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Phase separation is the thermodynamic process that explains how droplets form in multicompo-
nent fluids. These droplets can provide controlled compartments to localize chemical reactions, and
reactions can also affect the droplets’ dynamics. This review focuses on the tight interplay between
phase separation and chemical reactions, which originates from thermodynamic constraints. In
particular, simple mass action kinetics cannot describe chemical reactions since phase separation re-
quires non-ideal fluids. Instead, thermodynamics implies that passive chemical reactions reduce the
complexity of phase diagrams and provide only limited control over the system’s behavior. However,
driven chemical reactions, which use external energy input to create spatial fluxes, can circumvent
thermodynamic constraints. Such active systems can suppress typical droplet coarsening, control
droplet size, and localize droplets. This review provides an extensible framework for describing
active chemical reactions in phase separating systems, which forms a basis for improving control in
technical applications and understanding self-organized structures in biological cells.
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I. INTRODUCTION

Phase separation plays a crucial role for providing
robust microstructures in technology [1–4], biology [5–
7], and even cooking [8]. In many cases, these struc-
tures provide a basis for controlling chemical reactions
or are themselves affected by reactions. Examples in-
clude chemically fueled assemblies [9–12] and membrane-
less compartments that control reactions in biological
cells [13–16], which are also often regulated using chem-
ical modifications of the involved biomolecules [16–21].
In fact, chemically controlled droplets might explain how
cells originated at the origin of life [22–24]. All these ex-
amples have in common that phase separation and chem-
ical reactions are strongly intertwined.

To illustrate the connection between phase separation
and chemical reactions, let us consider a fluid compris-
ing two molecular species, A and B, which can phase
separate and interconvert, A 
 B. In the simplest case,
phase separation leads to two homogeneous phases whose
compositions are respectively characterized by the con-

centration pairs {c(1)A , c
(1)
B } and {c(2)A , c

(2)
B }. The concen-

tration ratios between the two compartments define par-
tition coefficients

PA =
c
(1)
A

c
(2)
A

and PB =
c
(1)
B

c
(2)
B

, (1)

with PA 6= 1 or PB 6= 1 in a phase separated state. Con-
versely, the chemical equilibrium of the conversion reac-
tion in each phase is described by equilibrium constants,
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which are ratios of the concentrations of products and
substrates,

K(1) =
c
(1)
B

c
(1)
A

and K(2) =
c
(2)
B

c
(2)
A

. (2)

Combining Eqs. (1) and 2 implies

PA
PB

=
K(2)

K(1)
, (3)

which demonstrates that phase separation and chemical
reactions are intimately linked.

The main purpose of this review is to reveal conse-
quences of the connection between phase separation and
chemical reactions, and show how non-equilibrium con-
ditions can be used to circumvent them. We start by in-
troducing a general theory for multi-component fluids in
section II, which culminates in a full dynamical descrip-
tion and a generalization of Eq. (3). We then summarize
known consequences of reactions in phase separating sys-
tems for binary fluids (section III) and ternary systems
(section IV). However, there are many unexplored as-
pects and we list some future challenges in section V.

II. THEORY OF MULTICOMPONENT FLUIDS

We consider a regular solution consisting of N differ-
ent component X1, X2, . . . , XN . The state of a homo-
geneous system is then fully specified by its volume V ,
temperature T , and the particle counts Ni for all species
i = 1, . . . , N . If the interactions at the system’s bound-
ary are negligible, the free energy F of the system is given
by F ({Ni}, V, T ) = V f(c, T ), where the concentrations
ci = Ni/V define the composition c = (c1, . . . , cN ). We
split the free energy density f into the ideal entropy of
mixing and the enthalpic contributions h,

f(c, T ) = kBT

[
N∑
i=1

ci ln

(
ci∑
j cj

)
+ h(c, T )

]
, (4)

where kB is Boltzmann’s constant. The enthalpy den-
sity h captures internal degrees of freedom of the
molecules as well as short-ranged interactions, includ-
ing various protein interactions [5] and complex coac-
ervation [25]. A special case is ideal solutions, where
interactions are absent and all components have con-
stant internal energy wi, so h(c, T ) =

∑
i ciwi(T ). An-

other example is the Flory-Huggins free energy, h(c, T ) =∑
i,j cicj χij(T ) [26–28], where the Flory-parameters χij

encode pairwise interactions. In all cases, free energies F
imply chemical potentials µi = (∂F/∂Ni)V,T,Nj 6=i , which
read

µi = kBT

[
ln

(
ci∑
j cj

)
+ ω̂i(c, T )

]
, (5)

where ω̂i = ∂h/∂ci are specific enthalpies. Similarly, we
obtain the pressure Π = −(∂F/∂V )T,Ni =

∑
i ciµi − f ,

Π = kBT

[
N∑
i=1

ci ω̂i(c, T )− h(c, T )

]
. (6)

Finally, we could determine entropies from derivatives
with respect to temperature T , but we will focus on
isothermal systems with constant T for simplicity. Con-
sequently, only the intensive quantities µi and Π govern
chemical reactions and phase separation, which we will
first discuss separately.

A. Chemical reactions

We consider a system with M chemical reactions enu-
merated by α = 1, . . . ,M . Each reaction is of the form

N∑
i=1

σ
(α)
→,iXi 


N∑
i=1

σ
(α)
←,iXi , (7)

where σ
(α)
→,i and σ

(α)
←,i denote the stoichiometric coeffi-

cients of reactants and products, respectively. They can
be combined in the stoichiometry matrix

σ
(α)
i = σ

(α)
←,i − σ

(α)
→,i , (8)

where α = 1, . . . ,M and i = 1, . . . , N . Chemical reac-

tions conserve mass,
∑
i σ

(α)
i mi = 0, where mi denote

molecular masses. They also imply conserved quanti-

ties ψβ =
∑
i q

(β)
i ci, where q

(β)
i are linearly indepen-

dent vectors in the cokernel of the stoichiometric matrix,∑
i q

(β)
i σ

(α)
i = 0 [29]. For instance, the concentration ci

of component Xi is a conserved quantity if it does not
participate in any reaction. Another example is simple
conversion reactions, Xi 
 Xj , where ci+cj is conserved.

1. Reaction equilibrium

Thermodynamic equilibrium of a reaction is reached
when the chemical potentials balance,

N∑
i=1

σ
(α)
i µi = 0 . (9)

The associated equilibrium ratio K(α) =
∏
i c
σ
(α)
i
i can

then be expressed using Eq. (5). A particularly simple
form emerges when reactions conserve particle counts,∑
i σ

(α)
i = 0, e.g., because all species have equal molecu-

lar mass mi. In this case,

K(α)(c) = exp

[
−

N∑
i=1

σ
(α)
i ω̂i(c)

]
, (10)
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which may depend on the composition c. For an ideal
solution, ω̂i(c) = wi, this reduces to the familiar equilib-
rium constant,

K
(α)
ideal = exp

[
−

N∑
i=1

σ
(α)
i wi

]
, (11)

which is constant because it only depends on the stoi-
chiometries and the internal energies wi.

