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Abstract

Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of 

human populations show a high prevalence of human infection, which rarely progresses to disease 

in immunocompetent hosts. However, decreased host immunity places individuals at high risk for 

cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, 

in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, 

we summarize what is known about the cellular recognition, ingestion, and killing of C. 

neoformans and discuss the unique and remarkable features of its intracellular life, including the 

proposed mechanisms for fungal persistence and killing in phagocytic cells.
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Introduction to The Biology of Cryptococcus Neoformans

Environmental Organism and Treatment of Disease

Cryptococcus neoformans was first described in 1894 by Otto Busse, when the organism 

was recovered from a lesion in a woman's tibia (1). The pathogenic yeast can be found 

worldwide in several environmental niches and has been isolated from soil, trees, and 

animals, in particular from avian guano (1, 2). Exposure to C. neoformans does not usually 

lead to overt disease, and epidemiological data led to the accepted view that establishment of 

an asymptomatic latent state may be the most common outcome of infection (3–5). Even 

from the early clinical cases described, an association between cryptococcosis and 

immunosuppression was already inferred (39, 40). In fact, in immunosuppressed patients, 
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reactivation of infection is frequently fatal. Patients develop pneumonia and 

meningoencephalitis, and brain involvement predicts high mortality and morbidity, even 

with aggressive antifungal drug therapy (6).

Immunity to Cryptococcosis

Serological studies show that 80% of children in urban environments have been infected 

with C. neoformans, without any discernible clinical manifestations (4, 7). Primary infection 

most likely occurs via inhalation of spores or desiccated yeast cells from environmental 

sources. The physical characteristics of these infectious particles, such as size and capacity 

to become airborne, allow deposition in the lungs (8). There, the yeast particles encounter an 

alveolar macrophage or dendritic cell and trigger an immune response, culminating in 

sterilization or, most likely, restriction of infection within a granuloma. The resulting 

granulomas are usually well circumscribed, self-limited, and benign (Figure 1) and are 

composed mainly of mature mononuclear phagocytes, histiocytes, and giant multinucleated 

cells enveloping the yeast cells (9).

Efficient control of C. neoformans requires a delicate balance of both Th1- and Th2-type 

responses (10–12). Depletion of cytokines by genetic disruption or antibody neutralization 

has confirmed that a Th1-type response is essential to control infection; these studies are 

summarized in Table 1. In fact, mouse strains show differential susceptibilities that correlate 

with a stronger Th1 versus Th2 skewing (13) and with the presence of complement cascade 

member C5 (14). Depletion of Th1-type cytokines, such as interferon-γ (IFN-γ) and 

interleukin (IL)-12, consistently results in decreased mouse survival (15, 16), whereas loss 

of hallmark Th2-type cytokines increases mouse survival (17). In these models, Th1 or Th2 

cytokine bias is reflected in both granuloma composition and control of fungal burden (18). 

Although a predominantly Th1-type response results in mouse survival, too strong of a Th1-

type polarization cannot prevent brain dissemination (19–22) and associated mortality, and 

the Th2 component is required for the most efficient immune response. Although an 

impressive body of work has been carried out to characterize cytokine dependence, an 

understanding of immunity to cryptococcosis is still incomplete. For example, lack of the 

Th1 major cytokine tumor necrosis factor α (TNF-α) did not influence mouse survival, but 

administration of TNF-α was beneficial (23). As another example, Th17 immunity was 

crucial for Candida albicans mucosal immunity (24) but appears to play a lesser role in 

cryptococcal disease: In models of cryptococcosis, deletion of Th17-type responses did not 

influence the outcome of primary infection or the efficiency of vaccination (25).

