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Do we run away because we are frightened, or are we frightened because we run away? The authors
address this issue with respect to the relation between metacognitive monitoring and metacognitive
control. When self-regulation is goal driven, monitoring affects control processes so that increased
processing effort should enhance feelings of competence and feelings of knowing. In contrast, when
self-regulation is data driven, such feelings may be based themselves on the feedback from control
processes, in which case they should decrease with increasing effort. Evidence for both monitoring-based
control and control-based monitoring occurring even in the same situation is presented. The results are
discussed with regard to the issue of the cause-and-effect relation between subjective experience and
behavior.
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A long-standing issue in psychology and philosophy concerns
the cause-and-effect relation between phenomenal experience and
behavior (Baars, 1988; Bargh, 1997; Bless & Forgas, 2000; Flana-
gan, 1992; Mandler, 2002; Marcel, 1983a, 1983b; Marcel & Bisi-
ach, 1988). Whereas many discussions in cognitive psychology
assume that subjective experience can play a causal role in influ-
encing behavior, recent findings lend credence to the idea that
subjective experience may be based on the feedback from one’s
own behavior and thus follow rather than precede behavior. In-
deed, in reviewing their own work, Kelley and Jacoby (1998)
praised the insight owed to the James–Lange view of emotion,
according to which “subjective experience can involve an attribu-
tion or unconscious inference about effects on performance and so
follow from, rather than be responsible for, objective perfor-
mance” (pp. 127–128). In this article we address the causal links

between subjective experience and behavior within a restricted
domain—that of metacognitive monitoring and metacognitive con-
trol. We believe that our analysis and results can provide some
insight into the general issue of the relation between subjective
experience and behavior.

The Cause-and-Effect Relation Between Subjective
Experience and Behavior

Most of the discussions of the status of subjective experience in
human behavior have centered on the causal role that conscious-
ness might play in guiding behavior (Schwarz & Clore, 1996). The
issue that has been addressed concerns the extent to which phe-
nomenal consciousness affects behavior, in general, and “rational”
action, in particular. In Posner and Snyder’s (1975) conceptual
framework, for example, controlled processes, as opposed to au-
tomatic processes, were seen to characterize conscious function-
ing. Block (1995) associated consciousness with the reflective
pursuit of one’s goals, arguing that without consciousness one
loses the “rational control of action.” In Schacter’s (1989) model,
the conscious system is assumed to function as the gateway to an
executive control system that initiates and regulates voluntary
action. Only activations that gain access to consciousness can be
used by the executive system and can thus influence voluntary
activities (see also Marcel, 1986). Jacoby went even further, using
voluntary control as a diagnostic of consciousness (e.g., Jacoby,
Lindsay, & Toth, 1992; Jacoby, Ste-Marie, & Toth, 1993): By
distinguishing between controlled-conscious processes and
automatic-unconscious processes, he emphasized the inhibitory
function of awareness in opposing influences that could otherwise
prevail in memory and behavior (Jacoby, 1999; Jacoby, Jennings,
& Hay, 1996).

Somewhat less effort has been invested in exploring the possible
causal role of behavior and performance on subjective experience.
However, over the years several formulations have been advanced
suggesting that subjective experience may actually follow rather
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than precede behavior. The most cited such formulation is the
James–Lange theory regarding the relationship between emotional
feelings and emotional behavior. According to this view, an ex-
citing or threatening event elicits certain physiological and behav-
ioral reactions. Subjective emotional experience then occurs as a
feedback from these reactions. In James’s (1884) words,

Common sense says, we lose our fortune, are sorry and weep; we meet
a bear, are frightened and run; we are insulted by a rival, are angry and
strike. The hypothesis here to be defended says that this order of
sequence is incorrect . . . and that the more rational statement is that
we feel sorry because we cry, angry because we strike, afraid because
we tremble, and not that we cry, strike, or tremble, because we are
sorry, angry, or fearful, as the case may be. (p. 190)

Some aspects of the James–Lange theory were revived by the
work of Schachter and Singer (1962). Two factors were assumed
to determine different emotions: the physical changes in a person’s
body and the interpretations that the person gives to those changes
in the light of the stimulus situation. Schachter and Singer showed
that activation produced by epinephrine could be experienced
either as anger or as happiness, depending on the person’s attri-
butions. Thus, as with the James–Lange theory, emotional feelings
are assumed to emerge in response to bodily changes. However, an
important assumption in the Schachter–Singer view, which is
taken up later, is that once an emotional feeling has been produced,
that feeling can then cause specific actions (see also Carver &
Scheier, 1990). This assumption implies that although subjective
experience can emerge in response to the feedback from one’s own
reactions, it can in turn cause other reactions that are compatible
with it.

Several discussions in social psychology also imply that one’s
feelings, attitudes, and beliefs are based on observing one’s own
behavior. Bem’s (1967) self-perception theory maintains that a
person’s inner states are based on inferences from observations of
one’s own overt behavior and its context (Bem, 1965, 1966). Such
inferences are functionally similar to those that any outside ob-
server could make about that person. A similar proposal was made
by Nisbett and Wilson (1977): People’s subjective reports about
the reasons for their behavior are based on a post hoc explanation
of their behavior in terms of their a priori theories about the
possible effects of particular stimuli on particular responses.

Several studies carried out in recent years have explored pre-
dictions that follow more directly from William James’s proposal.
These studies suggest that participants can be induced to experi-
ence specific emotional feelings by making them adopt certain
behavioral expressions and postures: Participants tend to feel
happy when they are induced to smile, angry when they are
induced to frown, and more sad when they sit in a slumped posture
(e.g., Duclos et al., 1989; Laird & Bresler, 1992; Zajonc, 1985; see
Adelmann & Zajonc, 1989, and Strack & Deutsch, 2004, for
reviews). These effects were obtained even when body postures
and facial expressions were manipulated unobtrusively (e.g., Step-
per & Strack, 1993).

Another line of research in social psychology, which is more
closely linked to the work reported in this article, concerns the
metacognitive experiences that accompany information processing
and behavior. Underlying that research is the assumption that
people’s judgments are sometimes based on the retrospective
inspection of their own cognitive processes and performance,

particularly the ease or fluency with which information is encoded
or retrieved (for reviews, see Benjamin & Bjork, 1996; Schwarz,
2004; Winkielman, Schwarz, Fazendeiro, & Reber, 2003). In a
classic study (Schwarz et al., 1991), participants who were asked
to recall 12 examples of their own assertive behavior subsequently
rated themselves as less assertive than participants who had to
recall only 6 such examples. Arguably, the effort needed to re-
trieve many examples led participants to the inference that they
were not very assertive. Similarly, participants who were asked to
recall 12 childhood events subsequently rated their childhood
memory as poorer than participants who had to recall only 4 events
(Winkielman, Schwarz, & Belli, 1998). Stepper and Strack (1993),
who had participants recall 6 examples of assertive behavior,
observed that those who did so while contracting the corrugator
muscle (producing an expression associated with a feeling of
effort) subsequently judged themselves as less assertive than those
who contracted the zygomaticus muscle (producing an expression
associated with a feeling of ease). These and many similar exper-
iments support the idea that people’s judgments are influenced by
the feedback from their own performance and behavior.

Of still greater affinity to the proposal to be detailed below is the
work of Jacoby, Kelley, and Whittlesea. Jacoby, Kelley, and their
associates (e.g., Jacoby & Dallas, 1981; Kelley & Jacoby, 1998)
provided ample evidence in support of their view that subjective
experience is formed as a result of a process in which the fluent
processing of a stimulus is attributed (or misattributed) uncon-
sciously to a previous encounter with the stimulus or to its per-
ceptual qualities. For example, the subjective experience of famil-
iarity or visual brightness is based on the interpretation of
variations in one’s own performance. Whittlesea and his associates
(Whittlesea, 1997, 2003) also incorporate the assumption that the
specific subjective feelings experienced are based on the interpre-
tation of one’s own performance in the light of one’s intuitive
theory (see General Discussion).

The Relationship Between Metacognitive Monitoring and
Metacognitive Control

The experimental work to be reported in this article concerns the
relation between monitoring and control in metacognition. To
introduce the logic underlying that work, we shall draw an analogy
from emotional behavior. As noted earlier, the question raised by
William James (1884) is whether we run away because we are
frightened or we are frightened because we run away. The first
option assumes that the behavioral response to a threatening situ-
ation is mediated by the feeling of fear: A conscious or uncon-
scious appraisal of the situation, based on a variety of cues, may
give rise to the feeling of fear (Lazarus, 1966), which then leads to
escape behavior. The second option is that flight behavior is a
direct response to the external situation; it is either automatically
triggered by the external circumstances or represents a self-
initiated coping response intended to avoid threat. It is the feed-
back from running away that then causes the subjective feeling of
fear.

Because the feeling of fear and the action of running away
generally go hand in hand, how can we tell which is the cause and
which is the effect? One possible approach is to consider the
strength of each of the two variables. Assume that it is indeed the
subjective feeling of fear that causes one to run away from the

37METACOGNITIVE MONITORING AND CONTROL



danger. Then, the faster one runs away, the less fear one should
experience after running away. In contrast, if it is the feedback
from running away that gives rise to the subjective feeling of fear,
then the faster one runs away the more fear one should experience.
It is this general logic that underlies our investigation of the
relationship between monitoring and control processes in
metacognition.

The dominant view in current theorizing on metacognition em-
phasizes the causal link from subjective experience to behavior or,
more specifically, from monitoring to control (e.g., Barnes, Nel-
son, Dunlosky, Mazzoni, & Narens, 1999; Koriat & Goldsmith,
1996; Nelson, 1996; Nelson & Narens, 1990; Son & Schwartz,
2002). Metacognitive monitoring refers to the subjective assess-
ment of one’s own cognitive processes and knowledge, whereas
control refers to the processes that regulate cognitive processes and
behavior. In their analysis of the relationship between monitoring
and control, Nelson and Narens (1990, 1994) proposed a distinc-
tion between an object level and a metalevel. The metalevel is
assumed to monitor the processes that take place at the object level
and control them accordingly. Thus, for example, during the study
of new material, learners are assumed to monitor subjectively the
degree of learning and to allocate further learning resources ac-
cording to the monitoring output.

The idea that metacognitive feelings affect metacognitive con-
trol derives from a functional approach to metacognition, which
emphasizes the adaptive value of putting subjective monitoring to
use in regulating one’s own behavior (e.g., Hart, 1965; Koriat &
Goldsmith, 1996; Nelson, Dunlosky, Graf, & Narens, 1994). This
approach can be illustrated by Hart’s analysis of the feeling of
knowing (FOK) that is experienced when one attempts to retrieve
a solicited item from memory. Hart (1965, 1967) stressed the
functional value of FOK as an internal monitor that signals
whether the solicited piece of information is stored in memory.
According to him, FOK

can serve as an indicator of what is stored in memory when the
retrieval of a memory item is temporarily unsuccessful or interrupted.
If the indicator signals that an item is not in storage, then the system
will not continue to expend useless effort and time at retrieval;
instead, input can be sought that will put the item into storage. Or if
the indicator signals that an item is in storage, then the system will
avoid redundantly inputting information that is already possessed.
(Hart, 1965, p. 214)

The functional view of monitoring reflected in this quote derives
its impetus from two general observations in metacognition: first,
that people are generally accurate in monitoring their knowledge,
and second, that controlled processes appear to be tuned to the
output of subjective monitoring.

With regard to the first observation, many studies have demon-
strated positive correlations across items between subjective and
objective indexes of knowing, suggesting that by and large, people
can monitor the relative accuracy of their knowledge. This has
been found to be the case across a variety of metacognitive
judgments: Judgments of learning (JOL) made about different
items during study are moderately predictive of the relative future
recall or recognition of these items (e.g., Arbuckle & Cuddy, 1969;
Dunlosky & Nelson, 1994; Koriat, 1997; Koriat, Sheffer, &
Ma’ayan, 2002; Lovelace, 1984; Mazzoni & Nelson, 1995; Zech-
meister & Shaughnessy, 1980). Similarly, FOK judgments elicited

following a recall failure are predictive of the likelihood of recall-
ing the illusive target at some later time or recognizing it among
distractors (Gruneberg & Monks, 1974; Hart, 1965; Koriat, 1993;
Schwartz & Metcalfe, 1994). Finally, confidence judgments in an
answer are generally diagnostic of its correctness (e.g., Koriat &
Goldsmith, 1996; Robinson, Johnson, & Herndon, 1997). Admit-
tedly, dissociations between subjective and objective indexes of
knowing have been observed in some circumscribed situations to
the extent that metacognitive judgments were undiagnostic or even
counterdiagnostic of actual memory performance (Benjamin,
Bjork, & Schwartz, 1998; Chandler, 1994; Koriat, 1995; Leippe,
1980; Metcalfe, Schwartz, & Joaquim, 1993; Reder & Ritter,
1992). However, these are the exception rather than the rule.1

The second observation concerns the control component of
metacognition. Several observations suggest that metacognitive
judgments play a critical role in the strategic regulation of infor-
mation processing and behavior, thus highlighting the functional
value of their accuracy. For example, as is discussed in detail
below, when learners are allowed to control the time spent study-
ing each item in a list, they generally allocate more time to items
associated with lower than with higher ease-of-learning (EOL) or
JOL ratings (see Son & Metcalfe, 2000). This observation has been
taken to indicate that learners monitor degree of learning and use
their JOLs as a basis for regulating the allocation of study time to
different items (see Dunlosky & Hertzog, 1998; Nelson & Leone-
sio, 1988). With regard to FOK judgments, several findings sug-
gest that a positive FOK drives memory search: Participants spend
more time searching for an elusive memory target when they feel
that the target is available in memory than when they feel that it is
not available (e.g., Barnes et al., 1999; Costermans, Lories, &
Ansay, 1992; Gruneberg, Monks, & Sykes, 1977; Nelson & Na-
rens, 1990). In addition, Reder (1987; see also Nhouyvanisvong &
Reder, 1998) observed that the preliminary FOK associated with a
question guides the strategy of question answering. Finally, con-
fidence judgments in the correctness of retrieved information have
also been assumed to play a role in guiding memory reports: In
reporting about a witnessed past event, people tend to volunteer or
withhold a piece of information that comes to mind depending on
their subjective confidence in its correctness (Koriat & Goldsmith,
1996).

