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I. INTRODUCTION

A. Interstellar Matter - Brief Review

The combination of observational and theoretical

studies carried out chiefly during the last 25 years leads

to the following picture for the matter between the stars.

The gas, whose relative element abundance is believed to be

essentially the same as that found in stellar atmospheres,

is distributed throughout the galaxy in the "spiral arms"

which form a very flat (thickness = 200 pc) subsystem

defining the plane of the galaxy. In the spiral arms the

overall smeared-out density of atomic hydrogen which is the

most easily observable (by 21-cm line studies) component of

3
the gas is n. : 1 atom/cm , giving a density 1 1 - 2 x

10_24 gm/cm 3 . Having about the same distribution as the gas

is the interstellar "dust" which is thought to be composed

mainly of ice crystals having dimensions 
of roughly 10 -

4
10- cm. The smeared-out density of these dust grains is26

about p 10 26 gm/cm 3 . The density of both gas and dust

is much less between the spiral arms and away from the plane

of the galaxy. Actually, there are large variations in

density even within the spiral arms. It is known from

studies of interstellar absorption lines and also from 21-cm

investigations that the gas is distributed in dense clouds

in which the density is nH 10 atms/cm , compared to an

1.
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intercloud density of about 0.1 atoms/cm3
. Generally,

there is also a corresponding increase in dust density

within the dense regions. The clouds fill roughly 10% of

the interstellar space and have an average diameter of

about 10 pc. In addition to the velocity corresponding to

galactic rotation, the clouds have a random motion corres-

ponding to a radial velocity distribution 1 e

where 10 km/sec (this is just a rough value for '

later in this work we shall adopt 7 = 7.5 km/sec). This

so-called P'cloud model" of the interstellar medium is an

oversimplification but is quite useful as a starting point

for theoretical calculations. It should be kept in mind,

however, that this picture may change when more complete

data on the interstellar medium is available.

About 10% of the interstellar clouds are in the ionized

state, the ionized regions (H II regions) being roughly

spherical (radius 20-150 pc) and confined to the'vicinity of

0 and B stars or groups of stars. Spitzer I has shown that

a kinetic temperature in the neighborhood of 104oK will

result in these H II regions from energy balance of electrons

between gains from electron capture by protons followed by

photoionization and losses by excitation of low-lying states

of 0+ ions. It is though that the low density intercloud

medium is in the ionized state.

The remaining 90% of the interstellar clouds are

2neutral (H I regions). Early 21-cm work indicated a
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temperature of 125 K for the H I clouds, while more recent

investigations3 of 21-cm line absorption point to a

temperature of about 600K. The processes which control the

temperature in H I regions are much more uncertain than

those for H II regions and a discussion of these processes

will be given later (sections IIID and IVC). One of the

cooling processes, namely the radiative de-excitation of

rotational levels, involves the hydrogen molecule directly.

Generally, a temperature 1000K for the H I clouds will be

sufficiently accurate for most calculations performed in

this work.

Many of the processes which determine the state of

interstllar matter involve the interstellar radiation field.

For a typical point in interstellar space this radiation

field can be approximated by that of a black body at a tem-

perature To = lOK, but diluted by a factor W - 10-

With such a radiation field the relative population of

excited states of atoms or molecules is

no W eW ()

where no is the population in the ground state and E is the

excitation energy. This relation holds only if the most

important mechanism for excitation and de-excitation is

the interaction with the (weak) radiation field and may not

hold, for example, for metastable states. The main con-

clusion to be drawn from (1) is that interstellar atoms and

molecules are very predominantly in the ground state.
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Since hydrogen atoms are photoionized easily by

radiation of wavelength X < 912 X (the Lyman limit), the

H I clouds are essentially opaque to radiation beyond the

Lyman limit (with a density nH = 10 cm °3 and a path length

of 1 pc, the optical thickness at the Lyman limit is about

20). In many instances it is a good approximation to use

Wien's law instead of Planck's for black body radiation.

This allows one to write down a simple expression for the

photon flux dJ, (number of photons incident per cm2 per

second in the frequency interval dc):

2 -01 D
dJU = J w W) eW d (2)

where 1 = i/kT , and the optical thickness . is for H I

regions essentially

00 0 3 > (Do

IrCo#I 
f 0 

a)< W
0

co being the frequency corresponding to the edge at 912

B. Observational Inferences on the H2 Abundance

1. Spectroscopic Difficulties

Atmospheric absorption limits optical observa-

tions to the range 2900 - 0,000 R (1.2 eV - 4.3 eV).

Since the first bound excited electronic state of the

hydrogen molecule lies more than 11 eV above the ground

state, detection of molecular hydrogen thru its absorption
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spectrum is impossible from below the atmosphere. Moreover,

both the magnetic fine structure and hyperfine structure

splittings are zero in first approximation for the hydrogen

molecule in the ground ("7 +) state. This situation is

similar to that for the helium atom in the ground (1 S)

state and arises from the singlet character of the state.

It is for this reason that no radio observations analogous

to the 21-cm studies for atomic hydrogen can be made for

molecular hydrogen (or helium). Another type of energy

level splitting, A -doubling, is also zero in first

approximation, since the ground state of H2 is a state

(A = 0). Radiation between components split by A -

doubling has been considered by Shklovsky4 for such inter-

stellar molecules as OH.

While direct spectroscopic detection of H2 seems

impossible from below the atmoephere, observations from

spectroscope carrying satellites offer a very appealing

possibility. The launching of a satellite carrying an

ultra-violet stellar spectroscope is tentatively 
scheduled5

for 1966. Such a spectroscope would be capable of detecting

the interstellar absorption lines of H2 in the Lyman and

Werner bands which correspond to the following transitions

(see Fig. 1):

1Lyman bands: X-.B o 90196 cm- (11.2 eV)

Werner bands: X---*C 900 = 99080 cm-  (12.3 eV)

X: 'Z + (the-ground state)
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I- 20

/50,000 
HN

/00,000

/0

0 2 .34

Fig. 1. Potential curves for a few states of H and H +
Ue(R) is the effective potential function for2

nuclear motion and is essentially Ee(JR) + Ve(R)
where Ee(R) is the eigenvalue of the electronic
energy calculated for a fixed internuclear
distance R and V e(R) is the coulomb repulsion

energy for the two nuclei.
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These transitions have oscillator strengths of order unity

and so even small amounts of molecular hydrogen should be

detectable thru the absorption lines.

2. Gas/Dust Correlations

At present, direct evidence for the presence of

molecular hydrogen is lacking. However, there is weak

indirect evidence for a relatively high abundance in certain

regions of the galaxy. It will be shown in part II that

recombination on interstellar grains is the only mechanism

capable of building up a molecular concentration comparable

to the observed atomic densities in a time less than the

age of the galaxy. One would expect, then, to find the

highest molecular concentration in the regions where the

6
dust density is greatest. Van de Hulst et al did find

that the dark regions in Taurus gave only about 30% of the

21-cm line radiation expected from considerations of the

amount of dust present. In fact, they suggested that the

resulting low atomic density might be because most of the

hydrogen had associated to molecular form In these regions.
7 8

In other 21-cm surveys, Lilley and Heeschen find a

general correlation in the amount of gas and dust on the

whole, but also find some fluctuations in the gas/dust

ratio. Lilley reports a range of 35 - 250 in the density



8.

ratio with a mean value of about 100.

3. Dynamical Astronomy's Limit

An absolute upper limit to the molecular density

can be obtained from dynamical astronomy. From studies of

the motion of stars normal to the plane of the galaxy a

potential curve in the normal (z) direction can be con-

structed. One finds from these investigations that the

total mass density (stars + gas + dust) near the sun is

p = 0.13 - 0.15 Me/pc3 (compared with the older figure

0.09 - 0.10 MO/pc3 ). Of this figure; about half can be

accounted for by observed stars and gas (dust contributes
11

a negligible amount). Oort has attributed the remaining

so-called "unaccounted for mass" to faint dwarf stars,
12 1

while Bok and Gold1 3 have suggested that molecular

hydrogen may contribute appreciably to this unobserved

mass. If we attribute 0.07 Me/Pc to H2, we get an upper
- _3

limit of n 1.4 cm for the average molecular abundance

(see, however, section B4 of chapter V where an analysis of

the z-distribution of the galactic gas points to a higher

density).

4. Inferences from Observed H I Cloud Temperatures

Since molecular hydrogen may play an important

role in determining the temperature 
of H I regions, Kahn

attempted to determine the H2 abundance from the observed

temperature from 21-cm studies. It turns out, however, that

the required molecular concentration necessary to produce a

given temperature depends strongly on the value of the
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temperature chosen, especially for temperatures below 100 K.

This question will be dealt with. in more detail later.

In summarizing the observational situation for inter-

stellar H2, we can say that there is weak evidence for and

no evidence against its presence, and that the present

observational data will actually tolerate a molecular

abundance comparable to and perhaps even greater than the

atomic value.

C. Preview

Most of this work is devoted to an analysis of the

various processes which determine the abundance of inter-

stellar molecular hydrogen. It will be shown that the

principal mechanism for formation of H2 is that of

association on the surface of the interstellar grains. The

range of grain temperatures where this reaction is

efficient is coincident with the expected range 5-200 K.

The most important dissociative process is the ionization

(and dissociation) of clouds in random encounters with

bright stars. A balance results in which the molecular

concentration is (roughly) comparable to the atomic value

and in which the molecular hydrogen is spatially distri-

buted in essentially the same manner as the observable

atomic hydrogen.

The various implications of a high molecular abundance

are discussed. It is shown that molecular hydrogen can

account for the unobserved mass of dynamical astronomy.

Moreover, it is shown that the observed spatial distri-

bution of the galactic gas implies a high gravitational
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attraction near the plane of the galaxy. The mass distri-

bution required to produce this gravitational field is

essentially the same as that of the observed atomic

hydrogen. Roughly tentimes as much mass as the atomic

hydrogen is needed to account for this self-gravitation

effect and this mass is attributed to molecular hydrogen.

The integrated mass density above the galactic plane

( p(z) dz) determined in this manner has about the same

value (2 x 10-21 gm-pc/cm ) as the corresponding quantity

determined from motions of stars perpendicular to the

galactic plane.



II. MECHANISMS FOR THE FORMATION OF MOLECULAR

HYDROGEN

A. Radiative Association

Under ordinary laboratory conditions molecules form by

three body collisions, the third body being necessary to

carry off the (negative) binding energy which results on

formation of a stable molecule. The reaction rate for such

processes is proportional to the third power of the density.

Since interstellar densities are very low, this process is

negligible compared to radiative association (rate

proportional to the second power of the density) in which

the emitted photon does the Job of the "third" body. For

the formation of H2 , we may write for the number of

radiative recombinations (H + H---PH 2 + y) per cm3 per

second:

2

(A2)' nH UV'(4

where 97 is the mean value (averaged over the velocity

distribution of the hydrogen atoms) of the product of the

crossection for the process and the relative velocity of

the hydrogen atoms. To estimate a we write

a - '0 P (5)

2

where ao (~' ao ) is the collision crossection and PT is

the probability per collision of a radiative process leading

to a stable molecule. Two types of radiative process can

11.



12.

lead to the formation of a molecule.

The electronic states of the hydrogen molecule which

result from bringing two hydrogen atoms in the ground state

together adiabatically are the Heitler-London states which

are the two lower states shown in the level diagram in

Fig. 1. The type of process usually considered in radiative

association involves a transition from a repulsive state
(3 u+  +) The radiative

+) to an attractive state (1 +

probability P for this process would be calculated from

P = A(R) dt , (6)

where g is the weight (3/4) of the triplet state and A(R)

is the transition probability per unit time for the

transition from the repulsive to the attractive state.

Again, the bar over the integral means average over the

velocity distribution of the hydrogen atoms. The transition
3T+ P1 + required for this recombination is

forbidden (by the selection rule AS = 0) and so A(R) is

very small. The quantum mechanical expression for A(R)

is15

A(R) = 4 e2 (3(R) rI1Y 72

In terms of the oscillator strength,

f(R) 2 m co(R) K'Z 12id~ (8)

2 e2 w 2(R)
A(R) = m c3 r(R). (9)
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It will be shown in section III-A that at the equilibrium

internuclear distance (R = 0.74 AO) for the ground state
0 9

the f-value for this transition is - 10 It should
2 13

be noticed that f oc w, A ccu f oc wo . At the temperatures

of H I clouds (kT = 0.01 eV), few hydrogen atoms will have

sufficient kinetic energy before collision to get very far

up on the repulsive potential curve. Most of the contri-

bution to (6) will come from the classical turning point,

which for the characteristic energies of H I clouds, occurs

at large internuclear separations where the energy separa-

tion fi) between the two states is small and so where A is

small. It will certainly be true that

fA(R) dt < A(Ro) T'eoll , (10)

where A(Ro) is the value ( - 1 sec ) at the equilibrium R

and r Coil is the collision time (approximately equal to the

characteristic time for one vibration: 10-l sec). We

have then for the crossection for radiative association

a <( 0 A(Ro) Tcol1 (ii)

(It is interesting to note that the quantity A(Ro) coll

corresponds to the factor n3 VA for 3-body recombinations,

n3 being the number density of the "third" body and vA the

atomic volume). At 100°K, V =-2 x 10c5 m/sec, so from (4)

and (11),
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2 ..25 3 I

(?H2)Y < nH x 10 cm- sec- . (12)

Clearly, in a galactic age of 10 billion years only a

negligible amount of H2 could form by this process.

As mentioned earlier, there are two types of radiative

recombination. The other way in which a stable molecule

can be formed is thru a vibrational quadrupole transition.

In this process the two atoms collide in the singlet state

(g = 1/4) and during the collision the system makes a

transition from the vibrational continuum of the l1g state

to a bound vibrational state of 17 g, emitting a quadrupole

photon. While this process is fairly independent of

energy (temperature) and does not suffer as much from the

shall c's, the characteristic A-value is still quite small.

The A's for these vibrational transitions are of the

order16 1O-7 10 sec . A summation over transitions to all

vibrational states might make the effective A several orders

of magnitude larger, but it is clear that this process can

produce a reaction rate no larger than the upper limit

given by (12).

While radiative association is completely negligible

as a mechanism for hydrogen molecule formation, other

processes, especially recombination on grains, are much

faster. We shall consider these processes in detail in the

next sections.
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B. Surface Recombination on Interstellar Grains

1. Basic Ideas of Surface Recombination

(a) Astronomical time scale for recombination -

The realization that the interstellar grains can serve as

catalysts for the formation of H2 has existed since the

original suggestion by van de Hulst around 1946. Since that

time, various estimates have been made for the rate of

molecule formation by this process. The simplest assumption

which one can make in order to calculate the reaction rate

is that every hydrogen atom which strikes a grain eventually

leaves as part of a hydrogen molecule or, in the terminology

of Chemical Kinetics, that the recombination coefficient

(y) is unity. With this assumption the rate of formation

of H2 can be written as

21

where J is the flux (number/cm 2/sec) of atoms from the

surrounding gas which hit the surface and A is the total

grain surface area per cm of interstellar space. The flux

J is simply

J " nv ,

where

- 8/ wM (15)

3
n being the number of hydrogen atoms per cm . The quantity

A was calculated by McCrea and McNally1T for spherical
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grains with a distribution of 
radii N(r) = C e

18
based on the work of Oort and van de Hulst. Using a

density for the solid grains of 1.1 gm/cm
3 and a temperature

0
of 100 K, the results of McCrea and McNally can be

expressed in terms of the (smeared out) density of grains

p as

n2 = b n 9, (16)

9 -.1 *.1 3
where b = 4.0 7X 10 gm sec cm . We see that for the,' .025 3

densities of H I clouds (n - 10 atoms/cm
3 Pg 10 gm/cm )

a density of 1 molecule/cm
3 can build up in about 107 yr

(much less than the age of the galaxy!). These figures are

for y - 1. The right hand side of (16) should really have

a factor y expressing the efficiency of the recombination

process. While it has generally been assumed that y - 1

for the interstellar conditions, this is by no means

obvious. The recombination coefficient has a very strong

dependence on the temperature of the solid surface and on

the chemical nature of the surface. This is evident from

the results of experiments on surface recombination which

will be discussed in the following section (section 2). To

facilitate an understanding of these experiments we shall

spend the rest of this section reviewing the basic principles

involved in surface recombination.

(b) Atomic forces in adsorption - As an atom

(or molecule) approaches the surface of a solid, it feels

a potential of the form shown below.
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V

Fig. 2. Potential energy as a function of distance from
solid surface normal case

At large distances, as it approaches the solid, the atom

feels a weak attraction due to London forces (we adopt the

terminology that the specific attractive forces between atoms

and molecules, whose potential goes as r , are to be

referred to as London forces; the combination of London

forces and valence repulsion, which would be present at,

for example, s2' we call van der Waals forces). At shorter

distances, the atom feels a repulsion and most atoms with

kinetic energy less than the "activation energy" A will

not pass over the hump. The activation energy results from

the necessity of breaking a chemical bond in order that the

atom can be adsorbed at the equilibrium position sI . The

binding energy q1 is due to valence forces and is quite

large (say, 2 eV), while q2 is due to the weaker van der

Waals forces and is about an order of magnitude smaller than

q " The magnitude of the activation energy A depends

strongly on the nature of the surface and the adsorbing
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atom or molecule. In some circumstances the activation

energy is zero or very small, in which case the potential

curve would be of the form shown in Fig. 3.

V

Fig. 3. Potential.xwith no activation energy for

" .adsorption

There is also the possibility that the electronic state of

the (gas atom) - (solid) system is repulsive, producing a

potential curve as below.

V

Fig. 4

Potential with an electronic repulsion
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(c) Dynamical eQuilibrium - basic processes -

It is clear that there are two kinds of adsorption - one in

which the atom is held by (strong) valence forces and

another in which the atom is held by (weak) van der Waals

forces. Moreover, a solid surface can exhibit both forms

of adsorption simultaneously. The bare surface could be

attracting the atoms by valence forces, while above the

layer of strongly bound atoms another layer of atoms held

by van der Waals forces could exist. The second layer would

not interact strongly with the first since the chemical

bonds in the first layer would be saturated. The concen-

tration of atoms adsorbed in these two layers results from

a condition of dynamical equilibrium whereby the atoms are

lost from the surface by thermal evaporation and molecule

formation, the surface atoms being replenished by the flux

of atoms from the gas hitting the surface.

Consider the case where there is no activation energy

for an atom of the gas to adsorb by valence forces. We

assume that every atom, whether it strikes the bare or

covered surface, either sticks to the surface or forms a

molecule immediately on striking the surface. Let the total

2
number of sites per cm on the solid be ao. The number of

2
occupied sites per cm in layers 1 and 2 we denote by a1

and a2 , the corresponding concentrations being @I 9

a1/GO and @ The equations of dynamical equili-

brium for the two layers will be
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layer 1: j(1- 1 ) + (1- 1 )02 u1 2 = u0 1 (91- 9 2 ) +

2
2u 20 1 + U dl 1  (17)

2
layer 2: J(Q1-) = Ud2 2 + 2u12@2 + (i-@ I ) @2 u 1 2

+ Uo20 . (18)

These equations are similar to those of de Boer and van
19

Steenis. The u's (and J) are rate Constants for the

2 1
various processes and have the dimensions cm- sec -

. Many

of the rate constants are very difficult to calculate, but

rough approximate expressions can usually be written down.

We now explain the origin of the various terms in (17),

(18) and enumerate their associated rate constant

expressions., For the present we assume both solid and gas

to be at the same temperature.

(i) J is simply the flux of atoms hitting

the surface. It can be written as

1 1/3

1 n /8kT/= n(kTh)Fg (19)

where
.1/2 ,F = (2MkT) /h .

(20)
g

(ii) u12 represents the rate of filling of

layer 1 by migrating atoms in layer 2. It is approximately

given by
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kTu = 
(21)

12 o h

Here, kT/h represents a characteristic frequency and D a

diffusion factor. If diffusion is by thermal fluctuations,

D is given by

Dth = e , (22)

where 7q2 is the energy barrier between adjacent equilibrium

sites in layer 2. If diffusion is by quantum mechanical

barrier penetration, D is given by

D = e" PI W, (23)

q.m.

where the integral in the exponent is over the barrier

between two equilibrium sites. This process will be dis-

cussed more thoroughly later. Sometimes, (21) is written

as

U 12 o (24)

the frequency factor kT/h having been replaced by the

characteristic frequency 9o for vibration in the plane

of the surface.

(iii) uol represents direct molecule forma-

tion thru reaction between impinging atoms of the gas and

atoms of layer 1. It involves an activation energy A.

ul= n T ). i ) e.A/kT (25)
h nf s o(kT/h) (F (

(the first subscript o means that the reaction is on the
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adsorbed layer).

(iv) u d stands for thermal desorption

(evaporation) from layer 1.

Udl = a (kT/h) eql/kT (26)

(v) uil represents molecule formation by

reaction between adjacent atoms already adsorbed in layer

1. We treat layer 1 as immobile.

-A'/kT
Ull = % 0 (kT/h) e (27)

(the subscript i means that the reaction is in the adsorbed

layer). Usually A' is rather large and the process is

negligible.

(vi) u d2 denotes evaporation from layer 2.

ud2 = a (kTh) e - q2 /T (28)

(vii) u1 2 is the rate constant for the

reaction of two atoms in layer 2 to form a molecule. It is

essentially the rate of encountering atoms and forming a

singlet state (probability 1.) in diffusing about in layer 2.

1 kT

u12 = 0 7- D (29)

(viii) uo2 represents molecule formation

thru reaction of atoms of the gas with those of layer 2.

An,approximate expression for uo2 is

1
uo2 = (30)
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where once again the factor-T is simply the probability of

forming a singlet state.

Derviations of the basic reaction rate formulae, which

we have quoted, may be found in any standard work on

Chemical Kinetics such as the book of Glasstone, Laidler
20

and Eyring. Most of the expressions are intuitively

obvious. For example, the rate constant for thermal

evaporation is a product of a factor representing the
2

number of sites per cm (a0), a frequency factor (kT/h or

V) which may be taken as a vibrational frequency, and a
0 -q/kT

factor e for the probability of getting enough thermal

energy from the solid to escape over the barrier q. This

probability factor arose...from:an integral over a Boltzmann

distribution with a threshold at q, thus

So far, we have assumed that a molecule, once formed,

leaves the surface immediately. The validity of this

assumption will be analyzed later. Moreover, reactions

between the two layers have been neglected. The Justifica-

tion for this is that the activation energy for the reaction

is high. We see from Fig. 2 that it is

A* = A + , (32)

from which we conclude that a simple evaporation from layer

2 is much more likely than a reaction with atoms of layer 1.
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(d) High and Low Temperature Values of the

Recombination Coefficient - We conclude this section with

a brief discussion of the high temperature and low tempera-

ture properties of y. From the definition of the

recombination coefficient as the fraction of incident atoms

which eventually leave the surface as part of a molecule,

we have

=y Uol(u -:.)+ul0 +u 9 +u 9 (33)
1 ol 2 92 o2 j

At high temperatures evaporation limits 92 to very small

values. As long as the temperature is not too high,

however, 91 is close to unity and y becomes

-2/3 -A/kT (4

2u /J - 2a F- e . (34)

Here, most of the temperature dependence arises from the

exponential factor and we see that y increases with

temperature. The factor 2a F-2/ is of the order of
og

unity. At low temperatures, however, processes in layer 1

can be neglected. Setting eI = 1, the equilibrium equation

(18) simplifies to

2
J(l - 02 ) = ud22 + Uo2 2 + 2 ui2

9
2 2 (35)

This equation can be solved for @2 to give

9 /U U 2

2 =- s-+ + (36)
2 4uI V 'i
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where

U = ud2 + U.o2 + J (37)

If u12 >> U,J,

9 j (1- U + ...) , (38)
2 2 u 2  2 /T 2J

and the recombination coefficient becomes

2

= 2 122 + 22 U + **, (39)
J ui2J

the main contribution coming from u12 . This condition

produces the limiting value y -- 1 with an equilibrium

value of 02 which is small. In this case one can easily

show that an adsorbed atom makes - 1/9 jumps to adjacent

sites before encountering another atom with which it can

combine. Such a. random walk process may be pictured as

resembling a two dimensional gas whose atoms move about

with a velocity

v - a ° D , (o)

a being the distance between adjacent lattice sites. The

one-dimensional "cross section" for recombination is

1p' IT p a (1

where p is the effective number of sites swept out by the

tail of the attractive potential between two hydrogen atoms
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and fs of the order of 2 or 3. We have then for the

reaction rate:

2 2 _ 1 2 2 2
ui 2 2  0 9c2 )  p v= pa a 0  o D @2-

p~ Oo D2 . (42)

It might be argued that the rate (42) has been over-

estimated since in the random walk there should be many

repeat passages and only the number of new sites swept out

21
should be counted. It can be shown that the probability

of coming back to the original starting point in a two

dimensional symmetric random walk after 2n jumps is

.2n (f)2 
2n= n

For large n we have, using Stirling's approximation,

-1

W2n -. (r n) (44)

We could put a lower limit on u12 by dividing u12 by the

number of repeat passages in the random walk. Essentially,

this would assume that to recombine, the atoms must actually

jump to a site already occupied. However, we know that the

atoms need only come within 2 or 3 lattice sites to

recombine. The result will then surely be a conservative

lower limit. If the total number of Jumps in time t is

N (- )oD t), then the number of repeats is

--- = Z( n) -- - -ln ( (45)
.eW2n 2
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We see that this number is of the order of unity since

ln(y) - ln(1/29) - 10 - 20. Thus we shall ignore this

effect and take (42) as the correct rate formula.

2. Experiments on Surface Recombination

(a) Older experiments - temperature behavior -

An extensive literature exists on the catalytic properties

of different surfaces. Unfortunately, most of the work is

carried out at high temperatures. The interstellar grains

have temperatures around 100K and, as shown in the last

section, the low temperature mechanism is quite different

from that at high temperatures. Nevertheless one finds in

the literature on the hydrogen molecule problem several

references to experimental work done at high temperatures.