2. Reaction kinetics

The evolution of a composition c = (c1, c2, . . . , cN ) to-
ward equilibrium is described by ∂tci = si, where

si =

M∑
α=1

σ
(α)
i s(α) (12)

is the total rate of production of component i. Here, the
net flux s(α) of reaction α can be split into a forward
direction, s(α)→ , and a backward direction, s(α)← ,

s(α) = s(α)→ − s(α)← , (13)

which must balance in equilibrium, s(α) = 0.
a. Thermodynamic constraints of the rates Ther-

modynamics does not only impose a vanishing rate
when the chemical potentials are balanced, but also the
stronger condition

s(α)→

s
(α)
←

= exp

[
−
∑
i σ

(α)
i µi

kBT

]
, (14)

which is known as detailed balance of the rates [30, 31].
This condition ensures that the reaction proceeds in the
forward direction, s(α)→ > s(α)← , when the products are

energetically favored,
∑
i σ

(α)
←,i µi <

∑
i σ

(α)
→,i µi, which is

a consequence of the second law of thermodynamics.
b. Transition state theory The constrain (14) deter-

mines the ratio of forward to backward flux, but it does
not determine the magnitude of either. Indeed, such rates
cannot be determined from thermodynamics, so kinetic
models are necessary. One of the simplest model is tran-
sition state theory, where an unstable transition state
forms transiently during the reaction. The associated
fluxes can be expressed as [32, 33]

s(α)→ = kα exp

(∑
i σ

(α)
→,i µi

kBT

)
and (15a)

s(α)← = kα exp

(∑
i σ

(α)
←,i µi

kBT

)
, (15b)

where the positive pre-factor kα might depend on com-
position. The net flux of reaction α thus reads

s(α) = kα

[
exp

(∑
i σ

(α)
→,i µi

kBT

)
− exp

(∑
i σ

(α)
←,i µi

kBT

)]
,

(16)

where the square bracket denotes the chemical reaction
force [34]. This flux can be expressed in the form of
mass-action kinetics,

s(α) = k(α)→

N∏
i=1

(ci)
σ
(α)
→,i − k(α)←

N∏
i=1

(ci)
σ
(α)
←,i , (17)

with the respective forward and backward rates

k(α)→ = kα c
−

∑
i σ

(α)
→,i

tot

N∏
i=1

ewi σ
(α)
→,i and (18a)

k(α)← = kα c
−

∑
i σ

(α)
←,i

tot

N∏
i=1

ewi σ
(α)
←,i , (18b)

where ctot =
∑
i ci. Simple mass-action kinetics with

constant rates emerges when kα, ctot, and ω̂i are con-
stant, e.g., in an incompressible, ideal fluid. In contrast,
chemical reactions in non-ideal solutions generally de-
viate from mass-action kinetics. Close to equilibrium,
Eq. (16) can be linearized in the chemical potentials to

obtain s(α) = −Λr

∑
i σ

(α)
i µi, where Λr = kα/kBT is the

reaction mobility. This form is thermodynamically con-
sistent and captures the qualitative kinetics of chemical
reactions in non-ideal solutions.

3. Active systems

So far we have considered closed systems, which relax
to equilibrium and can thus be classified as passive. In
contrast, active systems are kept away from equilibrium,
which is only possible if they are open, so particles can
exchange with the environment. In the simplest case,
one or more species are coupled to a particle reservoir, or
chemostat, so their chemical potentials are kept constant
at the system boundary. There are then cases where the
chemical equilibrium, Eq. (9), cannot be satisfied for all
reactions and detailed balance is thus broken. In such
cases, chemical reaction networks can display complex
dynamics, including oscillations [35], which are sustained
by the chemostatted species acting as a fuel.

We consider open systems where Ñ additional fuel
molecules X̃j are coupled to chemostats, while the in-
ternal components Xi cannot cross the system’s bound-
ary. The chemostatted molecules participate in driven
reactions,

N∑
i=1

σ
(α)
→,iXi +

Ñ∑
j=1

σ̃
(α)
→,j X̃j 


N∑
i=1

σ
(α)
←,iXi +

Ñ∑
j=1

σ̃
(α)
←,j X̃j ,

(19)

where σ̃
(α)
→,j and σ̃

(α)
←,j are their stoichiometric coefficients.

For simplicity, we assume that the overall density of
fuel X̃j is low and that they do not interact with the
other molecules Xi. In this case, chemical potentials of
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Xi are unchanged and the only effect of the fuel molecules
is to supply chemical energy via their chemical potentials
µ̃j , which are kept constant via the chemostat. For each
reaction α, we can thus define the chemical energies of
the chemostatted reactants and products,

µ̃(α)
→ =

Ñ∑
j=1

σ̃
(α)
→,j µ̃j and µ̃(α)

← =

Ñ∑
j=1

σ̃
(α)
←,j µ̃j . (20)

Using transition state theory, the reaction fluxes are

s(α)→ = kα exp

(
µ̃(α)
→ +

∑
i σ

(α)
→,i µi

kBT

)
and (21a)

s(α)← = kα exp

(
µ̃(α)
← +

∑
i σ

(α)
←,i µi

kBT

)
. (21b)

If the reaction does not involve chemostatted species,

σ̃
(α)
→,j = σ̃

(α)
←,j = 0, we have µ̃(α)

→ = µ̃(α)
← = 0, and the

flux reduces to the passive one given by Eq. (15). In con-
trast the energy ∆µ(α) = µ̃(α)

→ − µ̃(α)
← supplied by the fuel

can drive the reaction against the thermodynamic ten-
dency. The particles exchanged with the chemostat then
imply an energy flux across the systems boundary, which
corresponds to the entropy production rate in the system
if it reaches a stationary state.

B. Phase separation

Phase separation refers to spontaneous demixing, so
we now need to examine inhomogeneous systems.

1. Phase equilibrium

We start by considering a system with several coexist-
ing phases, which are regions of homogeneous composi-
tion c(n) where n enumerates the phases. If contributions
of interfaces are negligible, the total free energy of this
system is given by F =

∑
n Vnf(c(n)) where Vn is the

volume of each phase. This free energy is minimal when
the coexistence conditions,

µi
(
c(1)
)

= µi
(
c(2)
)

= µi
(
c(3)
)

= · · · (22a)

Π
(
c(1)
)

= Π
(
c(2)
)

= Π
(
c(3)
)

= · · · , (22b)

are met for all components i across all phases [30]. These
conditions can be interpreted as chemical and mechani-
cal equilibrium between phases, respectively. Gibbs [36]
showed that there are at most N +1 phases with distinct

compositions c(1), . . . , c(N+1) that fulfill Eqs. (22). If we
additionally impose incompressibility, only N distinct co-
existing phases are possible.

Equilibrium states are conveniently described by par-

tition coefficients P
(nm)
i = c

(n)
i /c

(m)
i , which specify the

concentration ratio of species i between different phases

n and m. A particularly simple form emerges in incom-
pressible systems when all species have the same molec-
ular volume, so

∑
i ci = const, leading to

P
(n,m)
i (c) = exp

[
ω̂i(c

(m))− ω̂i(c(n))
]
, (23)

where we used Eqs. (5) and (22). This expression reduce

to P
(n,m)
i = 1 in ideal solutions, indicating that phase

separation is impossible in such systems.

2. Phase separation kinetics

Without chemical reactions, individual chemical
species Xi are conserved and can merely move. These
dynamics can lead to complex spatial patterns, described
by concentration fields ci(r). Particle conservation im-
plies the continuity equation ∂tci +∇ · ji = 0, where ji
denotes the spatial flux of species i.

Similar to the reaction fluxes discussed above, diffu-
sive fluxes generally follow from kinetic models. However,
in contrast to reactions, a reasonable approximation fol-
lows from an expansion around equilibrium states using
the framework of linear non-equilibrium thermodynam-
ics, ji = −∑j Λij∇µj , where Λij denotes diffusive mo-

bilities that form a symmetric Onsager matrix [37]. This
illustrates that diffusive fluxes ji are driven by chemical
potential gradients, similar to how reaction fluxes s(α)

are driven by chemical potential differences. To obtain
well-defined equations, the chemical potentials given in
Eq. (5) need to be extended by spatial couplings [38],

µi = kBT

[
ln

(
ci∑
j cj

)
+ ω̂i(c)

]
−

N∑
j=1

κij∇2cj , (24)

where κij is a coefficient matrix that is related to inter-
facial tensions [28, 30]. For simplicity, we here skipped
the momentum conservation leading to a Navier-Stokes
equation [39] and thermal fluctuations [40], which could
be added to the kinetic equations [37].