Macrophages are crucial for control of cryptococcosis, as evidenced by the observation that 

depletion of host macrophages and dendritic cells results in dramatically reduced survival 

after C. neoformans challenge (26, 27). Two studies of the effects of macrophage depletion 

on lung fungal burden produced contradictory results (27, 28); however, both studies 

demonstrated that mouse macrophages require a particular activation profile to become 

fungicidal (28). Macrophages with a mixed classical and alternative activation phenotype are 

seen during experimental models of cryptococcosis (19). Although they are less studied, 

other types of innate immune cells are found in granulomas and may play a role in defense 

against cryptococcosis (29). The presence of either excess eosinophils or excess neutrophils 
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is associated with poor control of infection in mice (30, 31), whereas eosinophils might have 

a beneficial role in rats (32).

An extensive body of literature shows that induced or passively administered antibodies can 

mediate significant protection from cryptococcosis (33). However, the role of humoral 

immunity in the cryptococcosis model is not adequately explained by classical mechanisms 

of antibody-mediated immunity, which has led to the discovery of novel immunoregulatory 

functions of antibodies (33).

Various investigators have addressed the immunological mechanism for effective 

immunization against C. neoformans challenge (3, 27, 34, 35). For example, immunization 

with capsular mannoproteins was able to prolong mouse survival (34). An alternative 

approach was to design an IFN-γ-producing C. neoformans (IFN-γ is a strong Th1-type 

cytokine) (25, 36–38). This strategy resulted in complete protection from a posterior 

challenge, accompanied by a Th1-biased lung cytokine pattern, classical activation of 

macrophages, and increased production of nitric oxide (NO) (37), and demonstrated how 

appropriate manipulation of the host immune system, in particular macrophage activation, 

can be an effective therapeutic option. At this time, there is a reasonable consensus that 

defense against cryptococcosis depends on an appropriate collaboration of Th1 cells with 

macrophages.

Evidence That Intracellular Residence Contributes to Virulence and 

Immune Escape

Evidence from Pathological Studies

C. neoformans lesions in autopsies (9, 39–41) and experimental models (42) show fungal 

cells inside granulomas, known as cryptococcomas (Figure 1b,c). Cryptococcal granulomas 

are less inflammatory than Mycobacterium tuberculosis granulomas, suggesting a dormant 

and controlled infection. In well-organized granulomas the yeast is localized within the 

cytosol of giant cells or macrophages, but in the absence of granulomas yeasts are both 

intracellular and extracellular (Figure 1f) (41). Neutrophilic infiltrates are not common in 

human cryptococcal lesions, whereas CD4+ T cells are found in immunocompetent patients.

In rats (42), mice (3, 43), and rabbits (44), C. neoformans can be found associated with lung 

macrophages, in some cases for months, without obvious clinical manifestations. In mice, C. 

neoformans is rapidly ingested by phagocytes, and in one model of experimental infection, 

there was a fluctuation in intracellular and extracellular residence during the first 24 h (43). 

At day 7, a shift occurred toward the intracellular lifestyle, coincident with formation of 

granulomas. At day 28, most yeast cells were found within multinucleated giant cells, as 

illustrated in Figure 1e. In this model, the budding index was higher for intracellular than for 

extracellular C. neoformans, sparking the hypothesis that intracellular residency is favorable 

for C. neoformans growth. Hence, both early infection and long-term persistence find C. 

neoformans cells associated with host macrophages, supporting the importance of 

intracellular residence within them (43).
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Evidence from Animal Models

Animal models have found evidence consistent with the view that fungal residency within 

macrophages contains the infection while allowing the fungus to persist in tissue. Rats are 

more resistant than mice are to C. neoformans infection, but the two rodent systems have 

provided complementary information. Rats' superior resistance to cryptococcosis is 

associated with a more effective macrophage fungicidal capacity, an effect attributed to 

increased production by macrophages of lysozyme and reactive oxygen species (ROS) (28, 

42). Similar to the situation in mice, C. neoformans resistance in rats is associated with a 

strong Th1 response balanced with an adequate Th2 component (18). Rats that control 

infection develop mature granulomas containing eosinophils, whereas rats with an excessive 

Th1 response develop more inflammatory granulomas with central necrosis and caseation. 