To emphasize the different behavior of the recombination

coefficient at low and high temperatures we shall analyze

the y vs. T curve for the recombination of H-atoms on

glass, paying particular attention to the region of

changeover from one mechanism to the other. We shall show,

moreover, how one can obtain important information

pertaining to low temperatures from the behavior of y in

this region.

The combination of experimental results of several

workers leads to the schematic 7 vs. T curve shown below

(this curve is taken from the paper of Shuler and

22Laidler)
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/

-'Dso-gISO
T- (0C)

Fig. 5

Recombination Coefficient for Hydrogen Atoms on
a Clean Glass Surface

At high temperatures the recombination occurs on the bare

surface thru the mechanism uol, while at low temperatures

the recombination occurs in the van der Waals layer by the

mechanism ui2 . Consider the region around the minimum.

Here, both mechanisms are relatively ineffective. For

layer 1, the temperature is too low for the incoqiing atoms

to get over the activation energy barrier. For layer 2,

the temperature is too high for the weakly adsorbed atoms

to stay long enough, i.e., they evaporate off before they

have a chance to recombine. Under these conditions, the

equilibrium equations '17) and (18) simplify to

J(l-@) + (i-@I)92 u12  = Uo(Ql - 2 (46)

2 2

J(0l-92) ud2 @2 + 2 u12 2 + (I-01 )02 u12 ' (47)
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with y given by

= 2 2
Y(uol 1  + u 12 @2 (48)

The approximate solution of (46) and (47) is

91 - 1, - = 1 J/Ud 2  J/Ud2  (9)

We take for the rate constants:

J - n (50)

01 n a 0 F-  eA/ (51)

U2 ' ao hT e - q 2 1 k  (52)

Ud2 oh (2

u12 = I a° T7 e (thermal walk), (53)

which gives for y:

-2/3 -A/kT 1 1 -1/2 (2 )q2/kT
,y - 2a 0 F9 e "A T + 7no F e- -

(54)

= Tol + 712.

We can write (54) as

y a e - a / T + 3 eb/T (55)

where a and have only a weak temperature dependence.

This equation shows clearly how a minimum arises. To the

right of the minimum reactions occur predominently on the

bare surface (the term g e-a/T), while to the left of the



30.

minimum recombination takes place in the second layer

(the term P e b/T). Actually, one can obtain some important

information from equation (55). The process capable of

destroying the low temperature limiting value y- 1 is

evaporation. From (39) we get a condition for y to be close

to unity

-1/2
U (2 ui 2 J ) < 1. (56)

Substituting for U the expression for ud2 and for ui2 and

J their respective rate constant formulas we have the

condition

eq2 (2 - 7)/kT > 2 1n- I F 1/3 . (57)
0 g

Clearly, the value of 2 determines the temperature below

which y -- P 1. From a knowledge that the minimum of (55)

occurs at -80°C (1930K), we can determine q2 and hence the

temperature T0 below which the recombination coefficient is

close to unity. By setting din (55 equal to zero at

T - 1930K, we have a relation for the binding energy q2:

ex . a ea (58)

where

x- b/1 - (2 - 7 )q/T . (59)

A fairly accurate value of a may be determined from the

observed value (= 0.03) of y at 300°K and the experimental
1 9

value of A of 0.9 kcal/mol (- 0.039 eV). Substituting these
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values and using the typical laboratory density of

15 3
n 10 cm-3 , we find by solving (58) by iteration

that x = 12 .84 . With = (a typical value for solids),

we get for q2

q2 = 0.143 eV.

Substituting this value into (57) we find a T ofo

T = 125°K
0

in rough agreement with experiment.

(b) Recent Experiments - The experimental work

which is by far the most pertinent to the hydrogen molecule
23

problem is that of Brackmann and Fite. These authors

directed a beam of partially dissociated hydrogen at a

liquid helium cooled copper surface and measured the

reflection probability of atomic and molecular hydrogen.

The beam was a thermal one (T = 80°K) and had a density of

about 109 particles per cm3 , while the temperature of the

copper surface was varied from about 80 K down to about

30K. The results for the reflection probability P of hydro-

gen atoms can be represented by the schematic curve shown

in Fig. 6 (T is the temperature of the surface). In the

region of the minimum (10< T < 200) it was definitely

established that the low reflectivity was due to molecule

formation on the surface. The character of the surface can

be expected to change as the temperature T is lowered. At
s

~different temperatures the different gases present in the
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P.

Ar -

2 0a *0 30 4e .61 70 so

Fig. 6

Reflection probability of a-surface at very low temperature

vacuum system will condense on the surface. Brackmann and

Fite suggest that in the region of the minimum the surface

consists of frozen air with a layer of ice underneath which

had condensed at higher temperatures (around 770 K). They

also suggest that the peak at 40K results from a surface

of molecular hydrogen which apparently has a high reflectivity.

However, they express concern over the fact that this

molecular hydrogen surface must begin to form already at

10iK while "vapor pressure data" would not allow molecular

condensation above about 50K. While it is true that solid

molecular hydrogen would form only below about 50K at the

pressures encountered, one cannot conclude that a monolayer

of H2 would not form for higher temperatures. The surface

below this monolayer could give rise to higher (van der

Waals) binding forces than would a surface of pure solid

H .2 As a matter of fact, stronger binding forces would be
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expected, since van der Waals binding energies are

proportional to the product of the polarizabilities of the

adsorbing molecule (H2 ) and the molecular constituent of

the solid, and H2 has a rather low polarizability compared

to say, 02 or N2 .

Clearly, the low temperature behavior of a solid

surface is quite complex. The following three sections

(3, 4 and 5) are devoted to a more thorough treatment of

the properties of solid surfaces and the low temperature

behavior of the recombination coefficient.

3. Calculation of the Force Field Above a Solid Surface

(a) Chemical composition and lattice structure
24

of the interstellar grains - Van de Hulst has shown that

the most abundant constituent of the interstellar grains

is probably ice formed thru the chemical reactions

H + 0 2 H02 + 40 kcal (1 eV = 23 kcal/mol)

+ H202 + 101 kcal
HO2 +H --*

2H 2 + 02 + 63 kcal

H + H2 - * H20 + OH + 64 kcal.

He suggested the following relative composition for the

grains

100 molecules H2 0

30 molecules H
2

20 molecules CH4

10 molecules NH3
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5 molecules MgH, etc.,

the values being very uncertain since it depends strongly

on temperature whether the molecule "freeze down". The

H2 concentration is especially uncertain since H2 will

adhere to the surface of the solid only at very low

temperatures. As a solid the interstellar grains would

be classified somewhere between a hydrogen bonded crystal

and a molecular crystal, the former being held together by

25
the quasi-chemical hydrogen bond, the latter by van der

Waals forces. The crystal structure of ice is believed to

be similar to that of wurtzite2 6 with each oxygen atom

surrounded tetrahedrally by four other oxygen atoms each

at a distance of about 2.8 R. Because of its geometry,

this is a rather difficult structure to deal with and since

the surface of the grains probably has a number of adsorbed

atoms or molecules on it which further complicates matters,

we take the following model for the purposes of making

calculations: a body centered cubic lattice with identical

force centers situated at the lattice points. With respect

to any such force center as origin, this type of lattice

has force centers at x,, Yi' zi = ip, (i + f)p with

i = 0, 1, 2, 3, .... The density of force centers is

then n = 2 p-3. We take the surface of the solid to be

uniform, that is, to correspond to atoms at some integer

(or half integer) value of, say, z (see Fig. 7).
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a 0 * 0 0 0

* . 0 '* 0 0 0

Fig. 7

Idealized solid

Our task is to calculate the potential field above this

solid.

(b) Binding forces - summation over lattice

sites - Here we are interested in binding caused by van der

Waals forces and to calculate the potential as a function

of height above the surface we take a Lennard-Jones (6-12)

type of potential for the energy of interaction between the

adsorbed atom (or molecule) and the lattice sites. This

potential is of the form

4(r) = [ () (G) = + (6o)

and represents an attraction due to London forces ( o)
L

and a valence repulsion (90). The function has a minimum

value of -e at r = 2 1/6. Its chief attribute is that it

is characterized by only two parameters: the strength

parameter e and the range parameter a, both of which can

be determined by experiment. We assume the potential energy

of, say, the hydrogen atom above the surface with the
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lattice points to be additive. Then the potential energy

of interaction of the adsorbed atom and the solid as a

function of height above the solid is

= (h;r1 ), (61)

where the sum is over the lattice sites. To evaluate

9(h), we sum over the nearby atoms in the top layer of

the solid and approximate the contribution from the more

distant lattice sites by smearing them out and replacing

their sum by an integral. Because of the shorter range of

the valence repulsion, these distant atoms will contri-

bute only to 9. One can obtain an approximate expression

for i,, ( i; " ) by smearing out all the atoms of the

solid and replacing the sum by an integral (see Fig. 8).

Such an expression would be valid for large distances from

the surface.

Fig. 8

Uniform solid
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2 /r 6  f n 2, wp dp dx

r/ n ~ ~ )+27

nTr 1 7 1 10o h5 P7 h3

i ) 3 3

=_ - . (s) ( ) • (62)

From this expression one also gets the approximate

expression for the contribution from the atoms in all the

layers below the top to be

(~L(h~ri) 3 3r() a(~

2 4E 3 p h +(63)

The sum from the distant atoms in the top layer may be

approximated by a similar integral (see Fig. 9).

F

Fig. 9

Uniform surface layer
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Zr - fr no 2 7p da (no = p )
I

2 .J2 _3 ~ = 2 2 2_2

-27rp ( + h) p dp 7r P p (R + h)

rr a 2 a2 2
,,~ (-) - )R . (64)

42 + h2

These formulae are useful for computing t9(h).

(c) Potential curves - There are three types of

locations above the lattice plane which have a symmetry and

which therefore could be positions of minimum energy (equili-

brium positions). They are shown below ("a" and "b" denote

the nearby atoms in the top layer; "o" denotes the position

of symmetry in the lattice plane).

Case A: above the midpoint of four surface atoms

4. C.

se 4a-atoms r 2 .h 2 +p2 /

0 2 2 2
S8 b-atoms rb  = h + 5p2/2

0b

Case B: above a surface atom

1 atom below r2 = h
2

-" @ , 2 2 2
4 a-atoms r = h + p

a

2. :4b-atoms r 2 = h + 2p
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Case C: above the midpoint of two atoms

A- . 2 2 2
0 . " 2 a-atoms r = h +p/4a

0

*4 b-atoms rb2 = h2 + 5P2/4

The shape of the resulting potential curves depends only

on the ratio a/p. The range a of the interaction potential

between an adsorbing H-atom and a lattice atom may be

expected to be similar to that of the interacting H-H2

system. The interaction potential for this system has been

calculated by Margenau and the curve is reproduced in the
27

book of Hirschfelder, Curtiss and Bird. The range of

this interaction is roughly 3 R, and the strength c is

between 3 x 10 erg and 5 x 1015 erg, depending on the

relative orientation of the hydrogen molecule. Since density

considerations for ice suggest a value for p of about 3 R,

we take for our calculations a/p = 1. The results of the

calculation of cV(h) for these conditions is presented

in Fig. 10 below.

At large distances from the surface the three curves

Join and go as h- . As one might expect, the lowest

energy occurs for Case A. It is interesting to note that

(mn /4c) z: -1.5, while for the interaction of a single

pair of particles ( min/4E) - -0.25. The larger binding

energy for the atom-solid system results, of course, from

the additivity of the London potentials. Generally, the
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binding energy to the solid is 5 to 10 times larger than

that for a single pair of particles.

-0.f.

-1.0

0.6 0.7 0.9 0.9 L.0 /.2z /.3

Fig. 10

Potential curves at various points above a bare surface

(d) Surface mobility - quantum mechanical "walk" -

The potential across the solid surface is extremely

important for the mobility or migration of surface atoms.

We distinguish three types of mechanisms for surface

migration:
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(i) thermal movement (no barrier)
1/2

velocity: Vt = (kT/M) (65-i)

(this type of movement would occur

only for very "smooth" surfaces)

(ii) thermal random walk (with barrier)

velocity: vb - A v, e-b/kT (65-u1)th

(A : periodicity of the lattice -

usually equal to p; )0: frequency of zero point motion

in the lattice plane; Eb: height of barrier)

(iii) quantum mechanical random walk

(barrier penetration)

velocity: V . A o et (65-i1)

a,

(t=2A f I p 1 dx; no temperature
a

dependence)

The barrier is, of course, that encountered in going from

one position of minimum energy to an adjacent one. The

path of the atom need not be constrained to a fixed height

above the lattice plane and in fact the quantum mechanically

"easiest" path might correspond to values of h greater than

the equilibrium value since the height V 0of the barrier is

likely to be smaller for larger values of h (see Fig. 11

below).
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zero Pt. %"

Fig. 11

Energy barrier V o (h) as a .function of height

Curve "a" might correspond to the position above the mid-

point of four lattice sites, curve "b" to points above the

midpoint of two sites, the path being as below (Fig. 12).

a. a

3r X

Fig. 12

Path of-migrating atom

t
The quantum mechanical barrier penetration factor (e - t

2
with t f IPI dx is a result of the WKB method applied

to one dimensional motion. Very little has been done in

the application of the WKB method for two and three

dimensional barriers. The wave function for vibrational

motion perpendicular to the solid has considerable spread

and consequently the surface atoms would be found at
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various heights above the surface. We make the following

assertion as to the value of the quantum mechanical

average (e -t> :

<e- > fe -t(h) tdh) dk (66)

Here, y0 (h) is the normalized wave function for vibra-

tional motion perpendicular to the surface and t(h) is

the exponent of the one dimensional barrier penetration

factor

t(h) =2 f Ip(x;h)I dx (67)

Actually, since the surface atoms can exist in several

vibrational states v which would be populated according to

a Boltzmann distribution, a more accurate expression than

(66) would be

<ft v>h) e Ev/kT (h) dh

e-t >T- eEv/k T  (68)

In this case, the barrier penetration factor is tempera-

ture dependent. However, for the low temperatures

encountered in interstellar grains, Ev/kT >> 1 and the

main contribution to the sum in (68) comes from the ground

state. Thus we shall use the simpler expression (66). In

the periodic potential over the solid surface we neglect

the higher Fourier components and take
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V(x;h) = V(h) (1 - cos 27r) (69)

Expanding (69) for small x, we find for the frequency of

zero point motion in the lattice plane:

0: 2M 2  (70)

If in computing the factor t(h), we neglect the zero point

energy from (70), we have

t(h) = M (h) f 1 coB 27r,? dX

4 A 2 M Vo(h) . (71)

The form of yo to be taken depends on which region of h

contributes most to the integral in (66). If most of the

contribution comes from the region near the equilibrium

position h , then Po can be taken to be a gaussian
0

1 2o~ a 1_)/4 a.(h-ho) 2

= ) e- ( = Mh/l). (72)

If the main contribution comes from large h, then a WKB

wave function would be more appropriate for qo(h):

-1/2 _i jz("),o = C'(ipI) exp (pi-f'f p(z')Idz'). (73)

In either case we can write formally

a e~f (h)

and can say that except for a numerical factor of order
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unity,

e-t>-2 max exp t-(t(h) + f(h))] (75)

4. Thermal Evaporation and Multilayers

(a) The critical temperature - When a solid

surface is in contact with a gas, an equilibrium concen-

tration of adsorbed atoms (or molecules) exists which is

determined by evaporation and replenishment from the gas.

The equilibrium concentration 9 can be found from the

equation

J(- v) 9v a e - q /  , (76)
0 0

where q is the binding energy to the surface. Solving

for 9, we have

9 = (1 + Y e- q/kT) -I  P (77)

where

(78)
0 0

At the densities of interstellar space, Y - 1020>> 1, so

that 9 has a very sharp dependence on temperature (see

Fig. 13 below).

T. T

Fig. 13

Surface concentration as a function of temperature
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Below a critical temperature T the surface becomes coveredC

with adsorbed atoms or molecules. This analysis assumes

that atoms from the gas which hit the surface stick to it

or, in other words, that the accommodation coefficient a

is close to unity. Van de Hulst has argued that it is

indeed probable that for interstellar grains a is close to

one. The interstellar grains are likely to be at a very

low temperature and while it is known that for bare metal

surfaces a --,0 as T --*0, it is also known experimentally

that for gas-covered surfaces a --*1 as T--* O. As van de

Hulst has remarked, the surface condition of the inter-

stellar grains is likely to approximate that of a gas-

covered solid. Actually, it is quite reasonable,

physically, that such a surface would exhibit efficient

kinetic energy exchange properties, since a surface with a

layer of adsorbed gas would be "softer" than a bare

surface. Landau2 8 has shown that at low temperatures and

under certain circumstances of energy exchange (which are

likely to be appropriate to the interstellar grain problem),

the accommodation coefficient is inversely proportional to

the cube of the Debye temperature. The adsorbed gases

might be thought of as decreasing the effective Debye

temperature of the solid. We shall assume, therefore, that

the sticking probability for atoms on the interstellar

grains is unity. It is clear, then, that the critical

temperature Tc is determined only by the binding energy q
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and the parameter x thru the relation

eq/kT c 
- ( 79)

(b) Adsorption energies - For the interstellar

grains it is likely that all interstellar atoms and

molecules except He and H2 are retained indefinitely on the

surface. For solid molecular hydrogen to grow in inter-

stellar space the temperature of the grains would have to

be less than 2.50 K. It is quite possible, however, that

for temperatures well above 2.50K the interstellar grains

may have a monolayer and perhaps even a double layer of H2

covering the surface. As mentioned earlier, a bare solid

surface which is of different constitution than the H2 is

likely to bind the adsorbed H2 more strongly than if it were

solid molecular hydrogen. The reason for the small H2 -H2

interaction energy is, of course, that the molecule has a

relatively small polarizability. Binding is due to the

attractive part of the 6-12 potential which represents the

London force. The London interaction potential energy of

interaction between two atomic systems a and b is roughly

given by

3 Ea Eb aa Ob

Ea+E b  
(80)

where Ea and E b are characteristic excitation energies of

the species (approximately equal to the ionization energies)
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and aa and ab are the respective polarizabilities. Some

molecules which might be candidates for constituents of the

interstellar grains are tabulated below along with their

respective electronic 
polarizabilities.

9

TABLE 1. POLARIZABILITIES OF SOME SPECIES

Molecule a x 1025 (cm 3

H2  7.9

N2  17.6

02 16.0

NH3  22.6

CH4  26.o

H20 14.9*

*P - 4wNL E/3 tabulated in L-B.

Bond Bond Polarizability x 1025 (cm3

C-H 6.5

H-N 7.5

In the calculation of binding energies we shall express

interaction energies in terms of the parameter e in the
io15

H - H2 system which we take as e = 4.0 x 10 erg. The

experimental value for iH2_H2 is about 5.0 x 10
-15 erg.

Since the excitation energies for H and H2 are approximately

the same, we shall assume that the interaction of H and H2

with any atom or molecule (X) will be related by



49.

-X 4/5 . (81)

H2 -X

It is interesting to note that (80) would predict that the

ratio of the interactions would roughly be equal to the

ratio of the respective polarizabilities. The ratio of the

polarizabilities turns out to be 0.84 which is close to

4/5.

The calculation of potential curves for adsorption was

described in the last section (section 3), and the results

for a homogeneous solid with a bare surface were presented

in Fig. 10. We now consider the case where the surface is

covered with hydrogen molecules, the molecules being

situated at the equilibrium positions above the midpoint

of four surface atoms of the bare solid. Taking these

molecules as fixed force centers, the potential curves for

the adsorption of H-atoms on this H 2-covered surface can be

calculated. We shall assume that the range parameter for

the H - H2 interaction is the same as that for the H - X

(H - solid atom) interaction. The results for EHX a =

2E are shown in Fig. 14. Here, h is measured from the

equilibrium position of the H2 layer. Fig. 15 shows how

the affinity to an H2-covered surface varies when the

strength parameter for the interaction with the bare surface

atoms is changed. Clearly, one could go on and consider

the field produced by a solid with a double layer of H2 and
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surface k/eth *L*"ol~9ayer

-/.o

0.6 0.7 0. a9 10 1.1 i.2 13 /,

Fig. 14

The Potential curves in case a are Ahown for
Various other Values of the parameter c
in Fig. 15.
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SPA Case ,A

-0.5 / , -E

C. - 30

6

-/.0

-3.6 3

4 7 A 0 . I to 1/ i1*

4,/.

Fig. 15

Potential curves above a surface with an H2 monolayer-

Case A

so on. However, the surface would then have to resemble

solid H2 for which there are experimental results (from

vapor pressure data) for the binding energy. The concen-

tration 0 of H2 on the surface of the interstellar grains

may be expected to vary with temperature in a manner similar
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to that shown in Fig. 16 below.

3

I 
t

Fig. 16

Surface concentration as a function of temperature-

critidal temperatures

Below 2.5 K, solid H2 would grow.

(c) Vibrational energy transfer on recombination -

The critical temperatures below which a layer is formed

depend on the H2 density in the surrounding gas although

not strongly. It will be shown later that one can expect

molecular densities in H I clouds qomparable to that

of the atomic densities on the average. If, however, the

molecules which recombine on the surface of the grains do

not leave immediately but come to equilibrium with the

solid, then the density which determines Tc is that of

the atomic hydrogen. In previous papers on the subject,

it has generally been assumed that since on recombination

4.5 eV of excess energy is available, the molecule formed
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will immediately leave the surface. This is not

necessarily the case. The 4.5 eV of excess energy is

vibrational energy and for the molecule to escape from

the solid, this internal energy must be transferred to

translational energy. Moreover, this energy transfer

would have to occur in roughly half the period Tv of

vibration of the molecule. If we denote by M the mass

of the hydrogen atom and by F the mean force exerted on

the molecule by the crystal as the molecule vibrates, then

the average kinetic energy of translation which the

molecule acquires is

T 7/4M- (f Fdt ) 2 p I
4m 16M (82)

The mean force F can be taken to be (see Fig. 17)

--A (83)

'--A

Fig. 17

Potential across a surface
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We take the orientation of the molecule to be as shown in

Fig. 17 since the recombination is likely to take place

thru the mechanism u. (recombination between two atoms in

the same layer). Clearly, • is to be compared with q.

We get

q - -XY)~ . (84)

With v 10-15 sec, A z 3 , q ' 0.02 eV, we get

T 0- 6 which would seem to indicate that not enough

energy is transferred for the molecule to escape from the

solid. This reasoning Is perhaps a bit pessimistic. It

is coneeivable that in the recombination process during

which the atoms are attracting themselves by the strong

valence force of the singlet state, the energy transfer to

the solid (Debye phonon) necessary to form a bound system

occurs while the two atoms are situated at, say, the mid-

point between two equilibrium sites. As energy is

transferred, the vibrational wave function for the molecule

shrinks and the two atom system becomes more like a

composite particle. Now, during the recombination the

molecule is likely to be found at a height above the solid

equal to the equilibrium h (for Case A). If the potential

curve for Case C (midpoint between the equilibrium sites)

is positive at this height, the molecule might then get

enough kinetic energy (in sliding down the potential curve)

to escape from the surface. However, as both Fig. 10 and



55.

Fig. 14 show, curve C is negative at the equilibrium h

for curve A. For a more irregular surface, however, a

pceitive value is conceivable. Actually, it is quite

immaterial for the hydrogen molecule problem whether this

happens or not since if the H2 layer .does not form thru

atomic recombination, it will form because of the flux JH

of H2 molecules in the surrounding gas. As long as the

H2 density is comparable to the atomic density, the value

of Tc can for all practical purposes be calculated using a

J for the atomic density. It may be well to point out

here that the relaxation time for forming a layer of

hydrogen is a0/J - 100 yr so that there is plenty of time

for a layer to build up. This time is, however, long

compared to the fraction of a second which an H-atom spends

on a grain before it encounters (on migration) another atom

to combine with.

While for the H2 problem it does not matter whether

the molecules formed on the surface leave immediately or

not, it is crucial for the suggestion of McNally 3 0 that CH

can form on the interstellar grains that the CH molecule

should leave the surface immediately - if this molecule

would not evaporate at the particular value of temperature

which the grains have.

5. The Recombination Coefficient at Low Temperatures -

It appears likely that the most important mechanism for H2

formation on grains is by ui in which the surface atoms
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which are held by van der Waals forces migrate about as a

two dimensional gas and occasionally encounter one another

to form a molecule. For the binding forces which were

calculated in the last section, it also appears that the

principle mechanism for this random walk process is that of

quantum mechanical barrier penetration. For values of the

periodicity A of about 3 R and for barrier heights which

one would expect for van der Waals forces, one finds by

employing (75) that <e-t D - 10-2. The inequality

(56), which is to be satisfied if y is close to unity,

becomes, when U-u d 9

2ao V (a) q (a)

e- 1 , (85)
J D

0

where the superscript (a) means that the parameters for

hydrogen atoms are to be used. On the other hand, (77)

gives a condition to be satisfied if a molecular layer is

not to form (that is, if the molecules formed are to be

able to evaporate from the surface). This condition is

0 oe - m) k >> 1 (86)

J

where the superscript (m) stands for molecule. For inter-
5 _2 _1

stellar densities, J - 3 x 10 cm sec , and substituting
o (a )Z -o(in) 1013 see-1, Co 1015 cm- 2, (85) and (86)

give essentially
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2 q (a )/kT 24
e )> #/D -10o (87)

0

eq(m)/T<< 10 , (88)

where as defined earlier,

a o )o/j (89)

These inequalities put limits on the value which the

temperature T of the interstellar grains can have if the

recombination coefficient is to be close to one, the limits

being

Tc < T<T , (90)

where

(a)
T m q (a (91)

m 2.3x 12 k

(m)
T Q . (92)
c 2.3x 22 k

Physically, what the inequality (90) means is that the

grains must be hot enough so that an additional layer of H2

must not form (in other words, that the H2 will evaporate

off) and cold enough so that the atoms which stick

momentarily to the grain surface find another atom to

recombine with before they, the atoms, evaporate off. An

inequality like (90) must hold for each layer of adsorbed

H2. That is, at higher temperatures where there is a bare
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surface there will be a particular range of temperature in

which T -p 1, and also at lower temperatures where there

will be a monolayer of H2 on the surface, a different

(because of the different binding energies involved) range

of temperature will exist where 7 1. The results of the

calculation of T and T and hence of the recombination
c m

coefficient are presented in Fig. 18 which shows the

temperature dependence of y for various values of e (Co

and e were defined earlier).