C. Chemical reactions and phase separation

We now combine the chemical reaction fluxes, given
by Eq. (12), with the phase separation kinetics described
above. Since species are no longer conserved, the conti-
nuity equation becomes ∂tci+∇·ji = si, with the familiar
expressions for diffusive fluxes ji and reactive fluxes si.
Taken together,

∂tci = ∇ ·
[

N∑
j=1

Λij∇µj
]

+ si(c, µ) (25a)

si(c, µ) =

M∑
α=1

σ
(α)
i kα

[
e
µ̃
(α)
→ +

∑
j σ

(α)
→,j µj

kBT − e
µ̃
(α)
← +

∑
j σ

(α)
←,j µj

kBT

]
,

(25b)
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where the chemical potentials µ = (µ1, . . . , µN ) are given
by Eq. (24). These partial differential equations need
to be supplemented with boundary conditions. A typ-
ical choice are no-flux conditions, ji = 0, together with
neutral interaction with the system’s boundary, imply-
ing that the normal derivative of the fields φi vanish [41].
These equations possess many parameters leading to im-
mense complexity. Solution strategies range from nu-
merical evolution for specific examples [28, 42, 43] to
full analytical treatment, e.g., via linear stability anal-
ysis [44]. We will pursue both approaches for specific
examples highlighting the rich behavior.

In a closed, passive systems (µ̃(α)
→ = µ̃(α)

← = 0), the dy-
namics described by Eq. (25) will relax to an equilibrium
state. In such a state, the previously derived conditions
for the partition coefficients, Eq. (23), and for the equilib-
rium ratios of the reactions, Eq. (10), need to be fulfilled
simultaneously. Combining these two conditions, we ob-
tain

N∏
i=1

(
P

(n,m)
i

)σ(α)
i

=
K

(n)
α

K
(m)
α

, (26)

where K
(n)
α denotes the equilibrium ratio of reaction α

in phase n. This relationship holds for all reactions α
and all pairs of phases n and m, which is also evident
from the definition of the involved quantities. The special
form given in Eq. (3) can be recovered for n = 1, m =
2, and σi = (−1, 1) describing the conversion reaction
A 
 B. Another special case are components that do

not partition, P
(n,m)
i = 1, where Eq. (26) implies that

the equilibrium ratios are equal in the compartments,

K
(n)
α = K

(m)
α , which is trivially the case in homogeneous

systems.

III. BINARY FLUID WITH A CONVERSION
REACTION

To illustrate the behavior of chemical reactions in
phase separating systems, we first study a binary fluid
that consist of two components, A and B. For simplic-
ity, we now consider an incompressible system, where the
molecular volumes νA and νB of the two components are
constant and we introduce volume fractions φi = νici.
Since we consider fluids, the two components must fill
all available space, implying φA + φB = 1. The system’s
state is thus specified by one fraction φ alone, and the
molecular volumes must be equal, νi = ν, to allow chem-
ical transitions. The free energy density derived from
Eq. (4) becomes

f(φ) =
kBT

ν

[
φ ln(φ) + (1− φ) ln(1− φ) + h(φ)

]
, (27)

where h(φ) summarizes the enthalpic contributions.
Since the incompressible system does not allow parti-
cle insertion, we can only change the composition by re-
placing an A particle by a B particle. The associated

change in free energy is the exchange chemical potential
µ̄ = µB − µA, which reads

µ̄(φ) = kBT
[
ln(φ)− ln(1− φ) + h′(φ)

]
− κ∇2φ , (28)

where we already included the term proportional to κ,
which penalizes gradients akin to Eq. (24). Similarly,
changing the system’s volume requires adding particles,
imlpying the Osmotic pressure

Π̄ =
kBT

ν

[
φh′(φ)− h(φ)− ln(1− φ)

]
. (29)

The relation between f , µ̄, and Π̄ is illustrated in
Fig. 1. The system’s dynamics follow from Eqs. (25) and
read [30]

∂tφ = ∇ ·
[
Λ(φ)∇µ̄

]
+ s , (30)

where the reaction flux s denotes the net conversion of
A to B, which we specify for passive and active systems
below.

A. Equilibrium states

To gain intuition for the system’s behavior, we first
discuss various equilibrium states. Here, we distinguish
three different cases: (1) homogeneous systems that al-
low chemical transitions, A
 B, (2) heterogeneous sys-
tems that conserve the individual species A and B, and
(3) the general case where both chemical transitions and
spatial inhomogeneities happen. Case (2) corresponds to
model B in the classification by Hohenberg and Halperin
[45], while the other cases are related to model A.

1. Chemical equilibrium

The only possible reaction, A 
 B, is equilibrated
when µ̄ = 0, which corresponds to the minima of the
free energy density f(φ) (green dotted lines in Fig. 1).
There can be multiple (local) minima and the height of
the energy barrier between them determines the transi-
tion rates [33]. If we included thermal noise, the system
would explore the entire energy landscape according to
Boltzmann’s distribution.

The equilibrium states can be determined for simple
systems. For instance, if particles do not interact, h(φ) =
h0 +wφ, the equilibrium ratio K = φB/φA only depends
on the internal energy difference w between B and A,

K = e−w , (31)

which follows from Eq. (28). The state contains less B
(smaller K) when its internal energy is larger than that
of A (w > 0).

The simplest interaction between A and B is captured
by a Flory-parameter χ, h(φ) = h0 +wφ+χφ(1−φ) [26].
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FIG. 1. Equilibrium states of binary systems for dif-
ferent conservation laws. (A) Free energy density f given
by Eq. (27) as a function of the volume fraction φ of species B
for h(φ) = wφ+χφ(1−φ), w = 0.08, and two interaction pa-
rameters χ. The common-tangent construction (orange solid
line) determines the equilibrium fractions φin and φout for
χ = 2.5 while phase separation is impossible for the critical
value χ = 2. (B) Exchange chemical potential µ̄ associated
with (A) given by Eq. (28). Phase equilibrium (µ̄ = w, or-
ange lines) and chemical equilibrium (µ̄ = 0, green lines) are
indicated. (C) Osmotic pressure Π̄ associated with (A) given
by Eq. (29). Phase equilibrium is indicated by orange lines.
(D) Phase diagram as a function of φ and χ. Phase sep-
aration is possible above the binodal (solid black line) and
homogeneous states are unstable above the spinodal (dotted
black line). The two lines enclose the nucleation and growth
region (NG) and touch in the critical point (star). Colored
lines indicate phase equilibrium of previous panels. (A–D)
Homogeneous states are unstable between inflection points of
f(φ) (spinodal, gray dotted lines), while chemical equilibrium
is achieved in local minima of f(φ) (green dotted lines).

When χ is sufficiently large (χ > 2 for w = 0), the free
energy exhibits a local maximum, which separates two
minima that both correspond to reaction equilibria; see
Fig. 1. The relative energies of these state, and thus the
transitions in this bistable system, can be independently
controlled by the parameter w.