Early in the course of rat infection, extracellular C. neoformans is prominent, but after 

granuloma formation the percentage of intracellular fungi increases, with a concomitant 

reduction in fungal burden (45).

Further evidence that macrophages are required for both control and persistence of disease 

came from the observation that macrophage depletion can prevent yeast dissemination into 

the mouse brain (46, 47). This result is consistent with the notion that fungal dissemination 

to the brain involves the transport of viable yeast cells inside host macrophages. The idea 

that C. neoformans has a favorable niche within murine macrophages was directly 

investigated by constructing a yeast strain that could survive only within acidic 

environments. During the course of infection, an acidic environment is found solely in the 

phagosome. This strain, although confined to the phagocytic compartment, was still virulent 

in natural killer– and T cell–depleted mice, indicating that yeast virulence occurs from the 

intracellular compartment (47). In the same immunosuppressed mice, depletion of alveolar 

macrophages delayed mouse death, supporting the concept that the macrophages are a niche 

for intracellular survival of C. neoformans (47).

The Intracellular Life Cycle of Cryptococcus Neoformans

Fungal Entry and Recognition

Fungal cell wall components, such as α-glucans, β-glucans, and chitin, are recognized by 

pattern recognition receptors (PRRs) present in immune cells, triggering cellular activation 

and, in the case of phagocytic receptors, ingestion of the fungal particle. However, the 

capsule is highly antiphagocytic, and without opsonins there is no significant ingestion of 

yeast cells in vitro. Because acapsular C. neoformans is readily ingested through 

complement receptors and/or β-glucan receptors (48), it has been hypothesized that the large 

polysaccharide capsule conceals most fungal PRR ligands, thereby decreasing phagocytosis 

by host cells (Figure 2) (49). In fact, for efficient phagocytosis in vitro (Figure 3), 

opsonization with antibody or complement is necessary, after which phagocytosis proceeds 

through a complex interplay of Fc receptors, complement receptors (50), and Dectin-1 (51). 

Despite the capsule's antiphagocytic properties in vitro, C. neoformans ingestion occurs 

readily in vivo. The opsonin or the receptor responsible for in vivo ingestion has not been 

definitively identified. The complement system is the most likely candidate because 

complement-deficient animals have greater susceptibility to cryptococcosis (14, 52). C. 
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neoformans spores are acapsular, and thus their surfaces expose more β-glucans than do the 

surfaces of the yeasts; therefore, when spores are the infectious particles, Dectin-1 and other 

β-glucan PRRs might be readily activated (8) and mediate rapid ingestion of C. neoformans.

Cell wall β-glucans can be recognized by Dectin-1, Toll-like receptor 2 (TLR2), Nodlike 

receptors, and several scavenger receptors. In addition, CD36 and scavenger receptor F1 

(SCARF1) are responsible for immune cell binding of C. neoformans in the mouse lung 

(53). Recognition of the yeast particle is not limited to the immune cell extracellular 

membrane but continues within the phagolysosome, and even the host cytosol is monitored 

for the presence of fungal components. In C. albicans infection, Dectin-1 and complement 

receptors accumulated at sites of phagocytosis but dissociated from the phagosome shortly 

after internalization, while mannose receptors fused into nascent phagosomes, displaying a 

coordinated cooperation (54). In contrast, in Aspergillus fumigatus, Dectin-1 remained 

within the phagosome and was capable of interacting with β-glucans within the acidic 

compartment (55). Activation of Dectin-1 by β-glucans in vitro led to enhanced macrophage 

fungicidal activity, presumably because Dectin-1 mediated inflammasome activation and 

proinflammatory cytokine production (Figure 4a), which can trigger a more effective 

antifungal response. Therefore, disguise of β-glucans by the C. neoformans capsule may 

impair maximal macrophage activation. Thus, defects in recognition of C. neoformans by 

Dectin-1 might explain why mice deficient in Dectin-1 do not have increased susceptibility 

to C. neoformans infection (56). This hypothesis has been proven in C. albicans, where 

Dectin-1 dependency is fungal strain dependent due to differences in cell wall composition 

(57). Other receptors have been shown to be crucial for C. neoformans recognition. Both 

TLR2- (58) and mannose-deficient mice (59) have decreased immunity to cryptococcal 

challenge, and the TLR9 receptor is important because of cytosolic detection of fungal DNA 

(60, 61). In summary, mannose receptor, complement receptors, CD36, SCARF1, TLR2, and 

TLR9 are all crucial receptors for C. neoformans recognition in the lung, and cross talk 

between multiple PRRs is necessary for maximal immune response.