1.1]

1 0 A.0

Fig. 18

Recombination coefficient as'a function of surface

temperature
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We see that at high grain temperatures, where recombination

would occur on the bare surface, the range of temperature

where y-- 1 is quite strongly dependent on the interaction

parameter e0  However, at lower temperatures where there

is an H2 layer upon which recombination takes place, the

range of temperature where T --t 1 is rather weakly dependent

on c . This is to be expected, since the binding energies

(which determine Tc and Tm are due mostly to the interaction

with the top layer. It might be mentioned that the

recombination on a second layer of H2 at even lower

temperatures can be neglected, since such a surface would

be very similar to that of solid H2 and the molecules formed

would remain on the surface as succeeding layers formed.

It is significant that the recombination coefficient

for the idealized case of a uniform surface has maxima

within the expected temperature range of the grains of

5-200 K. Since the grains are likely to have a distribution

of sizes and so a distribution of temperatures, the width

of the maxima will be increased. Moreover, irregularities

in the surfaces of the grains will smear out the regions

where y --y1 so that the effective recombination coefficient

will probably not be reduced to very low values anywhere

within the temperature range 5-20°K.
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6. Effects of Radiation

So far we have neglected the effects of photo-

detachment of atoms (and molecules) from the surface of the

grains by the interstellar radiation field. We shall see

that the radiation field can produce quite different results

depending on the surface condition of the grains. The effects

of radiation on the atoms which are momentarily bound on the

surface (or on the H2 monolayer) are negligible. These

atoms migrate about and quickly recombine and escape from

the surface in a time short compared with the characteristic

time for interaction with the interstellar radiation field.

Consider, however, the effects of the photon flux on the

surface atoms of the grains. If the grains do not have an

H monolayer, these atoms (which are held by valence forces)

can escape from the surface if the photons induce a transi-

tion from a bonding to an anti-bonding orbital of the atom-

solid system. This is the most efficient mechanism for

photodetachment, since the "vibrational overlap factor" is

unity. The number of photodetached atoms per cm
2 per sec

is then given by

_1

p 0' (9)

where 1 is the rate constant (in see
-1 ) for the photo-

detachment of a single hydrogen atom (we assume that the

surface bond is to an H-atom). It can be estimated from

equation (136) of section IlIA with an additional factor
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1/2 due to the fact that the atoms on the surface of the

grains can receive galactic radiation only from a solid

angle 2r instead of 4r. Thus, we estimate -1 from

_1 a X 3 e~f (4- ..(94)
- 4 mc

If u < J, the atoms which strike the surface will,P

on migration, fill the vacant sites. If the recombination

coefficient is unity in the absence of the interstellar

radiation field, it will then be, clearly,

= 1 - up/J . (95)

If up > J, all the atoms which strike the surface will be

used in filling the vacated (by photodetachment) sites and

the recombination coefficient will go to zero.

If the surface has a monolayer of (van der Waals)

adsorbed H2 molecules on top of which recombination occurs,

the mechanism for photodetachment is slightly different.

Here the molecules can be ejected if they make a transition

to a state in which the van der Waals forces between the

molecule and surface atoms are repulsive so that the mole-

cules are repelled from the surface. Here, however, the

radiation field has an effect on the recombination

coefficient only if the temperature of the grains is such

that y -- 0 in the absence of the radiation field (in other

words, the region between the maxima in Fig. 18). The

interesting result is that the radiation flux increases the



62.

recombination coefficient. It does so by ejecting molecules

which would otherwise stay on the surface because the grains

are too cold to evaporate them. The recombination

coefficient in this region is, instead of zero,

( 2Up/J 2u; < J

= 1 2u' > j (96)

p

expression (94).

The overall effect of radiation can be summarized in

Figs. 19a, 19b, and 19c below. yo denotes the value of the

recombination coefficient in the absence of the radiation

field.

J

Fig. 19a

Recombinatibcoeff.icient as a flinction of
photodetachment rate: (a) Bare surface,

'o -1
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jI

Fig. 19b

H2 covered surface, y = 0

2!

Fig. 19c

H2 covered surface, yo = 1
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It is difficult to estimate u (or u') for the grains
P p

without knowing the chemical properties of their surface.

If we take a wavelength of 1000 R and an oscillator strength

of 0.1, we find, using a spectral energy density factor eX

from the work of Lambrecht, 3 1 u 5 x 10 cm sec
P5 2 1i

This rate is still smaller than J (z 3 x 105 cm- sec )

but not much smaller, and it is conceivable that in regions

of the galaxy where the radiation field is strong the effects

of radiation are important. Moreover, if the predominant

temperature of the grains lies where yo = 0, the radiation

field can produce a finite recombination coefficient.

For the case of a bare surface which exists for high

grain temperatures, perhaps if the hydrogen atoms are

adsorbed thru a bond involving a carbon atom or ion the

calculations of the photodissociation rate of CH and CH+

by Bates and Spitzer32 are pertinent. They find the rate

constants for photodissociation by galactic radiation to be:

Process Rate constant ( i)

CH + y- C + H 1.5 x10 sec

CH+ + y- C+ + H 5 x 10 - 1 3 sec -1

These rate constants for the case of an atom adsorbed on

the surface of the grains should be halved for the reason

previously discussed (solid angle 2w). The resulting

up 's are:
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1 3 _2 _
(u ) CH n 7 x 10 cm sec

12 _2 .
(u p) = 2.5 x 10 cm sec

pCH+

which are smaller than J by almost two orders of magnitude.

C. Alternate Mechanisms

Here we consider a number of other mechanisms for

molecule formation. We shall see that these mechanisms are

only capable of producing molecular densities which are much

smaller than that resulting from the catalytic reaction on

grain surfaces. Nevertheless, these alternate mechanisms

can usually be understood better than the grain recombination

reaction and it is important to consider them, especially

if the grains should turn out to be of a vastly different

nature than presently thought.

1. Chemical Exchange Reactions

Herzberg"" has enumerated a number of exothermic

reactions of the form AB + C --+ AC + B which produce H2

The activation energies for these reactions may be

estimated from the semi-emperical relation

A = 0.055 DAB (97)

due to Hirschfelder (DAB is the dissociation energy of the

molecule AB). Four such reactions are given below along

with their associated activation energies calculated from

(97).
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Reaction A

(i) CH + H - C + H 2  0.19 eV

(ii) CH+ + H-,C+ + H2  0. eV

(ii) CH 4  
*~*~ +H0.20 eV

(iii) NH + H -N + H2  0.21 eV

(iv) OH + H -0 + H2  0.24 eV

The reaction rate of, say, (i) would be roughly given by

• eA/kTnH2  riCH nH aColl Ve (98)

where a is the collision cross section and v is the
coll

mean velocity of the H-atoms. With T = 1000 K, A/kT = 22,

and the factor e
-A/kT makes the reaction rate extremely

small. With T = 100°oK, however, we get, using 
nCH = 10-

7,

cm_36 lO_1

nH = 10 cm aColl 0 cm 2 and = 3 x 105 cm/sec,

-19 _3 _l

nH 3 x cm sec

Such high temperatures can be produced in inelastic cloud-

cloud collisions and while there is some question as to

whether magnetic fields might prevent the inelastic

collisions (and high temperatures), we shall consider the

case where the clouds are heated. The clouds, after being

heated to about 3000
0 K, quickly cool down. The rate of

cooling is proportional to the H2 concentration in the

cloud and the time to cool to, say, 500
0K (see Fig. 33 of

section IVC2) is about 2 x 109+P sec, where p = log(nH/nH2).

In this section we shall be dealing with moderate H2
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concentrations and shall take p = 4 and so a time

Sh = 2 x 1013 sec during which the cloud stays heated.

This time is so long that essentially all of the CH would

undergo the chemical reaction to produce H2 . If nCH is

the CH density before the cloud collision (roughly equal

to the observed density 10
- 7 cm-

3 ) and Z - 10-
1 4  _l

is the collision frequency of the clouds, the rate of H2

formation thru this mechanism would be

H ZnH o21 _3 _Il

nH = Zn C l0 cm sec . (99)

Consideration of reactions (ii), (iii), and (iv) leads to

similar results.

+
2. Reactions Involving 

H2

(a) H2 + + H H2 + p - This reaction might also

be classified as a chemical exchange reaction. It is

exothermic by almost 2 eV and could conceivably be very fast

if the activation energy is small ((97) gives A = 0.15 eV).

The rate of formation of H2 in this manner can be written as

nil2 = ae nH nHi2+ (100)

The problem is that of the formation of H2 + which can be

formed either by ionization of H2 by cosmic rays (p + H2

H 2+ + p + e) or by radiative association of a proton and

a hydrogen atom (p + H - H2 + Y). The H2+ is very likely

to be destroyed by dissociative recombination (H2+ + e -2H).
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The rate of destruction of H2  in this manner can be

written as

2 + = -adr ne nl2+ (101)

where the rate constant adr is likely 
to be quite large3

1

(0 i0-7 cm 3 sec- ) since the process does not involve the

emission of a photon. The coulomb attraction between the

electron and molecular ion also makes the cross section Very

large. If H2+ is formed principally by ionization of H2 by

I1
cosmic rays and suprathermal particles (rate constantsi

see section IIIC3), the equilibrium concentration will be

nH 2 si

nH+ =n2 - (102)

ne 
adr

If the molecular ion is formed by the recombination H + p--

H + y, the equilibrium concentration would be
2

nH np _5 (103)

nl 2 + = ne dr

Here 5 is the rate constant for the radiative association

of H2+ and has been calculated by Bates
3 5 (who used the

notation 'y5 ) for temperatures from 5000K to 64,OO0OK.

Several values are listed below
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T T5

500K 1.3 x 0-18 cm3 sec-1

1000 5.2 x 10-18

2000 1.9 x 10 - 1 7

4000 6.2 x 10-16

The recombination involves a downward transition between

the two states of H2+ shown in Fig. 20.

Fig. 20

+

Potential curves for lowest states of H2

At low temperatures most of the transitions occur at large

R where the transition probability is small. This is the

main reason for the strong decrease in y5 with decreasing

temperature.

In calculating the rate of formation of H2 by (100) one

should use the expression (103) for the H2+ concentration

since, although the nH 2+ given by (102) may be larger, it

arises from the destruction of a hydrogen molecule, and we
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are concerned with the effective rate of formation of H2.

Thus we get by substituting (103) into (100):

2

H nHp 0 e 5 (104)

2 ne adr

The proton concentration n arises from the ionization ofp

hydrogen atoms by cosmic rays (and suprathermal particles)

and from electron captures in excited states (rate constant

0 pv, see section IVA2) and is given by
p

-1
nH si

n_ (105)
P n a .v

e p

Inserting this into (104) we have

3 -1

AH2  n 2 - e d C 
(106)

e dr upv

Since y5 is very small at low temperature, H2 can form thru

this chain of processes only if the clouds are heated. We

can estimate the effective rate by setting T5 equal to its

value q5 at, say, 10060K and by multiplying (106) by Z h

(essentially the fraction of the time that the cloud is

heated). Thus we have, finally,

3 -1

2  e -  'i h . (107)

e adr P
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-l

The value of the rate constant tsis very uncertain although

upper and lower limits can be established. It will be shown

later on in this work that these limits are

19 _l 1 15 1

5 x 10- sec < s-1 < 10- sec

si

If the cosmic ray flux is anywhere near the upper limit

given above, the electron (and proton) densities in H I

clouds will be very high and will be given by

n , si (108)

e H (
p

4
instead of by the usually quoted value of 2 x 10- n

corresponding to the cosmic abundance of atoms capable of

being ionized by photons of energy < 13.6 eV. If (108) is

substituted into (107), we get

S nH e _dr Z (107')2~ a dr

which is independent of the value of the cosmic ray flux.
_3 15

Substituting the values n = 10 cm , a e/adr 10 - 3 (a

rough estimate), 75 = 5 x 10-18 cm3 sec - 1 , and Z Th = 0.2

we obtain a rate

_19 _ _1

H2  
10 19 cm 

sec 
.

On the other hand, if we take the lower limit Tsi = 5 x
1 1 3 _3 --- 0- 12  

3

1O19 sec-, n = 2 x 10- cm , 1pV = 10 cm sec

(the approximate value at 1000°K), and the values Just
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given for the other parameters, we get from (107) the same
• l019 _3 _

rate 2 - 10 cm sec 1 This results because the

electron density produced by cosmic rays, even for their

minimum flux, is approximately the same as the figure

4
10- nH which arises from the atoms with ionization

potential less than 13.6 eV.

(b) Radiative capture - The rate constant for

the recombination reaction (first suggested as a mechanism

for H2 formation by Herzberg 
3 3 )

2

H2 + e -- * H2 +

can be estimated to within a factor of about 2. It is given

by

a vf, nv(v) v f(v) dv ,(109)

where the summation is over all electronic (n') and

vibrational (v') states of the H 2 molecule and the integra-

tion is over the velocity distribution of the electrons.

We neglect rotational fine structure. The cross section

anv , has been neither calculated nor measured. The cross

section for the reverse reaction, that is, the photo-

ionization reaction

+
Y+ H2 ---* H2  + e

has been measured by Lee and Weissler. The measurements

are not very accurate, however, since it is difficult to
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separate the absorption continuum due to ionization form

that due to dissociation. The experimental cross section

is sketched below (see also Appendix A).

10

800 700 6o0 5,0

Fig. 21

Photoionization cross section of H
2

The edge at 1 = 15.4 eV corresponding to photoionization

from the ground electronic and vibrational state of H to
+ 2

the ground electronic and vibrational state of H 2  If we

denote the cross section for photoionization by aAB and

the cross section for radiative capture between the same

energy states by aBA, we have a straightforward application

of the principle of detailed balance

aAB 1 mcv 2

aBA 

(1mc)

We have omitted the ratio of the degeneracies which is unity.

The relation between a and v is



74.

= E,,- E + Ev,,;ell - E +1 2 (Ii

where E e denotes electronic energy and Ev; e vibrational

energy of the respective molecules. The experimental cross

section aBA is, of course, that for the ground electronic

state E , of H . We can obtain an approximate expression
e2

for the rate constant (109) by considering only recombina-

tions to this ground electronic state. Since we are con-

1 2
sidering low temperatures where 2mv < E - E,, and since

the vibrational energies are much smaller than the

electronic energies, we can set c in (111) equal to ao (the

threshold frequency). Substituting aBA (
= an'v '(v)) from

(110) into (109), we have

a V' - 2 ZfAB ic
(-) v f(v) dv (112)

We now make use of the Franck-Condon principle (see Appendix

A) which tells us that the cross section for radiative

processes like the one we are considering is proportional

to an electronic factor and a vibrational overlap factor

2
I<v'I v">I . We can then make use of the vibrational sum

rule

Zl<vlv">I = I<v"lv,>l 2 . 1 (113)
V/ V"'

by employing this in (112). We then choose a value of the

cross section a ABwhere the photon energy is large enough

that transitions can occur to essentially all vibrational
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states v' so that (l3) can be applied. Such photon

energies occur already around 700 where the cross section

from Fig. 20 is AB  6 x 10-18 cm Substituting this

cross section into (112) and carrying out the integration

over v using
23/2 2 -my /ekT

f(v) = 4r (m/2r kT) v e-, (114)

we find

-- "0) 2 ( 8 m -A
a v = (115)

mc C ZA Z
To calculate the rate of formation of H2 by radiative

capture we again determine the "effective" H 2+ concentration

by (103) and (105) so that we have

2 -1
nH rsi 'Y5 a-- (116)
2 e - dr

P

Once again, because of the strong temperature dependence of

5' ,we require the clouds to be heated and replace y5 by its

value at 10000K and introduce a factor Z Th as in (107).

Thus,
2 -i

AH -

nH  S_.j Z- Z h . (I

n dr

Here one gets the largest rate with a high cosmic ray rate
-i i015 sec.lwein

constant. Taking the upper limit Tsi = 10 sec we find

i0_22 -3 _in'' C 5 x0 cm sec
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states v' so that (ll3) can be applied. Such photon

energies occur already around 700 where the cross section

from Fig. 20 is YAB 6 x 10-18 cm. Substituting this

cross section into (112) and carrying out the integration

over v using

f(v) = 4r (m/2r kT) v2 emv2 /2kT (114)

we find

-- co =r AB217= -- )(115)

To calculate the rate of formation of H2 by radiative

capture we again determine the "effective" H2+ concentration

by (103) and (105) so that we have

2 -1
nH si 75 aV (116)

2 ne a a dr
P

Once again, because of the strong temperature dependence of

y 5, we require the clouds to be heated and replace T 5 by its

value at 10000K and introduce a factor Z Th as in (107).

Thus,

2 -1

2 n Hi a'Z h (117)

e dr

Here one gets the largest rate with a high cosmic ray rate
_i 0_5 1

constant. Taking the upper limit Tsi = 10 sec- we find

10_22 -3 _inH2 $ 5 x 10 cm sec
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i 19 _1
while the lower limit - 5 x 10 see gives

si

2 _3 _i.

H= 5 x 10- cm sec

2

3. Associative Detachment

The reaction

H + H -- )H2 + e

called "associative detachment", has been considered by Pagel

for its role in the solar atmosphere and more recently by

37
McDowell for the interstellar H I clouds. The rate of

formation of H2 by this mechanism would be given by

n Had nH (118)

where aad is the rate constant. The H concentration is

determined by photodetachment (rate constant T-1 ) and

radiative association (rate constant a ) and is given by

= aa

Td

Substitution of this expression into (118) gives

A2= aad cay n.2 n (120)
2 IT- -e

yd

McDowell estimates the rate constants ad and a to be

.lm 1I/2 3 _i2

Cad = 1.2 x T cm3 sec , (121)

and
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17 1/2 3 1
S1.5 x 1- T cm sec (122)

ay

where T is the kinetic temperature. The rate constant

yd is more uncertain since it involves the interstellar
d

radiation field. McDowell suggests a value 2 x 10-I sec -I

If we take the usual densities nH = 10 cm
- 3 , ne = 2 x 10

-3

cm-3 and a temperature of 1000K, we have from (120), (121),

and (122)

_x10 _.3 _l

H2 2 x 10i0 cm sec

22

If, however, we take a higher electron density of 6 x 10-
_3

cm which one obtains from (108) using the upper limit
i015 _.l

sec ) to the cosmic ray ionization rate constant

we have

o19 _.3 .
H 2z: 6 x 1 cm sec

D. Summary of Mechanisms

The expected rates for formation of H2 under "normal"

3 0
conditions (n = 10 cm- , T = 10K) are summarized in

Table 2 below.
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Table 2

Mechanism Rate (H2

CH + H - H2 + C 10
2 1 cm

- 3 sec
- 1

+ _19

H + H -- H + p 
10

2 2

+ 2if .22 *

H + e-. H + Y 5 x 10 to 5 x 10-
2 2

120 19"

H- + H - H + e 2 x10 to 6 x 10-

2
• lO 15

H + H-S -- 2 + S (surf. rec.) 4 x l- (y = )

* Depending on cosmic ray flux (or electron density)

We see that the rate of formation through the catalytic

reaction on the surface of the interstellar grains can be

much larger (by a factor 4 10 4 ) than that of any of the

other mechanisms considered. However, we know really very

little about the interstellar grains, especially their

chemical composition. Moreover, the recombination

coefficient for the grains is apparently strongly dependent

on their temperature as was shown for the idealized case of

a uniform surface. In spite of these uncertainties, it is

the opinion of the writer that unless the grains have a

structure vastly different from what we now believe them to

have, the recombination coefficient is very likely to be

between 0.1 and 1. For it was shown that for the idealized
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case the recombination coefficient has maxima in the

expected temperature range of the grains of 5-20°K.

Irregularities in the surface of the grains are likely to

smear out considerably the interval of grain temperature

where y 9-1. Also, as was shown, the galactic radiation

field may help form molecules by ejecting them from the

surface of the grains when otherwise they would be held

indefinitely.

Some have suggested that the grains may have so-called

"active sites" on their surface which would gather up

hydrogen atoms easily and hold them strongly, but which

would readily give them up to other hydrogen atoms to form

molecules. This may well be the case if there are free

radicals on the surface. It is extremely difficult, however,

to estimate quantitatively such an effect. One can only

guess what fraction of the surface has such "active sites".

It is clear, though, that such an effect can only increase

the recombination coefficient.

While our lack of knowledge of the grains forces us to

make qualified predictions of the recombination rate of grain

surfaces, this is not so for all of the other reactions

listed in Table 2. The rates for the first three reactions

listed are esimtated on the assumption that the clouds are

heated periodically (in cloud-cloud collisions). However,

the associative detachment reaction H_ + H --*H 2 + e does

not require high temperatures but only that there are free
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electrons around (which can attach themselves to hydrogen

atoms). There is certain to be enough electrons to form H-,

even if the electrons must come from the ionization of

hydrogen atoms by cosmic rays. Hence the associative

detachment mechanism is completely understood and will

produce H2 if all other processes fail. Thus, while the

catalytic reaction on grain surfaces provides us with an

estimate of the upper limit to the rate of molecule forma-

tion, the rate calculated from the associative detachment

process gives us a lower limit.



III. DISSOCIATIVE PROCESSES FOR A STATIC INTERSTELLAR

MEDIUM

A. Photodissociation Through the Forbidden Transition

++ 3 +

As a result of the high opacity of atomic hydrogen for

photon energies beyond the Lyman limit (13.6 eV), the

galactic radiation field in the interior of H I clouds suffers

a sharp cutoff at 912 R. Because of this cutoff, one is led

to consider processes involving radiation of wavelength
0

S> 912 A. The simplest of such processes is that of

photodissociation thru the transition I + 3 + (see
g u

Fig. 1) which requires photon energies of only 8-10 eV.

Kahn3 8 and McCrea and McNally 1 7 considered this mechanism

to be the main cause of the dissociation of H The rate

of dissociation can be written in terms of the photo-

dissociation crossection a(c) and the photon flux dJ, as

(AH2 )d = nHf (w) (123)

= n HJG(CO) (0 d . (124~)

Since the crossection is peaked around a frequency )0, we

can take J out of the integral (124) and set it equal to

81.
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the value Jo corresponding to the frequency wo where a(w)

is a maximum. Then we employ (A21) from Appendix A which

gives the result

- ,d 2  (125)

with
2 2

= 2re T (126)

"id m c e

Denoting the ground state (Z by Im'> and the

repulsive state ( 3Z+)' by In'> , the oscillator strength

If would be given by
e

e o I<n' Ir I1m'> m , (127)

where the wave functions are to be calculated at the

equilibrium internuclear separation (R0) of the ground

state. The dipole operator is simply Jr + I , where Ir

and r2 are the (vector) position operators of the two

electrons. The matrix element <n' I ir + Ir2Jm'> involves

an integral over the position space of both electrons and a

sum over spins. If Im'> were purely singlet and In'

purely triplet, this matrix element would vanish because

of the orthogonality of the spin wave functions. A similar

result would be obtained for the matrix elements involved

in magnetic dipole and quadrupole radiation. The vanishing

of the matrix element results only from the assumption that

the complete wave function can be written as a product of a
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part describing the space properties of the state and a part,

describing the spin. It does not depend on the validity of

the Born-Oppenheimer approximation (see Appendix A). That

the total wave function can be written as a product of space

and spin wave functions follows exactly if the Hamiltonian

for the molecule contains no terms coupling the space and

spin coordinates. Actually, there are such terms although

they are small. Both the spin-spin and spin-orbit inter-

action terms are of this nature. Because of their presence,

the ground state is not purely singlet but has a small

triplet part. Similarly, the repulsive state is partly

singlet. If we write the Hamiltonian for the molecule as

H =H + H' , (128)

where H contains all the terms not involving spin and H'

is the part due to spin-spin and spin-orbit interactions

(H' = H + Hso)' then we can estimate the amount of mixing

of the wave functions. From simple perturbation theory,

jm') = Im) +z <k I Hk k> +,k m k '
(129)

<' = + K <n IH'I) <tl +<n'l =<nl 2E (° ) - E~o

The states without the primes are the unperturbed states and

the E(°)'s are the unperturbed energies (H ok) (o)
0 ~Ek Ik>
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The primes on the summation signs mean that the term k = m

in the first sum and i = n in the second sum are omitted.

Employing the expansions (129), we have for the dipole matrix

element:

n, i I i+ lItm,> = 1 <kiH'I m>

m k
(130)

" n InH) 2) <,I Ir{ + W21 m> ++ E(o) (o07..
n -E

The operators Hss and Hso are similar to those for the helium

atom 3 9 and their matrix elements are both of the order of

2

magnitude a i-, a being the fine structure constant. Since

0 2

the energy denominators are of the order of e/a 0 and the

dipole matrix elements are of the order of a0 , we can expect
2

a value of <n' Y' + Ir )m'> of the order of a a0.
1- 2 mwa 2 2

This gives an oscillator strength F fm (a a

e2 2 2

Setting ft ) - e /a , we have, since a°  1 2 /m e 2

T 4 f -- .(1131)

e

This estimate is perhaps a little too high since we have

assumed large matrix elements throughout. The correct value

is probably between 10
-10 and 10 8 but in any case it is

considerably smaller than the value 10
° 5 used by Kahn and

by McCrea and McNally. The associated rate constant -

yd

calculated from (126) will also be reduced accordingly.
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The value of the interstellar spectral flux J, can be
31

found from the work of Lambrecht who gives the spectral

distribution of the energy density as

de

- e . (132)

The relation between e and JC may be found from

dJ =c de d (133)

giving jD in terms of e X

3
Jj = 2r e

'Ic

where

a - . (135)

Substituting (134) into (136) we have, since a = 2/fc,

3

- = a A 3 e (136)
2 mc

For the 1 g - 3 " transition, A 1500 A, and using a

corresponding eA from Lambrecht of e. 7 x 10 erg cm- ,

and an T of l0- 9 we find
e

S1= 3 x 10 sec 1

,yd

This rate constant is four orders of magnitude smaller than

the value calculated by Kahn. We shall see that there are

other processes which are much more effective in dissocia-

ting the molecule so that the - 3 dissociative
g -u
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transition can be neglected altogether.

