∩ Pi| ≤ 1 for all i ≤ m.

An element x is called a loop if {x} �∈ M. It is called a co-loop if it is a loop in
M∗, which means that it belongs to every base of M. Similarly, a set is called a
co-circuit in M if it is a circuit in M∗. Note that a set spans the ground set if and
only if it intersects all co-circuits.

If M,N are matroids on the same ground set, then M∨N is also a matroid.
Here are some straightforward corollaries of the definitions which we shall need

(here V is the ground set of the matroid and X is any subset of V ):

(M � X)∗ = M∗.X,(1)

ρ∗(X) = |X| + ρM(V \ X) − ρ(M),(2)

ρ(M.X) = ρ(M) − ρM(V \ X).(3)

For matroids, the connectivity parameter is particularly simple. In fact, it is
more or less the rank of the matroid:

Lemma 3.2 ([7]). If there exists a co-loop in M, then η(M) = ∞. Otherwise
η(M) = ρ(M).

Let us just show the first part: if x is a co-loop, then M = (M− x) ∗ {x}, and
since η of a singleton is ∞, this implies by Lemma 2.2 that η(M) = ∞.
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4. The intersection of a matroid and a simplicial complex

As mentioned in the introduction, the aim of this paper is to generalize the
notion of an ISR in two directions, introducing a general matroid rather than a
partition matroid, and a general complex instead of the complex of independent
sets in a graph. Let us start with a one-step generalization, namely replacing the
complex. We choose to do it here in the equivalent (and often more convenient)
terminology of bipartite graphs:

Definition 4.1. Let Γ be a bipartite graph with sides A and B, and let C be a
simplicial complex on B. A C-ISR is then a function using only edges of Γ, whose
domain is A, and whose range belongs to C. If the range of the function is only
assumed to be a subset of A, the function is called a partial C-ISR.

To formulate the basic result relating ISR’s and connectivity, we need the fol-
lowing notation (which will also be used for other purposes). For a graph G and a
vertex x in it, we denote by N(x) the closed neighborhood of x, namely the set of
vertices adjacent to x, together with x itself. By Ñ(x) we denote N(x) \ {x}. For
a set X of vertices we write N(X) for

⋃
x∈X N(x), and Ñ(X) for

⋃
x∈X Ñ(x).

The following was proved for I(G)-type complexes implicitly (using Sperner’s
lemma) in [6] and explicitly (using homology theory) in [19]. Both proofs did not
use the special nature of the complex, and thus both yield:

Theorem 4.2. For any simplicial complex C on B, if η(C � ÑΓ[X]) ≥ |X| for every
X ⊆ A, then there exists a C-ISR.

Next we come to the second generalization, the introduction of a general matroid
on the ground set. Let us first recall Edmonds’ two matroids intersection theorem
[11]:

Theorem 4.3. Given two matroids M and N on the same ground set V ,

µ(M∩N ) = min{ρM(X) + ρN (V \ X) : X ⊆ V }.

This theorem has also a Hall-like counterpart, easily derived from it and vice
versa (see, e.g. [5]). To formulate it, we shall need the following terminology. Let
M, C be a matroid and a complex, respectively, on the same ground set V . The
pair Π = [M, C] is said to be matchable if there exists a base of M belonging to C.
Write ν(M, C) for µ(M∩ C), and τ (M, C) for the minimum, over all subsets X of
the ground set V , of ρM(X) + η(C � V \ X).

Theorem 4.4. A pair M,N of matroids on the same ground set V is matchable
if and only if ρN (X) ≥ ρ(M.X) for every X ⊆ V .

As already explained, we wish to generalize these theorems to the case in which
one of the matroids (say N ) is replaced by a simplicial complex C. We shall show
that the same theorems remain valid also in this case, upon replacing the function
ρN (X) by η(C � X).

Theorem 4.5. Let M be a matroid and C a simplicial complex on the same ground
set V . If η(C � X) ≥ ρ(M.X) for every X ⊆ V , then [M, C] is matchable. In fact,
it suffices to assume the condition for sets X that are complements of flats in M.

Theorem 4.6. ν(M, C) ≥ τ (M, C).
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Remark. In view of Lemma 3.2, Theorem 4.6 is a generalization of Edmonds’ The-
orem. To see how Theorem 4.2 follows from Theorem 4.5, consider first the case in
which the sets Ñ(a), a ∈ A are disjoint, and take as M the partition matroid on
B whose parts are Ñ(a), a ∈ A. The theorem now follows from the observations
that the complement of a flat in this matroid is of the form Ñ [X] for some X ⊆ A,
and ρ(M.Ñ [X]) = |X|. The case in which the sets Ñ(a) are not disjoint follows by
the standard technique of splitting vertices, described in the introduction.

We shall give two proofs of Theorem 4.5. The first is modelled after a proof
by Welsh [23] of Edmonds’ theorem. It uses the following well-known construction,
which will serve us throughout the paper. Let C1, C2, . . . , Cm be simplicial complexes
on the same ground set V . By Γ[C1, C2, . . . , Cm] we denote a bipartite graph together
with a simplicial complex on one of its sides. The first side of this graph is just
V , and the second the union of m disjoint copies of V . Every vertex v ∈ V in the
first side is connected to all its copies in the other side. On the second side we put
the complex D = C1 ∗ C2 ∗ . . . ∗ Cm. A D-ISR in Γ[C1, C2, . . . , Cm] corresponds to
a partition of V into sets Xi ∈ Ci. In the case C1 = C2 = . . . = Cm = C we write
Γ[Cm] for Γ[C1, . . . , Cm].

Proof of Theorem 4.5. Let Γ = Γ[C,M∗]. The matchability of Π means the exis-
tence of a set A ∈ C such that V \ A ∈ M∗. But this is equivalent to saying that
Γ has a C ∗M∗-ISR. By Theorem 4.2 and Lemma 2.2 this will follow if we prove
that every subset X of V satisfies η(C � X) + η(M∗ � X) ≥ |X|. If X is not the
complement of a flat in M, then it contains an element x ∈ spM(V \ X). Thus
x is a loop in M.X; in other words, a co-loop in M∗ � X. This, by Lemma 3.2,
implies that η(M∗ � X) = ∞, hence the required inequality is satisfied. For X
which is the complement of a flat, equations (3) and (2) and Lemma 3.2 imply that
the inequality is equivalent to the condition on X assumed in the theorem. �

Remark. The above proof of the last statement of the theorem (i.e. that it is enough
to consider complements of flats) is due to Roy Meshulam.