Cells other than immune cells might also recognize the presence of C. neoformans, and IL-8 

secretion by epithelial cells has been detected (62). Within the lungs, despite extensive 

adhesion to the epithelium, very little invasion of epithelial cells by C. neoformans occurs 

(63). However, the yeast is commonly found within lung capillaries and can cross the blood-

brain and endothelial barriers, which leads to the conclusions that the yeast is able to cross 

host tissues (64) and that epithelial cells play a role in the pathogenesis of C. neoformans.

Phagosome Maturation

C. neoformans has not been shown to interfere with phagosomal maturation. A phagosome 

containing C. neoformans is able to acidify (65), and this acidification is beneficial for 

fungal replication (65–67). The existing characterization of the C. neoformans phagosome 

shows that lysosomal fusion occurs (Figure 5) and phagosomes quickly acquire an array of 

phagosomal markers (Figure 6) (65, 66, 68). Autophagic markers colocalize to the C. 

neoformans phagosome (65), but the yeast has not been found within an autophagic 

compartment. Autophagy mediators may perform functions in this phagosome distinct from 

their canonical functions; such hypothetical activities would explain why depletion of Atg2, 
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Atg5, or Atg9 decreases uptake and/or replication of C. neoformans (65, 69) and why 

depletion of Atg5 affects survival after C. albicans but not C. neoformans challenge.

Evidence for Host Cytotoxicity

Despite normal phagosome maturation, macrophage phagosomes become leaky after C. 

neoformans infection, as measured by light and electron microscopy (70). Leakiness of the 

phagosome would have a myriad of consequences: loss of acidity, leakage of macrophage-

damaging phagosomal enzymes, easy fungal access to cytoplasmic nutrients, and release of 

strong immunomodulatory capsular components into the cytosol (Figure 4b). At this time, it 

is not clear whether the leakiness of phagosomes reflects a loss of phagosomal integrity due 

to macrophage damage, a direct effect of the fungus, or a combination of both. It is also hard 

to reconcile the fact that the yeast prefers an acidic phagosome with the notion of fungi 

residency within a leaky, nonacidic phagosome.

Reports of fungal damage to host macrophages are scarce. Lipid peroxidation was observed 

in rat alveolar macrophages exposed to C. neoformans, which presumably occurs as a result 

of excessive ROS production by the macrophage (71) and not due to direct fungal toxicity. 

In vivo, cells that have ingested C. neoformans display features of affected lysosomes; they 

are known as hueco cells, after the Spanish word for hole, given their perforated appearance 

in electron microscopy preparations (43). Capsulated, but not acapsular, C. neoformans can 

trigger apoptosis in macrophages (72), and this observation has been replicated for isolated 

capsular components (73). Phagocytosis can stimulate proliferation of macrophage cells (74, 

75), yet in prolonged C. neoformans infection, ingestion of yeast cells specifically inhibited 

cyclin D1 expression (75) and decreased macrophage mitosis, indicating cell cycle arrest 

(76). Similarly, the presence of extracellular yeast triggered aneuploidy and cell cycle 

impairment in macrophages (72). The realization that fungi, like bacteria such as 

Mycobacterium tuberculosis (77), can manipulate the host cell cycle to their advantage is an 

exciting development in fungal pathogenesis. However, the type of macrophage adaptations 

necessary to support the observed long-term residence of fungal pathogens has not been 

elucidated.