Taken together these observations suggest the following story,
which we shall dub Story 1: The fact that metacognitive judgments
are generally accurate in predicting memory performance makes
them a useful basis for regulating information processing. Such
regulation should have an adaptive value in terms of improving the
effectiveness of cognitive performance. According to Story 1,
then, metacognitive feelings play a mediating role similar to that of
fear in the first option mentioned earlier: Once such feelings have
been formed on the basis of whatever cues available, they can be

1 This aspect of metacognitive accuracy, which is labeled resolution or
relative accuracy (see Koriat et al., 2002; Nelson & Dunlosky, 1991), is
commonly indexed by a within-participant gamma correlation between
metacognitive judgments and actual memory performance (Nelson, 1984).
In contrast to resolution, calibration (or absolute accuracy), which refers to
the correspondence between mean metacognitive judgments and mean
actual performance and reflects the extent to which metacognitive judg-
ments are realistic, tends to be quite poor, generally exhibiting overconfi-
dence (see Metcalfe, 1998).
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used to guide action (Koriat, 2000; Koriat & Levy-Sadot, 1999;
Nelson & Narens, 1990). In fact, it would seem that the postulated
causal link from monitoring to control is responsible in part for the
recent upsurge of interest in metacognition. This interest derives
from the conviction that metacognitive feelings are not mere
epiphenomena but play a causal role in influencing and guiding
one’s own behavior (Koriat & Goldsmith, 1996; Nelson, 1996).

In this article, however, we explore the possibility that the basic
observations mentioned above may also be telling a different story,
which we shall dub Story 2. In contrast to the commonly assumed
“monitoring affects control” hypothesis (Nelson & Leonesio,
1988) underlying Story 1, Story 2 emphasizes the reverse causal
link from control to monitoring. It asserts the following: First, the
correlation between monitoring and control processes derives from
the fact that metacognitive judgments are based on the feedback
from the outcome of control operations. This is like the idea that
the feeling of fear is based on the feedback from running away.
The implication is that monitoring does not precede controlled
action but follows it, being retrospective rather than prospective in
nature. Second, the accuracy of monitoring judgments in predict-
ing actual memory performance derives precisely from the fact
that these judgments are based on the feedback from the outcome
of control operations. Thus, it is not because monitoring judgments
are accurate that they are used as a basis for strategic control.
Rather, it is because metacognitive judgments rely on the feedback
from control operations that they are generally accurate.

The assumption underlying Story 2 can be illustrated by the
following quote about the FOK, which may be contrasted with the
quote from Hart presented earlier: “It is by attempting to search for
the solicited target that one can judge the likelihood that the target
resides in memory and is worth continuing to search for” (Koriat,
1995, p. 312). The assumption in this quote is that people do not
consult their FOK in order to decide whether to search for a
solicited memory target. Rather, they start searching their memory
for the target, and when retrieval fails, their FOK is based on the
feedback from the retrieval attempt (e.g., the amount and ease of
access of partial information; see Koriat, 1993). Therefore, mon-
itoring follows control, and although FOK judgments are prospec-
tive in their intention (involving predictions of future perfor-
mance), they are retrospective in their basis.

To foreshadow, we do not see the two stories depicted above as
being mutually exclusive, and in fact, we shall show that evidence
consistent with both of them can be found in one and the same
situation. However, although we present results in support of each
of the two stories, our first aim in this article is to promote Story
2 by examining certain paradoxical predictions that follow from
the postulated causal effects of control on monitoring. Our second
aim is to clarify the conditions under which monitoring drives
control processes and those in which monitoring is based on the
feedback from such processes. Finally, we shall try to clarify the
intricate relationships between monitoring and control that ensue
when both Story 1 and Story 2 are combined.

The conceptual scheme proposed here is assumed to apply to
metacognitive judgments in general. However, the experimental
work to be reported (Experiments 1–6) will focus on JOLs elicited
during learning because these judgments allow better opportunities
for the investigation of most of our propositions. The final exper-
iment (Experiment 7) is intended primarily to show how the

pattern of results obtained for JOLs extends to confidence judg-
ments. In what follows, we first introduce our conceptual scheme
by focusing on several results obtained in the study of monitoring
and control processes during learning.

Monitoring and Control Processes During Learning

Nelson and Dunlosky (1991) stated that “the accuracy of JOLs
is critical because if the JOLs are inaccurate, the allocation of
subsequent study time will correspondingly be less than optimal”
(p. 267). This statement (see also Thiede, Anderson, & Therriault,
2003) implies a causal effect of monitoring on control. A classic
demonstration of this effect is the relationship between JOLs and
study time in self-paced learning (see Nelson et al., 1994): Learn-
ers generally allocate more time to difficult items than to easy
items (Le Ny, Denhiere, & Le Taillanter, 1972; Zacks, 1969; for a
review, see Son & Metcalfe, 2000). Nelson and Leonesio (1988)
proposed that the effects of item difficulty are mediated by a
monitoring process in which participants first judge the relative
ease of learning or recalling different items and then control study
time so as to compensate for differences in a priori item difficulty.
Indeed, a positive correlation between study time and various
indexes of perceived item difficulty has been consistently ob-
served. Thus, in their comprehensive review of the literature, Son
and Metcalfe (2000) found that in 35 out of 46 published experi-
mental conditions, learners exhibited a clear preference for study-
ing the more difficult materials.

The findings that prestudy EOL ratings (a) have some validity in
predicting the relative recallability of different items under
experimenter-paced conditions (e.g., Underwood, 1966) and (b)
are inversely related to study time under self-paced conditions are
consistent with Story 1. A simple model of the underlying process
is that participants monitor the difficulty of different items in
advance of learning and use the products of their monitoring as a
basis for allocating study time to different items. A more dynamic
model—the discrepancy-reduction model—was proposed by Dun-
losky and Hertzog (1998; see also Dunlosky & Connor, 1997;
Nelson & Narens, 1990; Thiede & Dunlosky, 1999): Learners
continuously monitor the online increase in encoding strength that
occurs as more time is spent studying an item, and cease study
when a desired level of strength has been reached. This level,
referred to as “norm of study” (Le Ny et al., 1972), is preset on the
basis of motivational factors, such as the stress on accurate learn-
ing versus fast learning (Nelson & Leonesio, 1988). Thus, in
self-paced learning, study continues until the current state of
mastery reaches the norm of study.

The discrepancy-reduction model incorporates the test-
operate-test-exit (TOTE) feedback loop postulated by Miller,
Galanter, and Pribram (1960) to underlie goal-oriented behav-
ior. More generally, it incorporates the control-theory perspec-
tive according to which people self-regulate their actions to
minimize discrepancies between current states and desired
states (see Carver & Scheier, 1990). The model is analogous to
the idea that a person regulates the speed of running away from
a danger according to the degree of fear, perhaps ceasing to run
away when a sufficiently low level of fear (or sufficiently high
sense of security) has been attained. Thus, subjective experi-
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ence (either metacognitive or affective) is assumed to drive and
control self-regulated action.2

The “monitoring affects control” (MC; Nelson & Leonesio,
1988) hypothesis underlying Story 1, which assumes a monitoring-
based regulation of study time, encounters several serious diffi-
culties that can be illustrated by the results of an unpublished study
(Koriat, 1983). In Experiment 1 of that study, one group of
participants studied a list of paired associates under self-paced
conditions, whereas another group studied the same list under
fixed-time presentation. Participants in the two groups were yoked
so that the presentation duration for each fixed-time participant
was the same as the average study time spent by the matched
self-paced participant on each item. The paired associates were
also rated by a different sample of participants on EOL. The
correlation across items between mean EOL ratings and mean
recall in the fixed condition was high (.76), indicating better recall
of the easier items. Surprisingly, it remained high (.82) even for the
self-paced group, suggesting that the control over study time failed
to eliminate or reduce the contribution of a priori item difficulty to
recall. Furthermore, although study time in the self-paced condi-
tion was indeed negatively correlated with EOL (–.82), it was also
negatively correlated with recall in the fixed condition, and to
about the same extent (–.80). Thus, study time appears to be no
more than a symptom of item difficulty: It is as predictive of
ultimate recall as is EOL, and the relationship is such that the more
time is invested in a particular item, the less likely it is to be
recalled! (See also Mazzoni & Cornoldi, 1993; Mazzoni, Cornoldi,
& Marchitelli, 1990; Nelson & Leonesio, 1988).

This pattern of results appears to question the idea that the
correlation of JOL with study time reflects a causal effect of
monitoring on the ongoing control of learning. Rather, it would
seem to lean more toward the view advanced by Begg, Martin, and
Needham (1992), that metacognitive “predictions are a form of
introspective witness; even when they accurately indicate the state
of the system, they have no value for memory” (p. 207).

Experiment 2 of Koriat (1983) yielded yet another intriguing
observation. It examined the possibility that participants invest
more study time in the more difficult items because they experi-
ence the illusion that they do succeed in compensating for differ-
ences in item difficulty. If so, then this illusion should be reflected
in JOLs elicited after study. Thus, Experiment 2 was a replication
of Experiment 1 except that participants made JOLs at the end of
each self-paced trial regarding the likelihood of subsequent recall.
The results indicated that the self-paced participants were not
misleading themselves: Although they allocated more study time
to the difficult items, they continued to believe (correctly) that
these items were less likely to be recalled than the easy items. In
fact, the correlation, across items, between mean JOLs and mean
EOLs was .95 for the self-paced group and .94 for the fixed group.
This observation naturally raises the question, why do self-paced
participants bother to allocate study time differentially if they
know that the differential allocation of study time is ineffective in
reducing the contribution of a priori ease of learning to recall? In
fact, in Experiment 4, which we report later, in which participants
were presented with the same list for four study-test blocks, this
pattern of results was found even on the fourth block. Thus,
learners stick to the strategy of differential study time allocation
despite the fact that their judgments would seem to suggest that
they are aware of the futility of that strategy.

These intriguing observations have led us to consider the pos-
sibility that study time actually serves a dual function: It subserves
a control function as well as a monitoring function. In what
follows, we examine these two functions in the context of the
question about the causal relation between monitoring and control.

The Control Function of Study Time

The control function is consistent with what we called Story 1,
and it is this function that has been commonly emphasized in most
previous research on self-paced learning. Underlying this research
is the view that the allocation of study time is goal driven: It is
used as a strategic tool for regulating memory performance toward
the achievements of desired objectives given specific constraints.
This view, in fact, is part of the general conception shared by most
students of metacognition, in which the person is seen as an

active agent that has at his/her disposal an arsenal of cognitive
strategies and devices that can be flexibly applied in order to reach
certain goals. The choice of such strategies as well as their online
regulation is based on the subjective monitoring of these processes.
(Koriat, 2002, p. 263)

Thus, the regulation of study time and effort is but one of the tools
that learners use strategically in the service of optimizing their
performance, and the output of advance or online monitoring is
one of the determinants of the choice and orchestration of these
strategic tools.

Indeed, previous research has documented the adaptive, goal-
driven nature of study time allocation: Learners invest more study
time when they expect a recall test than when they expect a
recognition test (Mazzoni & Cornoldi, 1993) and more time when
the instructions stress memory accuracy than when they stress
speed of learning (Nelson & Leonesio, 1988; Pelegrina, Bajo, &
Justicia, 1999). Also, the amount of time allocated to an item
increases with the reward for subsequently recalling that item, and
with the expected likelihood that the item will later be tested
(Dunlosky & Thiede, 1998). As mentioned earlier, learners gen-
erally invest more study time in items that are judged to be difficult
to remember. However, they tend to choose the easier items for
restudy when they are given an easy goal (e.g., to get only a few
items correct; Dunlosky & Thiede, 2004; Thiede & Dunlosky,
1999) or under conditions that impose severe constraints on study
time (Metcalfe, 2002; Son & Metcalfe, 2000). These observations,
then, stress the control function of study time as a strategic tool
that is used to regulate learning.