2. Phase separation equilibrium

Phase separation is impossible in ideal, non-interacting
system. We thus discuss the non-ideal system described
by h(φ) = h0 + wφ + χφ(1 − φ), but we now switch
off chemical reactions. Considering an inhomogeneous
system with two phases of compositions φ(1) and φ(2)

that can exchange particles and volume, the coexistence
conditions (22) become

0 = f ′(φ(1))− f ′(φ(2)) (32a)

0 = f(φ(1))− f(φ(2)) + f ′(φ(1))
(
φ(2) − φ(1)

)
. (32b)

These equations can be solved graphically by a common
tangent construction, or Maxwell construction; see or-

ange line in Fig. 1A. The tangent points φ(1) and φ(2)

denote the fractions in the coexisting phases, while the
common tangent marks the average free energy density
of the phase separated system with average volume frac-
tion φ. This construction thus shows that the free energy
of the system can be reduced by splitting into two phases
of composition φ(1) and φ(2) when f(φ) has a concave
region, i.e., when f ′′(φ) < 0. For the particular h(φ)
discussed here, this spinodal region is given by

1

χ+
√

(χ− 2)χ
< φ <

1

χ−
√

(χ− 2)χ
, (33)

which is only valid for χ > 2, which marks the critical
interaction strength; see dark gray region in Fig. 1D. Ho-
mogeneous states with fractions that satisfy this condi-
tion are unstable and phase separate immediately. Con-
versely, one can show that phase separated states are un-
stable outside the binodal region, which is delineated by
the equilibrium fractions φ(1) and φ(2) as a function of χ;
see light gray region in Fig. 1D. In the light gray region
between the binodal and the spinodal, both the homoge-
neous and the phase separated state are (meta)stable, so
that droplets only form after stochastic nucleation [46–
49].

3. Combined equilibrium

If phase separation and chemical reactions can take
place together, the binary system only exhibits homoge-
neous equilibrium states. This is because the chemical
reaction does not conserve individual particle counts and
the system can thus attain a composition that minimizes
f(φ) everywhere. Consequently, the combined equilib-
rium of a binary system is completely dominated by
chemical reactions.

B. Relaxation toward equilibrium

Eq. (30) describes how an arbitrary initial state re-
laxes toward the equilibrium states. This equation as-
sumed linear non-equilibrium thermodynamics for the
spatial (diffusive) fluxes and we here will employ the
same approximations for the reactions. Linearizing the
flux s following from the transition state theory given
in Eq. (25b) for small µ̄, we obtain the passive reac-
tion flux s(p) = −Λpµ̄. Here, Λp = k/kBT is the re-
action mobility, which must be positive to obey the sec-
ond law. The diffusive mobility Λ is typically chosen as
Λ(φ) = Λ0φ(1− φ) [50], so the dynamics reduce to ordi-
nary diffusion with diffusivity D = kBTΛ0 in the dilute
limit (φ� 1).

The relaxation dynamics can be analyzed in limiting
cases. If only chemical reactions (Λ0 = 0) or only phase
separation (Λp = 0) take place, these equations reduce to
the classical models A and B, respectively [45]. In both
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FIG. 2. Binary active fluids can form regular pat-
terns. (A) The exchange chemical potential µ̄ as a func-
tion of composition φ. Reactions cease when their chemi-
cal potential difference obeys Eq. (34), which depends on the
external energy ∆µ. Here, Λa = Λp. (B) Reaction flux
s as a function of φ for various reaction models: (i) Pas-
sive reactions (Λa = 0), (ii) Active reactions with constant
mobilities Λa = Λp, and (iii) Active reactions with mobil-
ity Λa(φ) = Λp(1 − φ) proportional to φA = 1 − φ. The
orange dashed line denotes the linear expansion around the
stationary point of case (iii). (C, D) Growth rate λ of a
perturbation with wave vector q for various parameters ζ
and s′; see Eq. (35). Quantities are normalized to qmax =

(−ζ0/[2κΛ(φ∗)])
1/2 and λ0 = ζ20/[4κΛ(φ∗)] for ζ0 > 0. (E)

Numerical simulations of no reaction (Λa = Λp = 0) and the
two versions of scenario (iii) from panel B. Simulations were
performed using finite differences [51] with periodic boundary
conditions and non-dimensional units (Λ = kBT = ν = 1) for
104 time units and Λp = 1. (A, B, E) Additional parame-
ters are h(φ) = wφ + χφ(1 − φ) with w = 1.1, χ = 2.5, and
∆µ = 3 kBT .

cases, phase separation with complex structures of many
droplets or bicontinuous structures may develop initially.
In the case of chemical reactions (non-conserved, model
A), the characteristic length scales grow as t1/2 with
time t until the system reaches a homogeneous state in
equilibrium [52]. In contrast, in the case of phase separa-
tion (conserved, model B), the length scale grows as t1/3,
according to the theory by Lifshitz, Slyozov, and Wag-
ner [53, 54], until a single droplet remains in equilibrium.
The mixed case, where both chemical reactions and phase
separation take place, is more difficult to analyze since
both scaling regimes may contribute to the dynamics.
However, the scaling t1/2 of model A will dominate after

long times, and the system ends up in the homogeneous
equilibrium state.

C. Active systems

While chemical reactions limit passive, binary systems
to homogeneous equilibrium states, active systems may
display richer behaviors. For binary systems, the only
possible active reaction converts A and B into each other
using external energy ∆µ supplied by some fuel. Adding
the driven reaction flux described by Eq. (21), the total
reaction flux reads s = s(p) + s(a), where we again con-
sider a linearized reaction flux, s(a) = −Λa(φ)(µ̄ −∆µ).
Interesting dynamics emerge when the mobility Λa de-
pends on composition φ.

1. Homogeneous systems

To unveil effects of the active reaction, we first discuss
discuss homogeneous systems. Stationary states (s = 0)
obey

µ̄∗ =
Λa∆µ

Λp + Λa
, (34)

which reduces to chemical equilibrium (µ̄∗ = 0) in the
passive case (∆µ = 0). In any other case, the station-
ary state is not in thermodynamic equilibrium. This can
be seen by looking at the reaction fluxes, which read

s
(a)
∗ = −s(p)∗ = ∆µΛaΛp/(Λa + Λp). While the total flux

s
(p)
∗ + s

(a)
∗ indeed vanishes, both chemical reactions con-

tinuously convert the two species into each other. The
energy invested in this system is given by the density

of the entropy production rate, s
(a)
∗ ∆µ, which is always

positive and increases with stronger drive. Since the in-
vested energy does not result in any apparent interest-
ing dynamics, such reactions are also called futile cycles.
However, they have been shown to produce oscillatory
behavior in stochastic systems [55]. Moreover, both the
energy input ∆µ and the reaction mobilities, which could
be affected by enzymes, influence the stationary value of
µ̄; see Eq. (34). Consequently, enzyme activity can con-
trol the associated equilibrium ratio K = φ∗/(1 − φ∗)
and the actually attained stationary state in the bistable
situation (see Fig. 2A), i.e., whether the system settles
into a state enriched in A or B.

2. Heterogeneous systems

So far, we discussed homogeneous systems, but the
dynamics described by Eq. (30) also permit phase sep-
aration. In particular, stationary homogeneous state
might no longer be stable and instead develop hetero-
geneities. To elucidate this, we perform a linear sta-
bility analysis by considering the perturbation φ(r, t) =
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φ∗+ ε exp(λt+iq ·r). Expanding Eq. (30) to linear order
in ε, we find [30]

λ(q) = s′(φ∗)− q2ζ(φ∗)− q4Λ(φ∗)κ (35)

where ζ(φ∗) = Λ(φ∗)f
′′(φ∗) + κ(Λa + Λp). The growth

rate λ can be positive, and the homogeneous state thus
unstable, if ζ < 0, implying f ′′(φ∗) < 0; see Fig. 2C.
For systems without reactions (Λp = Λa = 0), this
corresponds to the spinodal region and is consistent
with coarsening since arbitrarily low wave vectors (cor-
responding to long wave lengths) are unstable. In con-
trast, equilibrium states with passive chemical reactions
(Λa = 0, Λp > 0) are characterized by a minimal free
energy density, implying f ′′(φ∗) > 0. Finally, active
chemical reactions allow more diverse behavior since ζ
and s′(φ∗) can in principle be controlled separately. In
particular, a band of unstable wave vectors may emerge
when ζ < 0 and s′ < 0; see Fig. 2D. This suggests that
homogeneous states are unstable while coarsening to ar-
bitrarily large wave lengths is also suppressed. The cor-
responding states must thus be quite different to what
we have discussed so far.