Killing of Cryptococcus neoformans

Human macrophages restrict C. neoformans growth for up to 24 h after infection (78), a 

finding indicative of damage to the fungus. Within the phagosome, the yeast is exposed 

simultaneously to low pH, ROS, reactive nitrogen species, and nutrient starvation (79). 

These challenges are counteracted by equally powerful mechanisms on the yeast side. Upon 

ingestion, the yeast upregulates gene expression of oxidative stress enzymes (80), starvation 

responses, and the autophagic machinery (81). These collaborate with the antioxidant 

properties of fungal melanin and the capsule to efficiently protect the fungus from host 

attack. In a model of NADPH oxidase–null mice, cryptococcal infection is contained and the 

fungal load in both brain and lung is decreased (82), suggesting that inflammatory ROS are 

prejudicial to the host rather than to the fungus. One antimicrobial molecule proven to be 

inhibitory to C. neoformans in acidic conditions is NO (83). The enzyme that produces NO, 

iNOS (inducible nitric oxide synthase), is present in C. neoformans granulomas in the lung 

(37, 42, 84), and NO has a protective role in the cryptococcosis mouse model (85, 86). The 
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understanding of these complex effects is hampered by the difficulty in separating the direct 

fungicidal and indirect immunoregulatory effects of NO, but because C. neoformans with 

defective nitrosative defenses is only slightly less virulent than is wild-type C. neoformans 

(87), immunoregulation seems to be the predominant effect of NO.

T cells and natural killer cells exert direct antifungal activity, at least in vitro (88, 89), 

through an unknown mechanism. Neutrophils and dendritic cells can kill opsonized fungi 

through oxidative and nonoxidative mechanisms (90, 91), and the myeloperoxidase system 

contributes significantly to antifungal activity against C. neoformans, given that 

myeloperoxidase-knockout mice have dramatically decreased survival after cryptococcal 

infection (92). Nonoxidative mechanisms include Cathepsin-B-induced structural changes 

and rupture of the fungal cell wall (93) in dendritic cells, whereas neutrophils have been 

reported to use both oxidative burst and nonoxidative molecules such as calprotectin and 

defensins (91).

In macrophages, microbicidal activity depends on macrophage activation, in which Th1-type 

responses result in the upregulation of ROS, reactive nitrogen species, proteases, and lipid 

mediators (94), all of which would render macrophages more effective in pathogen killing. 

Such Th1 stimulation can also decrease phagosomal hydrolase activity to increase major 

histocompatibility complex presentation and stimulation of adaptive immunity (95). 

However, in the case of C. neoformans infection, even IFN-γ stimulation of macrophages 

failed to elicit efficient killing in vitro (78). Therefore, the contribution of macrophages' 

oxidative and nonoxidative defenses to fungal control remains unknown.

Nonlytic Exocytosis

Upon phagocytosis, C. neoformans can undergo morphological changes, such as capsular 

enlargement, that aid its survival within, and even its escape from, host phagocytes (96). 

Some of these changes include fungal giant cell (titan cell) formation (97, 98), cell-to-cell 

spread (99), and nonlytic exocytosis (NLE) (100, 101). The presence of mechanisms to flee 

from phagosomes or traverse to an adjacent cell is compelling evidence of the yeast's 

adaptation to an intracellular lifestyle. NLE occurs after phagosomal maturation and requires 

fungal viability (100–102). Curiously, phagosomal permeability always precedes NLE, 

whereas actin flashes around the phagosome seem to counteract fungal escape (Figure 7) 

(103). Interference with host cytoskeletal machinery decreases NLE (104), and yeast cells 

have been found to interact with host cytoskeletal Rac1, a small GTP-binding Rho family 

protein, to penetrate the blood-brain barrier (105), indicating that the host cytoskeleton can 

be subverted to promote fungal escape. The most surprising feature of NLE is how little 

macrophage damage ensues immediately afterward, with the exception of giant vacuole 

formation in the cytoplasm of the host cell (100).