B. Resonance-Fluorescence and Raman Excitation

1. Resonance-fluorescence

The edge for the photodissociation of H2 thru an

allowed transition occurs at 14.5 eV, that is, beyond the

Lyman limit. This edge corresponds to a dissociation in

which one of the H-atoms goes off in the first excited state

(see Appendix A). The energy 14.5 eV is needed if the

molecule is initially in the ground vibrational state. Since

the energy difference between vibrational states is about

0.53 eV, a molecule in the second vibrational state would

require photon energies less than 13.5 eV for photodissocia-

tion. This photon energy is below the Lyman limit and so

should be present in the energy spectrum of the galactic

radiation field. Thus, if there were some way in which the

molecule could get into the second (or third, fourth, etc.)

excited vibrational state, it could be dissociated by the

galactic radiation field. The population of excited states

by thermal means is negligible, since the excitation energy

is much greater than kT ( = 0.01 eV). However, there are

two other mechanisms for the population of excited vibrational

states which might be important and which are very interesting

in themselves.

The first such mechanism that we shall consider is that

of resonance-fluorescence which can populate excited

vibrational states in the following manner. The molecule
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in the ground state absorbs a photon which causes a transi-

tion to an excited electronic state (e.g., the B or C state).

8
After a time of the order of 10 seconds the molecule drops

down to the ground electronic state. In this process any

of the vibrational levels of the ground electronic state

can be excited. (Actually, the vibrational continuum of the

ground state can be excited in this manner although it is a

very unlikely process, the vibrational overlap factors

involved being very small.) The relative probability of a

certain level v being excited depends only on the vibrational

overlap factors involved. The vibrational levels are

predominantly de-excited by quadrupole transitions which have

a probability per unit time for spontaneous emission of

about
1 6 A = 2 x 10

- 7 sec . If the rate constant (in sec-)
-

for the excitation of the resonance lines is denoted by B,

the relative population of the excited vibrational states

would be

nv/no B/A . (137)

If oscillator strengths of unity are taken for the resonance

lines, we find by employing (136) with A = 1000 2 that

9 1.j
B -10 - sec - . This would produce a population of excited

vibrational states of n/n o % 10-2 which would seem to imply

that the process is extremely important as a dissociation

mechanism (the rate constant for dissociation would then be

roughly B nv/n o - B 2A - 10"I1 sec ). However, the

mechanism fails for the following reason. Because the
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absorption coefficient is so high for the resonance lines,

essentially all the H2 in a cloud is shielded by self

absorption from these lines. For example, with a density

of nH - 1 cm and a path length of 1 pc, the optical

2 6
depth in the resonance lines is of the order of 106 . Thus,

the molecular hydrogen is in a sense prevented from being

photodissociated by its own self absorption.

One might wonder whether these resonance lines would

eat their way thru the H2 and thus dissociate the whole

cloud. Actually, the time required for a resonance line

to do this is likely to be very long, with roughly one

characteristic time for dissociation needed for each optical

thickness of H2 which is dissociated. Moreover, one can

treat the problem as a steady state one and calculate the

radius of the sphere of dissociated hydrogen in a manner

similar to that used to calculate the radii of ionized

regions (see section IVA). When this is done one finds that

in the steady state the resonance line penetrates only a

very short distance into the cloud, even if the rates of

formation of H2 is much slower.

2. Raman scattering

Vibrational levels can also be excited by Raman

scattering. However, the selection rule for the vibrational

quantum number v in Raman scattering is Av = + 1, so that a

Raman population of the second excited vibrational state would

involve a two step process. If we again denote the
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spontaneous radiation transition probability per unit time

for excited states by A and the transition probability per

unit time for excitation by Raman scattering by B, we will

have for the steady state population of excited states

(n = density in ground state, n1 - density in first
0

excited state, etc.)

o B

n n (B 
2

2 0

(138)

The rate constant B would be calculated from the (Stokes)

SR
Raman cross section a. by

B=SR do(1,9)

Since Raman scattering is a process whereby a photon

is absorbed and re-emitted ("second order" process), its
25

cross section is very small ( , 10-2 5 cm ) except where there

is a resonance at which the cross section is very large.

However, since resonance Raman scattering occurs at the same

frequencies as that of the resonance absorption lines which

are optically thick, the contribution from resonance Raman

scattering can be neglected.
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We now consider the effects of non-resonance Raman

scattering. Here the cross section can be written for

prActical. purposes as

SR 8rW 4/all 2a ~ =' I(lkO)
- CT

a' is the so-called "derived polarizability" and is

essentially given by f)R < vjR - Ro l v'> , that is,

0

the product of the derivative of the polarizability with

respect to the internuclear separation and the matrix

element of the variation from the equilibrium distance.

The order of magnitude of a' is roughly 0.l where

a 6. ao ) is the polarizability.

To calculate B from (139), we shall take the inter-

stellar radiation field to be that of a black body at

T = 10 OK diluted by a factor W - 10 -
. Since the

6
integrand in (139) is proportional to a) , we take the Wien

approximation to the radiation formula. Further, since the

maximum of the integral occurs around Ii u - 6 kT ' 6 eV,0

we shall take the integration over a to be from 0 to co, thus

2 f6

8 r Ia'I V .W 6 _w/kTB 3 7r2c 6D ..-- e dal

r c 6 (kT 0 /h)
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14 10_25 3 0
With W = 10- , a' 10 cm , T = 10 K, we get

0

l019 -l

B - 6 x 10- sec

Thus, B/A 3 x 10 and the fraction of molecules in the

23
second excited vibrational state will be - 10- 3

. This

fraction is so small that the process can be completely

neglected. It might be argued that near bright stars the

radiation field will be much more intense and consequently

the Raman process will be enhanced. However, it is diffi-

cult to conceive of an increase in B of more than about 3

orders of magnitude and it seems safe to say that the Raman

process can be neglected altogether.

C. Cosmic Rays and Suprathermal Particles

1. Energy spectrum and low energy cut-off

Cosmic ray protons cause ionization (formation of

H2+ ) of hydrogen molecules. Since these H2+ molecules are

quickly dissociated either by photodissociation or by

dissociative recombination (see section II-C), formation of

H 2+ can be considered equivalent to dissociation. Most of

the data available on the cosmic ray flux is for energies >

10 BeV where the flux follows a power law spectrum
4 o :

J(E) = 0.46 E 5 particles/cm 2/sec/ster/BeV

interval.

2
Here E = T + Mc is the total energy in BeV. At these high

energies the ionization cross section is very small and so
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+

the process p + H 2-* H2  + p + e can be neglected.

However, the cross section increases as the incident proton

energy is lowered, thus making the low energy cosmic rays

of prime importance. Magnetic fields in the solar system

prevent the observation of low energy cosmic rays, so that

considerations of the low energy flux must involve unverified

theory.

41
A Fermi-I type mechanism for the acceleration of

protons predicts a power law spectrum n(E) = K E
-('' + 1)

in the total energy E extending into the non-relativistic

region. In this mechanism the protons, in encountering

random "magnetic clouds", increase their energy at a rate

dE 
(142)

a is proportional to the velocity of the protons and we

write it as

v (143)

o T

If the protons are lost by proton-proton collisions which

have a cross section independent of velocity, it may easily

be shown that a power law spectrum in the total energy results

for the non-relativistic region as well as for the

relativistic region. Thus, if the protons are accelerated

by this type of mechanism we should expect the non-

relativistic spectrum n(E = Mc 2 ) to be flat. However, the

energy spectrum of the flux should not be flat since it is
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essentially v n(E) where v is the particle velocity. We

should thus expect an energy distribution in the flux to

go as T / 2 , the spectrum being as below (Fig. 22).

(E-V€ tic T)

tNc T

Fig. 22

Cosmic ray flux predicted by a fermi-type acceleration

process

There should be a low energy cut-off to the spectrum

at an energy T where the rate of energy gain thru
0

acceleration by the Fermi mechanism equals the rate of

energy loss thru ionization. The ionization loss for

protons traversing atomic hydrogen regions of various

degrees of ionization has been calculated by Hayakawa and

Kitao. They present curves for dT/d(px), where p is the

density and x the path length. The cut-off energy T would
0

occur where

)ionz, F .i vm M 2  a oM e(dT/d(ix))= (dE/d(px)) eCg Me .-""

ioi.Fermi p v c 0 P

(l04)

_17 14Taking the value a = 10 see - recommended by Ginzburg4 3

0

and a density P -l o02 6 gm/cm3 corresponding to the galactic
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2

halo, we find (dE/d(pX))Fermi = 30 MeV/gm-cm . One finds

using curve C (50% dissociated hydrogen) of Hayakawa and

Kitao's Fig. 1, that a cut-off would occur at T = 100 MeV.
0

2. Ionization rate constant

The cross section for ionization of a hydrogen

molecule by a high energy non-relativistic proton of kinetic

44
energy T is of the form

0 A n T(145)
T B

For a flat energy density spectrum n(E) = n(Mc ) - constant,

the rate constant for ionization would be

1e '''d 23/2 MC 2
cv 4T cT 2 CA lnB

( 1/2 nTo

ln-'

where C = 4r J(Mc ) is computed from the high energy data

quoted earlier. Using T = 100 MeV and values of A and B

01

similar to those for atomic hydrogen, we find Tci 2 5 x

lO-19 sec -1 . This number may be taken to be a reasonable

lower limit to the actual rate constant. If the flux is
1 lO19 1

extended all the way to To =0, we get rc 
-1 7 x 10 sec-

While these numbers are indeed small, they are based on the

Fermi model for cosmic ray acceleration which, although

widely used, is of questionable validity.
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3. Suprathermal particles
a15

Hayakawa et al favor the existence of so-called

"suprathermal" particles whose energy spectrum extends below

the injection energy for the Fermi mechanism. These

particles are supposed to have a much larger low energy flux

than the ordinary cosmic ray protons and, in fact, Hayakawa

et al take a J(E) spectrum with a peak at 10 MeV. There

is, of course, no direct observational evidence for the

existence of these suprathermal particles and no accepted

theory of their origin. The main reason for believing in

their existence is that, since they contribute to the heating

of the gas, they can explain the observed temperature of H

I regions. From a consideration of the heating of the

interstellar gas one can put an upper limit on the rate

cs t = f js(E) ai(E) dE for the ionization of

hydrogen atoms by suprathermal protons. Since the cross

section for the ionization of H can be expected to be2

approximately equal to the ionization oross section for H,

the rate constant determined from temperature considerations

can be taken to be also the rate constant for dissociation

of H2 . We shall come back to this point at the end of the

next section.

D. Temperature Considerations

In this section we shall review some of the basic

processes involved in establishing the temperature of H I

regions. We consider here only processes which are
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important for a static interstellar medium. Heating effects

of cloud-cloud collisions will be treated later (section

IV-C).

1. Cooling processes

While the mechanism for heating in H I clouds is

very uncertain, at least two known processes are capable

of cooling the clouds efficiently. These two are: (1)

excitation of low lying states of C+ , Si+ and Fe+ ions by

electron impact, and (2) excitation of rotational states of

H2 molecules thru collisions with hydrogen atoms. In both

processes the energy is lost by radiative de-excitation of

the excited levels.

If we assume the relative abundances

n : n : n : n = 106 : 91 : 34 : 16 (147)H 0+ Si+ Fe+

the cooling rate (in erg cm- 3 sec ) for electron excitation

46
of ions is, according to Seaton's calculations,

Ae i = l0- Tl/2 (0.64 e92/T + 6.4e 413/T

+ 1.7 e - 5 5 4 / T + 2.2 e 9 6 1 / T ) nH n e (148)

We assume the electron temperature to be the same as that

of the heavy particles. The presence of ions also gives

rise to heating since the ions capture electrons which are

then ejected thru photoionization by the galactic radiation

field. This leads to an energy gain r and an effective
ei
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cooling rate A - i due to the interaction of electrons
ei ei

with ions. The graph of - Iei)/nHne as a function

of temperature is shown in Fig. 23. This curve is plotted

from Table 3 of the useful review of Takayanagi and
147

Nishimura (hereafter referred to as TN).

In their paper TN calculated the cross sections for

the excitation of rotational levels of H2 thru collisions

with H-atoms in order to compute the cooling rate AHH2.

To calculate the population of excited rotational levels

they assumed a steady state to arise from collisional

excitation and de-excitation and radiative de-excitation.

For radiative de-excitation TN used spontaneous transition

probabilities calculated from the formula for quadrupole

16 48
transitions given by Spitzer Osterbrock has pointed

out that the transition probability for the J = 2 -P J = 1

transition is roughly two orders of magnitude larger than

that for the J = 2 -- J = 0 transition. The latter is a

quadrupole transition and has a transition probability per

ll
unit time A 2 2.4 x 10- sec -

. Osterbrock estimates the

10 1 9 1

ortho-para rates to be A o10 sec , A 22 x 10 se

With such high rates of radiative de-excitation collisions

can be neglected in depopulating the levels. Moreover,

since the higher J levels have much larger A-values, we can

assume that they are unpopulated and calculate A- by
ct2

considering only the excitation of the J - 2 level. Thus
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Fig. 23
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of temprture
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H nH nH2 < vQ 2 > AE(19

where LAE is the excitation energy of the J = 2 state and

< v QO- 2> is the mean value (averaged over the velocity

distributions) of the product of the relative velocity and

the cross section. Taking <v QO_-2> from Table 1 of TN,

A can be-calculated from (149). The results are

plotted in Fig. 23. We see that at high temperatures the

hydrogen molecule is very effective as a cooling agent.

The low temperature dependence of AHH2 and

S-F is exhibited in Fig. 24 for the molecular and

electron densities shown. For these densities cooling by

Aei dominates below about 50°K. This is due to the low

value (AE/k = 920K) of the excitation energy of C+ .

One might wonder whether the hydrogen-deutarium

molecule HD might be an effective cooling agent since for

this molecule both even and odd J levels are possible and

the excitation energy of the J - 1 level of HD is only about

1/4 that of the J = 2 level of para-hydrogen. Taking a

4
D/H abundance ratio of 10- and assuming that the excitation

cross sections are comparable one finds that the critical

temperature below which HD is more effective than H2 is

about 360 K. At such low temperatures cooling by electron

excitation of low lying states of ions (Ae) would be

more effective.
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2. Suprathermal particle flux and the equilibrium
temperature

Thus far we have considered only cooling processeE.

To explain the observed temperature of H I clouds a heating

mechanism is needed. Hayakawa, Nishimura, and Takayanagi 
4 5

have considered the role of the suprathermal particles in

heating the clouds. The flux needed to produce the observed

temperature ( 100°K) is so high that the electron density

results mainly from the ionized (by the suprathermal protonE)

_3
H-atoms and is of the order of 0.01 - 0.03 cm . With such

a high electron density, the main source of cooling is Aei.

Setting the rate of heating thru ionization by suprathermal

particles Fl equal to the effective cooling rate A - e

si ei - ei

one can relate the equilibrium temperature to the rate

constant for ionization by suprathermal particles. ThiE
si

was done by HNT. From their Fig. 2 one finds that for a
temperature 125 OK corresponding to the older2 21-cm

observations and for a cloud density of nH = 10 cm-3 the

required rate constant for ionization by suprathermal

particles is si 0 sec . For a temperature of 600K
investigators3  vl 1 16 1

as found by recent a value os 10 sec

is required for the same nH i



IV. DISSOCIATIVE EFFECTS OF CLOUD MOTIONS

A. Ionization of H I Clouds

The following four sections concern the problem of

determining the rate at which H I clouds become ionized

thru their passage near bright stars. One is led to consider

the effect of relative motion of gas and star on the shape

of the H II region surrounding the star and this problem

is treated in the second section. The methods developed in
I'

this section are employed to calculate the Stromgren radii

of main sequence 0 and B stars and the mean free path for

ionization of the clouds.

1. Mean time between ionizations - basic physical

assumptions

The interstellar gas is in a state of turbulent

motion, the average cloud velocity being V - 27 = 20 km/sec

(see Appendix B). Thru this random motion the clouds often

pass near bright stars which are capable of ionizing (and

dissociating the clouds. Thus we speak of a cloud

"encountering an H II region". The mean time between

encbuntering H II regions would be T= 
' 17, where Xi is

the mean free path for ionization. Actually, in the

galactic disk Xi turns out to be much larger than the

thickness of the gas layer so that a cloud meanders thru

102.



103.

essentially all values of z, the height above the plane of

the galaxy between ionizations. Xi is a function of z and

it will be shown rigorously in the last chapter that the

appropriately averated Xi is the harmonic mean whereby

Ni (z) is averaged over z according to the amount of time

a cloud spends at the particular z. Hence the effective

rate constant for ionization is

V<X = (150)

16 1
We shall see that y has the value 3 3 x 10 sec- ,

giving a mean time between ionizations of i- 10 yr. The

rate constant is quite large indicating that this process

may well constitute the most important mechanism for

dissociation of molecular hydrogen in H I clouds.

We now treat this problem in detail, that is, we

consider the problem of determining the ionization produced

in a moving cloud when it passes near a bright star. In

a large cloud there will not be complete ionization; only

that fraction of the cloud which is carved out by the
'I

Stromgren sphere will be ionized. It might be objected that

as soon as the cloud would come near the star and its outer

edges became ionized, the resulting pressure difference

caused by the ionized gas would lead to dynamical motion

of the unionized gas away from the star. In this case the

gas in the cloud would flow around the star as indicated

in Fig. 25 below. The effective cross section for
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Fig. 25

Possible dynamical motion of gas near star

ionization that the star would present to the cloud would

then be smaller than if there were no dynamical motion.

However, simple considerations of the motion of the gas at

the boundary of the H II region suggest that these dynamical

effects can be neglected if

_2 2
v > kTi/M = v a (151)

where Ti is the temperature (10 4K) of the H II region, M

is the proton mass, and vs is the velocity of sound in the

H II region. The inequality (151) means simply that if the

relative velocity of the medium with respect to the star

is greater than the sound velocity in the ionized medium,

then dynamical motions can be neglected. Physically, this

results because the gas moves by the star so fast that the

pressures, which result from the temperature difference

between the ionized and non-ionized regions, do not have

sufficient time to act and cause motion of the gas. Since
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V 1 10 km/sec and v = 20 km/sec, we shall assume (151)
s

satisfied for the encounters of H I clouds with H II regions

and consider the problem of determining the shape of an H

II region which results when the star and cloud have

relative motion.

2. H II regions fora moving medium - the ionization

equation

We take the reference frame in which the star is

at rest at the origin, and in which the medium moves past

the star with velocity 7 to the left (see Fig. 26). We use

(d

Fig. 26

Polar coordinates

spherical polar coordinates (r, 9, o ). Obviously, the

problem has axial symmetry (no ? dependences). The

velocity of the medium with respect to the star will be,

in spherical polar coordinates, v = (vr .9 v ) =

(-V cos 9, V sin 0, 0). The rate of change of concentration

of species i in the element of volume d will be determined

by the equation
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n = + v n .(152)

We consider the case where a steady state exists, so that

2 = 0. Taking i to correspond to hydrogen atoms, AH

would be given by

S= - - n + av- nn , (153)
H 7H P ep

where the first term represents photoionization and the

second term recombination. We neglect the effect of

molecules which for the unionized cloud can be expected to

have a concentration nH2 nH . This neglect of molecules

can be considered to be Justified by the results in Appendix

C in which it is shown that the "molecular Stromgren sphere"

extends beyond the ordinary sphere of ionization. That is,

the molecular concentration is appreciable only at distances

from the star where the gas is almost completely neutral,

so that the ionization problem can be considered separate

from the dissociation problem.

In calculating A it will be Justifiable to assume that

all the hydrogen atoms are in the ground state, since the

hydrogen atoms formed from electron captures in excited

states will quickly drop down to the ground state. Thus,
-l

in cotdputing T we can consider only photoionizations fromV

the ground state. The ionizing photons come from two

sources: (1) from the central star, and (2) from electron-

proton radiative recombinations to the ground state. We
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shall avoid considering the latter photons by using the

following procedure: We consider A to be due to photo-

ionization only by radiation from the central star and

recombinations to only excited states. A little reflection

shows that this is a very reasonable procedure. When an

electron is captured into the ground state, the resulting

photon emitted can be considered (roughly) equivalent to

the photon which initially ejected the electron from another

nearby atom. The process involves essentially the exchange

of an electron between two protons (see Fig. 27 below).

Fig. 27

Photoionization-recombination process

The final photon will, of course, be emitted in an arbitrary

direction so that the assumption is made that this

recombination radiation intensity varies with distance from

the star in the same manner as the stellar radiation. This

is a very reasonable assumption since in a steady state the

recombination rate is proportional to the intensity of the
_i

stellar radiation field. Hence, if we denote by 1 the
Yo
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rate constant for photoionization by the stellar radiation

field, and by a'v the product of the capture cross sectionP

and electron velocity summed over principle quantum numbers

n = 2, 3, 4, ... and integrated over the velocity distri-

bution of the electrons, we have

= - 1 n + V n n. (154)
H ToH P e p

In spherical polar coordinates, the "flow" term

V .Vn H in (155) is

NVn =- (Cos nH sin nH) (155)

We now introduce the degree of ionization x and the

total heavy particle density n
0

x= ne/(ne + n) 7
n = n (neutrality) (156)

n o - np + N = ne + n H

For a constant n0 (152) becomes an equation for the degree

of ionization x(r,Q). In the case of a steady state

( - 0) we have

1 n X ) 2 2 (x s i n ) + 0n-

- IT n (i-o 0 + v n x 0  r M 0

(157)

This equation differs from the ordinary equation for a static

medium by the addition of the third term with the coefficient

V.
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We shall take the radiation field of the star to be

that of a black body of temperature T , diluted by a factor

2 2o
W = R /4r , and reduced thru absorption by a factor e-

Thus,

I.ol = (R2/4r) fJ a e'. dw , (158)

To I CU Wo

where

2
= ,e kT , (159)

're

a = a t (-) (approximately), (160)

T ' W=(rQ no f - x(r',Q)) a) dr' (161)

The subscript t in at and Cot stands for threshold. In the

calculation of a' v we assume the electron temperature TP e

to be uniform, thus making a v simply a constant. Thisp
is probably a good approximation even at the boundary of

the H II region since the electrons involved in recapture

have been photoejected from H-atoms and are likely to

correspond to the temperature of the H II region rather than

to the temperature of the neutral region. Moreover, a'v
-i/2

goes roughly as T and so is not strongly dependent on
e

temperature. It is given by

of V I 22A , 0(3) (162)

where

P = lim/kT e , L = m e/2kT , (163)
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5 3/2 3 22 2
A = 2 3- aa 2  = 2.11 x 10- cm (16)

2 r2 2
a = e /fic, a = 'I /m e (165)

o e

Z Z 7 ne /n 2 K(P/n 2 ) 2 *(3) - Pe K(P), (166)

and

K(P) = j u du. (167)

The function 4(p) has been taulated by Spitzer and is of

the order of unity. It is interesting to compare (164)
2

with (ii). The factor 7ra 0  is roughly the collision cross

section and it may be shown that a is approximately A 'r

where A is the characteristic spontaneous electric dipole

transition probability per unit time and T is the

characteristic time for electronic motion in atoms.

Returning now to (157), we have for the equation to

be solved for x(r,Q):

2
R 0- V n 2 v 2o

nO (l - x) J ae Pdo+ '
o p 0

ax sinG &- n (cosG - r - = 0. (168)

This integro-differential equation can only be solved

numerically. In Appendix C methods are developed for its

solution and results are given for a particular case of the

parameters R, To , no , Te , and V. While a detailed solution

of (168) is very difficult, the solution for the general
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shape of the H II region can be found with comparative ease.

To accomplish this we first multiply both sides of (168)

2
by r dr and integrate over r from 0 to some radius r0

We get

71- 00

1R n - x(rQ))r 2dr e da

S pV n 2x2 2 dr - n f'r 2 (cos 9 T -

sin 9 cx)dr = 0 (169)

r MQ

From (160) we have the identity

no(l - x(r,Q))a e - T = a-e" (170)

Substituting (170) into (169) and carrying out the r

integration in the first term, we have

12 jTCOd

- fJ r ( Tos r. - sin M )dr - 0. (171)~o r r

We choose a value of r0 much larger than the H II region

boundary so that TO(r 0 ) >> 1, and-e- ro -1. The

first term in (170) is then

TR f j 3 FIrc ) (00 + 2 P + 2) ~ (172)

where

a 0 = 1"kTo , Po - itkT 0 (173)
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This term is independent of 9.

Now, the variation of x with r is of the form shown

below (Fig. 28).

1.0

x

7-

Fig. 28

Ionization as a function of distance from star

One is thus lead to define a quantity

rs3 (9 ;7 ) = 3 x 2 (r,0;7)r2dr . (174)

For an infinitely sharp ionization boundary, rs (G;) would

be identical to the radius of the boundary. Clearly,

rs(9;7) with V = 0 is to be identified with the radius rs

of the classical Stromgren sphere which by (171), (172),

and (174) is equal to

2
r3R)1% + 2 + 2 13,  (175)

rs rc G3 nd a(- v

Thus, from eq. (171) thru (175) we have

3 3 37 - &2
r (Qr ) = rf+r (cos 9 Zr

sin 8x
_ r )dr (176)



113.