Proof of Theorem 4.6. We repeat the proof of Theorem 4.5, applying this time a
standard deficiency argument. Let d = max{ρ(M.X) − η(C � X) : X ⊆ V }. Let
X be the set at which this maximum is attained. Then

τ (C,M) ≤ η(C � X) + ρM(V \ X) = η(C � X) + ρ(M) − ρ(M.X) = ρ(M) − d.

To obtain a bound on ν(C,M), note first that if d = 0, then by Theorem 4.5
ν(M, C) = ρ(M), while τ (M, C) ≤ ρ(M). Hence we may assume that d > 0. Let
Γ = Γ[M∗, C,U ], where U is the d-uniform matroid on V , namely a subset X of
V is in U if |X| ≤ d. Clearly, η(U) = d. Hence, by Lemma 2.2, Γ satisfies the
conditions of Theorem 4.2, and thus has an ISR, say I ′. Then I ′ \ V (U) ∈ C ∩M,
proving that ν(C,M) ≥ ρ(M) − d. �

Since η̂(D) ≤ η(D) for every complex D, Theorem 4.5 remains valid when η is
replaced everywhere by η̂. But for η̂ we can prove a version which is stronger in
another sense:

Corollary 4.7. Let Π = [M, C] be a pair of a matroid and a complex on the same
ground set V . If η̂(C � X) ≥ ρ(M.X) for every X ⊆ V which is a flat in M∗, then
Π is matchable.
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Proof. It suffices to show that the minimum of η̂(C � X) − ρ(M.X) is attained at
a set X which is a flat of M∗. For this purpose, it suffices to show that if X is not
a flat in M∗, then there exists v ∈ V \ X such that η̂(C � X + v) − ρ(M.X + v) ≤
η̂(C � X)−ρ(M.X). But X not being a flat in M∗ means that there exists v ∈ V \X
such that ρ∗(X + v) = ρ∗(X). Since ρ∗(X) = |X| − ρ(M.X) (this can be deduced,
e.g., from (2) and (3)), this implies that ρ(M.X +v) = ρ(M.X)+1. Using Lemma
2.6 the desired inequality follows. �

5. Another proof of Theorem 4.5

In this section we present yet another proof of Theorem 4.5. It follows a different
approach, not using Theorem 4.2.

The flat complex F(M) of a matroid M is defined as follows: the vertices of
F(M) are the flats of M (including the empty set but not including the en-
tire ground set V ), and the simplices of F(M) are chains of flats, namely sets
{F1, F2, . . . , Fk} such that F1 ⊂ F2 ⊂ . . . ⊂ Fk.

Lemma 5.1. Let M, C be a matroid and a simplicial complex satisfying the con-
ditions of Theorem 4.5. Then there exists a continuous map ξ : ||F(M)|| →
||C|| such that for every x ∈ ||F(M)|| there exists F ∈ suppF(M)(x) satisfying
F ∩ suppC(ξ(x)) = ∅.

Proof. Let r = ρ(M). We define ξ for points of the interior of each simplex at a
time. For every singleton {F} we set ξ(F ) to be some vertex in V −F (recall that V
itself is not a vertex in F(M)). For any non-singleton simplex σ = {F1, F2, . . . , Fk}
of F(M), if ξ is already defined for the boundary of σ, we may assume F1 ⊃ F2 ⊃
. . . ⊃ Fk. Thus ρ(F1) ≤ r − 1, ρ(F2) ≤ r − 2, . . . , ρ(Fk) ≤ r − k, and we have
η(C � (V −Fk)) ≥ ρ(M.(V −Fk)) = r−ρ(Fk) ≥ k. Therefore the function ξ defined
on the boundary of σ (homeomorphic to Sk−2) can be extended to a continuous
function from ||σ|| to ||C � (V − Fk)||. �

For a simplicial complex C let β(C) be the baricenteric subdivision of C, i.e.,
the vertices of β(C) are the simplices of C, and the simplices of β(C) are all sets
{s1, s2, . . . , sk} that can be ordered in a way that s1 ⊂ s2 ⊂ . . . ⊂ sk. The following
is a basic result on the baricentric subdivision.

Theorem 5.2. There exists an homeomorphism ι : ||C|| → ||β(C)|| such that
suppC(x) contains every simplex in suppβ(C)(ι(x)).

Recall the Knaster-Kuratowski- Mazurkiewicz (KKM) Theorem [14].

Theorem 5.3 (The KKM Theorem). Let ∆ be a simplex and for each vertex v of
∆ let Av be an open subset of ||∆||. Suppose that for every x ∈ ||∆|| there exists
some v in the support of x such that x ∈ Av. Then

⋂
v Av is not empty.

Proof of Theorem 4.5. Let ∆ be the simplex whose vertices are all cocircuits of M,
let ι : ||∆|| → ||β(∆)|| be as in Theorem 5.2, and let ξ : ||F(M)|| → ||C|| be as
in Lemma 5.1. For every vertex s of β(∆) (i.e., for every set of cocircuits of M)
we define π(s) = V \ (

⋃
D∈s D). Note that π(s) is a flat of M and hence can be

regarded as a vertex of F(M). Also note that if s1 ⊂ s2, then π(s2) ⊆ π(s1).
Hence using linear continuation we can extend π to be a function from ||β(∆)|| to
||F(M)||.
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Let x be any point in ||∆|| and let σ1, σ2, σ3, σ4 be the supports of x, ι(x), π(ι(x)),
ξ(π(ι(x))), respectively. We claim that for some D ∈ σ1, the intersection D ∩ σ4 is
not empty. Indeed, there exists F ∈ σ3 with F ∩ σ4 = ∅ and there exists s ∈ σ2

with π(s) = F . Thus σ4 ⊆ V \ F =
⋃

D∈s D and σ4 has non-empty intersection
with some D ∈ s. But s ⊆ σ1 and hence the claim is proved.

For each cocircuit D We now define AD to be the set of all x ∈ ||∆|| such that
the support of ξ(π(ι(x))) has non-empty intersection with D. By the claim proved
above we know that the sets AD satisfy the conditions of the KKM theorem and
hence there exists some x0 ∈

⋂
D AD. The support of ξ(π(ι(x0))) is a simplex of C

whose intersection with every cocircuit of M is non-empty, and hence it contains a
base of M. This proves that [M, C] is matchable. �

6. Lower bounds on the connectivity of a complex

In order to apply Theorems 4.5 and 4.6 in combinatorial settings, we need com-
binatorially formulated lower bounds on the connectivity of complexes. For graphic
complexes such lower bounds have indeed been found (see e.g. [6, 19, 4, 20]). All
known bounds in this case are given in terms of domination parameters. Here are
two such parameters: γ̃(G) is the minimal size of a set X such that Ñ(X) = V (G),
and iγ(G) is the maximum, over all independent sets I in G, of the minimal size
of a set X such that I ⊆ N(X). (Note that if G contains an isolated vertex, then
γ̃(G) = ∞.)