3. Active droplets

We have seen that constant reaction mobilities Λp and
Λa imply homogeneous states, while more complex re-
actions can destabilize such states. To discuss a con-
crete situation, we consider Λa = Λp(1 − φ) for con-
stant Λp, so that the active reaction is suppressed for
large φ. Fig. 2E shows that this choice leads to a reg-
ular pattern of droplets of similar size, which we term
active droplets since their size is controlled by the driven
chemical reactions.

To understand why the driven reaction with
concentration-dependent mobility can control the size of
active droplets, we further simplify the system. Fig. 2B
shows that the reaction rate s = s(p) + s(a) decreases
monotonically with φ and has a reaction equilibrium
slightly above the equilibrium fraction φout in the dilute
phase. Starting with a dilute phase in phase equilibrium,
the chemical reactions thus constantly produce droplet
material B, which can nucleate new droplets or fuel the
growth of existing ones. However, the fraction inside such
droplets is so large that the reactions effectively convert
droplet material B to pre-cursor A; s(φin) < 0. These
pre-cursors leave the droplet to join the dilute phase,
thus closing a cycle driven by dissipating energy. This
situation is qualitatively captured by using a linear re-
action rate, s = −k(φ − φ∗), where φ∗ is the reaction
equilibrium, which must obey φout < φ∗ < φin, and k
sets the time scale of the dynamics; see dashed orange
line in Fig. 2B. The linearized dynamics yield qualita-
tively similar behavior (see Fig. 2E) and have been stud-
ied before [56–60] although the thermodynamic details
were debated [61, 62]. Interestingly, the stationary state
of the system with the linearized active reaction can be

formally rewritten as an equilibrium state of another sys-
tem where the reaction has been replaced by long-ranged
interactions [63]. This analogy allows exploiting equi-
librium thermodynamics to study the properties of this
inherently non-equilibrium system [64–67].

To finally see how droplets of a particular size emerge
from driven reactions, we focus on a single, isolated
droplet [60]. The droplet volume V changes due to ma-
terial influx J from the surrounding dilute phase and
due to the integrated reaction flux S inside the droplet
that removes droplet material, ∂tV ≈ (J − S)/φin [30].
In the simplest case, the influx is diffusion-limited, im-
plying J ≈ 4πDRε, where ε = φ∗ − φout is the super-
saturation created by the chemical reaction [30]. Con-
versely, the reaction inside the droplet approximately im-
plies S ≈ k(φin − φ∗)V . Taken together, this implies a
stationary droplet radius,

R∗ ≈
[

3D(φ∗ − φout)
k(φin − φ∗)

] 1
2

. (36)

The mean distance L∗ between droplets follows from
the fraction ω̂ of the system occupied by droplets. For
linear reactions, integrating Eq. (30) over the system’s
volume and using no-flux boundary conditions implies
that the average fraction equals φ∗. We thus find ω̂ =
(φ∗−φout)/(φin−φout) and L∗ ∝ ω̂1/3R∗. Consequently,
the length scales R∗ and L∗ are both governed by the
reaction-diffusion length scale

√
D/k, akin to traditional

Turing patterns [68]. Note that these deceivingly simple
results required several approximations, which might not
always be warranted [21]. More importantly, the conver-
sion A
 B and the phase separation of the components
are intimately linked in this simple case of binary sys-
tems. Experimentally relevant examples typically con-
tain more species, where these two processes might be
more independent.

IV. TERNARY FLUID WITH A CONVERSION
REACTION

We next discuss systems with three components, where
phase separation and chemical transitions are less inter-
twined than in binary systems. This allows for richer
behavior, thus giving a better picture of real systems. In
fact, even equilibrium phase separation is already com-
plex in ternary systems since now many phases with dif-
ferent compositions may form [28, 69, 70].

To limit complexity, we consider a specific example
where two components A and B are interconverted,
A 
 B, and the third component C plays the role
of an inert solvent. The system’s state is given by
the two fractions φA and φB , while the solvent frac-
tion is φC = 1 − φA − φB . Phase separation is driven
by an effective repulsive interaction between B and the
other components, which is captured by h(φA, φB) =
wAφA +wBφB +χφB(1−φB), where wA and wB are in-
ternal energies and χ is a Flory-parameter that governs
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FIG. 3. Equilibrium states of ternary systems for different conservation laws. (A) Free energy density f as a
function of φB for two fixed ratios η = φA/φC . Both tangent constructions (faint lines) yield the same equilibrium fractions φin

and φout (dashed orange lines) and spinodal points (dotted orange lines). (B) Phase equilibrium (no reactions) implies that
phase separation is possible in the light orange region between the equilibrium fractions φin and φout. The tie lines (thin lines)
indicate how an initially homogeneous system separates into two coexisting equilibrium phases (dots). Homogeneous states
are unstable in the dark orange spinodal region. (C) Chemical equilibrium of a homogeneous system is obeyed on the thick
line. The conservation law ψ = φA + φB is visualized as thin conservation lines and equilibria are indicated by dots. (D) In
the combined equilibrium, there are two possible equilibrium states: Homogeneous states are governed by chemical equilibrium
(green solid line), which is now only stable outside the spinodal region (dark orange area). Conversely, phase separated states
can emerge for initial conditions in the orange shaded regions, where chemical equilibrium selects a particular tie line (thin
orange line) along which the system phase separates into coexisting phases (black dots). (A–D) Parameters are wA = 1,
wB = 0, and χ = 2.5. The gray region is forbidden since φA + φB > 1. Plots were inspired by [34].

interactions. The associated exchange chemical poten-
tials read

µ̄A = kBT
[
ln(φA)− ln(φC) + wA

]
(37a)

µ̄B = kBT
[
ln(φB)− ln(φC) + wB + χ(1− 2φB)

]
(37b)

where φC = 1−φA−φB . We will see that these chemical
potentials not only govern the equilibrium states, but
also inform the behavior of active systems.

A. Equilibrium states

We start by analyzing phase equilibrium without
chemical reactions, so amounts of the three species A,
B, and C are conserved individually. For the spe-
cific system given by Eq. (37), phase equilibrium im-
plies constant ratios of the fractions of A and C in all

phases, φ
(1)
A /φ

(1)
C = φ

(2)
A /φ

(2)
C = η, which is conserved

and thus set by the initial condition. The free energy
then reduces to the binary form given in Eq. (27) with
h(φB) = χφB(1− φB) +wφB + h0, where w and h0 only

depend on the constants wA, wB , and η. Consequently,
phase separation is possible for χ > 2, the spinodal re-
gion is given by Eq. (33), and the equilibrium fractions
φout and φin are independent of η; see Fig. 3A–B. The
remaining fraction 1−φB is occupied by A and C in the
pre-determined ratio η in each phase. The special choice
of the free energy thus fully decouples phase separation
of B from dynamics that determine the ratio of A to C.