The simple prediction from the postulated control function of
study time is that for a given item, end-of-study JOLs should
increase as more study time is invested in that item. This prediction
assumes a causal link between JOLs and study time: JOL is

2 The recent work by Metcalfe (2002) and Metcalfe and Kornell (2003)
challenges the discrepancy-reduction model of study time allocation. It
suggests that the strategy of allocating more study time to the more difficult
items is neither normative nor generally descriptive of learners’ behavior.
First, allocating additional study time to the more difficult items sometimes
yields the least return in terms of recall (see also Nelson & Leonesio,
1988). Second, learners tend to allocate most of their efforts to items of
medium difficulty. Metcalfe and her associates, however, do endorse the
assumption that learners’ regulation of study time is guided by their
metacognitive judgments in a goal-directed fashion.
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assumed to control study time allocation in the same way that fear
(or subjective experience in general) may be assumed to control
running away (or behavior in general).

The Monitoring Function of Study Time

Let us turn next to the monitoring function of study time, which
accords with Story 2. This function becomes evident when we
focus on the basis of JOLs rather than on their function. After
studying an item, how do people assess its degree of mastery?
Assuming that JOLs are based on inference from a variety of cues
(e.g., Begg, Duft, Lalonde, Melnick, & Sanvito, 1989; Benjamin &
Bjork, 1996; Koriat, 1997), one obvious cue for JOLs in the case
of self-paced learning is study time, or more generally, memoriz-
ing effort. We propose that in self-paced learning, study time
allocation is generally data driven: Learners spend as much time
as an item “calls for” (the question of how learners know what an
item calls for is addressed in the General Discussion). When they
have then to assess the future recallability of the item, one obvious
cue that affects their JOLs is the amount of effort they had to invest
in attempting to commit the item to memory. Thus, study time can
be seen to represent a rough index of a powerful mnemonic cue
that has been emphasized in many discussions of metacognitive
judgments: processing fluency (Begg et al., 1989; Benjamin &
Bjork, 1996; Hertzog, Dunlosky, Robinson, & Kidder, 2003;
Kelley, 1999; Kelley & Jacoby, 1996; Matvey, Dunlosky, &
Guttentag, 2001). We propose that learners make use of study time
(or memorizing effort) as a cue under the implicit naive theory that
an item that is quickly mastered stands a better chance to be
recalled than one that takes longer to master. We shall refer to this
heuristic as the memorizing effort heuristic. A “control affects
monitoring” (CM) hypothesis of study time makes the following
predictions: First, after one studies an item, the JOL associated
with that item should decrease with increasing time spent studying
it. This is like the idea that fear is caused by running away and that
the faster one runs the more frightened (or less safe) one should
feel. The second prediction derives from the idea that metacogni-
tive judgments are accurate because of their reliance on the feed-
back from control operations. For this to be true, the memorizing
effort heuristic must have some degree of validity in predicting
interitem differences in future recall (i.e., resolution; see Koriat,
1997). Hence, it is hypothesized that the more time is invested in
an item, the less likely it is to be recalled. Finally, the accuracy of
JOLs in predicting subsequent recall should be mediated by JOLs’
reliance on memorizing effort.

How does the CM hypothesis explain the intriguing observation
suggesting that participants allocate more study time to the more
difficult items despite their awareness that this allocation strategy
does not compensate for the a priori difficulty of these items? We
propose that, in general, participants’ allocation of study time
among different study items does not reflect a premeditated policy
to invest more study effort in difficult items with the intention
either to compensate for their a priori difficulty or to achieve a
predetermined norm of study. Rather, the difficulty of an item is
monitored ad hoc: Learners invest in an item what it calls for, and
it is by realizing that a particular item requires relatively more time
and effort to be committed to memory that they “know” that the
item is going to be difficult to recall. That is, it is not that learners
deliberately invest greater effort in studying a difficult item; it is
by investing greater effort in that item that learners know that the

item is difficult.3 This is similar to the idea that it is by running
away from a bear that one “knows” that the situation is frightening.

The assumption underlying the CM model of study time is
similar to that underlying the accessibility model of FOK (Koriat,
1993). According to that model, it is by searching for a solicited
piece of information that one “knows” whether the information is
available in memory and worth continuing to search for. Likewise
the CM model of study time implies that study experience provides
learners with mnemonic cues regarding the likelihood of future
recall, and this is true whether learners are allowed to regulate
study time or not.

Inherent in the CM model of study time is the idea advanced by
Kahneman (1973) in his theory of attention and effort. Kahneman
was intrigued by the observation that when participants are pre-
sented with a task of intermediate difficulty they do not try as hard
as they do when the task is more difficult. He concluded that the
effort invested is determined mainly by the intrinsic demands of
the task, and people simply cannot try as hard in a relatively easy
task as they do when the task becomes more demanding. We
propose that, in a similar manner, the allocation of study time in
self-paced learning is data driven, determined by the qualities of
the items in a bottom-up fashion (see also Pelegrina, Bajo, &
Justicia, 2000). Therefore, the amount of time spontaneously al-
located to an item reflects its encoding fluency, and encoding
fluency is diagnostic of the item’s future recall (Koriat & Ma’ayan,
2005).

In sum, the CM model, which stresses the monitoring function
of study time, implies that monitoring follows control: The allo-
cation of study time is data driven, and JOLs are based on study
time. Therefore, JOLs are expected to decrease with study time.
This is in contrast to the MC model, which stresses the control
function of study time allocation, and leads to the expectation that
JOLs should increase with the amount of time invested.

How Monitoring and Control Processes Combine

As noted earlier, the assumption underlying the proposed con-
ceptual framework is that the MC and CM models of study time
are not mutually exclusive. Rather, study time tends to play both a
control function and a monitoring function in self-paced learning:
It plays a control function insofar as it is goal driven but a
monitoring function insofar as it is data driven. An important
theoretical challenge, then, is to specify the reciprocal links that
exist between monitoring and control operations or, more gener-
ally, between subjective experience and behavior (see Allport,
1993; Dent, 2003).

We propose two general modes in which the MC and CM
models can combine in the course of daily life: a sequential mode
and a simultaneous mode. In the sequential mode, monitoring and
control functions alternate in a cascaded pattern, with control
following along in the wake of monitoring and the feedback from
the control operation serving then as the input for later monitoring,
and so on. This mode, as described in the General Discussion, is
illustrated for FOK judgments by the results of Koriat and Levy-
Sadot (2001) and Vernon and Usher (2003) and, with regard to

3 The reader may be reminded of the adage of the Roman philosopher
Seneca: “It is not because things are difficult that we do not dare; it is
because we do not dare that they are difficult.”
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JOLs, by the results of Son and Metcalfe (2005). These results
suggest that monitoring-based control can give way to control-
based monitoring.

In the simultaneous mode, which is perhaps of greater interest,
the MC and CM models occur within the same situation. Indeed,
in many real-life situations the amount of effort invested in a task
is a joint function of both data-driven and goal-driven factors. A
student preparing for an exam may spend an inordinately long time
studying a particular segment of the material partly because that
segment contains some intrinsic difficulties (data driven) and
partly because it is especially interesting or important (goal
driven). Presumably, data-driven processes place constraints on
goal-driven processes, so that the student cannot invest too much
effort in committing an easy item to memory or too little effort in
attempting to commit a difficult item to memory (Kahneman,
1973).

The combination of data-driven and goal-driven effects within
the same situation presents an interesting theoretical problem,
because data-driven effects should result in JOLs decreasing with
increasing study time whereas goal-driven effects should result in
JOLs increasing with increased study time. How then are JOLs
computed by the learner under conditions that combine both types
of contribution? It would seem that an attribution process must be
postulated in which learners first attribute variations in study time
to their source before making JOLs (see Experiments 5 and 7).

Introduction to the Experiments

The experiments to be reported had five aims. The first was to
bring to the fore the monitoring function of study time in order to
promote the idea that monitoring may be based on the feedback
from control operations. Thus, in Experiments 1 and 2 we focused
on the type of control-based monitoring that is assumed to occur
during study. Experiment 1 examined the idea that JOLs elicited
during self-paced learning do not drive study time allocation, as
commonly assumed, but are themselves based on study time or
memorizing effort under the heuristic that the more time is in-
vested in the study of an item, the lower is the likelihood that it will
be recalled. Thus, JOLs were expected to decrease with increasing
study time. Experiment 1 also evaluated the validity of the mem-
orizing effort heuristic by showing that indeed recall is inversely
related to study time. In Experiment 2 we challenged the basic
assumption of the control view of study time, according to which
learners strategically allocate more study time to the more difficult
items to meet a predetermined norm of study. In addition, we
attempted to show that even when learners are prevented from
regulating their own study time, they nevertheless use perceived
memorizing effort as a cue for future recall. Experiment 3 explored
a further prediction of the monitoring view of study time: Assum-
ing that JOLs are based on the feedback from memorizing effort,
they should exhibit less dependence on study time when they are
made a few trials after study than when they are made immediately
after study.

The second aim was to investigate more closely the processes
mediating the accuracy of control-based monitoring in predicting
memory performance. Specifically, Experiment 4 capitalized on
the findings that the accuracy of JOLs in predicting future recall
improves with repeated practice studying the same list of items
(see Koriat, 1997). It tested the hypothesis that this improvement
derives from (a) increased reliance with practice on the feedback

from memorizing effort and (b) improved diagnosticity of mem-
orizing effort as a cue for recall. It follows that both the negative
study time–JOL correlation and the negative study time–recall
correlation should increase with practice studying the same list of
items. Hence, metacognitive accuracy is correlated with the extent
to which metacognitive judgments rely on the feedback from
control operations.

The third aim was to bring in the control function of study time
and investigate the simultaneous operation of the MC and CM
models. In Experiment 5, different incentives were awarded to the
recall of different items within the list. This manipulation was
expected to bring out the positive correlation between study time
and JOLs, which is the signature of goal-driven metacognitive
regulation. At the same time, however, a negative correlation was
expected between study time and JOLs for each level of incentive,
consistent with the assumption that the allocation of study time
between same-incentive items is data driven.

The fourth aim was to explore a situation in which the allocation
of study time between same-incentive items is expected to reveal
goal-oriented regulation and thus to yield a positive study time–
JOL correlation. This was done in Experiment 6, which capitalized
on the finding that under time pressure learners spend more time
studying the easier items (Metcalfe, 2002; Son & Metcalfe, 2000).
We argue that time pressure produces a qualitative change in study
time allocation from being data driven to being goal driven be-
cause learners must, in fact, operate against the data-driven ten-
dency to invest more study time in the more difficult items.
Presumably, under time pressure, learners quickly monitor the
difficulty of the item before deciding whether to invest more time
studying it or quit. Therefore a positive correlation between study
time and JOLs was expected across items for each incentive level.

The fifth aim was to demonstrate the generality of our concep-
tual framework by extending investigation to another type of
metacognitive judgment: subjective confidence. Experiment 7 was
similar in design to Experiment 5 except that participants were
timed as they solved problems and made confidence judgments.
Increasing the incentive associated with the solution of a problem
is expected to increase the time spent on that item as well as the
subjective confidence in the correctness of the solution reached.
However, unlike this positive correlation, which is a signature of
monitoring-based control, the correlation between solution time
and confidence is expected to be negative within each level of
incentive, suggesting a control-based monitoring in which the time
spent solving a problem serves in retrospect as a cue for subjective
confidence.

Although much of the experimental work reported in this article
concerns monitoring and control processes during learning, we
believe that the proposed theoretical framework may hold true for
other forms of metacognitive processes, as is illustrated in the
General Discussion. Furthermore, we suggest that this framework
may also be extended to the study of the cause-and-effect links
between subjective experience and behavior in other domains.

Note that in describing our results we borrow the terminology of
Brunswick’s lens model (Brunswick, 1956), which was used in
analyzing the process underlying the perception of the external
world. According to that model, perception is centered on distal
events and objects in the outside world. These, however, cannot be
perceived directly but must be inferred from a variety of proximal
cues that impinge on the senses. Therefore, the analysis of per-
ception requires specifying the validity of proximal cues in pre-
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dicting distal variables (cue validity; e.g., the correlation between
the size of a retinal image and the size of the corresponding distal
object), the extent to which different cues are relied on (cue
utilization); and the ensuing correspondence between perception
and reality (achievement; e.g., the correspondence between the
actual and perceived sizes of an object). To the extent that meta-
cognitive feelings are also based on inference from a variety of
cues rather than on direct access to memory traces (Koriat, 1997),
Brunswick’s conceptual framework can also be applied to moni-
toring processes (see Koriat & Ma’ayan, 2005). Thus, assuming
that study time is one of the proximal cues for JOLs, we use the
JOL–study time relation as an index of cue utilization, the study
time–recall relation as an index of cue validity, and the JOL–recall
relation as an index of achievement.

Experiment 1

Experiment 1 tested the basic hypotheses of the monitoring
model of study time: first, that learners use study time (or mem-
orizing effort) as a cue for JOLs, so that end-of-study JOLs are
inversely related to study time, and second, that memorizing effort
is indeed a valid predictor of long-term recall, so that study time is
also inversely correlated with recall. Finally, the accuracy of JOLs
in predicting delayed recall was evaluated.