Theorem 6.1 ([19]).
η(I(G)) ≥ γ̃(G)/2.

Theorem 6.2 ([6]).
η(I(G)) ≥ iγ(G).

The above notions of domination can be extended to general complexes. Since
of the two theorems only the first is valid in the general case, we shall define here
only γ̃ for general complexes. A set A in a complex C is said to span a vertex v if
there exists a simplex σ ⊆ A in C, such that σ+v �∈ C. Let ˜spC(A) denote the set of
all vertices spanned by A, and let spC(A) = A∪ ˜spC(A). Note that this agrees with
the definition of spanning in a matroid. Also note that spI(G)(A) = NG(A). The
domination number γ̃(C) of C is the minimal size of a set A such that ˜spC(A) = V .

Theorem 6.3.

η(C) ≥ γ̃(C)
2

.

To prove this we need the following lemma from [4]:

Lemma 6.4. For every positive integer m and every PL-m-sphere S there exists a
PL-m + 1-ball B having S as a sub-complex, where

(1) ||B|| is homeomorphic to Bm+1, by a homeomorphism mapping ||S|| to the
boundary of the ball.

(2) The vertices in B not belonging to S can be ordered, as, say, V (B)−V (S) =
{x1, x2, . . . , xk} so that for every xi there are at most 2m + 2 vertices v ∈
V (S) ∪ {x1, . . . , xi−1} such that {xi, v} ∈ B.
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Proof of Theorem 6.3. Write m = η(C) − 1 and suppose for contradiction that
γ̃(C) > 2m + 2. Let S be a PL-m-sphere and let ψ be a simplicial function from
S into C. Let B and x1, . . . , xk be as in the lemma. We now define ψ(xi) for
each i = 1, . . . , k in its turn to be a vertex of C not spanned by {ψ(v) : v ∈
V (S) ∪ {x1, . . . , xi−1}, {xi, v} ∈ B}. Let σ be a simplex of B not contained in
V (S), and suppose that {ψ(v) : v ∈ σ} is a circuit in C. Consider the maximal
i with xi ∈ σ. The vertex ψ(xi) is then spanned by {ψ(v) : v ∈ σ − xi}. This
contradicts the choice of ψ(xi). Thus {ψ(v) : v ∈ σ} is not a circuit. This is true
for all the simplices of B and hence we can define ψ to be linear on every simplex
and get a continuous function from B to C. This shows that C is m-connected,
which, recalling that m = η(C) − 1, yields a contradiction. �

Lower bounds on the connectivity can be obtained also in the case that the
complex is the intersection of matroids.

Theorem 6.5. Let M1,M2, . . . ,Mk be matroids on the same ground set V . Then

η(M1 ∩M2 ∩ . . . ∩Mk) ≥ ν(M1,M2, . . . ,Mk)/k.

The case k = 1 yields the main statement in Lemma 3.2, namely that in a
matroid η ≥ ρ.

The proof uses the following lemma.

Lemma 6.6. Let M1,M2, . . . ,Mk be as in the theorem, and let x ∈ V be a vertex
which is not a loop in any of the matroids. Then ν(M1/x,M2/x, . . . ,Mk/x) ≥
ν(M1,M2, . . . ,Mk) − k.

Proof. Let I ∈ M1 ∩ M2 ∩ . . . ∩ Mk be of size ν(M1,M2, . . . ,Mk). For each
1 ≤ i ≤ k such that I + x �∈ Mi let Ci be the Mi-circuit contained in I + x and
containing x. Choose any xi ∈ Ci ∩ I for each such i, and let I ′ be obtained from I
by removing all xi’s. Then I ′ ∈ M1/x ∩M2/x ∩ . . . ∩Mk/x, and |I ′| ≥ |I| − k =
ν(M1,M2, . . . ,Mk) − k, as desired. �

Proof of Theorem 6.5. Denote the complex M1 ∩ M2 ∩ . . . ∩ Mk by H. Write
ν = ν(M1,M2, . . . ,Mk) = µ(H), and choose some I ∈ H of size ν. The proof
is by induction on |V | − |I|. If I = V , then η(H) = ∞. Otherwise, let x be any
vertex outside I. Since I ⊆ V \ {x}, we have ν(H− x) = ν, hence by the induction
hypothesis η(H− x) ≥ ν/k. Note also that lkH(x) = M1/x∩M2/x∩ . . .∩Mk/x,
and by Lemma 6.6 and the induction hypothesis we have η(lkH(x)) ≥ ν/k − 1.
This, together with Corollary 2.4, yield the desired inequality. �

In the case of the intersection of two matroids, more can be said:

Theorem 6.7. Let M,N be two matroids on the same ground set and let k be a
positive integer. Then η(M∩N ) ≥ ν(M,

∨k N )
k+1 .

The proof follows the same outline as that of Theorem 6.5, but the lemma used
there is replaced by:

Lemma 6.8. Let M,N , k be as in the theorem, let X be a set in M∩
∨k N and let

v be any vertex outside X, which is not a loop in any of the matroids. Then there
exists a subset Y of X satisfying |Y | ≥ |X| − k − 1 and Y ∈ (M/v) ∩

∨k(N/v).
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Proof. Write X = X1 ∪ X2 ∪ . . . ∪ Xk, where X1, X2, . . . , Xk are independent in
N . Let v0 be a vertex in X such that X − v0 + v is independent in M. For
i = 1, . . . , k, let vi be a vertex in Xi so that Xi − vi + v is independent in N . The
set Y = X − v0 − v1 − . . . − vk has the desired properties. �

Proof of Theorem 6.7. The proof is by induction on the size of the ground set. Let
X ∈ M ∩

∨k N be a set with |X| = ν(M,
∨k N ). If X is the entire ground set,

then η(M∩N ) = η(N ) ≥ ρ(N ) ≥ |X|
k > ν(M,

∨k N )
k+1 . Otherwise, let v be any vertex

outside X. By the induction hypothesis η((M∩N ) − v) ≥ |X|
k+1 = ν(M,

∨k N )
k+1 , and

by the lemma η(lkM∩N (v)) ≥ |X|−k−1
k+1 = ν(M,

∨k N )
k+1 − 1. Now Corollary 2.4 gives

the desired result. �

Another bound on the connectivity of the intersection of matroids that we shall
use is given in terms of its distance from the size of the ground set.