NLE appears to be tightly modulated by macrophage permissiveness. Macrophages activated 

by Th2 cytokines in vitro showed an increase in intracellular proliferation and a decrease in 

extrusion rate when compared with nonstimulated macrophages (106). Th2 cytokines 

enhance iron uptake and storage by macrophages (107), which may transform the 

phagosome into a more hospitable environment for the yeast. As mentioned above, 

acidification of the phagosome is beneficial for C. neoformans (65), and blockage of 
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acidification increases NLE rates (102, 104). These results could be interpreted to suggest 

the curious hypothesis that a less favorable intracellular niche leads to increased fungal 

escape via NLE.

Trojan Horse Hypothesis for Extrapulmonary Dissemination

The Trojan horse hypothesis posits that a pathogen gains entry into the blood-brain barrier 

through dissemination within immune cells (108). In this scenario, the macrophage functions 

as a Trojan horse, carrying the fungus throughout the body and contributing to dissemination 

and the breaching of epithelial and endothelial barriers. For C. neoformans, a Trojan horse 

mechanism for dissemination is supported by the observation that depletion of alveolar 

macrophages prevents brain dissemination (47). Similarly, injection of ex vivo infected 

macrophages into mice resulted in increased brain fungal burden (46). However, alternative 

mechanisms of penetration into the brain are possible, such as active penetration of 

endothelial cells, by either a transcellular or paracellular mechanism (64, 109), and C. 

neoformans proteins that contribute to differential lung/brain infection ratios have been 

identified in a mutant screen (110, 111). For example, phospholipase B mutants have 

reduced virulence and invasion of the brain (112). Phospholipase B was found to interact 

with host cytoskeletal Rac1 to promote brain invasion (105), supporting the idea that C. 

neoformans may use transcellular mechanisms in addition to the Trojan-horse mechanism.

Cryptococcus Neoformans is An Intracellular Pathogen

Establishment of a latent intracellular residency is a very common outcome after phagocyte– 

fungal cell interactions (see sidebar, The Amoeba-Macrophage Connection). Although C. 

neoformans is not an obligate intracellular pathogen, intracellular residency is an 

environment where C. neoformans can persist and even travel, if we attribute brain invasion 

to migratory infected macrophages. However, it remains unclear why latency, and not 

eradication of infection, is such a common outcome. One explanation postulated the 

damage-response framework (113), which was further developed with the tolerance 

hypothesis (114). According to the tolerance hypothesis, resistance mechanisms minimize 

pathogen burden, whereas tolerance mechanisms maximize host function without affecting 

microbe burden. Consequently, brain, lungs, and heart are the most susceptible organs to 

immune damage (114). Two of these organs are major targets of C. neoformans. In chronic 

infection models, the yeast spreads to spleen and liver early in infection but is later cleared 

(42), consistent with a lower risk to these organs of immune damage (due in part to their 

greater regenerative capacities). Thus, control of infection by intracellular latency, but not 

clearance, might be a tolerance mechanism to minimize brain and lung damage. Within this 

postulate, intracellular residency is a tolerance mechanism that would minimize both direct 

fungal damage to the host and exposure of fungi to the immune response (which would 

trigger immunopathology), allowing maximal host function (114). These considerations 

raise the question of why C. neoformans has particular tropism for the lung and brain, but 

not the heart, for which we cannot formulate a credible explanation. When cryptococcal 

pathogenesis is viewed in the context of the tolerance hypothesis, it appears that fungal 

intracellular residence is an outcome that presents advantages to both organisms.
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Conclusions and Unresolved Questions

There is still much to be discovered regarding the survival of C. neoformans within 

macrophages and its capacity for lung intracellular residence in pathogenesis. Most cases of 

cryptococcosis are initiated by lung pathology, a finding that provides evidence consistent 

with a pulmonary reservoir for latency. However, animal studies show that dissemination to 

the brain occurs shortly after pulmonary infection, which suggests that the brain could also 

be a reservoir for the yeast. If so, how does the yeast establish latency within the 

immunoprivileged brain, and are there particular mechanisms of fungal control within the 

brain?