If we now allow the chemical transition A 
 B, only
the total amount of A and B is conserved, while their
ratio may vary. The conserved quantity is thus ψ =
φ̄A + φ̄B , where φ̄i = V −1sys

∫
φi dV is the average fraction

of species i in the system. Since the solvent C does not
participate in the reaction, its amount is also conserved,
φ̄C = 1−ψ. Conversely, the equilibrium ratio between A
and B, quantified by the ratio K = φB/φA, is governed
by chemical equilibrium (µ̄A = µ̄B) and reads

K = ewA−wB−χ(1−2φB) , (38)

which follows from Eq. (37). This condition traces out
a line in the phase space spanned by φA and φB ; see
Fig. 3C. Actual equilibrium states are then determined
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by conservation lines (where φA + φB = ψ) set by initial
conditions.

Phase equilibrium and chemical equilibrium each se-
lect equilibrium states based on equilibrium conditions
and conservation laws, which are respectively visualized
as thick and thin lines in Fig. 3B–C. In contrast, when
phase separation and chemical transitions take place,
both equilibrium conditions must be satisfied simultane-
ously, while neither of the conservation laws hold. Con-
sequently, intersections of the lines marking the equilib-
rium conditions denote equilibrium states; see black dots
in Fig. 3D. In fact, all phase separated systems initialized
within the orange region will converge toward these two
points. There are thus fewer possible equilibrium config-
urations compared to either phase separation or chem-
ical transitions alone. This is analogous to the binary
case discussed in section III A 3 where adding a chemical
transition to phase separation reduced the complexity of
possible equilibrium states tremendously. We saw that
equilibrium states of ternary systems with a chemical
transition reduce to phase separation of a binary sys-
tem without reactions, so it seems as if reactions do not
matter. However, the details of the reaction determine
what binary system is selected and thus influence global
quantities like the volume V of the B-rich phase. Fig. 4A
shows that V becomes nonzero beyond a threshold value
of the conserved fraction ψ = φ̄A + φ̄B . The threshold is
determined by the condition φ̄B = φout, which marks the
left binodal line in Fig. 3B. For larger ψ, the volume V
increases linearly until the right binodal line (φ̄B = φin)
is reached. This behavior is expected from binary phase
separation, but a crucial difference is that the internal
energy difference wA−wB now determines the ratio of A
to B components and thus the precise transition points.
Consequently, the chemical transition can control phase
separation.

Phase separation also affects the chemical transition.
In particular, the equilibrium ratio K, given by Eq. (38),
is only a constant in ideal systems (χ = 0). In non-
ideal systems with χ > 0, the equilibrium ratio increases
with increasing fraction ψ, even if the system stays ho-
mogeneous; see Fig. 4B. For χ > 2, the system can sep-
arate into two phases of different composition, and thus
different equilibrium ratio according to Eq. (26). Note
that the equilibrium ratio averaged over the entire sys-
tem, 〈K〉 = φ̄B/φ̄A, increases continuously with the frac-
tion ψ, albeit with a slightly different functional form
than the equilibrium ratio predicted for the (unstable)
homogeneous phase; see Fig. 4B. Consequently, the fact
that phase separation takes place might be difficult to
detect from the overall reaction balance, but local differ-
ences between phases can be substantial.

B. Relaxation toward equilibrium

The relaxation dynamics are described by Eq. (25) us-

ing µ̃
(α)

 = 0 and chemical potentials defined in Eq. (37).
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FIG. 4. Regulation of phase behavior in passive sys-
tems. (A) Volume V of dense phase relative to system vol-
ume Vsys as a function of the conserved fraction ψ = φ̄A + φ̄B

for several internal energy differences wA − wB for χ = 2.5.
(B) Equilibrium ratio K = φB/φA as a function of ψ for sev-
eral interaction parameters χ for wA−wB = 1. The system is
generally homogenous, apart from the case χ = 2.5 in the or-
ange shaded region (compare to Fig. 3D). In this case, there
are two phases with different ratios Kin and Kout and the
ratio averaged over the entire system (〈K〉, dashed line) devi-
ates from the value predicted for the (unstable) homogeneous
state (dotted line).

These equations can generally only be solved numerically,
but qualitative insight can be drawn from limiting cases.
In particular, the limiting cases of exclusive chemical re-
actions or phase separation will behave similarly to the
binary system discussed in section III B. The more com-
plex case of combined phase separation and chemical re-
actions is less well explored and we will briefly discuss
limiting cases below.

If chemical transitions are fast compare to diffusive
fluxes, any initial condition quickly relaxes to chemical
equilibrium locally before spatial fluxes become impor-
tant. Graphically, this corresponds to a projection of the
full phase space along conservation lines onto the line of
chemical equilibrium (green line in Fig. 3D). The chem-
ical transition confines the system to this manifold and
the spatial dynamics are then those of the binary system,
which we discussed in section III B. Taken together, this
limiting case does reproduce ordinary phase separation
kinetics, including Ostwald ripening.

The converse case of fast diffusion is analyzed thor-
oughly by Bauermann et al. [34]. In this case, the sys-
tem quickly phase separates and slaves the fractions in
each phase to the binodal line (vertical orange lines in
Fig. 3B). The fraction in the different phases then slowly
evolves along the binodal line until it reaches the equi-
librium state (black dots in Fig. 3D).

The dynamics of systems with phase separation and
chemical reactions will strongly depend on the associ-
ated mobilities Λ and Λp, as well as the typical length
scale L of the fields. If Λ� ΛpL

2, diffusive dynamics are
fast compared to reactions, leading to the case discussed
by Bauermann et al. [34]. Conversely, chemical reactions
dominate if Λ � ΛpL

2. Since coarsening processes in-
creases L, reaction dynamics will always dominate after
a long time in a sufficiently large system.
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sive systems. Fraction φ
(0)
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Eq. (39) as a function of the conserved fraction ψ = φ
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A +φ
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B

in a homogeneous state for (A) several ∆µ at Λa = Λp, and
(B) several ratios Λa/Λp at ∆µ = kBT . Phase separation is

possible above the binodal (φ
(0)
B = φout, solid orange line) and

it is the only stable state above the spinodal (dotted orange
line). Model parameters are χ = 2.5 and wA − wB = 1.

C. Active systems

We now drive the ternary system out of equilibrium by
introducing an active reaction that uses the externally
supplied energy ∆µ to drive the transition from A to
B, similar to the binary case discussed in section III C.
Again using linear approximations of the reaction fluxes,
the active and the passive transition balance when

µ̄B − µ̄A =
Λa∆µ

Λp + Λa
, (39)

akin to Eq. (34). Here, Λa and Λp are the mobilities
of the active and passive reaction, respectively. If both
mobilities are constant, the active reaction only shifts
the chemical balance between species A and B, which
is equivalent to modifying the internal energy difference
wB − wA. Consequently, the behavior of this system re-
duces to the passive case discussed above, although sta-
tionary states are not in equilibrium, since the chemical
energy ∆µ is used continuously to convert the molecules
in a futile cycle.

To find interesting behavior in active ternary systems,
at least one of the mobilities must depend on composi-
tion. In experiments, this generic case can be controlled
by introducing enzymes that catalyze the passive or ac-
tive reaction and by controlling the affinity of the en-
zymes for either phase. Similarly, the affinity of the fuel
could be controlled, making ∆µ dependent on composi-
tion [71]. These possibilities lead to many different de-
pendencies of Λp and Λa on the composition. To limit
complexity, we will focus on the relevant case where few
B-rich droplets coexist with a dilute phase that occupies
most of the system. This separation of length scales al-
lows us to first focus on the dilute phase and then treat
droplets as a perturbation.

We assume that a dilute phase with a particular com-

position, given by φ
(0)
A and φ

(0)
B , exists. This state must

obey the stationary state condition 39 where the mo-
bilities are evaluated at the composition. Similarly to
the binary case, the mobilities and ∆µ influence the sta-

tionary state; see Fig. 5. In particular, the parameters
of the chemical reaction, together with the conserved

fraction ψ = φ
(0)
A + φ

(0)
B , determine whether the dilute

phase is under-saturated (φ
(0)
B < φout) or super-saturated

(φ
(0)
B > φout). Since these two cases have very different

dynamics [18], we discuss them separately.