Lemma 6.9. For any two matroids M,N on the same ground set V ,

η(M∩N ) ≥ |V | − ρ(M∗) − ρ(N ∗).

(Thinking of |V (C)| − η(C) as a measure of the “topological deficiency” of a
complex C, and bearing in mind that ρ(M∗) = |V | − ρ(M), the lemma says that
“the deficiency of the intersection of two matroids is no larger than the sum of their
deficiencies”.)

Proof of Lemma 6.9. By induction on n = |V |. For n = 0 there is nothing to prove.
Assume that the result is true for all values of |V | smaller than n. Write C = M∩N ,
and let p = |V | − ρ(M∗) − ρ(N ∗). Choose any x ∈ V . If x is a co-loop in both
M and N , then C = (C − x) ∗ {x}, and hence, by Lemma 2.2, η(C) = ∞. Thus
we may assume that x is not a co-loop in one of the two matroids, say M. Then
ρ((M−x)∗) = ρ(M∗/x) = ρ(M∗)−1, while ρ((N−x)∗) ≤ ρ(N ∗). By the induction
hypothesis |V (C − x)| − η(C − x) ≤ ρ((M− x)∗) + ρ((N − x)∗) < ρ(M∗) + ρ(N ∗),
implying that η(C − x) ≥ p. By the induction hypothesis,

η(lkC(x)) = η(M/x ∩ N/x) ≥ |V \ {x}| − ρ((M/x)∗) − ρ((N/x)∗) ≥ p − 1.

Applying Corollary 2.4, we get η(C) ≥ p, as desired. �

7. Ryser’s conjecture for matroids

An r-uniform hypergraph H is said to be r-partite if V (H) is the disjoint union of
sets U1, . . . , Ur and each edge of H meets each Ui at exactly one vertex. A famous
conjecture of Ryser from the early seventies states that in an r-partite hypergraph
τ ≤ (r − 1)ν. If true, it would be a generalization of König’s theorem. The case
r = 3 of the conjecture was proved in [1].

It is possible to generalize Ryser’s conjecture to matroids in the same way that
Edmonds’ theorem generalizes König’s theorem:

Conjecture 7.1. For any family of matroids M1,M2, . . . ,Mr on the same ground
set we have

τ (M1,M2, . . . ,Mr) ≤ (r − 1)ν(M1,M2, . . . ,Mr).
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Ryser’s conjecture has a stronger version, made at about the same time (and
independently) by Lovász: in an r-partite hypergraph there exist r − 1 vertices
whose removal reduces ν by at least 1. The corresponding matroidal conjecture is
the following.

Conjecture 7.2. Given matroids M1,M2, . . . ,Mr on the same ground set V there
exist (possibly empty) subsets X1, X2, . . . , Xr of V such that

∑
|Xi| ≤ r − 1 and

ν(M1/X1,M2/X2, . . . ,Mr/Xr) < ν(M1,M2, . . . ,Mr).

In fact, we suspect that Conjecture 7.2 is true in a much stronger form: we can
require that either (1) all sets Xi, apart from one (which is empty), are the same
singleton, or (2) only one set Xi is non-empty.

Here we shall prove Conjecture 7.1 for the case r = 3, namely:

Theorem 7.3. Any three matroids M1,M2,M3 on the same ground set V satisfy

τ (M1,M2,M3) ≤ 2ν(M1,M2,M3).

Proof. Let C = M2 ∩ M3. Then ν(M1,M2,M3) = ν(M1, C). By Theorem 4.6
there exists a subset X of V such that ν(M1, C) ≥ ρM1(X) + η(C � (V \ X)). By
Theorem 6.5 we have η(C � (V \ X)) ≥ 1

2ν((M2 � (V \ X)), (M3 � (V \ X))). By
Theorem 4.3

ν((M2 � (V \ X)), (M3 � (V \ X))) = τ (M2 � (V \ X),M3 � (V \ X)),

meaning that there exists a subset Y of V \ X such that

ν((M2 � (V \ X)), (M3 � (V \ X))) = ρM2(Y ) + ρM3(V \ X \ Y ).

Combining all these we get

ν(M1,M2,M3) ≥ ρM1(X) +
1
2
(ρM2(Y ) + ρM3(V \X \ Y )) ≥ 1

2
τ (M1,M2,M3),

as desired. �

8. The expansion number and chromatic number of a complex

As from this section, the focus of our attention will shift to “coloring-type”
problems, namely problems concering the decomposition of the ground set of a
complex into simplices belonging to the complex. For this purpose, we start by
defining two related notions. The first of these is:

Definition 8.1. The expansion number ∆(C) of a simplicial complex C is the max-
imum, over all sets A of vertices, of |A|

η(C�A) .

Thus for a matroid M we have ∆(M) = maxA∈M
|spM(A)|

|A| . For a partition
matroid, this is just the largest size of a part in the partition.

The following trivial observation will be used later.

Observation 8.2. Let C be a simplicial complex, let d > |V (C)|
∆(C) be an integer and

let U be the d-uniform matroid. Then ∆(C ∩ U) = ∆(C).

Let us note a simple corollary of Theorem 4.6:

Theorem 8.3. Every pair M, C of a matroid and a complex on the same ground
set V satisfies ν(M, C) ≥ |V |

max(∆(M),∆(C)) .
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Proof. By Theorem 4.6 there exists a set I ∈ M ∩ C and a subset X of V such
that |I| ≥ ρ(M � X) + η(C � (V \ X)). By the definition of ∆ for matroids and
complexes, we then have |I ∩ X| ≥ |X|

∆(M) and |I \ X| ≥ |V \X|
∆(C) . �

Lemma 8.4. A graphic complex I(G) satisfies ∆(G) + 1 ≤ ∆(I(G)) ≤ 2∆(G).

Proof. To prove the left inequality, let v be a vertex of G of degree ∆(G), and let
A = N(v). Then G induces on A a complete bipartite graph, meaning that I(G) � A

is not connected, namely η(I(G) � A) = 1. Thus ∆(I(G)) ≤ |A|
η(I(G)�A) = ∆ + 1.

The right inequality follows by applying Theorem 6.1 to the induced subgraphs
of G, using the observation that γ̃(G) ≥ |V (G)|

∆(G) . �

The second notion we study in this section is that of the chromatic number of a
complex:

Definition 8.5. The chromatic number χ(C) of a simplicial complex C is the small-
est number of sets belonging to C whose union is the ground set of the complex.