The experiment involved the self-paced study of paired associ-
ates, with JOLs solicited at the end of each study trial. To evaluate
the ecological validity of self-paced study time in predicting long-
term recall, cued recall was tested only 4 months later.

Method

Materials. We constructed a list of 60 Hebrew word pairs representing
a wide range of associative strength. Associative strength was defined as
the probability of occurrence of the second word of a pair (the target) as the
first response to the first word (the cue) among college students. For 30
pairs, it was greater than zero according to Hebrew word-association norms
(Breznitz & Ben-Dov, 1991) and ranged from .012 to .635 (M � .144). The
remaining 30 pairs were selected such that the two members were judged
intuitively as unrelated. Effort was made to avoid obvious links between
words that belonged to different pairs.

A preliminary memorability rating study was conducted to obtain data
on the perceived relative difficulty of the items. The 60 pairs were pre-
sented in a random order to 19 Hebrew-speaking college students who
were instructed to imagine that 100 people had been required to memorize
the pairs so that they could later recall the response word when shown the
stimulus word. They were asked to estimate, for each pair, how many of
them would be likely to recall the correct response. The means of these
ratings were subtracted from 100% to obtain difficulty ratings. Mean
difficulty ratings ranged from 19.5% to 95.7%, with an average of 56.6%.
The Pearson correlation between associative strength and mean difficulty
(assuming zero associative strength for the 30 unrelated pairs) was �.68.

Participants. Twenty Hebrew-speaking University of Haifa under-
graduates participated in the experiment. None of them had participated in
the memorability rating study.

Apparatus. The experiment was controlled by a Silicon Graphics com-
puter. The stimuli were displayed on the computer screen. JOLs and
recalled responses were spoken orally by participants and then entered by
the experimenter on a keyboard.

Procedure. Participants were instructed that they would have to study
60 paired associates so that later (without specifying when) they would be
able to recall the second word in each pair when the first was presented.
They were told that they should study each pair as long as they needed and
should press the left key of the mouse when they were through studying.

The two words appeared side by side, and following the key press they
were replaced by the question “Chances to Recall (0%–100%)?” Partici-
pants reported orally their estimate of the likelihood of recalling the target
in the later cued-recall test. They were instructed that their success in
performing the task would depend on their success in recalling as many
words as possible during the test while keeping the total time invested in
studying the entire list as short as possible. No immediate memory test was
given; participants were dismissed, with the explanation that the experi-
ment concerned only their JOLs and not their actual memory performance.
All participants were contacted about 4 months later and were invited to
participate in a new experiment. This session actually took place on
average 130 days after the study phase (range � 118–144 days). They were
reminded of the first session, and their memory was tested: The 60 stimulus
words were presented one after the other for up to 8 s each, and participants
had to say aloud the response word within the 8 s allotted. The experi-
menter recorded the response, and 1 s thereafter a beep was sounded and
the next stimulus word was presented. The order of presentation of the
items was randomly determined for each participant for each of the two
phases of the experiment.

Results

Cue utilization: Memorizing effort as a cue for JOLs. To
examine the predictions of the CM model, all study times were
split at the median for each participant. Study times averaged 4.8 s
and 10.7 s, respectively, for below-median and above-median
items. JOLs for these classes averaged 67.6 (SD � 14.2) and 43.9
(SD � 10.2), respectively, t(19) � 8.15, p � .0001, �p

2 � .78.
Thus, the more time was allocated to the study of an item, the
lower were JOLs for that item.

A within-participant gamma correlation was also calculated
across items between study time and JOLs for each participant.
This correlation, averaged across all participants, was negative and
significant: �.42, t(19) � 9.59, p � .0001. This result was quite
reliable: The correlation was negative for each of the 20 partici-
pants ( p � .0001, by a binomial test).

It might be argued that this correlation simply reflects the fact
that items that are perceived to be difficult induce longer study
times and also elicit lower JOLs than items that are perceived to be
easy. This argument is difficult to refute because of the inherent
link between perceived difficulty and study time. Nevertheless, we
calculated the within-person Pearson correlation between study
time and JOLs with difficulty ratings partialed out. The residual
correlation averaged �.24 across participants and was highly
significant, t(19) � 5.19, p � .0001. Thus, the correlation between
study time and JOLs is not entirely mediated by judged item
difficulty (see further evidence in Experiment 4).

Cue validity: The validity of the memorizing effort heuristic.
How valid is the memorizing effort heuristic? Percentage recall for
items with below-median and above-median study times averaged
10.9 (SD � 10.6) and 3.9 (SD � 3.5), respectively, t(19) � 3.36,
p � .005, �p

2 � .37. Thus, although percentage recall was quite low
overall (M � 7.4%, SD � 6.4), it decreased with increasing study
time. The mean within-participant gamma correlation between
study time and recall (with n � 19, because 1 participant achieved
0% recall) was low (�.22) but near significant, t(18) � 1.89, p �
.08. This correlation was negative for 14 out of the 19 participants
( p � .05 by a binomial test). Thus, there was a trend suggesting
that the more time spent studying an item, the less it was likely to
be recalled.

The finding that recall decreased with increasing study time may
seem surprising, but it is consistent with results reported by Bahr-
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ick and Phelps (1987), which seem also to disclose the predictive
validity of data-driven variation. Participants studied the Spanish
translations of 50 English words, and following the presentation of
all English–Spanish pairs, their cued recall was tested. Items not
recalled were then included in the next study trial, and this pro-
cedure was repeated for several more trials until a participant
recalled all the words. Thus, it was possible to calculate for each
participant how many study trials each word received.

Bahrick and Phelps (1987) tested cued recall for the words 8
years later. Their results clearly indicated that recall decreased
with number of study trials. The magnitude of the effect was very
impressive (see their Table 3): about 14% recall for pairs that had
been presented once or twice and only about 2% recall for pairs
that had been presented 11 times or more. These results stand in
sharp contrast to the pattern characteristic of a learning curve. In
fact, it is the mirror image of a typical learning curve that is
obtained when number of study trials is experimentally
manipulated.

Achievement: The accuracy of JOLs. Assuming that partici-
pants do rely on memorizing effort in making JOLs and that
memorizing effort is diagnostic of delayed recall, we might expect
JOLs to exhibit some degree of validity in predicting recall.
Indeed, recall increased with JOLs, averaging 0.9 (SD � 2.1) and
13.2 (SD � 11.4), respectively, for items with below-median and
above-median JOLs, t(19) � 5.00, p � .0001, �p

2 � .57. For the 19
participants with nonzero recall, the gamma correlation between
JOLs and recall (see Nelson, 1984) averaged .52, t(18) � 7.47, p �
.0001. The gamma correlation was positive for 18 out of the 19
participants ( p � .0001 by a binomial test).

We have argued that the accuracy of JOLs in predicting delayed
recall is mediated by the use of study time as a cue for JOLs.
Indeed, the Pearson JOL–recall correlation was .22, and when
study time was partialed out, the correlation dropped to .16,
t(18) � 2.82, p � .05, �p

2 � .33, for the difference.

Discussion

The results of Experiment 1 are in line with what we called
Story 2, which assumes that JOLs are based on the feedback from
study effort. JOLs decreased with increased study time, supporting
the memorizing effort heuristic as a basis for JOLs. In addition, the
results supported the validity of that heuristic: Recall was inversely
related to study time.

Why is it the case that easily learned words are better remem-
bered? This question should be addressed by theories of memory.
However, regardless of the explanation, as far as metamemory is
concerned, it would seem that learners do exploit this correlation
in making JOLs and presumably improve their predictions by
doing so. We propose that learners are not aware of the correlation
between memorizing effort and future recall and do not use the
memorizing effort heuristic as a deliberate, analytic inference.
Rather, this heuristic is applied unconsciously to yield a sheer
subjective feeling that can serve as the basis of recall predictions
(see Koriat, 2000; Koriat & Levy-Sadot, 1999).

The observation that both JOLs and recall decreased with pre-
sentation duration stands in sharp contrast with the observation
that JOLs and recall generally increase with experimenter-
determined presentation duration (Koriat, 1997; Koriat &
Ma’ayan, 2005). This contrast highlights the data-driven character
of study time allocation (Koriat & Ma’ayan, 2005). A similar

pattern was found in Bahrick and Phelps’s (1987) study, in which
the number of study trials required to master the items was essen-
tially determined by the items themselves (or by the item–learner
interaction). This data-driven character is what gives study time (or
number of study trials) its diagnostic value in predicting item
memorability. As we shall see later (in Experiments 5, 6, and 7),
when study time is goal driven rather than data driven, the func-
tions relating JOL and recall to study time are more similar to
those found for the experimenter-controlled than for the self-
controlled allocation of study time.

Experiment 2

Experiment 2 was essentially an improved replication of the
unpublished study (Koriat, 1983) mentioned earlier. Its primary
aim was to challenge the assumption of the MC model that the
allocation of study time is used as a strategic tool to compensate
for differences in item difficulty (e.g., Mazzoni et al., 1990; Nelson
& Leonesio, 1988). Toward that aim, a fixed-rate condition was
included in Experiment 2 in addition to a self-paced condition.
Each fixed-rate participant was yoked to one self-paced participant
so that the mean study time spent by the self-paced participant on
each item was assigned to all items for the yoked fixed-rate
participant. If the self-paced allocation of study time is indeed
guided by the intention to compensate for item difficulty, then the
effects of judged item difficulty on JOLs should be strong for
fixed-rate participants but weak or even absent for self-paced
participants.

A secondary aim was to examine what happens to metacognitive
judgments when participants are denied the option to control study
time, as occurs in the fixed-rate condition. According to the CM
model, it is by studying an item that a person can appreciate the
likelihood of recalling that item in the future. This should be the
case whether study time is self-paced or fixed. Thus, a fixed-rate
presentation (unless it is too fast) should not prevent learners from
using perceived memorizing effort as a cue for recall; it only
deprives researchers of a useful index for the learner’s memoriz-
ing effort: self-paced study time. Hence, fixed-rate participants
should not necessarily exhibit impaired ability to monitor their
future memory performance.

Whereas Experiment 1 involved a 4-month retention interval, in
Experiment 2 an immediate recall test was used. Because JOLs
presumably reflect the participants’ immediate feelings, we
deemed it important to also evaluate both the accuracy of JOLs and
the validity of study time with immediate recall as a criterion.
Thus, in Experiment 2 the cued-recall phase followed the study
phase in the same session.

Method

Participants. Forty Hebrew-speaking University of Haifa undergrad-
uates participated in the experiment, 8 for course credit and 32 for pay.
Participants were assigned alternately to self-paced and fixed-rate condi-
tions according to their order of arrival so as to form 20 pairs of yoked
participants.

Materials, apparatus, and procedure. The stimulus materials and the
apparatus were the same as in Experiment 1. The procedure for self-paced
participants was also the same, whereas for the fixed-rate participants,
presentation time for each item was the average study time allocated by his
or her yoked self-paced participant. The cued-recall test was administered
after a 1.5-min filler task (counting backward at intervals of 3, starting
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from a three-digit number), using the same procedure as in Experiment 1.
The orders of presentation of the items for the study and test phases were
randomly determined for each pair of yoked participants, so that the same
random orders were used for both members of the pair.

Results

The effects of item difficulty. According to the MC model,
participants allocate more study time to difficult-to-learn items to
achieve a preset degree of mastery (e.g., Nelson & Narens, 1990).
We tested this assumption by examining the effects of judged item
difficulty on self-paced study time and by comparing the effects of
study time on JOLs and recall for the self-paced and the fixed-rate
conditions.

Focusing first on the self-paced condition, more study time was
indeed allocated to difficult items than to easy items: When all
items were divided at the median of the difficulty ratings (48.1)
into 30 easy items and 30 difficult items, mean study times for the
two classes were 3.8 s (SD � 1.5) and 7.0 s (SD � 4.2), respec-
tively, t(19) � 4.43, p � .001, �p

2 � .51. This pattern replicates
previously reported results (e.g., Dunlosky & Connor, 1997; Maz-
zoni et al., 1990; Nelson & Leonesio, 1988; Zacks, 1969) and is
consistent with the view of study time as a strategic tool that is
used to regulate memory performance.4

Figure 1 (top panel) presents mean recall for easy and difficult
items for the self-paced and fixed-rate conditions.5 Although there
was a substantial effect of item difficulty on recall, the magnitude
of this effect hardly differed between the two conditions. Because
the self-paced participants spent more time studying the difficult
items and less time studying the easy items than the fixed-rate
participants, we would have expected weaker effects of judged
difficulty on recall for the former participants. However, a Con-
dition (self-paced vs. fixed) � Difficulty analysis of variance
(ANOVA) on recall performance yielded a significant effect for
difficulty, F(1, 38) � 197.75, MSE � 134.75, p � .0001, �p

2 � .84,
but not for condition, F(1, 38) � 1.32, MSE � 424.13, p � .26, or
for the interaction (F � 1). Thus, the differential allocation of
study time by the self-paced participants was ineffective in elim-
inating or reducing the effects of item difficulty on recall in
comparison with the fixed-rate presentation (see also Metcalfe &
Kornell, 2003; Pelegrina et al., 2000). These results are consistent
with those of Koriat’s (1983) unpublished study mentioned earlier
and with the labor-in-vain effect documented by Nelson and Leo-
nesio (1988).