1. Externally maintained droplets

If the dilute phase is super-saturated (φ
(0)
B > φout),

droplets form spontaneously, either by nucleation or via
spinodal decomposition. Droplet growth is limited either
by depleting the dilute phase or by additional reactions
taking place inside the droplet. In the first case, A and
B components are transferred from the dilute phase to
the droplets until the fraction ψ in the dilute phase de-

creases such that φ
(0)
B = φout; see Fig. 5A. At this point,

the diffusive influx ceases and droplet growth stops. In
this case, the active reactions merely controls the balance
between A and B inside and outside the droplet, but the
stationary state still contains homogeneous phases, and
droplets will exhibit Ostwald ripening [21]. The second
case of an additional chemical reaction is more interest-
ing: If the chemical mobilities Λp and Λa are set up
such that the reactions effectively destroy droplet ma-
terial inside the droplet, s(φin) < 0, a continuous cy-
cle is maintained: Droplet material B is converted to
precursor A inside the droplet, which then leaves the
droplet toward the dilute phase, where it is converted
back to B and joins a droplet. The left column of Fig. 6
shows a concrete example of such a system, where the
cyclic fluxes are particularly visible in the chemical po-
tentials shown in panel C. Since droplet material is cre-
ated outside of droplets, we call these systems externally
maintained droplets [30]. The magnitude of the diffu-
sive fluxes depend on the droplet size, so that typically
a stable droplet size emerges [21]; see Fig. 6E. Note that
the opposite case where droplet material is produced in-
side the droplet, s(φin) > 0, implies that all phases pro-
duce droplet material, which will lead to a single ho-
mogeneous stationary state enriched in droplet material.
Taken together, we thus demonstrated how carefully reg-
ulated chemical reactions can promote droplet growth
by a super-saturated dilute phase, while they also limit
droplet growth via degradation of droplet material inside
droplets. This principle can also lead to shape instabili-
ties of droplets, which then divide spontaneously [72, 73].

The simplest realization of externally maintained
droplets involves first-order chemical reactions, s(φ) =
−k(φ−φ(0)), which clearly display the controlled droplet
size [60]. However, these first-order reactions are diffi-
cult to reconcile with the thermodynamic principles that
we introduced in section II and have thus been criti-
cized [61]. A more realistic realization of externally main-
tained droplets obeys the thermodynamic principles and
regulates the reaction mobilities. In Fig. 6, the external
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FIG. 6. Behavior of active droplets in a ternary
fluid. Droplet material is produced outside droplets in ex-
ternally maintained droplets (left column), while a localized
reaction produces droplet material inside internally main-
tained droplets (right column). (A, B) Volume fractions φi

as a function of the radial coordinate r of a spherically sym-
metric system. Droplets are regions where φB > 1

2
(gray

area). The green region in B indicates the localized produc-
tion. (C, D) Exchange chemical potentials µ̄i as a function
of r. Gradients in µ̄i induce diffusive fluxes (dotted arrows),
while chemical potential differences drive chemical reactions
(green arrow). The driven reaction incorporates the exter-
nal energy ∆µ to force reaction against the passive tendency,
which drives cyclic fluxes in the system. (E, F) Fractions φA

and φB in stationary state. (A–F) All panels show station-
ary states of Eq. (25) using Eq. (37), which were obtained
using finite-differences [51] in a 3D spherical geometry (A–D)
and a 2D Cartesian geometry with periodic boundary con-
ditions (E, F). Model parameters in non-dimensional units
(Λ = kBT = ν = 1) are χ = 2.5, wB = 0, κ = 0.1, ∆µ = 1,
and Λp = 0.01. For externally maintained droplets wA = 1
and Λa = φBΛp, while for internally maintained droplets
wA = 0.5 and the mobility is localized: Λa = 0.1 for r < 5 in
(B, D) and at the green spots in (F).

energy input ∆µ drives the conversion B → A inside the
droplet, e.g., because an enzyme catalyzing this reaction
segregates into the droplet [21]. This particular model
is know as the enrichment-inhibition model since the en-
riched enzyme inhibits further droplet growth [18].

2. Internally maintained droplets

If the dilute phase is under-saturated (φ
(0)
B < φout), ex-

isting droplets dissolve and new droplets cannot emerge
via nucleation. Consequently, stable droplets can only

form when an additional source of droplet material B
is introduced. The right column of Fig. 6 describes a
specific example, where the chemical energy ∆µ drives
the conversion A→ B in localized regions (indicated by
green areas in the plots). If this local reaction is suf-
ficiently strong, the fraction φB can be pushed beyond
the spinodal line, so a droplet spontaneously forms in
this region. Since the surrounding dilute phase is under-
saturated, the droplet continuously looses material to the
dilute phase, where it is turned back into the precur-
sor A. Larger droplets loose more material while the
influx from the driven chemical reaction depends only
weakly on droplet size. Consequently, a stable droplet
size emerges, which can also be controlled by the param-
eters of the reaction. Note that the cyclic fluxes are oppo-
site to the case in the previous section; see Fig. 6D. Since
droplet material is created inside the droplet, we call this
system internally maintained droplets [30]. It can be re-
alized by localizing enzymes that catalyze the production
of droplet material from precursor. Since these enzymes
induce droplet formation, this particular model is known
as the localization-induction model [18]. If the enzyme is
not fixed in place but simply segregates into the droplet,
this model leads to accelerate coarsening compared to
traditional Ostwald ripening [74].

V. FUTURE CHALLENGES

The study of phase separating systems that undergo
active chemical reactions is in an early phase and many
phenomena are yet to be discovered. This section lists
some aspects that are currently studied or will soon be-
come important. However, since the field is vast, this list
is far from complete and I apologize if I missed relevant
contributions.

A. Multi-component fluids and complex reactions

This review only discussed in detail binary fluids and
a particular case of a ternary mixture. However, exper-
imentally relevant systems, and in particular biological
examples, typically contain many more interacting com-
ponents [75]. In fact, even ternary mixtures can display
surprisingly complex phase diagrams [34, 69, 70, 76] and
this trend continues for increasing component counts [28,
77]. We can now simulate systems of a few tens of com-
ponents [42, 43] and analyze large systems in particu-
lar cases using random matrix theory [42, 78–80] and
scaling analysis [81]. However, such random, unstruc-
tured interactions might not represent biological exam-
ples very well. In fact, tuned interactions can lead to
much more robust phase behavior [82, 83]. Components
with specific interactions, e.g., in the form of surfactants,
trapped species [84], and solid particles adsorbing to in-
terfaces [85, 86], can also affect the coarsening dynamics
that are inevitable in passive systems. Taken together,
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this shows we still lack a comprehensive theory of equi-
librium states of multicomponent fluids.

Active fluids can exhibit even richer behavior than
their passive counterpart. Beyond the arrested coarsen-
ing that we showed in this review, specifically driven re-
actions can select certain phase behavior [34], and result
in hierarchical patterns [87, 88]. It will be interesting to
see how other non-linear reaction schemes interact with
the coarsening dynamics of phase separation. A good
starting point might be oscillating reaction-diffusion sys-
tems, e.g., based on the Belousov-Zhabotinsky (BZ) re-
action [89] or the Brusselator model [90], which might
show interesting spatio-temporal patterns once non-ideal
diffusion related to phase separation becomes relevant.
In particular, the thermodynamic cost of converting
chemical fuel into diffusive fluxes, quantified by en-
tropy production, needs to be investigated in more de-
tail [29, 90, 91].