Note that χ(C) may be infinite. Like previous notation, this one is borrowed from
graphs, since for a graph G we have χ(I(G)) = χ(G). (Remark: this parameter is
sometimes denoted in the literature by ρ(C).)

A theorem of Edmonds ([10], see also [22], Section 8.4) states that in a matroid
χ = �∆�. The generalization to simplicial complexes is a straightforward corollary
of Theorem 4.2:

Corollary 8.6. In any simplicial complex C,

χ(C) ≤ �∆(C)�.

Proof. Apply Theorem 4.2 to the graph Γ(Cm), where m = �∆(C)�. �

By combining Observation 8.2, Lemma 8.4 and Corollary 8.6 we get the following
weakened version of the Hajnal-Szemerédi theorem:

Theorem 8.7. Let G be a graph with n vertices and maximal degree ∆. Then
G has a legal 2∆-coloring (i.e., a partition to 2∆ disjoint sets), where each color
includes at most � n

2∆� vertices. If G is chordal, then G has a legal ∆ + 1-coloring
where each color includes at most � n

∆+1� vertices.

König’s line-coloring theorem [15] says that the chromatic index (that is, the
edge-chromatic number) of a bipartite graph is equal to the maximal degree of a
vertex in the graph. As already mentioned, a bipartite graph induces two partition
matroids on its edge set, and hence the theorem can be formulated as follows:

Theorem 8.8. If M,N are partition matroids, then

χ(M∩N ) = max(∆(M), ∆(N )).

This theorem is true not only for partition matroids but also for a larger class of
matroids called strongly base orderable matroids [8]. For general matroids, however,
the theorem fails, as the following example shows (cf. [21], Section 42.6c): M is the
graphic matroid on the edge set of K4, and N is the partition matroid on this set
whose parts are the three pairs of non-adjacent edges. Then max(∆(M), ∆(N )) =
2, while χ(M∩N ) = 3.

Still, we can prove a bound on χ(M∩N ):
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Theorem 8.9. For matroids M,N on the same ground set

χ(M∩N ) ≤ 2 max(∆(M), ∆(N )).

Proof. Write D = M ∩ N , and m = max(∆(M), ∆(N )). By Theorem 8.3, for
every subset X of V we have ν(D � X) ≥ |X|

max(∆(N �X),∆(M�X)) ≥ |X|
m . By Theorem

6.5 η(D � X) ≥ ν(D � X)/2. Thus η(D � X) ≥ |X|
2m for every X ⊆ V , meaning that

∆(D) ≤ 2m. The theorem now follows by Corollary 8.6. �

A well-known conjecture of Rota (see, e.g., [24]) can be stated in our terminology
as follows:

Conjecture 8.10. Let M be a matroid of rank r, and N a partition matroid on the
same ground set, having r parts, each of which is a base of M. Then χ(M∩N ) = r.

Assertion 8.11. Under the conditions of the conjecture χ(M∩N ) ≤ 2r.

Proof. By the assumption of the conjecture, ∆(M) = ∆(N ) = r, and thus the
assertion follows from Theorem 8.9 �

Conjecture 8.12. For any two matroids M, N sharing the same ground set it is
true that χ(M∩N ) ≤ ∆(M) + ∆(N ).

We prove this conjecture only in the case that one of ∆(M), ∆(N ) is an integer
multiple of the other. This is a direct corollary of the following:

Theorem 8.13. Let M,N be two matroids on the same ground set and let p, q be
two positive integer numbers. If ∆(M) ≤ p and ∆(N ) ≤ pq then χ(M∩N ) ≤ p+pq.

Proof. Since χ(N ) ≤ pq we get χ(
∨q N ) ≤ p, and thus also ∆(

∨q N ) ≤ p. By the
definitions of ∆ and τ , this implies that τ (M � X,

∨q N � X) ≥ |X|
p for any subset

X of the ground set, which by Theorem 4.3 means that ν(M � X,
∨q N � X) ≥ |X|

p .

By Theorem 6.7 this implies that η(M � X ∩ N � X) ≥ |X|
p(q+1) . By the definition

of ∆ of a complex, this means that ∆(M∩N ) ≤ p(q + 1). The result now follows
by Corollary 8.6. �

9. Weighted matroids

The proof of certain fractional results that are to follow will use the notion of
weighted matroids. Let M be a matroid on the ground set V , and let w : V → R

+ be
a function on V . For A ⊆ V we write w[A] =

∑
a∈A w(a). Also define |w| = w[V ].

The span function wM of w is defined by wM(x) = maxY {miny∈Y w(y) : x ∈
spM(Y )}. Note that the span of the characteristic function of a set is the charac-
teristic function of the span of that set. Clearly:

Assertion 9.1. wM(x) ≥ k if and only if x ∈ spM({y : w(y) ≥ k}).

This implies the following inequality.

Lemma 9.2. |wM| ≤ ∆(M)|w|.
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Proof. Let 0 ≤ a1 < a2 < . . . < ak be the values in the image of w and let a0 = 0.
Then

|w| =
k∑

i=1

(ai − ai−1)|{x : w(x) ≥ ai}|

≥ 1
∆(M)

k∑

i=1

(ai − ai−1)|sp{x : w(x) ≥ ai}| =
|wM|
∆(M)

. �

Denote by Mw the matroid whose bases are the bases B of M for which w[B]
is maximal. It is easy to see that Mw is indeed a matroid. In fact,

Mw =
⊕

k∈image(w)

M/{v : f(v) > k} \ {v : f(v) < k}.

Here
⊕

of matroids denotes their direct sum, which in terms of complexes is
just their join.

The following lemma links the circuits in M with those in Mw.

Lemma 9.3. The set of elements of minimal w-value in a given circuit in M is
the union of circuits in Mw.

Proof. Let C be a circuit in M, and let D be the set of elements of minimal w-value
in C. We have to show that every d ∈ D lies in some circuit of Mw contained in
D. Suppose for contradiction that there is no such circuit. Let A be a maximal
subset of D − d independent in Mw. If A + d contains a circuit of Mw, then d is
in the circuit, and we are done. Thus we may assume that A + d is independent in
Mw. Let B be a base of Mw containing A + d. By the definition of Mw, the set
B is also a base of M. Now observe that B − d cannot span C − d, because C − d
spans d while B − d does not span d. Let c be an element of C − d not spaned by
B − d. This means that B − d + c is a base of M. But w(c) ≥ w(d) and therefore
w[B − d + c] ≥ w[B], and by the maximality of w[B] we have w(c) = w(d). Thus
B − d + c must be a base of Mw as well and c ∈ D. But then A + c is a subset of
D − d independent in Mw. This contradicts the maximality of A. �

Given a weight function w on V and a pair M,N of matroids on V , we write
νw(M,N ) = max{w[I] : I ∈ M∩N} and τw(M,N ) = min{|f | + |g| : fM + gN ≥
w}.