Since the ionization x varies only near the boundary,

3x/3r will vary as below (Fig. 29).

ax
ar

Fig. 29

ax/ar as a function of: distance from star

For an infinitely sharp boundary

ax 6(r - r (0;V)) (177)

Moreover, for moderate asymmetries in the (distorted)

Stromgren sphere it can be assumed in first approximation

that

Cos sin 0 csx (178)

Because of (178), we neglect the second term in the

integrand of (176) and also make use of the approximate

limiting case (177) to get

3 2
r (G;V) r - 3 o r2 (9;7) cos . (179)

n 0 a (,

If the second term on the right in (179) is small, we can
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2 2

replace r (Q;V) in it by r2 and get the following simple

relation for r (9;7):
S

r (9;7) = r (1 - E cos 9) (180)S 5

where the asymmetry parameter E is

v (181)n -v r
op 5

It is interesting to note that e can also be written as

C= Trec/WV (182)
1

where T (= (n W- ) ) is the characteristic time for
rec o p

recombination and rV(= rs/7) is the time for medium to

tranverse a distance equal to the Stromgren radius. Sinze

-2/3
r oc n

e' (183)
no r so

3
where r is the Stromgren radius for n0 = 1 cm . A

typical value of e would be that corresponding to r. = 10 pc,

-3
n = 10 cm , and v = 20 km/sec. For these conditions weO

get e a: 0.02. The function 1-ecos 9 is shown for several

values of the asymmetry parameter e in Fig. 30. The general

shapes exhibited in Fig. 30 are as one might expect, that is,

there is an ionization front which is closer to the star in

the direction of the oncoming medium and farther away in

the opposite direction.
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/ =0. 3

6- 0.2

Fig. 30

Polar plot of l-ecosb for various values of e. The
medium moves to the left past the star denoted

by a dot.

The result obtained for the shape of the H II region

assumes that a steady state exists since earlier we had set

the partial derivatives of the particle densities with

respect to time equal to zero. For this condition to exist

for most of the star-cloud collision the condition
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<< Tc (184)

would have to be satisfied, where T is the characteristic
SI

time for formation of a Stromgren sphere and Tr = r c/

is the time that the star spends in or near the cloud, r
c

being the cloud radius. The time T is essentially theS
't

time required to carve out a Stromgren sphere if a star was

suddenly placed inside of a cloud and this time is roughly

equal to the characteristic time for electron-proton

recombination T . For consider the development of therec.

ionization front as it progresses away from the star. The

velocity of the ionization front will be proportional to

the ultraviolet flux behind the front and this flux is the

same as the flux at this value of r for the final steady
'I

state Stromgren sphere. One can show from direct calcula-

tions for the static Stromgren sphere that this flux drops

sharply near the boundary of the sphere. Hence, the time

to form the whole Stromgren sphere is essentially the time

to ionize the last optical thickness at the edge which in

turn is equal to the characteristic time for recombination.

Thus,

ITS rec. (185)

and

SS 'c T 'rec./(rc/ 7 ) U c' . (186)



117.

It should be realized that TS (and E') are independent of

the properties of the central star. One finds that for

typical cloud velocities, densities, 
and radii that E' - 10 -2

so that the steady state is likely to be closely approached.

To observe such a "distorted Stromgren sphere" one

should look for H II regions whose exciting star does not

lie at the center of the region. The off-center star would

probably be easier to detect that the distorted H II region

since as Fig. 30 shows, the ionized regions retain their

spherical shape for moderate values of the asymmetry

parameter E. The exciting star, however, is displaced from

the center of the H II region by an amount Er5 , a quantity

of first order in E.

3. Stramgren radii

It is of interest to compare the Str8mgren radii

r (density = 1 cm- 3 ) calculated from (175) with the

radii s0 calculated according to the original Str8mgren

theory. The latter radii are conveniently calculated from
50

the expression given in Aller's book. The data on the

stellar radius (R) and black body surface temperature (T )

needed to calculate the Str8mgren radii were taken from

two sources: (1) for M > -2 (B stars) from the compilationv

given by Schwarzschild,51 and (2) for M < -2 (0 stars)
v

from the results of the theoretical model calculations of
52

Haselgrove and Hoyle. The T vs. Mv and R vs Mv curves

from these two sources were made to Join smoothly at
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M = -2. Some of the resulting stellar radii and tempera-
V

tures are given in Table 3 below. For the calculation of

r and s and electron temperature T = 10 4K was assumedso O e
/ 1-135 1m _

in all cases (giving auv = 2.73 x 10 cm3 sec ). The

calculated Str8mgren radii are shown in the table. The

absolute visual magnitude M was related to the bolometricv

magnitude Mb by means of Kuiper's
53 bolometric corrections

for different surface temperatures. Also tabulated is the

main sequence luminosity function 4 for the solar neighbor-

hood as given by Sandage54 and the calculated fraction q

of the photon flux that is on the short wavelength side

of the Lyman limit. To a good approximation qi is given by

fW2 _x2

q f4______+2_P+ 2 e3 , (187)

{x ld 2 T(3)fe x -1

where '(3) is the Riemann zeta-function of argument 3 and

equals 1.202. The quantity d shown in the last column of

the table in the linear distance travelled by a cloud moving

at 10 km/sec during the main sequence burning time of the

star characterized be the particular value of M . Thisv

distance may be of some use in considerations of the

spatial correlation of bright stars and gas clouds.

The close agreement between r5s and s exhibited in

Table 3 is surprising. In his treatment of the problem

Str8mgren neglected (1) the variation of the absorption



119.

0~~ 0 0 0 00

co co No c'i1o0

0-4 0 Voj 00 Ln K\ H

4-:)

LA H
4) m 0 N' .-

V 0 N' NJ n\ -4 n c- H

0 c Ln OCi n~ ' t- ' Cu 0 0
l 00 Q KN 00 n '\ H-

C',

0 LA) .-t 0 m' C(\i "
Cd OD H- KN L HQ 0

0 0 00\ m 0 0 00 x~

0

0d 0 0 000 0 00 0
4-) LA LA 0 0 0 Ln O) H K'\

0 Nb1C C ~L Nu N -*4 K~\

E-

4.)N

0

0 0 4- (7 N' Cu
0 ~ N t- H 0 .- HL u0

H 06 LA Z0- A~ c'j (I H. H; H
0

0 -

0

K\ a .- 'a n uC 00 ON U'

W. U H cu m H0 L LA) '.o n

0H I I I I I I I +

> Q I' I-- PC C rI 0



120.

cross section with frequency (this does not affect the

Str8mgren radius, however), (2) captures to excited states,

(3) the effect of the.r.ecmbination radiation, and (4) the

specific character of the spectrum of the photon flux from

the central star. Since all of these were taken into

account in the calculation of r , the very close agreementso

with s must be considered somewhat accidental.
0

4. Calculation of - the "small cloud approximation"

As we have seen, the asymmetry in H II regions due

to the relative motion of gas and star can be expected to

be small in most cases so that the cross section for

2
ionization that a star presents to a cloud is irr8. With a

distribution of stars as given by the luminosity function 4

(number of stars per cubic parsec per interval of absolute

visual magnitude M ) the mean free path for ionization
v

would be given by

(r r2 o d ) (188)

With the stellar radii and temperatures and the main sequence

luminosity function taken from the same sources that pro-
2

duced the results in Table 3 one calculates the r 2 vs.

3so
M and r 8 vs. M curves shown in Fig. 31. The curvesv so v

shown in Fig. 31 will no doubt need considerable revision

when better data on stellar temperatures and radii are

available. The Str8mgren radii produced by the relatively

cool stars are especially strongly dependent on temperature.
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For example, if the temperature of a star is raised from

20,000 K to 25,000 K, the Str8mgren radius is increased by

a factor of two.

The curve r o indicates that the main contribution to

the ionization of the interstellar clouds comes from the

main sequence stars around M v -4. These stars are so hotv

that they ionize a number of clouds surrounding them. Hence,

it is best to adopt the picture where the clouds (radii

5 pc) are small compared with the radius of the ionized

region. The Str8mgren radius used to calculate Xi in (188)

will then be different from the radius of the ionized region

for a uniform medium. We denote the radius (in the small

cloud picture) of the ionized region surrounding the star

by r . All clouds within r of a star will be ionized. We
5 5

consider the intercloud medium to have a negligible density

and denote the fraction of the volume occupied by the clouds

by f , the cloud (total heavy particle) density by nc 0

(assumed the same for all clouds), and the mean (smeared

out) density by No.

f = no/n0  • (189)

Moreover, we denote the Str8mgren radius for a uniform

medium (density n) by rs(Mv,n) which is proportional to

n . The radius of an ionized region of uniform density

nO (no discrete clouds) would then be rs(Kv,n ). To
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calculate ?i one needs the radius F s of the ionized region

surrounding the star. The relation between x' and

re (Myno), the Stromgren radius which would result if the

medium were of uniform density n 0, is easily obtained since

for any region of ionization surrounding a star of given

radius and surface temperature

(density)2 x (volume where recombination occurs) constant.

Hence,

-2 3 -2 -3 _3
n0 rs(Mv'no) = no fc rs = no Eo r ' (190)

so that the relation between F and r (Mv n- O) is

3 -3 _ 3
r r (My ,O, n )- n r (Mvn O ) . (191)

s sv0 n 0  8 v 0

Since re(M ,7T) oc ,n ' r oc n if n is fixed.

The mean free path for ionization of a cloud is then

given by

1 2
'Al  = Tfj(M v ) rS(v, T0 , no ) dMv

= (i /n )2/3 f (M r2 _ -2/3

0 (Mv v s (non)

(192)

2 -4/3 1 -2/3

Since r (MV o )  Ho , F jc0n . Now, the density to

be used in the calculation of X-l should be the total
i

density (atomic + molecular: no = n1 + 2n2 , n = atomic

density, n2 = molecular density). The molecular density is,

of course, unknown. We are attempting to calculate it. It
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will be shown that one can expect an amount comparable to

the atomic density to be in molecular form. The observed

atomic densities are (roughly): El 
= 1 cm

- 3 , n1  10 cm 3

For the present we shall assume that half the hydrogen is

in molecular form so that 0 = 2 cm- 3 , n = 20 cm- 3 . The

end result of our analysis predicting the molecular abundance

should, of course, be consistent with this assumption which

we make here to estimate the effect of ionization. With

these assumed densities one calculates ?- = 0.80O x lo - 3

ii

pc- from (192).

One can also calculate the fraction f of the inter-

stellar clouds that are ionized. This fraction is given by

f,= 4 'fo(Mv) r (M ',no ) dMv

= 4 (Fo/no) f(Mv) rs (,o) dMv e (non--0  •

(193)

13 13
Substituting F = 2 cm- and no = 20 cm- , one calculates

fi = 0.01. If, however, one substitutes instead the

observed (rough) values for the densities of atomic hydrogen
13 cm3

fo = 1 cm- , n = 10 cm ), one obtains roughly 0.04 for

the fraction. The observed fraction is about 0.1 so that

it would seem that the agreement with observation is better

when we do not allow for the molecules. If the ratio

F /no = 1/10 is retained, the calculated fraction is 10%

00 3
for E z 0.6 cm- which is fairly close to the best value

0



125.

of 0°8 cm-3 as determined from the 21-cm investigations.

However, as mentioned earlier, the calculated Str8mgren

radii may be in serious error because of the uncertainties

in the adopted temperatures. It might be mentioned that

the observed fraction ionized of 10% corresponds essentially

to the ratic of total ionized hydrogen (atomic + molecular)

to unionized atomic hydrogen. This observed fraction is

related to f by (fi)obs  fi/(l - <F> ), where <F) is the

mean fraction of the hydrogen which is in molecular form.

The dependence of (fi) on the molecular density is some-obs

what complicated, since as <F> --al the factor (1 - <F)

tends to increase (fi)
ob s

Because of the nonuniformity of the medium (discrete

clouds of high density) the actual regions of ionization will

not be perfect spheres. The fluctuations in the radius of

the ionized medium will be of the order of the mean free path

distance to another cloud X - 50 pc. The radius ( )m where

-3 3,r54 is a maxiiym is roughly 15 pc (for Fo = 2 cm- , n o =

20 cm- 3), indicating a sizeable deviation from spherical

symmetry. However, since there is an observed tendency of

clustering of gas clouds around 0 and B stars, these figures,

which correspond to the condition n /n = 0.1, can be expected
0 0

to be different for the typical ionization region. X c

1 -- 13
n 0 wil n0  , so that the effect of clustering

of clouds around the stars would decrease the ratio /(rs m

and thus decrease the asymmetry effect. However, the
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resulting overall error in the calculated value of Ni may

amount to a factor of about 2.

One might wonder how the clustering clouds around the

stars would affect the calculation of f and \.The
i

apparent clustering around stars probably results because

there is a higher probability for say, an 0 star to be born

if the medium is more dense. The 0 star and cloud aggregate

have a rather small gravitational attraction for another

cloud. The presence of the 0 star would then be interpreted

as a result of a density fluctuation in the interstellar gas.

In this picture the phenomenon of ionization of clouds

would correspond to a chance occurance of the cloud in a

region of high density where a star has formed. With the

clustering, however, the same amount of ionization is

produced. This can also be seen thru the following

reasoning. The number of cloud ionizations produced in a

given region would be proportional to the probability of

a cloud being within the ionization distance of an 0 star

and also to the number density of clouds ionized within the

region. The probability of being within the ionization

distance of the 0 star is proportional to the volume

(oc 7 ) of the ionized region, since this is purely a

statistical phenomenon. If the region of high density where

the 0 star has formed has a cloud density -n', this latter

1 0 3 1 1
probability is proportional to (0_ (since r5 .c (W-- ) ).

But the number density of clouds ionized within the region



127.

is proportional to To, so that when one takes the product

of the two factors the dependence on density cancels. Thus,

the calculation of f is not affected by the clustering of

the clouds. It should be mentioned however, that if in the

clustering the internal density of the clouds (n ) is

increased, the value of f. (and Xi ) will be affected.

The rate of ionization of clouds is affected by the

clustering although only slightly. The rate of ionization

in the region around the star is proportional to the product
-2

of density (no) and cross section for ionization (oc rs ac

no ) so that the ionization rate is proportional to

no . The dependence on density is thus rather weak.

Since the actual degree of clustering is not known very

accurately, the correction for this effect will not be

carried out here. It might be remarked that Gold 13 has

suggested that the apparent clustering of gas around young

stars could be an effect of the greater probability of a

cloud recently being ionized when it is near the star,

giving a higher atom to molecule ratio for these clouds.

The effect of clustering of stars has been neglected

here since a separate Str8mgren sphere was assumed for each

individual star of absolute visual magnitude M . Actually,v

0 and B stars tend to be formed in numbers, several stars

being formed in a small "nest". This clustering has an

effect on the mean free path for ionization of the clouds.

For the radius of the ionized region surrounding N identical
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hot stars will be larger than the radius produced by a single

1/3
star by a factor NI. The total amount of ionization

produced is, of course, independent of clustering. The

contribution to X-I from these N stars is reduced by a

factor N below the contribution that the N separate stars

would produce, however. The effect of the clustering is

essentially to produce larger H II regions, the number of

H II regions being decreased. Again, because of the
N_/3 _

relatively weak dependence (oc N ) of X1 on the

clustering we shall not try to correct for it. It should

be mentioned that due to the larger radii of the ionized

regions, the asymmetry of the regions resulting from the

nonuniformity of the interstellar medium would be reduced.

We have also neglected the effects of a velocity

correlation between the stars and the gas clouds which they

ionize. It may be.that 0 and B stars tend to form more

readily when a group of gas clouds has small relative motions.

In this case the newly formed star would (for a while)

"carry" its surrounding cloud and the cloud ionization rate

would be decreased. The magnitude of this effect is larger

for the more luminous stars which burn on the main sequence

for a shorter time and which, therefore, have less time to

escape from their surrounding cloud. The short main

sequence burning time for the 0 stars has an additional

effect on the calculated A i when the burning time is short

compared with the time for a cloud to traverse the
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Str8mgren sphere. Here one should view the process of cloud

ionization as being due to a certain star formation rate.

For the luminous stars this rate is essentially given by

0/-ms where o is the (observed) main sequence luminosity

mss
function and Tins is the main sequence burning time. One may

readily show that due to this effect the integrand of X.

in (192) must be multiplied by 1 + 4Fs/3d, where d is the

distance travelled by a cloud during the time T ms Using

the d-values from Table 3 and the F calculated for the
_ _3 5s1

conditions T = 2 cm , n = 20 cm-3 one obtains the0 0

"leffective" rs2ocurve given by the dotted line in Fig. 31.

It appears this effect tends to cancel somewhat the velocity

correlation effect previously mentioned.

The calculated value for Xi corresponds to the solar

neighborhood which is essentially at z = 0, the plane of

the galaxy. It will be shown in the last chapter of this

work, when the z-distribution of molecular hydrogen is

discussed, that Xi increases rapidly with z and that the

quantity which determines the effective rate constant for

ionization is the harmonic mean of Ai averaged over all z

with a weight factor which is essentially the observed

distribution of atomic hydrogen. The resulting effective

mean free path for ionization is about twice the local value

at z = 0 or roughly 2 kpc, giving an effective rate constant

for ionization of about 3 x 
10 sec
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B. Cloud-Cloud Collisions

While the temperatures ( - 30000K) produced
1 4 in

completely inelastic cloud collisions are not high enough to

cause appreciable dissociation of the H2 present in the

clouds, the initial violent collisions between the atoms

and molecules of the cloud can be more effective in causing

dissociation. We consider the most violent type of cloud-

cloud collision, namely a head-on collision. On collision,

the clouds, which we denote by A and B, penetrate each

other (see Fig. 32).

A

Fig. 32

A cloud-cloud collision

The shaded (hot) region is essentially at rest relative to

the remainder of the clouds since the mean free path for

collisions is only a very small fraction of the radius of a

cloud. Thus, the situation to consider would be that of a

collision between a molecule of, say, cloud A moving with

a velocity v and a hydrogen atom at rest. The minimum

velocity v needed to dissociate the molecule would corres-

pond to a dissociation in which all three particles are

moving with the same velocity in the direction of the initial
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velocity of the molecule. Solving the momentum and energy

conservation equations we find for this threshold velocity:

1/2

v t  (3Do/M) 1 (194)

where D is the dissociation energy ( z4.5 eV) of the

hydrogen molecule and M is the mass of the hydrogen atom.

We obtain a value vt = 36 km/sec for the threshold velocity.

Since the clouds have a velocity distribution characterized

by an exponential factor e -/ with - 10 km/sec, only

a fraction - e-vt/? - 0.03 of the clouds would have

sufficiently high velocities to produce direct dissociation.

Moreover, the rate constant for the overall process would

have factors < 1 which arise because most cloud-cloud

collisions are not head-on and most H-H2 collisions will

not produce the most favorable (threshold) kinematic

results. As a rough estimate for the rate constant for this

dissociative process we take 10 - 3 Z where Z is the collision

frequency of the clouds and is of the order 
of 0-14 se

The resulting rate constant for the process is then of the

order of 10-17 sec- which is smaller by almost two orders

of magnitude than the figure corresponding to collisions

between the clouds and H II regions. Of course, if

magnetic fields happentD prevent the penetration of the

clouds, the effective dissociation rate would be consider-

ably smaller.
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C. Cooling Curves and the Harmonic Mean Temperature

1. Heating by cloud-cloud collisions - the cooling

equation

Some attempts have been made to interpret the

observed temperature of H I regions as a statistical average

over many clouds at different temperatures. The different

temperatures arise because the clouds are observed in

different stages of cooling after having been heated to

about 30000K in cloud-cloud collisions. In cooling, the

temperature of the cloud is determined by the cooling rate

L(T) = AHH + A - F (we neglect other sources of

2 ei ei
cooling such as interaction with grains). The temperature

as a function of time can be found by solving the equation

dE/dt = - L(T) ,. (195)

where

E nkT (196)
2

n being the total particle density. The cooling equation

(195) can be integrated numerically to gve T(t), the

temperature as a function of time after heating. From

this "cooling curve" the mean temperature (averated over

time) can be determined. As Figs. 23 and 24 show, most of

the cooling at high temperatures is due to hydrogen mole-

cules, while the low temperature cooling is due predominantly

to excitation of ions by electrons. The temperature where

the two cooling rates are equal depends, of course, on the
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concentrations of the molecules, ion, and electrons. For

the abundances used in calculating the curves in Fig. 2 4,

the temperature where A A - i is about 50'K.
H2 ei ei

Our knowledge of the abundances is based highly on theory

and is subject to change. For example, the C+ ions which

are responsible for the cooling at low temperatures may well

be locked up in the interstellar grains. Fig. 33 shows the

low temperature dependence of L(T) for different values of

nH with n fixed at 2 x 10 -3 cm-3 and with the ionicH2 e

concentration given by (147). Fig. 34 shows the cooling

curves corresponding to these same concentrations under the

assumption that the initial temperature of the cloud is

30000K. We see that at high temperatures the temperature

after heating is strongly dependent on the molecular con-

centration. This illustrates how efficient H2 is in cooling

a cloud down to a temperature of, say, 1000K.

2. The harmonic mean temperature

Kahn14 has shown that the temperature determined

from 21-cm studies is to be interpreted as a harmonic mean

(T = ( l/T )_l) averaged over many clouds. However, van

de Hulst55 has questioned this interpretation since it

assumes that the clouds are optically thin. He suggests

rather that the temperature of the nearer clouds would be

impressed more on the observational value. To obtain a

calculated harmonic mean temperature, one must integrate

T- 1 over t with a weight factor e- z t where Z is the
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-Zt
collision frequency for the clouds. The factor e is the

probability of not colliding with another cloud (and being

heated again) during a time t. The harmonic mean tempera-

ture is then

= ( ZT Z e- zt dt) . (197)

This expression for T is different from that employed by
Z/ 1 _i

Kahn and Seaton who used ' = (Zf T- I dt) which is the

harmonic mean for an individual cloud and does not represent

an average over many clouds as does (197). The relation

(197) was first applied by Takayanagi and Nishimura (TN).

Since the clouds cool so quickly at high temperatures,

the result 7 does not depend strongly on the value of T

for t = 0. With T(t) calculated from the cooling equation

(195), 7 can be determined by employing (197). This was

done for several combinations of densities ne and nH by TN.

Unfortunately, the resulting T's depend strongly on Z which

is known only to order of magnitude. The following qualified

conclusion can be made, however. If heating by suprathermal

particles is negligible and cloud-cloud collisions are the

major source of heating, and if Z ( - 0- 1 4 sec - 1 ) is no

larger than by a factor of about 3, then a harmonic mean

temperature of 125 0K would appear to rule out molecular

densities larger than about 10'3 cm- 3 . This figure was

arrived at by noting that the curve with p = 4 in Fig. 34

has T _ 125 0K for t 1 As mentioned early in the
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Introduction, there are conflicting results concerning the

21-cm determinations of H I cloud temperatures. While the

early investigators reported T = 1250 K, more recent work

indicates a value in the neighborhood of 600K. It would

be desirable to remove this conflict by further observational

investigations. At present, the (indirect) evidence on

the basis of temperature considerations for or against

a large H2 abundance must be regarded as inconclusive.



V. SUMMARY AND DISCUSSION

A. Comparison of Rate Constants

1. Formation of H2

As mentioned previously in the summary in section

IID, in a typical interstellar cloud of atomic hydrogen25

density n. = 10 cm- 3 and grain (mass) density pg = 10- gm/

cm3 the recombination reaction on the surface of the

interstellar grains is likely to be the most important

mechanism for molecule formation. The range of grain

temperatures where the recombination coefficient is close to

unity is coincident with the expected range 5-200K. It must

be admitted, however, that if the physical properties of the

grains differ appreciably from what is presently thought,

this mechanism could become inoperative. If this is the

case, the associative detachment reaction H- + H -- H2 + e

is very likely to be the most important mechanism for

molecule formation although it cannot produce a rate of

molecule formation as large as that involving the grains.

The state of affairs as to molecule formation might be

represented as in Fig. 35 where the expected range for the

rate AH2 in a typical cloud is shown for the two most

important mechanisms.

138.
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Fig.- 35

Comparison of rates of formation of H2 by the two most

Important mechanisms. The dotted extension for the
surface recombination process indicates the possibility
that the mechanism may be inoperative.

We shall assume in the following sections that the

reaction on the grain surfaces is operative so that the rate

of formation is within the limits defined by the solid line

corresponding to H + H-S ---H 2+ S in Fig. 35.

2. Dissociation

the four most important mechanisms for dissociation

of H2 are: (i) dissociation thru the forbidden transition

12g u'.3Z (ii) ionization (and subsequent dissociation)

by cosmic rays (or suprathermal particles), (iii) ionization

of the clouds thru random encounters with bright stars, and

(iv) direct dissociation in cloud-cloud collisions. The

rate constants in sec- associated with these processes

are represented in Fig. 36.
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Fig. 36

Probable range of values of the rate constants for
dissociation of H2 by various processes.

As Fig. 36 shows, the most important processes are the

ionization of the clouds by bright stars and (maybe)

dissociation by cosmic rays. If the cosmic rays are

important, it will be their low energy (suprathermal)

component that contributes. Because of our lack of knowledge

of these low energy cosmic rays we prefer to adopt the

cloud ionization process as the chief mechanism for limiting

the amount of H2 that builds up in the interstellar clouds

and assume that the true cosmic ray flux does not correspond

to a rate constant as large as the upper limit exhibited in

Fig. 36. We shall, however, include the effects of cosmic

rays formally in some of our equations in the following

sections to show how their effects come in. In the end,

though, we discard the low energy cosmic ray (or suprathermal

particle) hypothesis since there is no compelling reason for

believing in their existence.
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The overall view is then the following. In H I clouds

molecule formation takes place steadily either thru surface

recombination on the interstellar grains or by the slower

process of associative detachment (H- + H -- H 2 + e). At

the same time the molecules are (slowly) dissociated by

cosmic rays. When the clouds wander near hot stars, part

or all of the cloud becomes ionized (and dissociated). As

the cloud moves away from the star, electron-proton recom-

bination takes place at a rapid rate, quickly producing a

neutral cloud. We assume that the grain surface condition

is reestablished in a time short compared to 
the time (108

yr) between ionizations of the cloud, so that molecules

begin their gradual formation essentially immediately after

the cloud has been ionized. The molecular concentration in

individual H I clouds will then be different, depending on

how recently the cloud has been ionized.