Studying phase separating systems with complex
chemical reactions is a theoretical and experimental chal-
lenge. The simplest theoretical approach couples phase
separation to mass-action kinetics. While such systems
are typically easier to analyze, they violate thermody-
namic constraints. To connect to experiments, it is then
crucial to also develop thermodynamically consistent the-
ories. Such a two-step approach unveiled the arrested
coarsening, where models based on first-order reactions
revealed stable patterns [65, 92–94], which were later
substantiated by thermodynamically consistent stability
analysis [44] and a full theory [21]. A similar two-step ap-
proach might thus also be most promising for studying
more complex behavior. An alternative starting point
would be thermodynamically consistent descriptions of
reaction networks [95] to which phase separation could
be added.

B. Hydrodynamics and material properties

The theory presented in this review neglects momen-
tum fluxes, which would be described by a Navier-Stokes
equation. While the resulting effects are typically negligi-
ble in fluids with large viscosity, low viscosities might dis-
rupt some behavior, like droplet division [73], and com-
plex flow patterns could emerge in other examples [96].
For instance, surface tension gradients lead to Marangoni
flow and complex dynamics of phase separation [97].
While these systems are internally driven, an external
drive can perturb the system even more strongly. For
instance, droplets break up in shear flow [98, 99], which
selects a characteristic length scale even without reac-
tions [100, 101]. It would be interesting to observe how
chemical reactions alter such patterns. Such complex dy-
namics including momentum fluxes might be best simu-
lated using Lattice Boltzmann methods [102–104], which
would also allow studying complex geometries and tur-
bulence.

Realistic fluids not only exhibit viscosity, but they

often display complex material properties. In partic-
ular, large macromolecules, e.g., in biomolecular con-
densates, can entangle, leading to long relaxation time
scales [105, 106]. Moreover, droplets can be caught inside
cross-linked networks or gels, which limits their coars-
ening dynamics [107–110]. More generally, every pro-
cess that affects stresses locally impacts the pressure bal-
ance given by Eq. (22b), which underlies phase coexis-
tence. Consequently, strain stiffening environments limit
droplet growth [111, 112], and stiffness gradients bias
droplets to softer regions [113–116]. Since these mate-
rial properties can also control the position and size of
droplets, it will be interesting to study how chemical re-
actions augment the picture.

C. Interaction with the environment

The phase transition underlying phase separation pro-
vides a powerful process to sense external stimuli. For
instance, phase separation sensitively depends on global
temperature [117], which is for instance used to regu-
late sprouting in plants [118]. Moreover, the dependence
on ionic strength [119], salt, pH [120], and crowding
agents [121] has been described in detail, and can be
considered as multicomponent fluids where composition
is a global control parameter. Consequently, adjusting
any of these parameters allows to control phase separa-
tion in the system. One example is charging batteries
where detrimental phase separation of lithium ions can
be avoided by suitable protocols [10, 122].

External parameters can also be used to control the
spatial details of a phase separating system. One exam-
ple are external potential gradients, like gravity or elec-
tric potential, which bias phase separation to one side of
the system [123]. In fact, the system’s boundary plays a
prominent role, since it might prefer one component in
the fluid over another. The resulting wetting and prewet-
ting dynamics control phase separation [124], which is
used in biology [125]. Chemical reactions provide addi-
tional control via rate-controlling enzymes, which can be
localized precisely. Such spatial control over reactions
can determine resulting patterns [126, 127] and localize
droplets [128, 129]. Finally, the interplay between bulk
and surface dynamics implies a prominent role of geome-
try, which was described in detail for traditional reaction-
diffusion systems, like the Min oscillations [130, 131], but
could also control droplets, e.g., at the origin-of-life [132].
Spatially patterned catalysts could provide detailed con-
trol over the kinetics of chemical reactions, which in turn
affect where droplets form.

D. Nucleation and fluctuations

This review only considered deterministic effects of
phase separation and chemical reactions, but real sys-
tem exhibit fluctuations from thermal noise and poten-
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tially other sources. Since we derived phase separation
kinetics using linear non-equilibrium thermodynamics,
thermal fluctuations can be directly added to the dy-
namical equations using the fluctuation-dissipation the-
orem [37, 40]. Capturing fluctuations in chemical reac-
tions might be more challenging, although it might also
not be necessary since diffusive fluxes dominate in most
cases that we discussed here. Including thermal fluctu-
ations will allow to properly describe homogeneous and
heterogeneous nucleation of droplets [49, 133]. Fluctu-
ations will also be important in analyzing dynamics of
single molecules, e.g., to compare to experimental mea-
surements [134]. While thermal fluctuations will often
only weakly affect the dynamics, they may also have sig-
nificant impact in particular parameter regions, e.g., via
stochastic resonances [135].

VI. DISCUSSION

This review demonstrated that chemical reactions can
have a profound effect on phase separating fluids. In equi-
librium, reactions reduce the number of conserved quan-
tities and thus the possible equilibrium states. Conse-
quently, binary systems only exhibit homogeneous states
and ternary systems with a single reaction reduce to sim-
ple binary phase separation. In systems with more com-
ponents, chemical equilibrium selects a manifold in which
equilibrium states are governed by phase separation of a
reduced system. Taken together, chemical reactions thus
generally reduce the complexity of phase diagrams.

Chemical reactions become a powerful tool to control
phase separation when they are actively driven, e.g., by
providing fuel from the environment. To affect phase
separation, the energy of the chemical fuel needs to drive
spatial fluxes. This is possible when phase separation

breaks the symmetry in the reaction networks, i.e., when
the reaction fluxes depend on position or on local compo-
sition. The spatial fluxes originating from these generic
conditions can then suppress droplet coarsening, control
droplet size, and also localize droplets. Such systems fall
in the large class of active matter since energy is con-
sumed locally to affect dynamics. However, since self-
propulsion does not play a role and instead phases grow
via diffusive fluxes, these systems are often classified as
growing active matter [136] in contrast to the more tra-
ditional motile active matter.

The combination of phase separation and driven chem-
ical reactions provide unique properties that are useful in
biology and technology. The first-order phase transition
underlying phase separation provides a sensitive response
to changes in the environment and it allows to form dis-
tinct compartments without continuous energy input. In
contrast, the driven chemical reactions provide spatial-
temporal control over diffusive fluxes and can thus af-
fect where droplets form, how large they get, and how
many there are. The combination of both processes al-
lows a complex regulation of spatial compartmentaliza-
tion, which is sensitive to environmental conditions. It is
thus no surprise that such systems are ubiquitous in biol-
ogy [18, 137, 138] and they will likely become more promi-
nent in technological applications to control patterns in
nano sciences, e.g., to produce structural color [139, 140]
and other nanostructure.
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F. Jülicher, Stochastic dynamics of single molecules
across phase boundaries, Phys. Rev. Research 3 (2021)
043150. doi:doi:10.1103/PhysRevResearch.3.043150.

[135] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni,
Stochastic resonance, Rev. Mod. Phys. 70 (1998) 223.

[136] E. Tjhung, L. Berthier, Analogies between grow-
ing dense active matter and soft driven glasses,
Phys. Rev. Research 2 (2020) 043334. doi:doi:
10.1103/PhysRevResearch.2.043334.

[137] V. T. Yan, A. Narayanan, F. Julicher, S. W. Grill,
A condensate dynamic instability orchestrates oocyte
actomyosin cortex activation, bioRxiv (2021). doi:doi:
10.1101/2021.09.19.460784.

[138] J. E. Henninger, O. Oksuz, K. Shrinivas, I. Sagi,
G. LeRoy, M. M. Zheng, J. O. Andrews, A. V. Zamudio,
C. Lazaris, N. M. Hannett, T. I. Lee, P. A. Sharp, I. I.
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