Within the lung, yeast control is achieved through the formation of specialized granulomas. 

Granulomas originate from immune cell cooperation, including macrophages and 

granulomas generated in vitro that have already been used as a C. albicans infection model 

(115). That macrophage granulomas and giant cells possess cellular and molecular 

characteristics distinct from those of macrophages (116) could explain the observed reduced 

fungicidal capacity of macrophages in vitro. An alternative explanation could be that 

immune cells must cooperate, meaning that macrophages would have to acquire a 

microbicidal molecule from other immune cells.

Microbial ligands can activate innate immunity in the absence of adequate adaptive 

immunity (117). Our results (51) have shown an increase in fungicidal activity due to β-

glucan stimulation. Given that protection could be elicited with proper innate cell 

stimulation, without the need for CD4+ T cells, we suggest that microbial ligands might have 

therapeutic value, in particular for immunocompromised patients in whom proper T cell 

stimulation is not possible.

In conclusion, C. neoformans is capable of surviving within mammalian hosts, contained 

within the intracellular environment of macrophages. The intracellular residency might 

reflect the most advantageous equilibrium for the host and the pathogen duo and seems to 

have evolved serendipitously from an ancient relationship with amoebae. Understanding the 

features of intracellular life can help to prevent C. neoformans–associated deaths.
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The Amoeba-Macrophage Connection

Cryptococcus neoformans is a soil organism that has no requirement for mammalian 

pathogenesis in its life cycle. Why would C. neoformans develop such a sophisticated 

intracellular pathogenic strategy? Studies of the interaction of C. neoformans with 

amoebae suggested how this strategy might have evolved. Amoebae are predators on C. 

neoformans in soil, which can be replicated in a laboratory setting (118, 119). Analysis of 

the interactions of C. neoformans with Acanthamoeba castellanii revealed remarkable 

similarities to the response elicited by interaction with mammalian macrophages; similar 

virulence factors are required for pathogenesis in both hosts (120). Subsequent studies 

have established that other phenomena associated with the interaction of macrophages, 

such as capsule growth and NLE, can be replicated in C. neoformans–amoeba 

interactions (121, 122). On the basis of these observations, the capacity of C. neoformans 

to survive in macrophages and cause disease in mammals was proposed to be the result of 

selection by such biotic factors as amoebae in the environment (113). According to this 

synthesis, environmental pressures selected for traits that were needed to survive 

phagocytic predators and that incidentally also conferred the capacity for mammalian 

virulence (113).
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Future Issues

1. What is the mechanism of control of the primary C. neoformans 

infection?

2. What immune effector mechanism, lost during immunosuppression or 

loss of CD4+ T cells, is responsible for control of latent C. neoformans 

infection?

3. Are the mechanisms responsible for control of a primary infection the 

same as those that will control an established disseminated infection?

4. Is it possible to prevent C. neoformans from crossing the blood-brain 

barrier?

Coelho et al. Page 18

Annu Rev Pathol. Author manuscript; available in PMC 2016 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Histopathology of Cryptococcus neoformans lung infection. Photomicrographs of lung 

tissue from Balb/c mice infected with C. neoformans (blue arrowheads), stained with 

hematoxylin and eosin. (a) Initial infection, showing diffuse pneumonitis and infiltration of 

immune cells and yeast into the alveolar space (200×). (b) Typical granuloma formation 5 

days postinfection (200×). (c) Typical granuloma formation 15 days postinfection (100×). 

(d) Magnification of panel c, showing the presence of histiocytes (red arrowheads) (400×). 

(e) At later stages of infection, giant cells (yellow arrowhead) contain C. neoformans (400×). 