Edmonds’ theorem can be generalized to weighted matroids [13]:

Theorem 9.4. τw = νw.

10. Fractional colorability

The coloring number χ of a complex has a fractional version. A function f :
C → R

+ is a fractional coloring of V in C if
∑

σ�v f(σ) ≥ 1 for every vertex v.
We write χ∗(C) for the minimum of

∑
σ∈C f(σ) over all fractional colorings f in C.

By LP-duality χ∗(C) is equal to the the maximum over all functions w : V → R
+

(w �≡ 0) of ∑
v∈V w(v)

maxσ∈C
∑

u∈σ w(u)
.
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Theorem 10.1. If ∆(C) = p
q , where p, q are integers, then there exist (not neces-

sarily distinct) simplices σ1, . . . , σp ∈ C, such that every vertex belongs to q simplices
σi.

Proof. Let D = Cp (the join of C with itself p times), and let P be the partition
matroid on V (D), whose parts are the copies of each vertex v ∈ V (C). Let N =∨q P, meaning that a set belongs to N if it contains at most q copies of each vertex
v ∈ V (C). Then ∆(N ) = p

q , and also ∆(D) = ∆(C) = p
q . By Theorem 8.3 it follows

that ν(D,N ) ≥ p|V (C)|/p
q = q|V (C)| = ρ(N ). Thus there exists a base B of N

belonging to D. The fact that B is a base of N means that it contains q copies
of each vertex v, and the fact that it belongs to D means that it is the union of p
copies of (not necessarily distinct) simplices in C, as required. �

Corollary 10.2. For any simplicial complex C,

χ∗(C) ≤ ∆(C).

Proof. Write ∆(C) = p
q . Let σ1, . . . , σp be as in the conclusion of the theorem.

Putting weight 1
q on each of these simplices yields a fractional coloring of total

weight p
q . �

Corollary 10.3. χ∗(M) = ∆(M) for any matroid M.

Proof. In view of Corollary 10.2 it is only necessary to show that χ∗(M) ≥ ∆(M).
Let A be a set such that |spM(A)|

|A| = ∆(M). Every σ ∈ M contained in A is then

of size at most |A|
∆(M) , which means that the total weight put on such sets needed

to cover each element of A with weight at least 1 is at least ∆(M). �

Next we use the results on weighted matchings from the previous section to prove
a fractional version of Theorem 8.8 for general matroids (which is at the same time
a strengthening of Corollary 10.3).

Theorem 10.4. For any two matroids M,N it is true that

χ∗(M∩N ) = max(∆(M), ∆(N )).

Proof. The inequality χ∗(M∩N ) ≥ max(∆(M), ∆(N )) was shown in the proof of
Corollary 10.3 . Assume for contradiction that χ∗(M∩N ) > max(∆(M), ∆(N )).
Then for some function w : V → R

+ (w �≡ 0) we have

|w|
maxσ∈M∩N w[σ]

> max(∆(M), ∆(N )).

But maxσ∈M∩N w[σ] = νw(M,N ) = τw(M,N ). Thus there exist two functions
f, g : V → R

+ with fM + gN ≥ w and (|f | + |g|) max(∆(M), ∆(N )) < |w|. By
Lemma 9.2 we have

|w| ≤ |fM| + |gN | ≤ |f |∆(M) + |g|∆(N )

≤ (|f | + |g|) max(∆(M), ∆(N )) < |w|,

a contradiction. �
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11. Packing jointly spanning sets

Given a pair of matroids M,N on the same ground set V , a dual problem to
that of covering the ground set by sets in M∩N is that of packing sets which are
spanning in both M and N .

Let us start with one matroid. For a given matroid M write

δ(M) = min{ |A|
ρ(M.A)

: A ⊆ V }.

In a partition matroid, this is the minimal size of a part in the partition (this is also
the origin of the notation: in the partition matroid P on the edge set of a bipartite
graph, induced by the vertices in one side, δ(P) is the minimal degree of a vertex
in that side). Also let π(M) be the maximal number of disjoint bases of M. For a
basis B of M and a set A of vertices it is true that ρ(M.A) ≤ |A∩B|. Hence there
cannot be more than |A|

ρ(M.A) disjoint bases in M, meaning that π(M) ≤ δ(M).
Edmonds [11] proved that, up to integrality, equality obtains:

Theorem 11.1. π(M) = �δ(M)�.

The parameters ∆ and δ of a matroid are related by:

Observation 11.2. 1
δ(M) + 1

∆(M∗) = 1.

A simple special case of Corollary 4.7 can be formulated using the parameter δ
as follows:

Theorem 11.3. Let Π = [M, C] be a pair of a matroid and a complex on the same
ground set V . If δ(M) ≥ ∆(C), then Π is matchable.

Let M, N be two matroids on the same ground set V . Define π(M,N ) to be the
maximal number of disjoint sets which are spanning in both M and N . Obviously,
π(M,N ) ≤ min{�δ(M)�, �δ(N )�}. In general, equality is not obtained here. To
see this, take the same example given for the dual parameter χ, appearing after
Theorem 8.8. In that example π(M) = π(N ) = 2, while π(M,N ) = 1.

But we can prove:

Theorem 11.4. π(M,N ) ≥ min{� 1
2δ(M)�, � 1

2δ(N )�}.

Proof. It suffices to show that if δ(M) ≥ 2k and δ(N ) ≥ 2k, then π(M,N ) ≥ k.
Recall that a set is spanning in M if and only if its complement belongs to M∗.
Hence, what we have to show is equivalent to the existence of k sets C1, . . . , Ck in
C � M∗ ∩ N ∗ whose union covers every element at least k − 1 times; then V \ Ci

are k disjoint sets, each spanning in both M and N . By Theorem 10.1 it suffices
to show that ∆(C) ≤ k

k−1 . Namely, we have to show that η(C � X) ≥ |X|k−1
k for

every subset X of V . By assumption, ρ(M.X) ≤ |X|
2k , meaning that ρ(M∗ � X) ≥

|X|− |X|
2k . Similarly, ρ(N ∗ � X) ≥ |X|− |X|

2k . Hence, by Lemma 6.9 η(C) ≥ |X|− |X|
k ,

as required. �

The packing number π of two matroids has a fractional version also. Let M,N be
two matroids and let H be the set of sets spanning in both matroids. In other words,
H is the set of the complements of the sets in M∗ ∩N ∗. A function f : H → R

+ is
a fractional packing of M and N if

∑
X�v f(X) ≤ 1 for every vertex v. We write

π∗(M,N ) for the maximum of
∑

X∈H f(X) over all fractional packings f of M
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and N . By LP-duality π∗(M,N ) is equal to the the minimum over all functions
w : V → R

+ (w �≡ 0) of
|w|

minX∈H w[X]
.