More important for the concern of this article are the results for
JOLs. Do self-paced participants experience an illusion of control?
Although JOLs also evidenced marked effects of item difficulty
(Figure 1, bottom panel), these effects too were similar in magni-
tude for the two conditions: A Condition � Difficulty ANOVA on
JOLs yielded a significant effect for difficulty, F(1, 38) � 232.26,
MSE � 101.16, p � .0001, �p

2 � .86. The effect of condition
approached significance, F(1, 38) � 3.55, MSE � 430.08, p � .07,
�p

2 � .09, suggesting that the control over study time enhanced
JOLs (see Perlmuter & Monty, 1977), but the interaction was again
not significant, F(1, 38) � 1.47, MSE � 101.16, p � .23. These
results illustrate the paradox discussed in the introduction: Self-
paced participants allocate more study time to the more difficult
items despite the fact that their JOLs might appear to suggest that
they are aware of the futility of the differential allocation of study
time.

4 The results of Metcalfe and her associates (Metcalfe, 2002; Metcalfe &
Kornell, 2003) indicate that under certain conditions learners tend to invest
more of their study time in items of intermediate difficulty. However, in
both Experiment 1 and Experiment 2 of this study, self-paced study time
increased monotonically with difficulty. Thus, when all items were divided
into three classes according to their mean difficulty (see Method of Ex-
periment 1), with 20 items in each category, study time for the easy,
intermediate, and difficult items averaged 5.4, 8.2, and 9.7 s, respectively,
in Experiment 1 and 3.2, 5.8, and 7.1 s, respectively, in Experiment 2.
Therefore, for ease of exposition we continue to use the dichotomous
division between easy and difficult items.

5 Some of the results presented in Figure 1 call for within-subject
analyses (e.g., the comparison between easy and difficult items), whereas
others call for between-subjects analyses (e.g., the comparison between
self-paced and fixed-rate conditions). This is true for most of the figures in
this article. Therefore, to avoid confusion, the error bars in all of the figures
in this article represent �1 SEM around each individual cell mean (which
is appropriate for between-subjects analyses). This is true even in those
cases where the effects reported in the text are based on within-subject
comparisons.

Figure 1. Mean recall (top panel) and judgment of learning (JOL; bottom
panel) for easy and difficult items, plotted separately for the self-paced and
fixed-rate conditions (Experiment 2). Error bars represent �1 standard
error of measurement.
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These results raise doubts regarding the presumed goal-driven
character of study time allocation but can be readily accommo-
dated by the view that the allocation of study time by self-paced
participants is data driven and that JOLs are based on memorizing
effort. It is not that learners know that they are less likely to recall
a difficult item despite having spent more effort studying it.
Rather, it is by investing more effort memorizing an item that they
know that it is less likely to be recalled. We shall now examine the
evidence for this proposition.

Evidence for the monitoring model of study time. As in Ex-
periment 1, an inverse relationship between end-of-study JOLs and
study time was obtained for the self-paced participants: When
study times were split at the median for each self-paced partici-
pant, JOLs averaged 73.3% (SD � 17.2) for below-median study
times (M � 3.1 s, SD � 1.2) and 53.0% (SD � 18.0) for
above-median study times (M � 7.6 s, SD � 4.5), t(19) � 7.79,
p � .0001, �p

2 � .76.
In parallel, study time was diagnostic of subsequent recall: The

recall means for below-median and above-median study times
were 62.8% (SD � 14.9) and 46.5% (SD � 21.1), respectively,
t(19) � 4.16, p � .0005, �p

2 � .48. In sum, JOLs as well as recall
decreased with increasing study time, consistent with what we
called Story 2.

Monitoring processes in the self-paced and fixed-rate condi-
tions. We argued that similar processes underlie metacognitive
monitoring under fixed-rate and self-paced conditions. Some sup-
port for this proposition is available in Figure 1 (bottom panel),
which indicates similar effects of item difficulty on JOLs for the
two conditions. Additional support, however, comes from the
accuracy of JOLs in predicting recall. The within-person gamma
correlation between JOLs and recall was .48 ( p � .0001) for the
self-paced condition and .56 ( p � .0001) for the fixed-rate con-
dition. The difference between the two correlations was not sig-
nificant, t(38) � 0.98, p � .34. This result suggests that a fixed-
rate presentation does not impair monitoring accuracy. Presumably
participants can still sense the between-item differences in mem-
orizing effort even when presentation rate is fixed.

Discussion

The differential allocation of study time between easy items and
difficult items has been taken to suggest a control-theory type
model (see Hyland, 1988) according to which study time is regu-
lated to minimize the discrepancy between the current and desired
levels of mastery of each item. However, the finding that item
difficulty had very similar effects on JOLs in the self-paced and
fixed-rate conditions raises doubts about that model. The results
also undermine the assumption that in self-paced learning, study
continues until perceived degree of learning meets the norm of
study (e.g., Le Ny et al., 1972; Nelson & Narens, 1990). If JOLs
are assumed to reflect the perceived degree of mastery attained by
self-paced participants at the end of a study trial, then the magni-
tude of JOLs should be about the same for easy and difficult items.
But the effects of a priori item difficulty on JOLs were strong and
were no weaker for the self-paced participants than for the fixed-
rate participants. These results, however, are consistent with the
idea that study time is data driven and that JOLs are based on study
time rather than vice versa. Indeed, the results of Experiment 2
replicated the finding that JOLs and recall are inversely related to
study time. In addition, the comparison of the results for self-paced

and fixed-rate participants lends credence to the proposition that
participants rely on memorizing effort as a cue for the feeling of
mastery whether or not they are allowed to control the pacing of
study.

Experiment 3

In Experiments 1 and 2 we obtained evidence suggesting that
learners use memorizing effort as a cue for JOLs, but that evidence
was correlational in nature. In contrast, in Experiment 3 we inves-
tigated the effects of a manipulation that might be expected to
moderate the dependence of JOLs on memorizing effort: soliciting
JOLs some time after study rather than immediately after study.
Assuming that the memory for the effort invested in mastering an
item fades gradually with the passage of time, we would expect
delayed JOLs to be less heavily dependent on study time than
immediate JOLs.

The procedure was similar to that of previous studies that have
contrasted delayed and immediate JOLs (Dunlosky & Nelson,
1994; Nelson & Dunlosky, 1991). Those studies, however, focused
on the delayed-JOL effect—namely, the observation that JOLs
exhibit greater relative accuracy (resolution) in predicting future
memory performance when elicited after some delay than when
elicited immediately after study. In Experiment 3, in contrast, we
focused on the basis of JOLs as it may be disclosed by the study
time–JOL correlation.

Method

Materials, apparatus, and procedure. The experiment was conducted
on a personal computer, and the materials were the same as in Experiment
1. The procedure was also the same except for the following: The 60 pairs
were ordered randomly for each participant with the constraint that each set
of 20 successive pairs included 10 easy pairs and 10 difficult pairs. Of
these, 5 easy pairs and 5 difficult pairs were assigned to the immediate-JOL
condition, and the remaining 10 items were assigned to the delayed-JOL
condition. For the immediate-JOL pairs, the study phase was as in Exper-
iment 1, except that the cue word was shown again immediately after the
participant had pressed the left mouse button to indicate end of study. Only
then was the participant required to indicate JOL. For the delayed-JOL
pairs, the cue word appeared after the 20 pairs in a block had been studied.
The order of JOL elicitation for these pairs was such that the cue words for
the first 5 items studied (in a block of 20) appeared first, in random order,
then those of the next 5 items, and so on. The recall phase was exactly as
in Experiment 1 except that 6 s were allowed for responding.

Participants. Thirty-four Hebrew-speaking undergraduates from the
University of Haifa were paid for participating in the experiment.

Results

For the immediate condition, JOLs and recall averaged 65.8%
(SD � 11.7) and 43.7% (SD � 14.7), respectively. The respective
means for the delayed condition were 72.6% (SD � 13.1) and
57.7% (SD � 13.6). Thus, JOLs were inflated in comparison to
recall, t(33) � 11.84, p � .0001, �p

2 � .81, and delayed-JOL items
yielded both higher JOLs, t(33) � 3.09, p � .005, �p

2 � .22, and
better recall than immediate-JOL items, t(33) � 7.04, p � .0001,
�p

2 � .60.
Memorizing effort as a cue for JOLs. Mean JOLs for below-

median (short) and above-median (long) study time were calcu-
lated for each participant for the immediate and delayed condi-
tions, and their means appear in the left panel of Figure 2. JOLs
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decreased with increasing study time, consistent with the assumed
monitoring function of study time. This decrease, however, was
more moderate for the delayed condition than for the immediate
condition. A Study Time (short vs. long) � Condition (immediate
vs. delayed) ANOVA yielded significant effects for study time,
F(1, 33) � 84.99, MSE � 80.65, p � .0001, �p

2 � .72, and for
condition, F(1, 33) � 9.54, MSE � 170.34, p � .005, �p

2 � .22.
The interaction, however, was also significant, F(1, 33) � 5.40,
MSE � 113.53, p � .05, �p

2 � .14. The effects of study time on
JOLs amounted to 18.4% in the immediate condition and to 10.0%
in the delayed condition, but both were significant, t(33) � 9.12,
p � .0001, �p

2 � .72, and t(33) � 3.68, p � .001, �p
2 � .29,

respectively.
The reduced dependence of JOLs on study time for the delayed-

JOL condition was also reflected in the within-individual gamma
correlations between these two variables across items. These cor-
relations averaged �.42 for the immediate condition and only
�.22 for the delayed condition. Although both correlations were
significantly different from zero, t(33) � 12.28, p � .0001, and
t(33) � 5.51, p � .0001, respectively, the difference between them
was significant, t(33) � 4.58, p � .0001, �p

2 � .39.
The validity of the memorizing effort heuristic. As in the

previous experiments, study time was a good predictor of recall:
Percentage recall decreased with increasing study time, as can be
seen in the right panel of Figure 2. Recall was overall better for the
delayed-JOL condition (M � 56.9%, SD � 18.7) than for the
immediate-JOL condition (M � 43.0%, SD � 18.2), F(1, 33) �
43.34, MSE � 151.36, p � .0001, �p

2 � .57, but the interaction
between study time and condition was not significant (F � 1).
Thus, delaying JOLs reduced reliance on study time as a cue for
JOLs but did not affect the validity of study time in predicting
recall.

The accuracy of JOLs in predicting recall. The gamma cor-
relations between JOLs and recall averaged .44 for the immediate
condition and .79 for the delayed condition, t(33) � 7.23, p �
.0001, �p

2 � .61, consistent with the delayed-JOL effect (e.g.,
Nelson & Dunlosky, 1991). Thus, delaying JOLs reduced reliance

on study time as a cue for JOLs, and at the same time improved the
accuracy of JOLs in predicting recall.

Discussion

The results of Experiment 3 replicated the findings of Experi-
ment 1: JOLs and recall decreased with study time, consistent with
the CM model. In addition, the results suggest that the reliance on
study time (or memorizing effort) as a cue for JOLs was weaker
when JOLs were delayed than when they were immediate. This
was so despite the fact that the effects of study time on recall were
similar in both cases. These results suggest that the subjective
experience gained from the effort invested in studying an item
fades away with the passage of time, so that learners are less likely
to make use of it when JOLs are delayed than when JOLs are
immediate.

The higher accuracy of delayed JOLs, despite their reduced
dependence on study time, supports a distinction between two cues
for JOLs: encoding fluency and retrieval fluency (see Benjamin &
Bjork, 1996). Both of these cues involve control-based monitoring.
Koriat and Ma’ayan (2005) reported evidence suggesting that
whereas immediate JOLs are based on the feedback from encoding
operations (as indexed, e.g., by study time), delayed JOLs tend
also to be influenced by the feedback from retrieval attempts, that
is, from the ease with which to-be-remembered items are retrieved.
Results reported by Nelson, Narens, and Dunlosky (2004) also
suggest that delayed JOLs are more accurate than immediate JOLs
because they rely on covert recall, which is likely to tap the kind
of long-term memory retrieval on which the criterion test itself is
based. Note that underlying this explanation is the assumption that
monitoring follows control: “People do not monitor the underlying
object-level memory system per se, but instead monitor the output
from this system” (Nelson et al., 1998, p. 163). Thus, it would
seem that people have two different means by which they can
appreciate the likelihood of recalling an item in the future: attempt-
ing to study the item and attempting to retrieve it (see also Son &
Metcalfe, 2005). Both of these imply control-based monitoring.
Arguably, however, the feedback from retrieval effort is more
diagnostic of future recall than the feedback from memorizing
effort.