(f) C. neoformans replicating within the alveolar space, visualized by periodic acid–Schiff 

stain (400×).
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Figure 2. 
Schematic of recognition of Cryptococcus neoformans by immune cells. Recognition of C. 

neoformans by immune cells depends on several receptors and extensive cross talk between 

those receptors. Recognition of capsular components was determined in isolation and likely 

also occurs for the whole capsule. Most of these receptors are not opsonic, meaning they 

cannot mediate ingestion. The in vivo opsonins are thought to be serum components iC3b 

and C5, such that the yeast is ingested via cooperation between complement receptors, FcRs, 

and possibly Dectin-1. Abbreviations: FcR, Fc receptor; MR, mannose receptor; TLR, Toll-

like receptor.
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Figure 3. 
Scanning electron micrographs showing Cryptococcus neoformans and macrophage 

interaction in vitro. Bone marrow–derived macrophages were infected with antibody-

opsonized C. neoformans, and macrophage membranes are shown interacting with yeast 

cells. (a) Yeast cells are recognized when macrophage membranes probe the extracellular 

environment around them. (b) Capsulated yeast cells are ingested as the macrophage 

membrane engulfs them. (c) Ingestion is finalized when the membrane closes upon the yeast 

cell; a neighboring extracellular yeast is also shown. Panel a courtesy of Sabriya Stukes; 

panels b and c acquired with the help of Julie M. Wolf.
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Figure 4. 
Schematic of immune signaling cascades triggered by Cryptococcus neoformans 

recognition. (a) Dectin-1 signaling pathway. Dectin-1 can induce both Syk-dependent and 

Raf (Syk-independent) pathways. Dectin-1 can activate macrophages through the Syk 

pathway, triggering phagocytosis; following phagocytosis, Dectin-1 activation, coupled to 

ROS production, contributes to inflammasome activation or fungal killing and activates the 

transcription factor NF-κB through CARD9, triggering inflammatory cytokine production. 

The Raf-1 (Syk-independent) pathway enhances NF-κB and inflammatory cytokines. (b) 

Inflammasome pathway. The Syk-dependent pathway requires combination of two signals. 

The first signal, which can be mediated by TLR activation, together with a second signal, 

such as ROS production and/or lysosomal damage, induces the oligomerization of the 

NLRP3 complex, activation of caspase 1, and production of IL-1β. Abbreviations: ASC, 

apoptosis-associated speck-like protein containing a C-terminal CARD; Bcl10, B cell 

leukemia/lymphoma 10; CARD9, caspase recruitment domain–containing protein 9; CLR, 

C-type lectin receptor; IL, interleukin; MALT-1, mucosa-associated lymphoid tissue 1; NF-

κB, nuclear factor κ-light-chain enhancer of activated B cells; NLRP3, Nod-like receptor 

family, pyrin domain–containing 3; PLCγ2, phospholipase Cγ2; ROS, reactive oxygen 

species; Syk, spleen tyrosine kinase; TLR, Toll-like receptor; TNF-α, tumor necrosis factor 

α
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Figure 5. 
Transmission electron micrographs showing Cryptococcus neoformans and macrophage 

interaction in vitro. Blue arrowheads indicate possible lysosomal fusion events. (a) 

Macrophage with ingested C. neoformans. (b) Magnification of panel a, highlighting 

macrophage organelles, particularly lysosomes, in proximity with the phagosome. (c) C. 

neoformans budding within a phagosome. (d) Magnification of panel c, displaying C. 

neoformans organelles. Abbreviations: L, lysosome; M, mitochondrion; Nu, nucleus.
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Figure 6. 
Phagocytic events upon Cryptococcus neoformans ingestion. To date, no manipulation of the 

phagocytic compartment by C. neoformans has been described. The interplay between 

macrophage fungicidal mechanisms and C. neoformans results in host damage, mainly to the 

phagosomal compartment and to the regulation of the host cell cycle. Abbreviations: ROS, 

reactive oxygen species; RNS, reactive nitrogen species.
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Figure 7. 
Possible outcomes for Cryptococcus neoformans infection of murine macrophages. The 

interaction between C. neoformans and host macrophages can result in different outcomes, 

and the frequency with which they occur influences the course of infection.
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