Theorem 11.5. For any two matroids M,N it is true that

π∗(M,N ) = min(δ(M), δ(N )).

Proof. Let H be as above and let k = min(δ(M), δ(N )). By Observation 11.2 we
have ∆(M∗) ≤ k

k−1 and ∆(N ∗) ≤ k
k−1 . The inequality π∗(M,N ) ≥ k can be

shown in a way similar to the proof of Corollary 10.3 . Assume for contradiction
that π∗(M,N ) > k. Then for some function w : V → R

+ (w �≡ 0) we have
|w|

minX∈H w[X]
> k.

But

min
X∈H

w[X] = min
I∈M∗∩N∗

(|w| − w[I]) = |w| − νw(M∗,N ∗) = |w| − τw(M∗,N ∗).

Thus there exist two functions f, g : V → R
+ with fM∗

+gN
∗ ≥ w and |w|

|w|−(|f |+|g|)
< k. In other words, (|f | + |g|) k

k−1 < |w|. By Lemma 9.2 we have |w| ≤ |fM∗ | +
|gN∗ | ≤ |f |∆(M∗) + |g|∆(N ∗) ≤ (|f | + |g|) k

k−1 < |w|. A contradiction. �

12. DeVos’ stable base problem

DeVos [9] proved the following:

Theorem 12.1. Let G be a graph with maximal degree ∆ and let M be a matroid
with 2∆+1 disjoint bases. Then there exists a base in M which is an independent
set in G.

DeVos asked for the minimal number f(∆) that can be used in the above theorem
instead of 2∆+1.

Using the methods of this chapter we can easily solve this problem.

Theorem 12.2. Let G be a graph with maximal degree ∆ and let M be a matroid
with 2∆ disjoint bases. Then there exists a base in M which is an independent set
in G.

Proof. We have
δ(M) ≥ π(M) ≥ 2∆ ≥ ∆(I(G)).

The theorem now follows from Theorem 11.3. �
Note that π(M) ≥ 2∆− 1 does not suffice, as is shown by an example of Yuster

in [25].

13. Matroidal colorability

A graph is called strongly k-colorable if for every partition of its vertex set into
sets V1, V2, . . . , Vm of size at most k there exists a coloring of G with k colors, such
that every color class meets each Vi in at most one point. A conjecture that has
been hanging around for a few years now (it first appeared in writing in [3], but
was known before to many who worked in the subject) is that every graph G is
strongly 2∆(G)-colorable. (For partial results see [18, 3].)
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In our terminology, the conjecture states that for any partition matroid P on
V = V (G) with ∆(P) ≤ 2∆(G) it is true that χ(P ∩ I(G)) ≤ 2∆(G). This can
be extended to any matroid. Call a complex C matroidally k-colorable if for every
matroid M on its vertex set with ∆(M) ≤ k it is true that χ(M∩C) ≤ k. We say
that a graph G is matroidally k-colorable if I(G) is matroidally k-colorable.

Conjecture 13.1. Every graph G is matroidally 2∆(G)-colorable.

Following [3], in which it was proved that every graph G is fractionally strongly
2∆(G)-colorable, we prove in this section the fractional version of Conjecture 13.1.

For this purpose we shall need some terminology. Consider a graph G and a
matroid M on the same ground set V . Call sets in M∩ I(G) bi-independent. A
pair (D, I) of subsets of V is said to cover a vertex v ∈ V if v ∈ spM(I) ∪ Ñ(D).
We say that (D, I) covers V if it covers all vertices in V .

From Theorems 4.6 and 6.1 there follows:

Corollary 13.2. Let G = (V, E) be a graph and let M be a matroid of rank r on
V . Suppose that [M, C] is not matchable. Then there exist a pair (D, I) covering
V such that |D|

2 + |I| < r.

In fact, using combinatorial methods we can prove a stronger result:

Theorem 13.3. Let G = (V, E) be a graph and let M be a matroid on V . Suppose
that [M, C] is not matchable. Then there exist sets X, Y, I ⊆ V such that

(1) (X ∪ Y, I) covers V ,
(2) Y ∪ I is independent in M,
(3) G[X ∪ Y ] is a union of disjoint stars, where X is the set of centers of the

stars and Y is the set of rays; in particular, |X| ≤ |Y |.

Proof. Let J be a bi-independent set of maximal cardinality. By assumption, J does
not span V . Choose any vertex x1 not spanned by J . Among all bi-independent
sets spanning spM(J) choose one, say R1, such that x1 has a minimal number of
neighbors in R1. Let Y1 be Ñ(x) ∪ R. Clearly, Y1 is non-empty, or else R1 ∪ {x}
would be bi-independent, contradicting the maximality property of J .

Let D1 = {x1} ∪ Y1. If (D1, R1 − Y1) covers V , then we are done. Thus we may
assume that there exists a vertex x2 not covered by (D1, R1 − Y1). Since G[D1]
does not contain isolated vertices, x2 �∈ D1.

Among all bi-independent sets R2 such that Y1 ⊆ R2 and spM(R2 − Y1) =
spM(R1 −Y1) pick one in which x2 has a minimal number of neighbors. Denote by
Y2 the set of neighbors of x2 in R2. Suppose that Y2 = ∅. If x2 �∈ spM(R2), then
R2 ∪ {x2} is bi-independent, contradicting the maximality of J . If x2 ∈ spM(R2),
then the circuit containing x2 in R2 + x2 must contain some y ∈ Y1. Then the
set R2 − x2 + y is bi-independent and x1 has fewer neighbors in it than in R1,
contradicting the minimality property of R1. Thus Y2 can be assumed to be non-
empty.

Let D2 = {x1, x2} ∪ Y1 ∪ Y2. If (D2, R2 − Y1 − Y2) covers V , then the theorem
is proved.