B. Mean Galactic Abundance of Molecular Hydrogen

1. Molecular buildup in an individual cloud - very
dense regions

Consider a cloud of total heavy particle number

density no with

no = nI + 2n2  (198)

n being the atomic and n2 the molecular density. In such

a cloud the molecular concentration n2 would be determined

by the equation
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1

2 = ygn 1  y n2  (199)

where the first term on the right corresponds to a formation

rate and the second term to a dissociation rate (by cosmic

rays). If formation on grains is effective,1 =bg

y being the recombination coefficient (see eq. 16).

Eliminating n in (199) by means of (198) we have

A2 + gcn2 1g ' (200)

where

ygc = yg + yc (201)

We shall assume n0 and 'y remain constant during the con-

version to molecular form. Solving (200) for n2 (t) with

the condition n2 (0) - 0 (assuming the cloud was last ionized

at t = 0) we have for the fraction of the hydrogen in

molecular form:

f(t) - 2n 2 (t)/n o - F(t)/(l + 0c) , (202)

where

F(t) - 1 - e - gc (203)

and

1gc - c/,g (204)

For the case of a very dense cloud for which possibly

ly gt >> 1
(gct  + I

f -- (1 + gc ) 25
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This corresponds to the steady state condition resulting

from an equilibrium between formation on grains and

dissociation by cosmic rays. As stated previously, it is

likely that P g< 1, so that in very dense clouds one can

expect to find most of the gas in molecular form (if Ygct >.

1).

We shall be interested primarily in determining the

mean fraction (F) of the hydrogen which is in molecular

form in the spiral arms of the galaxy. Most of the H I

clouds have densities of about 10 particles/cm3 and in

estimating (F) in the following section we assume that

all the clouds have the same heavy particle density n0 .

Moreover, we shall take pgc = 0 although the treatment for

non-zero 13 is a straightforward extension.

2. Average over clouds

We shall see in this section that one can expect

a molecular concentration in the spiral arms of our galaxy

which is comparable to the atomic value and that the mole-

cular hydrogen should be distributed spatially in the same

manner as the atomic hydrogen.

(a) Mean molecular abundance - Consider a strip

(actually a sheet) of width dz at a height z above the plane

of the galaxy (see Fig. 37). In dz there are, say, C(z)dz

discrete clouds which contain N0 (z)dz hydrogen atoms which

may be free or part of a hydrogen molecule. The number of

hydrogen molecules in dz is then (F(z)? N0 (z)dz/2, <F(z)>
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Fig. 37

Path of a cloud

being the fraction of the hydrogen which is in molecular

form. We shall be concerned with the calculation of <F(z)>

For a cloud in dz arriving along path j (see Fig. 37)

the probability that it was last ionized at a total linear

distance along j between sj and s.1 + ds is A 1 (s ) exp

(- hi (s )dsj)ds,, Ai being the mean free path for

ionization. In travelling this distance sj a fraction

F(sj ) of the hydrogen in the cloud will have become mole-

cular, where

F(s) - 1 - e-ygt( s j) (206)

With

t(s3) f I (s;) ds (207)

If the probability of having arrived along J is W3j, the mean

fraction in molecular form at z would be given by

(F(z)> ffds A- (s) exp(- A (s')do') F(s) a W,

1(208)
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with

Zw . (209)

If the medium were uniform in density and there were no

gravitational field, all paths would be equally probable.

If, further, Xi(z ) were independent of z and equal to a

constant Xi we would have

<Fe> - ds X§ F(s) . (210)

For the case (I) Ai  N ( e = mean free path for cloud-

cloud collisions) the cloud makes many collisions with other

clouds between ionizations and

F(s) = l-e g (211)

where V = 2 is the mean cloud velocity (see Appendix B).

We then have from (210) and (211):

<FI > L , (212)

with

L 'YghA,/, .(213)

For the case (II) A A

F II() = 1 - e-gS/V (214)

and one should integrate over a distribution f(v) of cloud

velocities with
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f (v) v-/ (215)

We would then have

'F II> = fds fdN-e-8x f (v) F1 1 (s) (216)

M - i .2 eKx ) GL (217)

where

-G y- y 1 e-dy . (218)

The two functions of L (F > and eF ),are graphed in

Fig. 38.

At

Fig. 38

Fraction in molecular form, as a function of L~

The two oases I and II would corre.spond to the situa-

.tions

I: A <C -c rhg,ho (2191)

II:1 0C A 0 4 9s (21911)
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h being the scale height (in z) of the galactic gas and h0g

the scale height of the 0 stars (which ionize the clouds).

< F I> and <FIN>1 would then be calculated from the local

value of 4.

The actual conditions for our galaxy in the vicinity of

the sun correspond to neither case I or II. In the galactic

plane A = 1 kpc and X x- 100 pc while h - 100 pc andi c g

ho - 50 pc. The true situation approaches the completely

non-local case in which between ionizations a cloud meanders

thru essentially all values of z and makes many collisions

with other clouds (0i >> , so that t(s) -- s/V). In this

case a cloud found at any value of z will have gone thru

all z, and the fraction in molecular form <F > would be
0

independent of z. To calculate <F 0 > one need know only

the probability of spending time at various values of z.

Since <F > is independent of z this probability can be

taken from the observed distribution of atomic hydrogen as

determined by the 21-cm studies. Schmidt5 6 gives the atomic

distribution a(z) with a(O) = 1 and this is exhibited in

Fig. 39 below.

The normalized distribution is

a~z

A(z) f 7 -. (220)Ja(z) dz
We would then have (see eq. 208)

(s1 s s < A_ > (221)
A i I
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zee 300

Z (10C)

Fig. 39

Density of atomic hydrogen as a function of height above
the plane of the galaxy (after Schmidt). This dis-
tribution does not come from measurements of atomic
hydrogen densities in the solar neighborhood but is
thought to represent well the density distribution
throughout the spiral arms of the galaxy. A gaussian
distribution with the same half-width is also shown
in the figure.

with

< 1- ; A (z) A(z) dz . (222)

i o

The fraction ('F) would be given by
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F> -- ds dz (z) A(z) e- >F(s)
0 1

-s <1 N-> e - s  F(s) +-(22-3)

where 4 is now

. = . (224)< xi >

One should note that <F 0(l)> approaches 1 slowly (see

Fig. 38, <F I) ) so that if L were large there would still

be a considerable amount of atomic hydrogen on the average.

For an individual cloud, however, F(t) approaches 1

exponentially at large t.

According to eq. 192 and its associated discussion

- _-2/3
A- cc n 0, where F is the mean total density and 0 is

i 0

the luminosity function. Since A- is determined mainly by
i

the 0-8 star component of the luminosity function, we should take
the O(z) for these stars in computing A-1 (z). For 0 (and

also B) stars

,0(z) = .(0) e - z 2 / h  
, (225)

where the scale height h0 is related to the mean distance

ITT from the galactic plane by

h = T I' , (226)
0

57
with IzI = 50 pc as given by Oort. The gaussian distri-

bution (225) can be expected to be quite accurate for the 0
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and B stars since it would result from the linearity in K ,
z

the gravitational acceleration in the z-direction. For the

small z-values that the 0 and B stars have a linear z-

dependence for K is a good approximation (see section B3 ofz

this chapter). The distribution function for E is essentially0

the same as the distribution function a(z). Hence, we have

_Z/2h2  2/3
A1 (z) = 1I (0) e a- (z) , (227)

and

= <I (0) 1o (228)

where

to eZ 0 a- (z) A(z) dz . (229)

By direct calculation one finds AV - 0.496, so that the

effective mean free path for ionization is roughly twice

the value in the plane of the galaxy. If now we calculate

1 3 1
L from (224) with Ai (0) - 0.800 x l0- PC- , 10 km/sec,

and y calculated from yg 2bpg with b = 4.09 x 109 cmsec.g 1o25= bgcmec

gm. and p = 10 gm/cm3, we get IL = 6.7Y. The value ofgmg

the recombination coefficient y is likely to be in the

1
neighborhood of 5, giving a value of p. of about 2. Consider-

ing the uncertainty in this and other parameters, perhaps

the final estimate for p. should be written as

p. = 2. 0 x 1l
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For the most likely value ± = 2 we have for the fraction of

the hydrogen in the spiral arms which is in molecular form:

F> = 1/2
0

The values of <Fo> corresponding to 4 = 0.2 and p. = 20

are 0.091 and 0.909 respectively.

We see that one can expect a molecular abundance

comparable to the atomic concentration and that the mole-

cular hydrogen should have approximately the same z-distri-

bution as the atomic hydrogen. An estimate of the deviation

of the molecular distribution m(z) from the atomic distri-

bution a(z) will be made in part(b)of this section.

(b) Distribution in z - Here we shall perform a

more accurate calculation or the fraction <F) of the

hydrogen which is in molecular form and shall also calculate

the expected distribution in z of the molecular hydrogen.

We shall see that the molecular hydrogen should be distri-

buted in almost the same manner as the atomic hydrogen as

assumed in the elementary approach to the problem in part

(a) of this section. The total variation in z of (F) amounts

to only about 2%, while the correction to the absolute

fraction is about 40%. The analysis in this section leading

to these figures is quite lengthy and may be skipped by the

reader interested only in the results.
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The basic equation for < F(z)> can be derived from the

following considerations. In dz let there be N0 (z)dz

hydrogen nuclei and (F(z)) No(z) z molecules. The molecules

are in dz because at some time (or linear distance) in the

past a number of clouds containing N0 (z')dz' hydrogen nuclei

started out at a number of height intervals dz' and diffused

along some path of length s to z. For clouds diffusing

along such a path the probability that they were last

ionized at a linear distance (backward in time) between s

and s + ds is X- (s) exp(- fA- (s')ds'). In travelling

a distance s a fraction F(s) = 1 - e - k s of the hydrogen in

the cloud will have become molecular, with k = Yg/2.

We denote by W(z';z,s)dz the probability that a cloud

starting out at z'will be within dz after travelling a total

distance s (note that going backward along the path a

distance s one arrives at z'so that Ai(s) - Ai(z')). Our

basic equation is then

<F(zT> - 1
f ds dz Xi. (Z)

2 -

Sl F. (s) zs~z
e P Aj (s )ds) No(z, W (z2 z,s 7z' (230)

or more simply:

<F(z) = Jds dz'X i (z') e F(s) (z';z,s),

(231)
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in which the factor No(z')/No(z) has been incorporated into

W(z';z,s) to give V(z';z,s) and we have defined

(sz,,z) , (s,)as, . (232)

The basic equation (231) should now be compared with

(223) which corresponds to the case where the diffusion rate

is so large that the cloud meanders thru all z-values which

are weighted according to A(z'). The probability function

V(z';z,s) is extremely difficult to determine accurately

since one must solve a diffusion problem in which the medium

is not of uniform density and in which there is a gravitational

field. However, we do know the limiting forms of V(z';z,s).

For as the diffusion rate becomes very large, W-* A(z'),

and as it becomes very small (local phenomenon),

V -I 6(z' - z). Now, one can easily solve the diffusion

problem when the medium is uniform and there is no gravita-

tional field. W is then the solution to the equation

(t = sli)

2

)- . D 6z 2 
(233)

where the diffusion constant D is

1-D = 5cV , (2.34)

and the initial condition for (233) is

V(z';z,t)---. 6(z'- z), (235)
t-bO
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the normalization being

*a

J W(z';z,t)dz' = 1 (all t) (236)

The solution to (233) is well known to be (see also

Appendix D)

W(z';z,t) = 1 e-(z, - z) /4Dt

or in terms of s:

W(z';z,s) = 1 -(Z' - z 2 's (238)

where

4 X(239)

We shall take for I:

2

V(Z';z,S) 1 A(z') e - (z' - Z) /I B (240)
N(V)

where

N UW(z';zs)dz' (241)

is the normalization factor. The ansatz (240) is certainly

reasonable since, for example, the two limiting cases

resulting from, say, T--s 0, aD are contained. We take

for Y the value corresponding to the harmonic mean of Ac(Z).

Since A (z) a (z), we have <x- g w (0), with
Ce>
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fa2 (z )dz (242)

f a(z )dz

Using Schmidt's a(z) one obtains g = 0.623 . Moreover,

we take the model in which the clouds all have the same

radius r = 5 pc and in which the clouds fill a fractionc

f = 0.1 of the interstellar space. Then
c

16r c7 140 pc (243)

c

The calculation of (s,z,z) is a much more difficult

problem. T is given by

(s,z'z) = fds' dz" A 1 (z") V(z",s'I z',zs)

(244)

where w is the probability of being within dz" after

diffusing a distance s - s', given that the cloud started

at z' at s' = s and ended up (s' = 0) at z. We employ the

results of Appendix D and equations DIO with t' - (s-s' )/

and t - t' - s'/7 and make a second ansatz:

2 2

W(z",s' I z',z,s) = 1 A(z") e- 2/0

N wi
2 2

_(z, - z) /a (245)

Here the normalization is

N(V) f _ dz"W(z",s'j z',z,s) (246)

and we have defined



156.

2 2
a = (s -s'), a= so' (247)

We see that 7 has the correct limiting properties and that

W 6(z" - z') as s'- --> 0.

In the calculation of T it is convenient to approximate

the distribution A(z) by a gaussian:

2 2

A(z) = z eZ2/hg (248)

This is actually quite a good approximation (see Fig. 39),

especially for small z where A1(z) is peaked. We take h

as the parameter which gives the same half width as Schmidt's

distribution. It might be remarked here that one should

really be taking the distribution function for the total gas

density instead of the atomic distribution. However, as we

shall see, the molecular distribution m(z) is very close to

the atomic distribution a(z) so that. A(z) car. also represent

the total distribution well. We are, of course, now

attempting to find the deviation of m(z) from a(z). With

the approximation (248) we have, since A l(z)oc o(z).

A- 23(z) (see eq. 227),

1 1 22 /h

(z) - Xi (0) (249)

where

1/hi = 1/h2 - 2/3h 2 (250)
1 0 g
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With the help of these relations one easily calculates

22 2 2 2

N(W) rg e g / rg e - z 2/a 2 1 e 2 , (251)
hg

where _2 _2 _2 _2
2= hg + G' +Q , (252)

and 2 2 2

.g/ = z,/Q' + z/a2  (253)

Carrying out the z" integration in (244) we then obtain
00 2 2 2 2

d.,,A." (z,, - ;(0) rg_ e'g/39 e-k91T

(254)

with
_22 *2 2 _

-2 = - + h2 +a'- +

gi g "

2 - + a' + a- (255)

gi,

and 2 22

T /gi = z'/Q2 + zlG 2 (256)

Thus, we have for T:

1 rs
(s,z',z) - ; (0) G(s',z',z,s) ds' (257)

with

(s',z',z,s) = H(s',s) e- E, (258)

H and E being given by
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2
1/h 2 + 1/ (s - s')+/s

H= - g (259)
Tg 1/h~i + l/T(s_ s,) + l/T s'

and
2 2 2 2

E = *g/ g - / gi

' + 1

(S -sJI/h + l/ (s S' + S'

1;e (260)

1/hgi + l/ I (s - s' + 3/(2s'
Now, for most of the range of integration over s',H 2- h gi/hg

2 2 f 22 g2

and E (hg/ s') hg -- h A 2 cl (since z,z' -h - h
g 9 g gi

and s' i ). However, as s' - 0

2 2Z s'hi  Z 181 2s'

E h 4' + (261)h- (s - s') h s-s')
1 0

where _If
H = h- - h (262)

o gi g

For typical values of z,zs' the largest of the correction

terms (ist order of s') to E is the first. Hence, for small

s -- Z2 a his'
= 4 1 for typical z. (263)

h i Ho0

Similarly, at the other endpoint s' -- s

2 2z h 1(s - s')
z - 2(1- Jh' . (264)

i H0
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The graph of E vs. sl is then of the form shown in Fig. 40

below.

E .- IL

OS-G SI.S

Fig. 4o

Graph of E as a function of s'

0 2

One is thus led to make the following approximation:

.(s,z,z) o(sz) + (s,z') , (265)

where

0 (s,z) = Ai(o)tJ+J jds'H(s',s) e

(266)

J4 2

In the separate intervals 
we take (a = H4/y hi)

0 s' : H 1
2h i

2

E = - (1-
h i
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2 2
s'< (I + hg - hg" 1 + 1qg s< 2 H h ~-') (267)h92f - 8' ST

E= 0.

Evaluating the integrals we get (a << s)

2 h 2

h (sz) + gi (in1 - + (O)af (z)

(268)

where
h

=l i) --- (269)
gi (6

and the function f(z) is 22 /h? z2 /h
1e - z 2 / h  4 _z /he if(z) 2 e - Ho (1 - e

-/ 2o2i72 z2,/hiz/h 2z /hi h

(270)

As z 0

4 4 2 4 4 1 4
f (z) - - H0 /4h i - T(z/h i ) (1 - H0/6h i ) + g(z/h:,) ,

(1 - H/8h4). (271)

Now, in (268) all terms except the first represent correction

terms (ci) and we should perhaps take the first term to be

Vs/2 with e -- 1 (o)AfO where ,0 (eq. 228) is calculated

with Schmidt's specific A(z) (not the gaussian approximation).

Hence we have

= is + Tc (272)
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and

e e 7 (i - ci) = e S(l - I ci) (273)

The function e- is to be substituted into (231) to be

integrated over z and s. Since the weighting factor in the

integration over z is peaked at z = 0, the expansion (271)

2
which comes into o (s,z') may be used with terms up to z

Making the substitution

1-H4 /h4 _fZ
f*(z) = 0-H/2hi - f(z) (274)

1 - H4/#4
1 -

we get

2 2

= s--i- + hg - gi
Ai A, a 8

-A (0) a (2 -H0/h i ) (1 HO/6hi))

-H /2hi- -. hz..1)

1

- A1 (0) a (1 - Ho/4hi) f*(z) (275)

the last term giving the z dependence.

Let us now return to 7 (eq. 240). Here one can expand

the exponential and get after evaluating N(1):

A(z') (1- is ) (276)

where we have dropped a linear term in z' since it will give

nothing when integrated over z' in (231). Substituting the

expressions for T and V into (231) and evaluating the
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integrals over z' by making a gaussian approximation to A(z)

in calculating the correction terms, we get for <F(z):

<F =z)> (<Fo> + c)(l + &f*(z)) (277)

where

<F) = k k (278)oF e+k +

is the zero order term,

ON- (0) (1 - Ho/4h 4 (279)

1 (1 - 0 i1

gives the magnitude of the z-variation, and C is the correction

term to the absolute fraction <Fo> . C is given by

C - (0) 1e- (l - e- )( )do

(280)

with

=
Ci a/s y - n

-. (h -h /h)+- (h- h )
g gig9 -71 g gii

A- (0) a(2 - H4/2hi - h - H 4 )) - 2a/74

2 2hg-

g' h - hgi (281)

Evaluating the integrals in (280) we get (C = 17-(o))
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1 k+s

C Zcorr. = a-i (0) in k +o k+

X 0 (Ina (k + Ae) ina.' (282)
-'y?, (0)(

Inserting the numerical values a/xi(O) = 0.0376, 0 = 0.0122,

= 0.0363, and 2 0.496 we find for the most likely case

=k (.=2)

< Fo> = 0.50

C = -0.21,

while A is calculated to be (independent of k, )

A = 0.024 5

We see that the correction to the absolute fraction F is

sizeable ( -40%) but that the term 1 + Af*(z) giving the

z-dependence of <F> is fairly constant (total variation - 2%).

The relative deviation from the value of <F> at z - 0 is

given by

<F(z)> - <F(o)' (z (283)

<F(O)>

where the function f (z) defined in (270) varies between 0

and 1. It is graphed below.

(c) Critique - Assuming that the basic microscopic

physical processes have been treated correctly, the greatest

uncertainty involved in the calculations Just described lies

in the validity of the model chosen for the interstellar gas.
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Z (PC)

Fig. 41

Graph of f*(z)

The cloud model has been widely used but has also received

some criticism. It has been adopted in this work in order

to treat the problem at hand analytically. Essentially, we

have assumed that all the clouds have the same density and

mass, since we have used a unique grain density pg and a

unique characteristic velocity 7. It is known, however,

that there is a range of cloud densities and masses, although

the data is not sufficiently accurate to warrant a detailed
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treatment which takes into account this fine structure in

the model.

In considering the random motions of the clouds it has

been assumed that the clouds retain their identity in making

a number of collisions with other clouds. It may well be

that the clouds are disrupted in cloud-cloud collisions;

on the other hand, some clouds might join together in a

collision. However, as long as the clouds are not disrupted

completely, the results obtained will probably be valid.

For example, if on collision a cloud breaks up into two

smaller clouds, these clouds will undergo Brownian motion

themselves and the general random motion of the gas will

'I

still be treated correctly. Actually, as Munch and Zirin

have noted, there does seem to be some mechanism which

prevents the disruption of the clouds. Perhaps the clouds

have an internal magnetic field which confines the ions and

neutral particles (by means of their interaction with the

ions) to a certain volume. Alternatively, the clouds might

be in pressure equilibrium with a hot, less dense inter-

cloud medium and galactic halo. We have essentially taken

the former view, since we have assumed that in the process

of molecule formation in a cloud the total density n0 (-nI +

2n2 ) remains constant. This leads to the result F(s) =

_ks
1 - e for the fraction in molecular form as a function of

s, the distance travelled since the last ionization. If the

clouds are in pressure equilibrium, then it is more reasonable
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to take nI + n2 = constant during the gradual molecule

formation. One can easily show that this leads to the

following result for the fraction in molecular form as a

function of s:

F'(s) = 2 1 - e (284)
_- e-ks/2 (

2-

The mean fraction (averaged over clouds) then becomes (see

eq. 223)

00

<F') = & e F (s)ds

f~J l
M~ 2vi i- x

- 2' 2 -x = <'F' (p)> (285)
2 - x

where V = 2oe/k = /i. The fraction <F'( L)> computed from

(285) is shown below in Fig. 42. The function (F(G)> =

p./(p. + 2) is also shown and we see that there is little

difference in the two functions. It is quite remarkable

that, given the value of the dimensionless parameter p., one

calculates very nearly the same value for the fraction in

molecular form by making different basic assumptions.

Finally, it should be remembered that we have taken the

rate constant for formation on grains to remain constant

during the conversion to molecular form. This assumes

either of the following is true: (1) the characteristic time

for grain formation is much longer than the molecular

conversion time, or (2) the characteristic time for grain

formation is much shorter than the molecular conversion time.
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Fig. 42

Fraction in molecular form as a function of 1±.

The case (2) would correspond to the situation where the

grains are formed rapidly after being destroyed in cloud-

cloud collisions or in close passages near bright stars.

The observed grain density would then be interpreted either

as the saturation value or as a steady state value, the

steady state being established in a time short compared with

the time for molecular formation.

(d) Molecule/atom ratio between the spiral arms -

One might ask about the molecular concentration between the

spiral arms of the galaxy where no atomic hydrogen is

observed. We have essentially assumed an infinite plane of

gas in considering the diffusion of clouds. Actually, the

1
clouds are likely to diffuse,-2 kpc in the plane of the

spiral arms between ionizations and the absence of bright
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stars between the arms leads one to expect a smaller

ionization rate there and a corresponding molecule/atom

ratio that is higher than in the spiral arms. There may be

such an effect although it is likely to be relatively small

in magnitude and of minor importance. For spiral galaxies

one generally observes an absence of dust between the arms

so that a high gas (atomic or molecular) abundance would be

unlikely since the gas tends to "drag along" the dust (and

vice-versa). Moreover, since we do not observe star

formation between the spiral arms, a high gas abundance would

be difficult to reconcile. It may be that the gas is con-

fined to the discrete spiral arms by either magnetic fields

or gravitational forces or both. In summary, while the

molecule/atom ratio may vary by, say, half an order of

magnitude in going from a spiral arm to the interarm region,

the absolute molecular concentration between the spiral arms

is likely to be small.

3. Dynamical astronomy's unobserved mass

About thirty years ago Oort made a study of the

motions of stars perpendicular to the galactic plane. From

the statistics of these motions in the z-direction he was

able to determine the mass density in the galactic ].lane.

This problem has been reinvestigated 
recently by Oort,

1 0

9
Hill, and others with the result that the density determined

in this manner is greater than previously thought. Of the

resulting mass density for the solar neighborhood about half
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can be accounted for by the observed density of stars and

gas. Oort has attributed the remaining "unobserved" mass

to faint dwarf stars with M > +15. We shall try to see inV

this section whether one can account for this mass by

assuming that it is due to molecular hydrogen.

The stellar motion studies essentially determine Kz,

the acceleration in the z-direction. The total mass density

is determined by Poisson's equation which becomes, in

cylindrical coordinates with no 9 dependence,

r + 
- r 

+ & - = -4r G p(r,z) . (286)

By making use of Schmidt's model for the galaxy Oort has

calculated the first two terms in (286) for the r-value

corresponding to the sun. Oort also gives K as a functionz

of z from his stellar dynamics studies. To calculate 2Kz/a

(and p(z)) it is convenient to express Oort's Kz as a

polynomial in z:

2
-Kz = k 1 z - k2 1z1 . (287)

By applying a least squares fit to Oort's data on Kz out to
3O 2

z = 300 pc one finds k - 8.90 x 10- sec -, k 2 - 1.014 x
32 2 l

10 sec- pc . We then have

= -I + 2k 2 1z , (288)

which when substituted into (286) allows one to compute p(z)

and the unobserved mass density p(z) - pobs(z). The results
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are shown in Fig. 43. As seen from Fig. 43 the half width

Ioo zoo 300

Fig. 43

Unobserved mass as a function of z.

of the distribution of unobserved mass is about 200 pc which

is appreciably larger than the half width of the observed

distribution of atomic hydrogen. Since we expect the mole-

cular hydrogen to have essentially the same distribution as

the atomic hydrogen, the results for the unobserved mass

would seem to rule out H 2 as the major contributor. However,

K was determined from the distribution of K giants which

have a much larger spread in z than the interstellar gas.