Experiment 4

Whereas Experiments 1–3 tested the predictions that follow
from the CM model with regard to the basis of JOLs, Experiment
4 focused on the predictions regarding the accuracy of JOLs.
According to Story 2, the accuracy of metacognitive judgments
derives largely from their reliance on the feedback from the control
operations involved in learning and remembering. In Experiment 1
we reported results suggesting that the accuracy of JOLs is medi-
ated by their dependence on study time (or memorizing effort).
Experiment 4 proceeded to further examine the accuracy of JOLs,
focusing on the observation that with repeated study–test cycles of
a list of items, the accuracy of JOLs in predicting recall improves
(King, Zechmeister, & Shaughnessy, 1980; Koriat et al., 2002;
Lovelace, 1984). Koriat (1997) proposed that this improvement
occurs because with repeated practice participants rely increas-
ingly on internal, mnemonic cues in making recall predictions. The
evidence for this proposal, however, was indirect because no
operational measure of mnemonic cues was available in that study.

Figure 2. Mean judgment of learning (JOL; left panel) and recall (right
panel) for below-median (short) and above-median (long) study times,
plotted separately for the immediate and delayed conditions (Experiment
3). Error bars represent �1 standard error of measurement.
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In contrast, if indeed memorizing effort serves as a mnemonic cue
for JOLs, then Koriat’s proposal can be tested by showing that the
contribution of study time to JOLs increases with practice studying
a list of items. Findings supporting this prediction would accord
with the assumption of Story 2 that the accuracy of metacognitive
judgments is contingent on the degree to which such judgments
rely on the feedback from control operations.

In Experiment 4, the paired associates were presented for four
self-paced study–test blocks. This allowed us to trace the changes
that occurred over the four presentations in (a) the dependence of
JOLs on study time (cue utilization), (b) the validity of study time
as a predictor of recall (cue validity), and (c) the accuracy of JOLs
in predicting recall (achievement). We examined the hypothesis
that the improvement in JOL accuracy with practice is mediated by
(a) increased reliance on study time as a cue for JOLs and (b)
improved diagnosticity of study time as a predictor of recall. It is
important to note that the CM model implies that the correlation
between study time and JOLs as well as that between study time
and recall should become increasingly more negative with practice
studying the same items. Both of these trends should contribute to
the increased accuracy of JOLs with practice.

Koriat (1997) presented evidence suggesting that the mnemonic
cues underlying JOLs are idiosyncratic in nature. If memorizing
effort is indeed idiosyncratic, reflecting the learner–item interac-
tion, then we should expect the study time–JOL correlation to
increase with practice only for a self-paced participant, not for
another participant who receives the exact same experimenter-
allocated study times as the self-paced participant. To examine this
proposition, we included in Experiment 4 an other-paced condi-
tion: Each participant in this condition was yoked to one self-paced
participant, receiving precisely the same item-by-item study times
as those allocated by the self-paced participant. If the study time–
JOL correlation is found to increase with practice only for self-
paced participants, this would suggest that this increase indeed
reflects increased reliance on memorizing effort as an idiosyncratic
cue.

Method

Participants. Forty Hebrew-speaking University of Haifa undergrad-
uates participated in the experiment for course credit. They were assigned
to the self-paced and other-paced conditions according to their order of
arrival so as to form 20 pairs of yoked participants.

Materials, apparatus, and procedure. The list of stimuli and the ap-
paratus were the same as in Experiment 1. The procedure was also the same
except for the following: First, the experiment included four study (plus
JOL)–test blocks. Second, an other-paced condition was added; each
other-paced participant was yoked to one self-paced participant, receiving
exactly the same study times to each item in each presentation as that
allocated by the yoked self-paced participant on that presentation. Third, at
the end of each study block, participants were asked to provide an aggre-
gate estimate of the number of items that they would be able to recall. The
results for these estimates are not reported here. There were a few addi-
tional minor changes: During the study phase there was a 500-ms interval
between the presentation of an item and the JOL probe, and 8 s were
allowed for responding during the test phase.

Results

We briefly report several descriptive data on the effects of
presentation and item difficulty on JOLs and recall before turning
to the main aims of Experiment 4.

The effects of presentation on JOLs and recall. Recall in-
creased with presentation (see Figure 3) and was consistently
better for the self-paced participants (78.2%, averaged across the
four presentations) than for the other-paced participants (69.8%),
suggesting that the option to control the allocation of study time,
in itself, enhanced memory performance (see also Mazzoni &
Cornoldi, 1993). Mean JOLs across the four presentations were
also higher for the self-paced (72.5%) than for the other-paced
(64.1%) condition (see also Experiment 2). The results presented
in Figure 3 disclose the underconfidence-with-practice effect re-
ported by Koriat et al. (2002): A Measure (recall vs. JOL) �
Presentation ANOVA yielded F(3, 117) � 29.62, MSE � 50.07,
p � .0001, �p

2 � .43, for the interaction, and when condition was
included in the analysis, the triple interaction was not significant
(F � 1).

The effects of item difficulty. Self-paced participants allocated
more study time to the difficult items (M � 5.1 s, SD � 1.8) than
to the easy items (M � 3.2 s, SD � 1.4), t(19) � 10.37, p � .0001,
�p

2 � .85, and did so in each of the four presentations. In parallel,
in each presentation recall was better for the easy items than for the
difficult items, averaging 88.4% (SD � 6.2) and 68.0% (SD �
18.1), respectively, across presentations, t(19) � 6.89, p � .0001,
�p

2 � .71. Also, as in Experiment 1, difficult items were associated
with lower JOLs than easy items despite the fact that they received
more study time. This pattern was evident even on the fourth
presentation, where study time averaged 1.7 s (SD � 0.6) and 2.8 s
(SD � 1.1) for the easy items and difficult items, respectively,
t(19) � 6.85, p � .0001, �p

2 � .71, whereas JOLs averaged 90.9%
(SD � 9.9) and 78.2% (SD � 17.6), respectively, t(19) � 5.16,
p � .0001, �p

2 � .58. Thus, even on the fourth presentation,
participants allocated more study time to the difficult items al-
though their JOLs might have suggested that they were aware that
the differential allocation of study time was ineffective in com-
pensating for the between-item differences in difficulty. These
results, however, are consistent with the CM model. Let us now

Figure 3. Mean judgment of learning (JOL) and recall as a function of
presentation, plotted separately for the self-paced and other-paced
conditions (Experiment 4). Error bars represent �1 standard error of
measurement.
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turn to the primary aims of Experiment 4, focusing on the changes
that occurred with practice.

Cue utilization: The relationship between study time and JOLs.
Figure 4 (top panel) presents mean gamma correlations between
study time and JOLs as a function of presentation for the self-
paced and other-paced conditions. All self-paced correlations were
negative, consistent with the CM model, and all were significant at
the .0001 level. In addition, however, two trends were evident.
First, the negative correlations were significantly higher for the
self-paced than for the other-paced condition, averaging �.60 and
�.36, respectively. A Condition � Presentation ANOVA yielded
F(1, 38) � 36.38, MSE � 0.061, p � .0001, �p

2 � .49, for
condition. The difference was near significant even on the first
presentation, t(38) � 1.99, p � .06, �p

2 � .09.
Second, the interaction between condition and presentation was

highly significant, F(3, 114) � 8.31, MSE � 0.015, p � .0001, �p
2

� .18: For the self-paced participants, the correlation increased
monotonically with presentation, F(3, 57) � 8.07, MSE � 0.019,
p � .0001, �p

2 � .30, whereas no such systematic increase was
evident for the other-paced participants. Thus, the paradox noted in
the introduction, of JOLs decreasing with increasing study time in
self-paced learning, became, in fact, more pronounced with prac-

tice. The results, however, support the contention that the contri-
bution of mnemonic cues to JOLs increases with repeated presen-
tations of the same list (Koriat, 1997).

In parallel, the correlation between a priori difficulty and JOLs
decreased gradually with practice (Figure 4, bottom panel), sug-
gesting that the increased reliance on mnemonic cues with practice
was paralleled by decreased reliance on intrinsic cues, such as
judged item difficulty (see Koriat, 1997). This pattern was equally
observed for the self-paced and other-paced conditions. A Condi-
tion (self-paced vs. other-paced) � Presentation ANOVA on the
difficulty–JOL correlation yielded F(3, 114) � 65.75, MSE �
0.009, p � .0001, �p

2 � .63, for presentation; F(1, 38) � 1.04, p �
.32, for condition; and F(3, 114) � 1.58, p � .20, for the
interaction.

We interpret this pattern of results to suggest that both self-
paced and other-paced participants rely on memorizing effort in
assessing degree of mastery but that only for the former partici-
pants is study time a relatively reliable measure of their memoriz-
ing effort. Furthermore, the mnemonic cues that are responsible for
the changes in cue utilization that occur with practice are idiosyn-
cratic in nature rather than being commonly shared (see Koriat,
1997; Nelson, Leonesio, Landwehr, & Narens, 1986).

Cue validity: The predictive accuracy of the memorizing effort
heuristic. Figure 5 depicts the mean gamma correlation between
study time and recall for each condition as a function of presen-
tation. These means were based only on 14 pairs of participants
because 1 participant from each of the remaining 6 pairs yielded
perfect recall on the last presentation. For each presentation, the
correlation of study time with recall was negative and increased
steadily with practice, so that by the fourth presentation it was
�.73 for self-paced participants. A Condition � Presentation
ANOVA on these correlations yielded F(1, 26) � 19.84, MSE �
0.037, p � .0001, �p

2 � .43, for condition; F(3, 78) � 16.22,
MSE � 0.026, p � .0001, �p

2 � .38, for presentation; and F(3,
78) � 3.91, MSE � 0.026, p � .05, �p

2 � .27, for the interaction.
Separate one-way ANOVAs for the effects of presentation yielded
F(3, 39) � 18.39, MSE � 0.024, p � .0001, �p

2 � .59, for the
self-paced condition, and F(3, 39) � 2.61, MSE � 0.027, p � .07,
�p

2 � .17, for the other-paced condition.
Altogether, the results suggest that two changes occur with

practice. First, memorizing effort becomes an increasingly valid
predictor of recall, and this improvement appears to be due to
idiosyncratic aspects of memorizing effort. Second, memorizing
effort exerts increasingly stronger effects on JOLs. Possibly both
of these changes underlie the improved accuracy of JOLs with
practice, which are examined next.

Achievement: The accuracy of JOLs in predicting recall. The
JOL–recall gamma correlation is plotted in Figure 6 as a function
of presentation for each of the two conditions (based on the 14
matched pairs of participants for whom these correlations were
computable). Indeed, the predictive validity of JOLs increased
with practice for the self-paced participants, but the other-paced
participants also demonstrated a very similar pattern. A Condi-
tion � Presentation ANOVA yielded F(1, 26) � 1.39, MSE �
0.11, p � .25, for condition; F(3, 78) � 8.04, MSE � 0.05, p �
.0001, �p

2 � .24, for presentation; and F � 1 for the interaction.
Thus, practice improved monitoring resolution, consistent with
previous results (King et al., 1980; Koriat, 1997; Koriat et al.,
2002; Mazzoni et al., 1990).

Figure 4. Mean within-participant gamma correlations between study
time and judgment of learning (JOL; top panel) and between item difficulty
and JOL (bottom panel) as a function of presentation, plotted separately for
the self-paced and other-paced conditions (Experiment 4). Error bars
represent �1 standard error of measurement.
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The similarity of the results for the self- and other-paced con-
ditions reinforces the conclusion that the effective mnemonic cue
in the case of self-paced participants is not study time per se but
rather memorizing effort, which can also be used by the other-
paced participants. Furthermore, the comparison of the results
presented in Figure 6 with those presented in Figures 4 and 5
reinforces the conclusion that the effective cue for JOLs is idio-
syncratic in nature and is best disclosed by the self-allocated study
time to each item.

Note that the correlation between JOLs and recall for the self-
paced condition (.51) was about the same as that between item
difficulty and recall (.48) in Presentation 1. Following practice,
however, the predictive validity of JOLs surpassed that of judged

difficulty: The respective correlations for Presentation 2 were .69
and .39, respectively, t(13) � 3.44, p � .005, �p

2 � .48, and the
difference was significant for Presentations 3 and 4 as well.

The nature of the mnemonic cues underlying practice effects.
In previous studies participants have been found to assign higher
JOLs to items that they had recalled on a previous occasion than to
those that they had not (e.g., King et al., 1980; Koriat, 1997;
Lovelace, 1984; Mazzoni & Cornoldi, 1993). Is it possible, then,
that the practice effects observed in this experiment are solely due
to a deliberate reliance on the memory of the outcome of the
previous recall opportunity? It is difficult to distinguish experi-
mentally between this type of explicit inference and the type of
inference that uses memorizing effort as a cue, because the factors
that affect recall in one trial also affect memorizing effort in the
next trial. However, we can evaluate the possibility that the neg-
ative correlation between study time and JOLs is not due solely to
the discrimination between items that were recalled on a previous
test and those that were not. To do so, we examined the relation-
ship between study time and JOLs in Presentation 2 for items that
had been recalled in Presentation 1 and for those that had not. For
each participant, all study times for previously recalled and for
previously not recalled items were split at the median. Mean JOLs
for below-median and above-median study times are presented in
Figure 7 for previously recalled and previously not recalled items.
Study times were clearly shorter for items that had been recalled in
the previous test (M � 3.2 s, SD � 1.24) than for those that had
not (M � 7.3 s, SD � 3.01), t(19) � 7.88, p � .0001, �p

2 � .77.
Also, JOLs were considerably higher for recalled than for unre-
called items, averaging 81.1% (SD � 11.86) and 50.4% (SD �
15.59), respectively, t(19) � 10.21, p � .0001, �p

2 � .85. How-
ever, for both types of items JOLs decreased with increasing study
time. A Study Time (below vs. above median) � Previous Recall
(recalled vs. not recalled) ANOVA yielded F(1, 19) � 97.26,
MSE � 9.87, p � .0001, �p

2 � .84, for study time; F(1, 19) �
100.18, MSE � 195.27, p � .0001, �p

2 � .84, for previous recall;

Figure 5. Mean within-participant gamma correlations between study
time and recall as a function of presentation, plotted separately for the
self-paced and other-paced conditions (Experiment 4). Error bars represent
�1 standard error of measurement.