Thus we may assume that there exists a vertex x3 not covered by (D2, R2−Y1−
Y2). The argument now goes as before. Since our setting is finite, this process must
terminate at some point, yielding the theorem. �
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Another element needed for the proof of the fractional version of Conjecture 13.1
is a weighted version of Theorem 13.3, namely a version in which the elements of
V carry weights. Let G = (V, E) be a graph, let M be a matroid on V and let
g, f, w be three functions from V to R

+. We say that the pair (g, f) dominates
w if gM(v) + f [Ñ(v)] ≥ w(v) for every v ∈ V . For such a pair of functions (not
necessarily dominating) we write

|(g, f)| = |g| + |f |/2.

By νw we denote the maximal value of w[B] over all bi-independent bases B,
and by τw the minimal value of |(g, f)|, over all pairs (g, f) dominating w.

Theorem 13.4. τw ≤ νw. Furthermore, it is possible to find a dominating pair of
functions (g, f) of weight at most νw such that

(∗) f(x) + g(x) ≤ w(x) for every vertex x.

If all weights w(v) are integral, then g, f can be assumed to be integral as well.

Proof. The case of rational weights, and hence by approximation arguments also
that of general real-valued weights, can be reduced to the case of integral weights.
Hence we shall assume integrality of the weights.

The proof is by induction on w[V ]. When this sum is 0, there is nothing to
prove. So, we assume that the theorem is true whenever w[V ] < s, and prove it
when w[V ] = s.

We consider the matroid Mw. If there exists a base B of Mw which is indepen-
dent in G, then we can define g : V → R

+ by g(v) = w(v) for v ∈ B and g(v) = 0
for v �∈ B, and define f to be identically zero. The pair (g, f) is then dominating
and satisfies |(g, f)| = w[B] = νw, proving the theorem. Thus we may assume that
the pair [Mw, I(G)] is not matchable. Let X, Y, I be as in Theorem 13.3, and let
D = X ∪ Y .

Define a new weight function w′ by w′(v) = w(v) − |Ñ(v) ∩ D|. If (g′, f ′) is
a dominating pair for w′, then (g′, f ′ + χD) is a dominating pair for w, where
χD is the characteristic function of D. Clearly, also, if (g′, f ′) satisfies (*) for w′,
then (g′, f ′ + χD) satisfies (*) for w. By the induction hypothesis there exists a
dominating pair (g′, f ′) for w′ satisfying (*) and the property |(g′, f ′)| ≤ νw′ . Since
|(g′, f ′ + χD)| = |(g′, f ′)| + |D|, in order to complete the proof it suffices to show
that νw ≥ νw′ + |D|/2. Since |D| ≤ 2|Y |, it suffices to show νw ≥ νw′ + |Y |.

Choose T ∈ I(G)∩M with w′[T ] = νw′ , having the additional property that its
intersection with Y is maximal.

Suppose that there exists y ∈ Y \ T , and let C be the M-circuit containing y in
T + y. We claim that there exists x ∈ C \ Y such that w′(x) ≤ w′(y).

To prove this, Let k be the minimal value of w in C. Consider first the case
w(y) > k. By Lemma 9.3, there exists a circuit D of Mw such that D ⊆ C and
w(v) = k for all v ∈ D. Since Y is independent in Mw there exists some x ∈ D \Y .
Now we have

w′(x) ≤ w(x) = k ≤ w(y) − 1 = w′(y).

In the case that w(y) = k we can demand that y ∈ D and thus there exists
x ∈ D \ Y \ spMw

(I). Then

w′(x) ≤ w(x) − 1 = k − 1 = w(y) − 1 = w′(y).
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This proves the claim. If y had no neighbors in T , then T −x + y would contradict
the maximality of T . Thus every vertex y ∈ Y \ T is connected to some vertex
in T . By the definition of w′ it follows then that w′[T ] ≤ w[T ] − |Y |, implying
νw ≥ νw′ + |Y |, as required. �

We suspect that the same result is true replacing I(G) by any complex. To
define the general conjecture, we first have to extend the notion of the “span”
of a function from matroids to general simplicial complexes. Given a function
f : V (C) → R

+ on the vertex set of a simplicial complex C, we define fC(x) to be
max{miny∈Y f(y) : Y ⊆ V, x ∈ spC(Y )}. Let C,D be two complexes on the same
ground set V , and let w be a non-negative real-valued function on V . We define
νw(C,D) as for matroids, namely as max{w[σ] : σ ∈ C ∩ D}.

Conjecture 13.5. Let M, C be a matroid and a simplicial complex on the same
ground set V , and let w : V → R

+. Then νw(M, C) ≥ min{|g|+ 1
2 |f | : gM + fC ≥

w}

(We thus conjecture that there is a price of a factor of 1
2 in τw for the fact that

C is a general complex, and not a matroid. For w ≡ 1 the conjecture is akin to
Theorem 6.3, although unlike in the case of graphic complexes it does not follow
from it directly.)

As a corollary of Theorem 13.4 we get the fractional version of Conjecture 13.1.

Theorem 13.6. Every graph G=(V, E) is fractionally matroidally 2∆(G)-colorable.
Namely, for every matroid M on V , if χ(M) ≤ 2∆(G), then χ∗(M ∩ I(G)) ≤
2∆(G).

Proof. Suppose that χ∗(M ∩ I(G)) > 2∆(G). Then there exists a function w :
V → R

+ with w[V ] > 2∆(G) and w[A] ≤ 1 for every bi-independent set. This
means that νw ≤ 1, which by Theorem 13.4 implies that τw ≤ 1. Thus there exist
functions g, f : V → R

+ such that |(g, f)| ≤ 1 and the pair (g, f) dominates w.
But this is easily seen to imply that w[V ] ≤ 2∆(G), yielding a contradiction. �

Let us end with three conjectures on matroidal colorability.

Conjecture 13.7. Every complex C is matroidally 2∆(C)-colorable.

Conjecture 13.8. For every k, the cycle C3k is matroidally 3-colorable.

This is a generalization of the theorem of Fleischner and Stiebitz [12] that C3k

is strongly 3-colorable. The graph G = C3k has the property that η(I(G[S])) ≥ |S|
3

for every set S of vertices (see, e.g., [3]), namely ∆(I(G)) = 3. By Theorem 8.3
it follows that for every matroid M with ∆(M) ≤ 3 there exists a set of size k in
M∩I(G). The conjecture is that V (G) can be partitioned into 3 such sets.

The following conjecture has similar motivation, stemming from the results of
[2].

Conjecture 13.9. Every chordal graph G is matroidally ∆(G) + 1-colorable.
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