One would not be able to tell from the motion of a star at

high z what the distribution of mass was at low z, for while

this mass determines the acceleration of the star the same

mass spread out over larger z-values would give almost the
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same acceleration. For this reason the significance of the

distribution exhibited in Fig. 43 should be weighed with

care.

4. The gravitational scale height of the galactic gas

Assuming equipartition one can predict the

characteristic height of the gas above the plane of the

g&laxy from a knowledge of the gravitational potential V(z)

and the velocity distribution f(v) of the interstellar

clouds. Conversely, given the z-distribution n (z) of the

gas and f(v) one can calculate the gravitational potential

function. The distribution of mass should be related to

the potential function by an equation of the form

n0(z) = e-mV(z)/kT P (289)

where we have denoted the mass of the cloud by m and intro-

duced a "temperature" for the cloud motions. The distribu-

tion n (z) is normalized so that no (0) = 1 (also V(O) - 0).

We assume equipartition in order to relate T to the mean

squared velocity by means of the relationship -k = 1v2

which allows one to rewrite (289) as

n 0  (z) - e (z)/- e' (z)/- (290)

or equivalently:

V(Z)/v2 - - in nO (z) . (291)



172.

The total mass distribution n (z) may be found from Schmidt's0

distribution a(z) of atomic hydrogen and the results derived

in section B2b of this chapter for the molecular distribution.

The fraction of the hydrogen which is in molecular form was

shown to have a slight z-dependence given by

<F(z)> = <F(O)> (1 + Af (z)), (292)

The total density n0 is related to the atomic density n1 by

_i

no/n 1 = (2n2 + n1 )/n I = (1 - <F(z)> ) (293)

Because of the smallness (A <,l) of the deviation of the

molecular distribution (and total distribution) from the

atomic distribution we have, approximately,

no(Z) AF(f>*f

n - i+ Af (z), (294)a~z3 1 -< F(0)>

and

V(z) in n0 (z) = - ina(z) - <F(O)> Af*(z)

z0
o 1 I < F(0o>

(295)

The second term on the right of (295) is actually quite small

compared with in a(z) and we have to a very good approximation:

V(z)/v z = - in a(z) . (296)

This last relation readily allows the computation of the

gravitational potential in units of v and hence the shape
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of the potential function. This potential is to be compared

with Oort's function calculated from the statistics of star

densities. For the values of z that we shall be concerned

with, 0ort's potential function can be well represented by

(see previous section)

1 2 3
V s (Z) k 1 IZ k kZI -z (297)3

where the subscript s has been added to denote the fact that

this function is derived from observations of stars. As

shown in Appendix B, v = v3 = 2 7 2 sothatwehave
z

v ; ( = V (z)/2 . (298)

The two potential functions, one computed from the distri-

bution of the gas and the other from the stars, are shown

in Fig. 44.

We see from Fig. 44 that the potential distribution

required to produce the observed gas distribution is much

steeper for small z than Oort's potential function as

determined from stellar motions. It is tempting to interpret

this steep potential well of -in a(z) as a result of the

large self-gravitation of the gas as Gold1 3 had done. The

potential due to the self-gravitation of the observed atomic

hydrogen cannot account for the deep well. We can easily

calculate the required mass density at z=O needed to produce

the steep potential function of - ln a(z), since for small

z the gaussian distribution
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3
V(s)
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W LOo 300

Z (10C)

Fig. 44

Potential functions (in units of the mean squared
velocity of the clouds in the z-direction) as
determined by the observed distributions of gas
and stars.

2 2
z /hg

a(z) = e (299)

is a very good approximation. Then for small z

- 2
V(z) z 2 T (300)

and Poisson's eq. (293) becomes
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6Kr + r  2v 2
+ .2. rG p(r,z) . (301)

r h

At z = 0 the first two terms on the left of (301) can be

evaluated from the constants of galactic rotation to be
3 0 2 20

0.60 x 10- sec- Substituting h =4.08 x 10 cm and-- 2 g24

v2 = 2 with = 7.5 km/sec we get p(O) = 15.4 x 10-

gm/cm 5 ; higher values of would give even larger densities.

Unfortunately, the characteristic velocity is poorly known,

various authors have suggested values ranging from 5 km/sec

to 12 km/sec (for example, the 21 cm investigations gave

1 = 8.5 km/sec). Observable stars and gas amount to about

5 x 10- 24gm/cm so that in this analysis the majority of

the mass density appears to be unaccounted for.

One can calculate the total mass density at various

values of z in this manner. The result obtained is shown

schematically in Fig. 45a. For comparison the mass density

required to explain the observed stellar distribution is

shown in Fig. 45b. The density needed to produce the observed

distribution of gas is roughly constant and confined to

within about 110 pc ( z ) of the galactic plane; beyond zg

the density needed is essentially zero. This results because

the distribution a(z) is essentially gaussian for z < Zg and

exponential for z > Zg. The characteristic height of 110 pc

is just the half width of the observed distribution of atomic

hydrogen (and presumably of molecular hydrogen) so that this
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result would suggest that the unobserved mass is molecular

hydrogen.

As mentioned earlier, because of the large characteristic

z-values of K giants (/-TI 300 pc) whose distribution gave

the result in Fig. 45b, the statistics on the distribution

of stars may not be good enough to resolve the width of a

distribution as shown in Fig. 45a. The stellar motion

studies would then essentially give I p(z')dz', a measure

of the total amount of mass within z. For the distribution
rZ ZIl 21 3P (z), P (Z')dz'= 1.7 x 10- gm-pc/cm 3

. The dis-

tribution ps(z) integrated from 0 to 250 pc gives about the

same "total mass", while ps (z) integrated from 0 to 400 pc

O21 3gives about 2.0 x 1- gm-pc/cm3 .
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This analysis has implicitly assumed that the galactic

gas is isothermal and composed of clouds of identical mass.

Both of these assumptions are objectionable (for example,

that the cloud velocity distribution is non-maxwellian

might indicate a distribution of cloud masses). However, if

the interstellar gas is viewed as a highly turbulent medium

instead of as a "particle" gas of discrete clouds, a baro-

metric-type relation of the same form as (296) would relate

the (mass) density and gravitational potential. In this

case, the barometric equation results from considerations of

(turbulent) pressure equilibrium (rather than thermal

equilibrium) in which v2 is now interpreted as the mean
z

squared systematic turbulent velocity in the z-direction.

The correctness of the shape of the potential (Fig. 44)

would still hinge on the constancy of v2 with z, however,
z

C. Outlook for Future Observations of Interstellar H2

As we have shown, if the recombination reaction on the

surface of the interstellar grains is effective, one can

expect a molecular concentration in H I clouds comparable to

the atomic value. Such a large amount of H2 could easily be

detected by the satellite-borne ultraviolet spectroscope

designed by the group at the Princeton Observatory and

scheduled for operation in 1966.

A number of people have considered the possibility of

observing infrared radiation from interstellar H2. One such

experiment which has a good chance of succeeding is described

in a paper 5 8 by M. Harwit and the author. The essential idea
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is the following. In a region of high density surrounding

a bright star an appreciable fraction of the radiation from

the central star which is absorbed in the (electronic)

resonance lines of H2 is converted into near infrared

vibration-rotation photons. For when the excited (by

resonance line absorption) molecule reverts to the ground

electronic state, it can end up in excited vibrational levels.

The vibrationally excited molecule, then emits a series of

quadrupole infrared photons as it cascades to the ground

state. Certain dense regions, e.g. the Orion Nebula, should

then emit an amount of infrared radiation in the form of

vibration-rotation lines which, according to our estimates,

should be detectable. The radiation would be emitted from

the region surrounding the star where the resonance line is

absorbed. Even for a rather small molecular concentration

this region would correspond to a thin shell outside the

Stromgren sphere. Attempts to observe this radiation may be

made within the next year.

A very interesting suggestion regarding interstellar H2

has been made recently by 0. H. Herbig. 5 9 He observed that

the very broad interstellar absorption line at 4430 R almost

coincides in wavelength with a transition between two excited

triplet states of H2, the lower of which is metastable.

Herbig suggests that the 4430 X line may correspond to an

absorption by hydrogen molecules on the surface of the inter-

stellar grains, the interactions with the solid accounting
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for both the broadening and shift of the line. The problem

with this identification is that of populating the excited

triplet state so that the molecule can absorb at 4430 o

Herbig has been unable to account for a mechanism which will

produce enough molecules in the excited triplet state to

explain the strength of the 4430 line. The opinion here is

that while the problems associated with identifying this

line with H2 seem very great, attempts to explain the diffuse

interstellar lines as arising from atoms or molecules bound

to the interstellar grains may turn out to be very fruitful.

D. Star Formation - Early Stellar Evolution

There is a good deal of evidence that stars form out of

condensations of the interstellar gas and that star formation

is still taking place in the spiral arms of our galaxy. The

qualitative details of this condensation process are poorly

understood, however, and the general phenomenon of star

formation has remained one of the biggest unsolved problems

of modern astrophysics. Two principal difficulties are:

(1) how do the dilute gas clouds reach the stage where their

gravitational self energy allows them to contract against

the pressure from the kinetic energy (temperature) of their

constituent atoms and molecules, and (2) how is the initial

angular momentum of the gas cloud lost as the cloud contract.39

The answers to both of these questions are unknown although

there have been many suggestions. Several useful surveys of

the general problem may be found in the collection of prize
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6o
essays by Burbidge et al.

We shall consider here only one particular phase of

star formation, a phase which all stars are very likely to

go thru, however. This is the very early stage of stellar

evolution when the gas is still dilute, cool, gravitationally

stable to fragmentation, and composed essentially of hydrogen

molecules. This stage corresponds to the fairly dense

protostar for which we shall assume a quasi-steady state

exists in which the gravitational interactions are strong

enough to establish a condition whereby the virial theorem

is applicable. Moreover, we shall assume that there exists

some efficient mechanism for the protostar to get rid of its

angular momentum so that we shall not have to worry about

rotation. It is quite certain that the gas is indeed in

molecular form at this stage since, even if the grain

recombination mechanism should fail, at the high densities

involved other processes, especially associative detachment,

will take place and insure complete formation of molecular

hydrogen in a time shorter than the lifetime of this stage

of evolution. Hydrogen molecules play a major role in the

protostar development in this stage because they are very

efficient at radiating away energy by de-excitation of

rotational levels. The rate of radiation turns out to be

proportional to e- E 2 /k T , where E2 is the excitation energy

of the J = 2 rotational level and T is the gas kinetic

temperature. This strong dependence of the rate of radiation
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on temperature tends to make the gas isothermal. With the

help of the virial theorem, then, we can immediately write

down the expression for the total energy of the gas mass:

= j- A (302)
3(y-1 )

where y is the ratio of specific heats for the gas and A).

is the total gravitational potential energy of the protostar.

For a protostar of uniform density

2
3 1GM
5 7 , (303)

where M is its mass, and R its radius. For other mass

distributions the numerical factor in the expression for ft

will be different but the dependence on M and R will be the

same. From (302) and (303) we get a relation between E

and R and so a relation between the contraction and energy

loss rates. We neglect the variation of y with R and get

for the rate of energy loss from the gas:

R

where

3y- 4 M2  
(305)

We see immediately that if the gas is to contract (< c 0)

by radiating energy (C < 0), y must be less than 4/3.

We shall be concerned with protostars of temperatures

such that AE/kT < 1, AE being the excitation energy for
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rotational levels of H2 . The gound state (J = 0) is then

the most heavily populated. Moreover, ortho-para conversions

by collisional process are negligible because of the large

activation energy involved. The principal excitation is

then the population of the J = 2 state of para-hydrogen by

collisions with other hydrogen molecules. As Osterbrock 
48

has emphasized, the J = 2 state is more likely to be de-

excited to J = 1 and then to J = 0 (para -- ortho --* para)

by means of forbidden dipole radiation instead of falling

directly to the ground state in a quadrupole transition.

The population of the J = 2 state may be found from the

steady state equation (we neglect effects of downward

transitions from higher J states because of their high

excitation energy):

= n n va n (A2 + n a2  =0,

J 2J O Vao 2 J-2 2 -,

(306)

(n = nany J = nJ=0)

where the n's represent the number of molecules in the J

level per cm 3 , A2 is the de-excitation transition probability

(for J = 2 -- J = 1) per unit time, the a's are the crcss

sections for collisional excitation and de-excitation, and

v is the relative velocity. From detailed balance

va 20 = Va 0-+ 2 (go/g 2 ) e2/k , (307)
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g and g2 being the degeneracies of the J = 0 and J = 2

states respectively. The de-excitation cross section

a z has been measured indirectly and is approximately
49

2 -- 0 g 2

4.0 x 10- cm . The rate constant va is then v a d
- 1/22--*0

where v 4 (kT/MH )1/2 is the mean relative velocity of the
hydrogen molecules. We have then for the populatiorf of the

J = 2 level:

nJ=2  = n (g 2/g) e E2 /kT. (308)
1 + A2 /n-v a

Now, for the densities that we shall be concerned with

the infrared radiation emitted in the de-excitation will not

be absorbed or scattered appreciably by the grains in the

protostar, especially if the grains are dielectric as is

presently thought. Nor will the radiation be absorbed by

hydrogen molecules or by molecules other than hydrogen.

The small probability of the transition prevents its self

absorption, especially since the bulk of the emitted

radiation involves the transition J = 2 --p J = 1 which is

not a resonance transition. Molecules other than hydrogen

cannot absorb the line since even if they happened to have

strong infrared absorption lines at the right wavelength (a

chance coincidence), the Doppler width of these lines would

be much less than the corresponding width of the lines

emitted by H2 so that most of the H2 emission line would

escape without absorption. That the infrared opacity of
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the grains is low is certainly true for the more massive

protostars for which the mean free path for the infrared

radiation is much less than the protostar radius in the

stage of evolution which we are interested in. It is true

with less certainty for masses of about M. due to our lack

of knowledge of the infrared absorption properties of the.

grains. Because of this low opacity to the radiation the

energy loss from the protostar results from radiation from

the whole volume of the protostar instead of from a thin

surface layer and we have

4r R 3 n E A M- M--- . (309)J=2 2 nM2

Substituting the expression for nJ-2 with the help of the

virial theorem again which gives the relation

kT = GMMH /5R (310)

between T and R, we have

7 -i e (311)

with

- 5E2 /MMH2 (312)

- el/(1 + %1 (313)

S= ME 2 A2  g 2

2, (314)H g2



185.

and

qe A A2/nv- d

A2MH 1/2 3/2 7/2
2 (5/G) (r/M) R . (315)

3 0d

q is a measure of the deviation from thermodynamic
e
equilibrium (TE) in the rotational levels.

If qe < <  1 (small R), TE exists.

If qe >> 1 (large R), TE doesn't exist.

It turns out that for the values of R that we shall be

particularly interested in TE exists.

The rate of contraction of the protostar can be

calculated by combining (304) and (311) to give

- 2 e R . (316)

Because of the exponential dependence the contraction is

slow at large R which corresponds to low temperature.

However, the factor multiplying the exponential in (316) is

so large that for 4R z 8 the contraction rate approaches

the contraction rate that the protostar would have if its

mass elements were free falling from infinite R towards its

center. This free fall or collapse rate is given by

Aff = - I R , (317)

where
1/2= (2GM) .(318)
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Thus the protostar contracts slowly at first but increases

its rate rapidly as it contracts; finally at a critical

radius R the contraction rate approaches the upper limit
C

given by the free fall contraction value (see Fig. 46).

Fig. 46

Velocity of collapse as a function of R

The critical radius R is of interest and has been cal-

c

culated for several different stellar masses. Using ad =

4.0 x 1018 cm2 , A2 = 2 x 10 - 9 sec- , 'Y - 5/3, and the

other physical constants which are better known one finds

the critical radii, temperatures, and densities given in

Table 4 for stellar masses of 1, 3, 10, and 30 M e  . The

calculated critical temperature T is more significant thanc

R and n since it does not depend strongly on the density
C c

distribution assumed for the protostar; none of the critical
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Table 4

M R (cm) T (°K) n (cm - 3 ) tff(yr)

Me  1.0 x 64 1.3 x 08  5.8 x 10

3MO 3.6 x I016 54 9.5 x 106 2.2 x 10,

10M 1.4 x 1017 45 7.0 x 105 8.0 x l0+

30M® 4.7 x 1017  41 4.2 x 104 3.3 x 105

quantities are strongly dependent on the physical parameters

(such as A2 ) which do not appear in the exponential factor

in (316). The weak dependence on these parameters is a

result of the steepness of A at the critical R. In the

table we also give a rough estimate of the time scale for

the collapse calculated from t ff (GPc)-1/2.

We see that due to the efficient radiative properties

of H2 the collapse phase begins at quite low temperatures.

It is hard to say where the collapse will stop. Certainly

all the H2 will be dissociated before the end of the2 61

collapse. Cameron has expressed the opinion that the

collapse goes on thru the ionization of hydrogen and on thru

the single and double ionization stages of He. The opacity

of the material will then have increased so that radiation

comes only from the surface layer and the protostar will

begin the so-called Kelvin contraction phase.

It is natural to ask whether one could hope to find

observational evidence that stars go thru the evolutionary
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stage Just described. If one could observe the infrared

(42.4L) radiation coming from a small region of space where

there is a suspicion that a star is forming, the arguments

presented here could be considered verified with a high

probability. The maximum amount of this radiation emitted

per second by a protostar would be

I i I < NYe (319)

If the protostar is at a distance R, the energy flux

received at the earth would be

ISV//A , _7 /[rR "  (320)

For a protostar of 30 Me at a distance R = 500 pc we get

14 cm2

JiVAA - 4 x 10- watt/cm .

The energy flux received per solid angle would, of course,

be much larger. It is quite possible that this radiation

could be observed when observations are made from satellites.

Of course, one would have to be fortunate enough to find a

protostar which is in the right stage where its rate of

emission is at maximum. Some of the so-called "globules"

seem to have the right size. Hopefully, such a series of

investigations can be carried out in a few years.
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It is the opinion of the author that the collapse

phase is the only stage of stellar evolution in which

hydrogen molecules play a major role. How the gas

condenses to the early beginning of this stage remains a

mystery and it is not likely that molecules can point to

a way out of the difficulty.



APPENDIX A - PHOTODISSOCIATION AND PHOTOIONIZATION

1. Generalities about molecular structure and molecular

processes

All approaches to molecular strcture are based on the

realization that the electronic mass (m) is much smaller

than the nuclear mass (M). Because of this mass difference,

the electronic motion is thought to "follow" (to a certain

extent) the nuclear motion, that is, the electrons are able

to adjust themselves to the instantaneous internuclear

distance. This is the physical basis for the so-called

Born-Oppenheimer (B-O) approximation which we shall consider

only for diatomic molecules. Denoting the electronic

coordinates of the molecule by ir and the relative nuclear

coordinates by R , the B-O approximation consists in a

separation of the total wave function for the molecule

thusly (we neglect spin)

(Ir,) 1R Ier; R) vr, e () .R (A1l

The electronic part contains the internuclear distance only

as a parameter. One can easily show by simple order of

magnitude arguments that this approach leads to the following

gradation of energies for the molecule:

190.
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Electronic energy: Ee - e2 /a (A2)

2

Vibrational energy: Ev - A Ee (A3)

4

Rotational energy: E E(A)
r

where 1 /4

= (m/M) (A5)

To these relations we add two more which give the approxi-

mate spread of the wave functions for electronic and

vibrational motion.

x e a0  (A6)

AXv x e  (A7)

It is really these last two relations which form the basis

of the Franck-Condon principle.

In radiative processes, the cross section (for absorption)

or the intensity (for emission) is proportional to the square

of the matrix element of the electronic dipole operator

between the initial and final electronic and vibrational

states (we neglect rotation). The Franck-Condon approxima-

tion consists in a breaking down of this matrix element

into a product of an electronic and a vibrational factor.

<e', v'il irl e,v> - <e'(R 0)Irle(R0 )> <v'Iv> (A8)

The electronic matrix element is to be evaluated at the

internuclear distance R where the vibrational overlap

o
integral (v'i v> is a maximum. The cross section for a
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photon absorption process, e.g., photodissociation or

photoionization, is then given by

2

Orvv = e /<v'I v) (A9)

where ae is the electronic factor. For photodissociatione

the vibrational state v' lies in the continuum and the

vibrational wave function has to be normalized accordingly.

We consider this in the next section.

2. Photodissociation

(a) Photodissociation to repulsive state - For ordinary

atomic transitions the absorption coefficient 
)e (cm- )

satisfies the relation

22

mc n f (AlO)

-3

where n is the density in cm of the absorbing atom and f

is the oscillator strength for the transition. The

absorption coefficient gq (- n a) is proportional to the

square of the matrix element of the electronic dipole

operator. For a molecular transition, and in particular

for one involving a dissociation, the cross section is

proportional to the square of the vibrational overlap

factor. With one of the vibrational states in the continuum

we write the overlap integral as <Ely> where E stands for

the relative kinetic energy of the dissociated atoms and v

represents the initial (bound) vibrational state. We have

then for the generalization of (AlO) for molecular transitions
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involving a dissociation

d2 n dw 2 2m c n e/lEv,=~d = mc --e ~i dN , (All)

where dN is the number of vibrational continuum states in

the energy interval dE = I dw, and T is the oscillatore

strength evaluated at the equilibrium internuclear separation

for the initial (ground) state. With a normalization

length L for the coninuum state,

dN = *W E dw , (A12)

t being the reduced mass of the two atom system after

dissociation. The cross section for photodissociation is

then

2 2 I<Eiv> 2 L . (Al3)

(U m M e I -Egv 1---

We now consider two different approximations for the

continuum wave function q.E. Case I: 4E is a 6-function

at the classical turning point (see Fig. Al below).

Fig. Al

Classical turning point for a repulsive potential
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(R = CE 6(R - RE) (A14)

We determine CE from the normalization condition

/<E/v>I 2 dN 1 (A15)

which becomes

ICE 2 (R). Ld- (A16)

Changing the variable of integration to RE by

-- / E  
(A17)

and taking the slowly varying factors out of the integral

in (A16), we have

2 L N2i~ f

CE 41 fWjJ 2 (RE) dRE = 1 (A18)
CE Irr'-

Since 4v is normalized to unity we get for the relation

which determines CE:

2

When CE  from (A19) is substituted into the expression

(A13) for the cross section, we have, finally,

27r 2e 2 r '"2 (RE (I'mo
m c e v ( ) I )- (A20)

For a repulsive state the range of R. covers the complete

range of R and we have, again using the normalization

condition for +v'
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r 2 2

J.d - e Te (A21)

While the expression (A20) is very easy to use, higher

accuracy would require a more realistic treatment of the

continuum wave function. The following case can be

considered as an improvement over (A14).

Case II: ' is a WKB wave function.

Away from the classical turning point, the WKB 'E is

sin ( p(R') dR' + -7T). (A22)

To determine the normalization constant C we make use of

the asymptotic behavior of PE which is
(II)E

qE (II ) - A sin (kR + 6) (A23)

where

k - pE/, P E = p(R = co ) Z p (A24)

From the normalization condition

L 2E dR = 1 (A25)

we get 1/2

A - (2/L) (A26)

Comparing (A23) with (A22), we determine C to be

1/2C - (2p/L) ,(A27r)
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so that the normalized WKB wave function away from the

turning point is

()(R) = p(R) dR +

(A28)

We match this wave function to a wave function around the

turning point which is an Airy function. This procedure is

62
described in the book of Landau and Lifshitz. The result

is that the continuum wave function for all R is given by

1/2

= (2p/L) uE , (A29)

where

(2pYF t) #(-y ) near turning pt.

uE 1/2 1 (A30)

(p(R)) sin f 4p(R') dR' + 1) away

from turning pt.

Here, 0 is the Airy function

r= -1/2 Cos 3 + ur ) du, (A31)

with 2 /3
(R + ElF ) (21FA,/4 2 )1/3 (A32)

F -M (A33)

With the wave function given by (A30), the normalization

condition (A15) becomes

I<"-v>l12 2N = I<u~lv> 2 a (A34)

r1
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so that (All) gives for the cross section

2 e

=27re 2 <u vI2 (A35)

(b) Photodissociation to attractive states - The two

expressions for the photodissociation cross section which

were derived in the previous section are also applicable

when the upper electronic state in the dissociation process

is an attractive state. For attractive states, however,

(A20) is less accurate, since the errors involved in the

approximation of a 6-function wave function no longer have

a way of cancelling as they do when the upper state is

repulsive. Nevertheless, (A20) is useful in deciding which

electronic states contribute to the photodissociation

process. For a more accurate calculation of the contribution

of these states to the cross section it is advisable to

then employ the relation (A35).

We shall consider the case where the potential curve

for the upper state can be approximated by a Morse

potential (see Fig. A2 below)

LI

a¢ R

Fig. A2

Classical turning point for an attractive potential
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U (R) = D (1 - e (R - Re) 2  (A36)e e

The momentum p(R) in (A30) would then be given by

p(R) =2fE + De - De(1 - a'e-R)1] / 2  (A37)

where

al= e Re (A38)

Making the substitutions

Y= 1 - a'e P (A39)

2
k D=eD/(E + D) (A4O)

and

y ky - y(R) , (A41)

we have
1/2 2 1/2

p(R) (21±(E + De)) (i - y 2) . (A42)

The WKB wave function u. becomes, since

dy = k dy = km'p e-PR dR = P(k - y) dR , (A43)

u, - &L (E + De)(1 - y (R))J sin

1/2 (1 . ) 1/2

(21*(E + De)) 3(k y, y) dy' + T . (A44)

To evaluate the integral in the argument of the sine we let

k = 1 - E , (A45)
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where

e = 1 - (De/(E + De )) 1/2 E/2D e (A46)

Then,

k - y' (l -y,) (l (A47)

where

(A48)

The function to be integrated in (A44) becomes

f(y,) = - y2 )1/2 1 1+ y' 1

k - y' 1- y' 1-

- y' n(A49)

Making the further substitution y cos 29, f(y) becomes

'@- n
f(y) f n (y (A50)

with

f (y ) f 2 d . (A51)
.. sin 0-

The integrals fn (y) are easily evaluated. The first few

are enumerated below.
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fo(y) = - cos- - ( - y2/2 + r)

fl(y) = Y + Cos y- Y rY

f 2 (y) = Y 31 3  (A52)

f3 ( y ) = y3 (y2 + 1/3)/5

Hence, we obtain for the WKB wave function with a Morse

potential:

)lr1/4 sin(2i (E + De)) 1/ 2
=2 .(+)( -y yin,% eI -TS

C fn(Y) + ".}(A53)2n- nT

These methods can be applied to the problem of the

photodissociation of the hydrogen molecule. The edge for

photodissociation of H2 thru allowed transitions is at

14.5 eV corresponding to a dissociation in which one of the

hydrogen atoms goes off in an excited state with n = 2.