Figure 6. Mean within-participant gamma correlations between judg-
ment of learning (JOL) and recall as a function of presentation, plotted
separately for the self-paced and other-paced conditions (Experiment 4).
Error bars represent �1 standard error of measurement.

Figure 7. Mean judgment of learning (JOL) for below-median (short) and
above-median (long) study time in Presentation 2, plotted separately for
items recalled and not recalled in Presentation 1 (Experiment 4). Error bars
represent �1 standard error of measurement.

50 KORIAT, MA’AYAN, AND NUSSINSON



and F(1, 19) � 4.19, MSE � 22.66, p � .06, for the interaction.
JOLs were higher for below- than for above-median study times
for both previously recalled and previously not recalled items,
t(19) � 8.80, p � .001, �p

2 � .80, and t(19) � 3.21, p � .01, �p
2

� .35, respectively.
Figure 8 shows that the increase in the negative study time–JOL

correlation with practice is preserved even when recall success on
the previous test is controlled. In this figure the study time–JOL
correlation is plotted as a function of presentation for items re-
called and not recalled on the previous presentation (Presentation
4 was not included because of the low number of observations in
the “previously not recalled” category). A Presentation (second vs.
third) � Previous Recall (recalled vs. not recalled) ANOVA
yielded F(1, 19) � 3.20, MSE � 0.059, p � .09, �p

2 � .15, for
presentation; F(1, 19) � 12.83, MSE � 0.094, p � .005, �p

2 � .40,
for previous recall; and F � 1 for the interaction.

Discussion

Experiment 4 examined the second general assumption of Story
2, that the accuracy of metacognitive judgments stems in part from
the reliance of these judgments on the feedback from control
operations. We capitalized on the finding that repeated study–test
practice improves the predictive accuracy of JOLs (e.g., Koriat et
al., 2002). Assuming that this improvement stems from increased
reliance on mnemonic cues pertaining to the processing of the
items (Koriat, 1997), we hypothesized that the study time–JOL
correlation would increase with practice. That is indeed what was
found. In addition, the validity of study time in predicting recall
also improved with practice. Thus, the seemingly paradoxical
pattern that both JOLs and recall decrease with increased study
time was found to intensify with repeated practice.

A comparison of the results for the self-paced participants and
other-paced participants indicates that on the one hand, other-
paced participants also exhibited improved monitoring with prac-
tice, suggesting that they too could benefit from increased reliance

on memorizing effort. On the other hand, however, the correlations
with study time suggest that the effective cues used by other-paced
participants are not captured by the study time invested by the
self-paced participants. This latter result is consistent with Koriat’s
(1997) finding suggesting that the mnemonic cues underlying the
improvement in monitoring that occurs with practice are idiosyn-
cratic in nature. It would seem, then, that the effective cues
underlying JOLs and their improved accuracy in Experiment 4 lie
in the idiosyncratic experience that learners gain in attempting to
study the items.

We have previously (Experiment 1) considered the possibility
that the negative correlations between study time and JOL simply
reflect the fact that items that are perceived to be difficult induce
longer study times and also elicit lower JOLs than items that are
perceived to be easy. Admittedly, this possibility is difficult to rule
out because of the inherent link between perceived difficulty and
study time. However, the systematic changes that occurred with
practice for self-paced participants would seem to argue against it.
In fact, whereas the study time–JOL correlation increased with
practice, the difficulty–JOL correlation decreased significantly
with practice, F(3, 57) � 29.09, MSE � 0.009, p � .0001, �p

2 �
.60. Thus, it would seem that the study time–JOL correlation is not
mediated entirely by a priori judgments of item difficulty.

A final note is in order: Metcalfe’s theory that study time is
allocated to the region of proximal learning (Metcalfe, 2002;
Metcalfe & Kornell, 2003) predicts that with repeated practice
studying a list of items, the region in which study time is selec-
tively allocated should shift toward the more difficult items be-
cause more and more of the easy items enter into the learned state.
We should note that our data did not indicate such a shift: Study
time increased monotonically with difficulty for each presentation
(see Footnote 4), and there was no systematic change with practice
in the proportion of study time appropriated to the easy, interme-
diate, and difficult items. However, it is still possible that some of
the changes that occur with practice in cue utilization and cue
validity are related to the shift in the region of proximal learning
that was postulated by Metcalfe.

Experiment 5

The experiments reported so far have focused on data-driven
variation in study time. The aim of Experiment 5 was to bring in
the control function of study time, whose signature is a positive
correlation between study time and JOLs. Such a correlation is
expected when study time is goal driven, regulated by the learner
in accordance with specific goals that are extrinsic to the studied
items. For example, a student may place a premium on a particular
exam, strategically investing more effort in studying for that exam
than he or she would otherwise. In that case, the added effort
would be expected to instill a stronger sense of competence.

To bring to the fore the positive relationship assumed to char-
acterize goal-driven control of study time, we used a differential-
incentive condition in Experiment 5 (see Castel, Benjamin, Craik,
& Watkins, 2002; Dunlosky & Thiede, 1998): Half of the items
were awarded a 1-point bonus for their recall, and the remaining
items received a 3-point bonus. The bonus associated with each
item was indicated just before the presentation of that item for
self-paced study. It was expected that high-incentive items would
receive more study time as well as higher JOLs than low-incentive

Figure 8. Mean within-participant gamma correlations between study
time and judgment of learning (JOL) for Presentation 2, plotted separately
for items recalled and not recalled in Presentation 1, and for Presentation
3, plotted separately for items recalled and not recalled in Presentation 2
(Experiment 4). Error bars represent �1 standard error of measurement.
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items, thus resulting in a positive correlation between study time
and JOLs across the two sets of items.

It is our proposal, however, that the introduction of goal-driven
variation does not preclude the operation of data-driven effects on
study time. Therefore, for all items awarded the same incentive, an
inverse relationship should be found between study time and JOLs.
Thus, Experiment 5 is expected to disclose the simultaneous op-
eration of goal-driven and data-driven regulation within the same
experiment, revealing both the control and monitoring functions of
study time. In addition to the differential-incentive condition,
Experiment 5 included a constant-incentive condition in which all
items were awarded a bonus of 2 points.

Method

Participants. Thirty-two Hebrew-speaking University of Haifa under-
graduates participated in the experiment for course credit. Sixteen partic-
ipants were assigned randomly to each of the two conditions.

Materials. The list of stimuli was the same as that used in Experiment
1. For the differential condition, the list was divided into two sets of 30
items each, matched on difficulty ratings. One set was awarded an incen-
tive of 1 point, and the other set was awarded an incentive of 3 points; this
assignment was counterbalanced across participants. For the constant con-
dition, all items were awarded an incentive of 2 points.

Apparatus and procedure. Participants were told that the experiment
concerns the ability of people to allocate learning resources to different
topics according to their importance. In the differential condition, partici-
pants were instructed to assume that they were studying for an exam in
which some of the topics or items were more important to remember than
others. The constant-incentive participants were told to assume that they
were studying for an exam that was of intermediate importance and that
other participants were studying for exams that were either more important
or less important than theirs. All participants were told that the importance
of each item would be indicated by an incentive value, which refers to the
number of points that one earns for correct memory performance on that
item. Participants were given self-paced instructions and were told to try to
study the list so as to earn as many points as they could but to spend as little
time as possible in studying the entire list.

A practice task was used (in both conditions) to familiarize the partic-
ipants with the requirement to adjust their study effort to the designated
incentive:6 Four brief stories (three-line paragraphs each) were presented,
each on a separate page, with an incentive value indicated at the top of the
page—2 for two stories and 1 and 3 for the remaining stories. Participants
were instructed to study each paragraph so that they could later answer
questions about it. They were told to take into account the importance of
each story, as indicated by the incentive value associated with it, but to
invest as little time as possible in studying all the stories. Four forced-
choice questions were then presented, one about each of the paragraphs.

For the experiment proper, the apparatus was the same as in Experiment
1. The procedure for the study phase was also the same except for the
following: The experiment consisted of three study–test cycles. The incen-
tive value awarded to each item remained the same for each participant
across the three presentations. On each study trial, the number (1, 2, or 3)
designating the incentive value was presented together with a short beep,
and 2 s thereafter the study pair was added on the screen. Both the number
and the study pair remained on the screen until the participant pressed the
left mouse button. The procedure for the test phases was also as in
Experiment 1 except that the test phase followed immediately after the
study phase.

Results

The effects of incentive on study time, JOLs, and recall. The
amount of study time allocated by the differential-incentive group

to 1-point items and 3-point items and by the constant-incentive
group (2 points) is plotted in Figure 9 (top panel) as a function of
presentation. The respective means for JOLs are plotted in the
bottom panel. Differential-incentive participants invested more
time in the 3-point items than in the 1-point items, 4.2 s (SD � 1.7)
and 3.5 s (SD � 1.5), respectively, t(15) � 6.34, p � .0001, �p

2 �
.73, consistent with the assumed control function of study time.
The effect of incentive decreased with presentation but was sig-
nificant for each of the presentations: t(15) � 4.28, p � .001, �p

2

� .55, for Presentation 1; t(15) � 3.34, p � .005, �p
2 � .43, for

Presentation 2; and t(15) � 3.06, p � .01, �p
2 � .38, for Presen-

tation 3. For the constant-incentive group, study time per item
averaged 3.1 s across presentations, somewhat less than invested
by the differential group.

As expected, incentive level also exerted a significant effect on
JOLs. An Incentive � Presentation ANOVA for the differential
condition yielded F(1, 15) � 9.91, MSE � 36.21, p � .01, �p

2 �
.40, for incentive; F(2, 30) � 22.14, MSE � 84.57, p � .0001, �p

2

� .60, for presentation; and F � 1 for the interaction. JOLs
increased from 63.0 (SD � 13.6) for 1-point items to 66.9 (SD �
11.9) for 3-point items. A similar ANOVA on recall, in contrast,
yielded F � 1 for incentive; F(2, 30) � 227.55, MSE � 50.30, p �
.0001, �p

2 � .94, for presentation; and F(2, 30) � 1.91, MSE �
33.59, p � .17, for the interaction. Mean recall for 1-point and
3-point items averaged 68.8% (SD � 20.8) and 68.7% (SD �
20.7), respectively. These results are somewhat surprising in the
light of those of Castel et al. (2002), who found participants’ recall
performance to exhibit excellent sensitivity to the incentives at-
tached to recalling different words from 12-word lists.

In sum, increasing incentive from 1 point to 3 points increased
study time (from 3.5 to 4.2 s per item across presentations), and at
the same time enhanced JOLs (from 63.0% to 66.9%). Thus,
increased study time was positively associated with increased
JOLs, unlike the negative correlation documented in the previous
experiments.

The effects of incentive for easy and difficult items. Kahneman
(1973) proposed that a person “simply cannot try as hard in a
relatively easy task as he does when the task becomes more
demanding” (p. 14). Consistent with this proposal, the effects of
incentive were less pronounced for the easier pairs than for the
more difficult pairs, when these two classes of pairs were defined
as in Experiment 1. An Incentive � Difficulty � Presentation
ANOVA on the results (depicted in Figure 10) yielded significant
effects for incentive, F(1, 15) � 33.90, MSE � 0.54, p � .0001,
�p

2 � .69; for difficulty, F(1, 15) � 55.12, MSE � 1.75, p � .0001,
�p

2 � .79; and for presentation, F(2, 30) � 8.40, MSE � 8.54, p �
.005, �p

2 � .36, but the Incentive � Difficulty interaction was also
significant, F(1, 15) � 15.07, MSE � 0.34, p � .005, �p

2 � .50,
indicating that the incentive manipulation had a more limited
effect on the study of the easier pairs than on that of the harder
pairs.

The effects of data-driven regulation of study time. We turn
next to the effects of data-driven variation in study time, which

6 The inclusion of the practice task and the specific instructions used in
the experiment were intended to maximize the likelihood of obtaining an
effect of incentive on study time. Previous attempts to manipulate incen-
tives in the context of JOL studies have met with limited success in
affecting study time (Dunlosky & Thiede, 1998; Le Ny et al., 1972).
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follow from the CM model. This can be seen when we focus on
each incentive level separately. For all items associated with the
same incentive level (1 or 3), study times were split at the median
for each participant, and average JOLs for below-median and
above-median items were calculated. The mean JOLs across all
participants are plotted in Figure 11 for items receiving below- and
above-median study times. A similar analysis was carried out for
the constant-incentive group across all items, and the results of this
analysis are also plotted in Figure 11.