The sharpness of the edge can only mean that the upper state

involved in the dissociation is an attractive state. Two

attractive states which, on separation of the nuclei, result

in one H-atom in the ground state and the other in the first

excited state and which have large oscillator strengths for
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transitions from the ground state are well known. They

are the B +) and the C (1/7T) states which give rise

on absorption from the ground state X (lZ ), to the Lyman

and Werner bands of the molecule. To decide which of these

states is likely to contribute to photodissociation, (A20)

was employed with the result that the X --3B transition

can definitely be ruled out because of the very small

vibrational overlap. The X-- C contribution is not

negligible however. Herzberg and Monfils 6 3 have expressed

this opinion after investigating the rotational structure of

the dissociation edge. Employing (A35) with a NKB wave

function calculated from (A53) matched to an Airy function

at the classical turning point, one obtains a value

0.85 x 10 cm for the X--- C contribution to the photo-

dissociation cross section at the edge. A harmonic oscilla-

tor wave function (gaussian) was used for the ground

vibrational state and an oscillator strength of 0.6 was

taken for f e This semi-emperical value was arrived at in

the following manner. The "experimental" f-value from

dispersion data6 4 of 0.84 has been taken to be due to the

sum of the transitions X -- B and X -- C. Since the f-value

for the former transition has been calculated
55 to be 0.27,

the difference between 0.84 and 0.27 can be taken (if no

other transitions contribute) to be due to X--PC. Because

of the uncertainty of the data, a value of 0.6 was adopted

for the f-value for X -- C. The calculated cross section
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18 2
85of 0.8 x i0-1 cm 2seems too small by about an order of

magnitude when compared with the rough experimental data 36

for the cross section at the edge. Thus, these calculations

would seem to rule out both the B and C states as the most

important upper state in the photodissociation. Perhaps

the recently discovered B' state mentioned by Herzberg and

Monfils may be the chief contributor to the cross section.

At present, little data exists for this state.

3. Photoionization

The cross section for the process
+

y + H -pH + e (A54)

has an edge at about 15.4 eV corresponding to a transition

between the ground vibrational states of H2 and H2+. The

cross section for photoionization in which the transition

is from a vibrational state v of H2 to a vibrational state

of H2
+ can be written, with the help of the Franck-

Condon principle, as
2

alvo (a) ae() (VIvo (A55)

where

W = - & (A56)

and a e(v) results from the electronic part of the matrix

element for the transition and would be calculated for the

equilibrium internuclear separation of H2 . For practical

purposes a e() can be taken from experiment to be of the
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form
3 5

a (W) z B/w (A57)

2 1
with B = 0.176 cm sec , giving a threshold value of the

electronic part of the cross section of ae(Wo) = 7.5 x

18 2
10 cm . The total cross section for transitions from

the ground state vo = 0 to all vibrational states v1

consistent with energy conservation is then

a (W) Ire(v) KVo( 0 ) 2  (A58)

If we approximate the vibrational states of H2 and H2 + to2 2

harmonic oscillator states, the factors )<v 1 0>1 may be

calculated readily, and v is simply c - vlvl where V

is the fundamental vibrational frequency of H 2+. The

results of the calculation are shown in Fig. A3 below.

The low value of the cross section Just to the right of

the edge results from the small value of the vibrational

overlap factor 1<010), 2. The general shape of the edge

appears to be in agreement with the rough experimental

curve sketched by Lee and Weissler.3
6

It is interesting to note that both the magnitude and

frequency dependence of the electronic part of the

(experimental) photoionization cross section of H2 are

very similar to that of He as calculated by Huang.6 5 This

agreement is probably not accidental. The equilibrium

internuclear distance for H2 is rather small (0.74 R) and
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Photoionization edge of H2

I2

the electronic structure of the molecule can be expected to

resemble that of He which is the "united atom" corresponding

to H .Moreoever, at the internuclear distance of 07R
2

the H molecule should be similar to He
2



APPENDIX B - VELOCITY DISTRIBUTION OF H I CLOUDS

The one dimensional (radial) distribution of cloud

velocities is known from interstellar absorption studies

to be of the form

fv _ 1 -IVr;/ (BI)
V r 2

with 7 z 10 km/sec. The distribution function f for the

absolute velocity v is easily found if the assumption is

made that the distribution is isotropic. In this case the

probability of a velocity vector being in AG is sin 0 AG

(see Fig. Bl below).

Fig. Bl

Velocity Vectors

The number of radial velocity vectors between v r and

v + dv is then
r r

dNv"= fv d. =r f fv(v) sin 0 dO dv. (B2)
r r a

(vr = V cos 9)
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This integral denotes a summation over angles such that v,

cos G = V (vr is fixed in the integration). From therr

geometry we can write dv = dvr/cos 9, giving an integral

equation for the desired function f :
v

7f/1

fr (vr) = £ fv(Vr/cos 9) tan Q dQ

v ) 9 (B3)

pV 
y

The solution to this equation is

Bfvr

fv(Vr) 2 v r (B4)

r

IVrl /

With fVr - 21 e- , we get for fv.

f (v) = -. e-V/7 (B5)
V 7

This distribution gives an average velocity

vfv(v )dvi 2~,7 (B6)

and a mean squared velocity

2
v 6 (B7)

More generally,

v n /"(n + 2) (B8)
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APPENDIX C - STROMGREN SPHERES

1. Solution of the ionization equation

The basic equation for Strmgren sphere calculations

is the integro-differential equation (168). In this

appendix we shall outline methods for the solution of this

equation for the case v = 0, that is, the static case.

The same methods can be extended to cases when 7 / 0

although more tedious calculations are required. With

V = 0, (168) becomes

x2 ' (1 - x) ja, eTw(r) (Cl)no -- _ /rd
where

whr a(r) = % n o /  - x(r') dr' . (C2)

Once -r(r) is determined, the integral in (Cl) can be

evaluated and the equation can be solved for x, the

solution being

2 1/2
x- -b+ (b +2b) , (C3)

where (a ° = -/kT o )

b 2 at a e( 3t A OT.er dw. (C4)

8r2r n 0 a Pv w

The following expansions of (C3) are useful:

x = 1 - 1/2b + 1/2b2 
- 5/8b3 + ... b I (C5)
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x = (2b) /2(1 - (b/2)1/2 + b/4 - b 2/32 + ... ) ', 1.

(c6)

The motivation for the methods developed here for the

solution to (C1) comes from the fact that the contributions

to . from various elements of the gas are additive. We

write T as

3
= - wit no t(r) (07)

where

t(r) = f(1 - x(r')) dr' . (c8)

The distance r to the central star can be broken up as

shown in Fig. Cl.

p I I ,

Fig. Cl

Intervals of r

The value of t(r) at ri can be approximated by the sum

'-/

t, 21 (1 - x(r 3 )) Ar3  (C9)

and the value of t(r) at ri+ 1 by

ti+ 1 = t i + (1 - x(ri)) Ar, . (Clo)
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The general procedure for solving (CI) should now be

evident. After ti has been determined, we calculate

T W(ri), b(ri), and x(ri). With this x(ri), we calculate

ti+1 by (010), and so on. The principal mathematical

problem is the evaluation of the integral in (C4), namely

I(U) = - P e dw . (Cl1)

Close to the star the degree of ionization is high

(x-, 1) and so the optical thickness T. is small. This

suggests an iteration procedure for the solution to (Cl).

With W = 0, we have from (C4)

b (r) = 1 (R) ... L K(%ot) , (C12)
0 e

=8 (F no op'v

where

_uK (a 4t4 u d.(C113)

With this b we can calculate 1 - x i 1/2b from (05)

and substitute it into the expression (C2) for -r giving

S= awnof dr' = 1 0 no a r 3  (C14)CD f(n 2b O (r') "3'

where

a = (C3 n av (015)a) a W? (x_ )(15
Ot t Ka~

We then substitute the expression for T, from (C14) into

(C4), making the approximation e-w 1 - T,. Evaluating
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the integrals, we get

b(r) = b o (r) (1 - Br) (c16)

where

B = noat K4(ao t (17)
=O K(aowt)

Here the K's are the generalized exponential integrals

defined in the appendix of Unsoid's book.66 They have

the following properties:

Kn(x) , -xw dw-= xnlj e-idu, (cl8)

K1 (x) K(x) (C19)

(n - 1) K (x) e - x Ks_ 1 (x) (C20)

Using the recursion relation (C20), the generalized integrals

for higher indices n can be calculated from K(x) which is

tabulated.
6 7

The iteration solution (016) provides the simplest

method for calculating x(r) and is valid roughly for

r < r s/2. For larger values of r the optical thickness -

is no longer small and the iteration procedure breaks down.

However, at this point we can evaluate the integral I(3)

by expanding e in a power series. When this is done,

I(P) becomes
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I() = r(-) K3n(o o t) (C21

cut n !

This expansion can be used to calculate b(ri), x(ri), etc.

Fortunately, the argument of the K-functions does not

contain P so that they need be calculated only once for the

given value of T0

Eventually, when 0 becomes large, the expansion (C21)

will converge slowly and become impractical. At this puint,

however, we can obtain an asymptotic expression for I()

since the main contribution to the integral will come from

a region where both ao and P/03 are large (see Fig. C2

below.

Fig. C2

Graph of exponent in photoionization rate
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Expanding the exponential g(W) = aW + around the

minimum w , we can obtain an approximate expression foro

the integral I(P). The result is

I(p) e (C22)

where

-Y ( 0/) 3/4 01/4(C3
= (%0/3? l/ . (023)

These methods were used to calculate x(r) for a region

of density n = 10 cm- 3 surrounding a main sequence B2 star0

(To = 20,000 0 K). In this calculation a radius R = 2.15 x

10 1 cm was taken for the star (from Table 1.2 of

Schwarzschild's book 51 ). The results are shown in Fig. C3.

OoL)

eg

Fig. 3C

Ionization as a function of distance from a main sequence
B2 star (To = 20,000OK0 for a density no = 10 cm- .
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2. Molecular effects - the "A-shell"

We conclude this appendix by considering the problem

of determining, in the static case, the regions of ioniza-

tion and dissociation of a hydrogen gas surrounding a hot

star. The shell of atomic hydrogen which is surrounded by

H2 will be referred to as the A-shell. By the static case

we mean the state which would result after an infinitely

long time. Thus, even though the relaxation time for

formation of H2 is very long, we assume the gas to be

undisturbed for a sufficiently long time for an equilibrium

situation to exist. We consider the medium to have a

constant "heavy particle density" no = 
2nH2 + nH + np and

shall ignore the pressure differences set up by the

differences in density and temperature. Moreover, we shall

assume from the beginning that the molecular region is

sufficiently separated from the ionization region so that

when regarding molecular processes we shall have to deal

only with the region of neutral hydrogen (the results will

be seen to be consistent with this assumption). For the

neutral region we take T = 1000K and for the ionized region

T = 10 4K. The problem we are considering is unrealistice

in the sense that it neglects the effects of pressure

differences, but some of the qualitative results may be of

some value. A realistic situation to which the results

would be applicable, however, is that of a cloud of

completely associated molecular hydrogen moving past a
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bright star. The region coming toward the star, that is,

the ionization and dissociation fronts, would be described

in a manner similar to the static case since here the

dynamical motions would not have set in as yet.

The processes which determine the equilibrium concen-

trations are:

H + y j p + e (C24)

H2 + y - H + H (C25)

+ n - H2+ + e (C26)

H2 + + p (C27)

H 2+ + e - H2 + 'Y (C28)2

H2 + e - H + H (C29)

H + S-H H H 2 + S (C30)

the last process representing association on grains. We

assume (C29) to be much faster than (C27) and (028) so that

any H2
+ formed quickly becomes H + H and the reactions to

be considered are essentially

(i) H + y p+e

(ii) H2 + - H + H

(iii) H + S-H - H + S
2

The equilibrium concentrations will be determined from the

steady state relations
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2
" H = kn (C31)H e

1

nl 2 'r- = nH b 3 (C32)

and the condition of constant density

no = 2 nil2 + n H + n (C33)

1
Here, k = apv, and TY2 is the sum of the rate constants

for Photodissociation and photoionization (T-1d + T- 1

The last three equations are to be solved for nH2, rH, and

n.
e

Combining (032) and (C33), we have

ne = no - y n H (C34)

where

y = 1 + (C35)

22

Substituting(P34) into (C31), we get an equation for nil

n - 2 (noJ ) + oI on (C6)
2kyr y

which has the solution
_I _i2 2

nH + ',l (no + 7l no (07)

nH = _ y 2ky2  y

The molecular and electronic densities are then found from:

2 -1 H(38)
7Y2
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n n -yn H (C39)

no H

For no

2ky2

n -1 1/2, n - (n (C40)

H ne H -=

The rate constant for photodissociation or photo-

ionization of species k (H2 or H) is given by

iR l2 i - dw (41T- 1 A c R 2 k(w) (0 e-aoW - TC dco. (C41)

When absorption is by several different kinds of particles

= ' () tj , (C42)j, a

= crnosdr . (043)

The cross section a (CD) is usually of the form

a(CO) - 13 (.a)j (c44)

For large optical thicknesses most of the integral in (C41)

comes from the region of c where f(w) = aoc + T is a

minimum. Expanding f(cu) around this frequency o0 , we have

f(w) = f(W) + +(w-w 0) f( 0 + (c45)
20

where co is found from
0
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m

a - m t o (c46)

0 J

and

f= I Coj m.(mj +1) tj t 04 7 )
S J0o j +2 J

The asymptotic formula for T is then(h

R 2 ,/ f(cok - Gm-o k(w) 2 e.-0 2'n e-(o .(c48)
r2 kfer (co)

We consider the specific situation of a region of

density n = 10 cm surrounding a B2 star. The effects
0

of molecules are negligible if y - 1 = 2b pg <4 1. It

turns out that molecules become important only when the

region becomes almost completely neutral. Hence, the

ionization results may be taken over from the previous

calculations which produced Fig. C3. Moreover, the

asymptotic formula (C8) will be valid when considering

the H-H2 regions. For the cross section for molecular

dissociation and ionization we take a2 = B/w which is the

emperical ionization expression (see Appendix A). The

approximation of considering only the ionization process

is valid since the optical thickness T is so large that

in (C8) lies in the region beyond that where dissociative

effects are appreciable. For the numerical calculations we
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16 1 -- 01 35 3

take b pg 4 x 10- sec , k = v 2.73 x 10 cm

sec . The results of the calculations are presented in

Fig. c4.

Fig. C4

Particle densities as a function of distance from a B2
star with a surrounding medium of density n o M 2nHl +
n. + n e  F0 .m- .

Only a thin shell of atomic hydrogen separates the

ionized from the molecular region. It is emphasized again

that this situation does not represent that of a typical

interstellar cloud.



APPENDIX D - A PROBLEM IN BROWNIAN MOTION

In this appendix we shall derive a probability function

associated with a special problem in Brownian motion.

The motion may be of an individual molecule, a macroscopic

particle immersed in a fluid, or in the special case we

are considering, an interstellar cloud undergoing collisions

with other clouds. It is desired to find the probability

function w(z",t'Iz',z,t), where w(z",t'z1z,t)dz" is the

probability that a "particle" was within dz" after under-

going Brownian motion for a time t', given that it started

out at z' at t' = 0 and ended up at z after a time t > t'.

Thus, we fix the z-values of the endpoints for the motion

and the total time that the particle has traveled, and ask

for the probability function for z" at the intermediate time

t'. This problem can be solved easily by considering the

associated discrete random walk problem and then making the

transition to the continuum case. We shall use methods

similar to those employed, for example, in the review

article by Chandrasekhar.
6 8

Consider the random walk process in which a particle

takes N steps (I,2,...,J,...,N) of length I and of equal

probability (-l) to the left or right along the z" axis

(see Fig. Dl) which is divided into elements denoted by

integers (...,l,2,...,i, ... ,n, .. ).

219.
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dz

o i

Fig. Dl

Discrete and continuous z"

It is desired to find the probability W(i,Jln,N) that the

Jth step puts the particle at i, given that the Nth step

puts it at n. This probability function is given by

W(i,jln,N) = W(i,j;n,N) (Dl)

W(n,N)

where W(i,j;n,N) is the probability that the Jth step puts

it at i and the nth step puts it at N, and W(n,N) is the

probability that the Nth step puts it at n (with no special

specifications on the intermediate Jumps). Now,

W(n,N) = N: (1) (D2)

W~ n ,N)(INL + ) , (N -fl)!

the combinatorial factor being the number of ways of taking

(N + n)/2 steps to the right and (N - n)/2 to the left.

The probability function W(i,J;n,N) is the product of the

probability of getting to i in J steps and the probability

of then getting to n in the remaining N - J steps. Thus,

we have
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W(i,Jln,N) =

j: J ~~(N - j) ) .
S_ ) ( -J + n - (N - j - n + i i

(I ) 2 2 2

N!
N+ n! N - n 7

(D3)

We take the case N 2> n, j >> i, N - J >> - i and make

use of Stirling's approximation:

inx! z (x + 1)il x - x + 1. in27r (D4)

and also

1 n(l ± y) _ y - y2/2 . (D5)

With the approximations (D) and (D5) an expression like

w A A! (A >> a) (D6)

can be approximated by

In w - .ln.A (A + l)ln 2 - a2 /2A - t1n 2. (D7)

In this manner we calculate W(i,J,n,N) to be

W(i,Jjn,N) =

1 2/2j e (n -i) 2/2(N - J)
2 e (S

(27r J (N - j) en 2 /2NN e-
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We now make the transition to the continuum. Since

Z" z' z, , z = z + ni we make the replacement i

(z" - z , n - i = (z - z")/1 Now, if j is odd (even),

i must be odd (even) so that the number of allowable points

i within Az" if J is fixed is Az"/21 . Thus we have

Az"W(i,jln,N) V/- = w(z",J/n,N) Az", (D9)

w(z",Jtn,:N) being the continuum distribution function. If

the particle makes r displacements per unit time we can

replace J and N by rt' and rt respectively. We also define

D - and get finally:

w(z",Jtn,N)dz" = w(z",t'Iz',z,t)dz" =

2 (z) 2/4D(t-t

e -(z-z' 
2/fDt 

dz"

(DlO)

We note that as t' -- 0, w --. 6(z"-z) and, as

t' --vt, w -- 6(z" - z) and, moreover, that
2

)-1/2 _(z"-z' ) ,/Dt

When the second point is fixed in the infinite future, the

resulting formula reduces to the familiar expression for

diffusion from a single fixed point when the endpoint is

not fixed.



REFERENCES

1. L. Spitzer Jr., Ap. J., 120, 1 (1954).

2. H. C. van de Hulst, C. A. Muller, and J. H. Oort,

B.A.N. 12, 117 (1954) (No. 452).

3. B. G. Clark, V. Radhakrishnan and R. W. Wilson, Ap. J.
135, 151 (1962).

4. I. S. Shklovsky, Cosmic Radio Waves, Cambridge,
Harvard U. Press, 19b0.

5. L. Spitzer Jr. and J. B. Rogerson, M6m. Soc. Roy. Sci.

Lidge (5) j, 86 (1961).

6. reference 2, p. 131.

7. A. E. Lilley, Ap. J. 121, 559 (1955).

8. D. S. Heeschen, Ap. J. 121, 569 (1955).

9. E. R. Hill, B.A.N. 15, 1 (1959) (No. 494).

10. J. H. Oort, B.A.N. 15, 45 (1959) (No. 494)

11. J. H. Oort, Cambridge Symposium on Gas Dynamics of
Cosmic Clouds (1953), New York, Interscience, 1955,
p. 20.

12. B. J. Bok, Paris Symposium on Radio Astronomy IAU/URSI
(1958), Stanford U. Press, 1959, P. 430

13. T. Gold, M6m. Soc. Roy. Sci. Lige (5) 4, 476 (1961).

14. F. D. Kahn, reference 11, p. 60.

15. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of
One and Two Electron Atoms, New York, Academic Press,
1957, p. 250.

16. L. Spitzer Jr., Ap. J. 109, 337 (1949).

17. W. H. McCrea and D. McNally, M.N. 121, 238 (1960).

223..



224.

18. J. H. Oort and H. C. van de Huist, B.A.N. 10, 187
(1946).

19. J. H. deBoer and J. van Steenis, Proc. Kon. Ned. Ak.
v. Wet. 55B, 572 (1952).

20. S. Glasstone, K. J. Laidler, and H. Eyring, Theory of
Rate Processes, New York, McGraw-Hill, 1941

21. W. Feller, Introduction to Probability Theory and Its
Applications, New York, Wiley, 950, p. 327.

22. K. E. Shuler and K. J. Laidler, J. Chem. Phys. 1-7,
1212 (1949).

23. R. T. Brackmann and W. L. Fite, J. Chem. Phys. 34,

1572 (1961).

24. H. C. van de Huist, Rech. Astr. Obs. Utrecht 11,
part 2 (1949).

25. C. A. Coulson, Valence, Oxford, Clarendon Press, 1953.

26. F. Seitz, Modern Theory of Solids, New York, McGraw-
Hill, 1940, P. 50.

27. J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird,
Molecular Theory of Gases and Liquids, New York,
Wiley, 1954.

28. L. Landau, Phys. Z. Sowjet. 8, 489 (1935).

29. Data from Landolt-B~rnstein, Zahlenwerte und
Funktionen etc., 6. Aufl. Bd. 1, Tell 3,p. 509,
Berlin, Springer-Verlag, 1951.

30. D. McNally, M. N. 124, 155 (1962).

31. H. Lanibrecht, Me'n. Soc. Roy. Sci. Li~ge (4) 15, 562
(1955).

32. D. R. Bates and L. Spitzer Jr., Ap. J. 13, 441 (1951).

33. G. Herzberg, Mom. Soc. Roy. Sci. Li~ge (4) 15, 291

(1955).

34. D. R. Bates, Phys. Rev. 78, 492 (1950).



225.

35. D. R. Bates, M. N. 111, 303 (1951).

36. P. Lee and G. Weissler, Ap. J. 115, 570 (1952), see
also Encyclopedia of Physics (HanTbuch der Physik)
XXI - Gas Discharges I, Berlin, Springer-Verlag,
1956, p. 328.

37. M. R. C. McDowell, Observatory 81, 240 (1961).

38. F. D. Kahn, Me'm. Soc. Roy. Sci. Lidge (4) 15, 393
(1955).

39. Reference 15, p. 181

40. S. F. Singer, Prog. El. Part. and Cos. Ray Phys. IV,
203 (1958).

41. E. Fermi, Phys. Rev. 75, 1169 (1949).

42. S. Hayakawa and K. Kitao, Prog. Theor. Phys. 16, 132

(1958).

43. V. L. Ginzburg, Prog. El. Part. and Cos. Ray Phys.

IV, 339 (1958).

44. N. F. Mott and H. S. W. Massey, Theory of Atomic
Collisions, 2nd ed., Oxford, Clarendon Press, r949.

45. S. Hayakawa, S. Nishimura, and K. Takayanagi, Publ.
A. S. Japan 13, 184 (1961).

46. M. J. Seaton, Ann. d'Ap. 18, 188 (1955).

47. K. Takayanagi and S. Nishimura, Publ. A.S. Japan 12,

77 (1960).

48. D. E. Osterbrock, Ap. J. 136, 359 (1962).

49. L. Spitzer Jr., Ap. J. 107, 6 (1948).

50. L. H. Aller, Astrophysics II, New York, Ronald Press,

1954, p. 258, eq. 29

51. M. Schwarzschild, Structure and Evolution of the Star;!,
Princeton, Princeton U. Press, 1956.

52. C. B. Haselgrove and F. Hoyle, M.N. 119, 112 (1959);
see also F. Hoyle, M. N. 120, 22 (19MU.



226.

53. G. P. Kuiper, Ap. J. 88, 4+29 (19138).

54+. A. Sandage, Ap. J. 125, 4+22 (1957).

55. H. C. van de Huist, I. A. U. Symposium No. 4+,

Cambridge U. Press, 1957, P. 5.

56. M. Schmidt, B. A. N. 115, 24+7 (1956) (No. 475).

57. J. H. Qort, Stellar Populations, New York, Interscience,
1958, p. 4+157

58. R. J. Gould and M. Harwit, Ap. J. 1357, (1963) (to be
published).

'59. G. H. Herbig, preprint, 1962.

60. G. R. Burbidge et al, Die Entstehung von Sternen,
Berlin, Springer-Verlag, 19b0.

61. A. G. W. Cameron, Icarus 1, 13 (1962).

62. L. Landau and E. Lifshitz, Quantum Mechanics, Non-
Relativistic Theory, Reading, Mass., Addison-Wesley,

63. G. Herzberg and A. Monfils, J. Mol. Spectroscopy 5,
4682 (1960).

64+. R. S. Mulliken and C. Riecke, Rep. Prog. Phys. 8,
231 (194+1).

65. S. Huang, Ap. J. 108, 3541 (194+8).

66. A. uns8ld, Physik der Sternatmosphilren, 2. Auf 1.,

Berlin, Springer, 1955.

67. Jahnlce-Emde-L8sche, Tables of Higher Functions, New

York, McGraw-Hill, 19tbO.

68. S. Chandrasekhar, Rev. Mod. PhyB. 15, 1 (194+3).