Now the relationship between study time and JOL is negative,
consistent with the CM model. JOLs were significantly higher for
below-median than for above-median study times for both the
1-point and the 3-point items in the differential-incentive group,
t(15) � 5.86, p � .0001, �p

2 � .70, and t(15) � 6.59, p � .0001,
�p

2 � .74, respectively, and also for the constant-incentive condi-
tion, t(15) � 5.65, p � .0001, �p

2 � .68. The slope of the function
relating JOLs to study time was �8.23 and �6.95 for the 1-point
and 3-point items, respectively, in the differential condition group
and �7.22 for the constant group.

To allow comparison of these results with those associated with
the control function of study time, we have included in Figure 11 a
plot of the function relating mean JOLs for incentive levels 1 and
3 in the differential condition (56.9% and 61.7%, respectively) to
mean study time allocated in these two levels (4.3 s and 5.2 s,
respectively) in Presentation 1.7 The relationship that reflects the
control function of study time is positive. The slope of the function
relating JOLs to study time was 5.26.

The combination of goal-driven and data-driven variation in
study time. The combination of goal-driven variation and data-
driven variation in study time in the same situation should present
a problem for the differential-incentive participants, because in-
creased study time is expected either to increase or to reduce JOLs
depending on its source. The results depicted in Figure 11, then,
suggest the operation of an attribution process in which variations
in study time are first attributed to data-driven effects or to goal-
driven effects before the implications for JOLs are drawn.

To gain some insight into the nature of this attribution, we
examined the possible interaction between the two ways in which
study time can affect JOLs. Assuming that participants regulate
study time in keeping with the specified incentives, would that
regulation spoil the diagnostic value of study time as an index of
intrinsic item difficulty? If so, we should expect a weaker depen-
dence of JOLs on study time in the differential-incentive than in
the constant-incentive condition. However, the slope of the func-
tion relating JOLs to study time was �7.22 for the constant
condition, as noted earlier, whereas that for the differential condi-
tion (calculated across the two incentives) was �7.49, suggesting
that the utilization of data-driven variation in study time as a basis
of JOLs was not impaired by the inclusion of goal-driven, top-
down variation.

7 The JOL and study time means used in plotting the effects of incentive
in this figure were calculated by averaging the respective below-median
and above-median means. Therefore, they differ somewhat from the means
that entered into the analyses of the effects of incentive reported earlier.

Figure 9. Mean study time (top panel) and judgment of learning (JOL;
bottom panel) as a function of presentation, plotted separately for the
1-point and 3-point incentives of the differential-incentive condition and
for the constant-incentive (2-point) condition (Experiment 5). Error bars
represent �1 standard error of measurement.

Figure 10. Mean study time as a function of presentation for difficult and
easy items in the differential-incentive condition, plotted separately for
each incentive level (Experiment 5). Error bars represent �1 standard error
of measurement.
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Further evidence for this conclusion comes from a comparison
of the study time–JOL correlation for the differential-incentive
condition (calculated across the two incentives) with that for the
constant-incentive condition. Figure 12 indicates that for both
conditions, this correlation was negative and increased with pre-
sentation, replicating the results for the self-paced condition of
Experiment 4. There was no indication, however, that the depen-
dence of JOLs on study time was any weaker for the differential-
incentive condition: A two-way ANOVA yielded F(2, 60) �
20.92, MSE � 0.21, p � .0001, �p

2 � .41, for presentation, and
F � 1 for both condition and the interaction. Only in Presentation
3 was there a trend in this direction, but this trend was not
significant, t(30) � 0.98, p � .34.

Neither was there any evidence that the predictive validity of
study time or JOLs was impaired by the inclusion of differential
incentives. Thus, a two-way ANOVA indicated that, as in Exper-
iment 4, the JOL–recall correlation across 31 participants (1 par-
ticipant attained 100% recall in the last presentation) increased
with practice from .51 in Presentation 1 to .83 in Presentation 3. A
Presentation � Condition ANOVA yielded F(2, 58) � 41.11,
MSE � 0.02, p � .0001, �p

2 � .59, for presentation. There was no
effect for condition or the interaction (F � 1 for both). Similarly,
the study time–recall correlation was negative, as in the self-paced
conditions of the previous experiments, and increased from �.26
in Presentation 1 to �.61 in Presentation 3 across all participants.
A similar ANOVA as above yielded F(2, 58) � 18.74, MSE �
0.05, p � .0001, �p

2 � .39, for presentation, but again F � 1 for
both condition and the interaction.

Discussion

The results for the differential condition brought to the fore
the positive correlation between study time and JOLs, which is the
signature of the control function of study time. Presumably,
the differential bonus associated with different items results in the

allocation of more study time to the 3-point items than to the
1-point items and correspondingly in higher JOLs for the former
than for the latter items. There are two processes that can bring
about such positive correlation. First, increased study time en-
hances fluent processing, and enhanced fluency can serve as an
internal, mnemonic cue to support higher JOLs (see Begg et al.,
1989; Benjamin & Bjork, 1996). Second, study time can be used
as an extrinsic cue under the belief that an item is more likely to
be remembered when it is studied for a longer duration than when
it is studied for a shorter duration. Koriat and Ma’ayan (2005)
recently provided evidence in support of the former account when
study time was experimentally manipulated: Increased presenta-
tion duration was found to enhance retrieval fluency, and this
increase was sufficient to account for the concomitant increase in
JOLs.

In addition, however, the results disclosed the operation of the
monitoring function of study time, whose signature is an inverse
relationship between study time and JOLs. This latter relationship
reflects the retrospective use of study time as a diagnostic cue for
JOLs.

How do differential-incentive participants distinguish between
the variation in study time that is due to goal-driven effects and
that due to data-driven effects? Consider, for example, a learner
who invests an inordinately strong effort in studying a certain item,
in part because the item turns out to be difficult and in part because
its recall is associated with a high incentive. The results suggest
that he or she can tease apart the component of study time that is
driven by the item from that which is due to the self-control over
study time, and assign a negative weight to the former and a
positive weight to the latter in computing JOLs. How does one do
that? We proposed that an attribution process must be postulated to
mediate between study effort and JOLs, so that variations in study
time are attributed (in some proportion) to data-driven and to
goal-driven differences. The comparison of the results for the
differential and constant conditions did not throw light on the
nature of the underlying process except to suggest that neither the
utilization of data-driven variation in study time as a basis for JOLs

Figure 11. Mean judgment of learning (JOL) for below-median and
above-median study time for each incentive level. Plotted also (broken
line) is mean JOL as a function of mean study time for each incentive level
of the differential-incentive condition (labeled Mean 1 point and Mean 3
points; Experiment 5).

Figure 12. Mean within-participant gamma correlations between study
time and judgment of learning (JOL) as a function of presentation, plotted
separately for the differential-incentive and constant-incentive conditions
(Experiment 5). Error bars represent �1 standard error of measurement.
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nor the accuracy of JOLs in predicting recall is compromised by the
introduction of goal-driven variation (but see Experiment 6).

Experiment 6

Although Experiment 5 highlighted the control function of study
time, it did not disclose in full the type of monitoring-based control
analogous to that in which we run away because we are frightened.
This type of causal relation has been assumed by the discrepancy-
reduction approach to underlie the allocation of more study time to
the more difficult items.

What are the conditions, then, that produce the kind of
monitoring-based control that accords with Story 1? We argue that
one such condition is precisely that in which learners are led to
invest more time in the easier items because in that case their
choice most likely reflects a strategically controlled policy, similar
to that underlying the choice to invest more time in items associ-
ated with higher incentives (Experiment 5). Clearly, the allocation
of less study time to the more difficult items cannot be ascribed to
bottom-up, data-driven effects; rather it is more likely to stem from
top-down processes that, in fact, operate against data-driven pro-
cesses that invite greater investment in the more difficult items.
Therefore, we should expect a positive correlation between study
time and JOLs across items.

One condition in which learners have been found to allocate
more study resources to the easier items is when severe time
pressure is imposed (Metcalfe, 2002; Son & Metcalfe, 2000).
When only a limited amount of time is available for study, it might
not be wise to concentrate on the difficult items. What is the
process underlying the allocation of study time in that case? In
order that more study time will be allocated to the easier items, a
preliminary assessment of ease of learning must be used as a basis
for the decision to continue studying the item or quit. Such
assessment may rely on a priori beliefs or on the feedback from the
initial attempt to study the item, implying that the decision to
continue studying an item involves monitoring-based control
rather than control-based monitoring.

This idea was tested in Experiment 6, which was similar in
design to Experiment 5 with two exceptions: First, time pressure
was imposed. Second, the materials used demanded and also
allowed more study time to be allocated, so that learners could, in
principle, reach a quick preliminary assessment that the item is too
difficult and that given the limited time available it would not be
expedient to continue studying it.8 We expected Experiment 6 to
yield a positive relation between study time and JOLs even within
each incentive level.

Learners in Experiment 6 were instructed in advance that there
was little chance that they would be able to memorize all the items
during the time allotted, and a running counter was displayed
during study indicating both the time left and the number of items
that were still to be presented. As in Experiment 5, the incentive
for recalling each item was manipulated in the differential-
incentive condition, whereas in the constant-incentive condition it
remained the same for all items. We expected that, as in Experi-
ment 5, both study time and JOLs would increase with increasing
incentive, resulting in a positive correlation between them, but
unlike in Experiment 5, we expected that within each incentive
condition, JOLs would also increase with the amount of study time
allotted to an item.

Method

Participants. A total of 48 Hebrew-speaking University of Haifa un-
dergraduates participated in the experiment, 12 for course credit and 36 for
pay. Twenty-four participants were assigned randomly to each condition.

Materials. The study list included 22 sets, each consisting of six
Hebrew words. Half of the sets (easy) were composed of words that
belonged to a common semantic domain (e.g., newspaper, note, letter,
library, poem, translation), whereas the other sets (difficult) consisted of
unrelated words (e.g., road, joke, computer, cup, box, glue). Effort was
made to avoid obvious links between words that belonged to different sets.
For each set, a test item consisting of five words was constructed by
removing one of the words in that set. For the differential condition, half
of the items in each difficulty category were assigned to the 1-point
condition, and half to the 5-point condition, with the assignment being
counterbalanced across participants.

Apparatus and procedure. The apparatus was the same as in Exper-
iment 5. The procedure was similar except for the following: Participants
were instructed to study each word set so that when presented with five
words from that set they would be able to recall the missing sixth word.
They were told that the importance of each set would be indicated by an
incentive value—1 or 5 for the differential condition and 3 for the constant
condition. Participants were informed that some of the sets would be easier
whereas others would be more difficult to study. To create time pressure,
we led them to believe that there were altogether 40 sets in the study list,
but because they would have only 15 min for study, it is unlikely that they
would be able to see all the sets. Because their task was to gain as many
points as possible, they were told to try not to spend too much time on each
item so that they would have a chance to reach the items that appeared later
in the list. In actuality, however, the study phase ended when participants
finished studying the 22 sets.

To maintain a severe time pressure throughout the study phase, a running
counter was displayed for 5 s following the 4th, the 9th, the 14th, and the
19th sets. The counter consisted of two circles whose areas were gradually
covered from one presentation to the next. Participants were told that one
circle represented the overall amount of time spent as a proportion of the
total amount of time available and the other represented the proportion of
studied sets (out of 40). In actuality, the area covered in the time circle
amounted to 4/22, 9/22, 14/22, and 19/22, respectively, for the four
presentations of the counter, and in the second circle the covered area
amounted to 4/40, 9/40, 14/40, and 19/40, respectively.

On each study trial, the incentive value (1, 3, or 5) appeared on the
screen for 1 s. A beep was then sounded, after which the set was presented.
Both the number and the set remained on the screen until the participant
pressed the left mouse key to indicate end of study, and 500 ms thereafter
a JOL prompt appeared. Participants were told that only the time used for
study proper (from the presentation of the set until the participant pressed
the mouse button) would be subtracted from the “allotted” time. After
studying the 22 sets, participants were notified by the computer that the
allotted time had ended, and then the following question appeared on the
screen: “You have studied 22 sets. For how many of them do you think you
will be able to recall the missing word?” The data from this aggregate
estimate are not reported here. During the test phase, each trial was
initiated by a beep, followed by the presentation of the test item on the
screen. The test item disappeared when participants said the missing word
or when 20 s had elapsed. A paper-and-pencil practice involving two items

8 In a pilot study conducted in preparation for Experiment 6, we used the
same materials as in Experiment 5 but with the addition of time pressure.
The results suggested that participants continued to invest more study time
in the difficult items. It was our impression that when the study of an item
requires only a few seconds, learners find it more expedient to simply let
the study process run to completion rather than interrupt it after an initial
assessment that the item is difficult to commit to memory.
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preceded the experiment proper. Participants were also given instructions
about the counters (circles), with the help of illustrative examples.

Results

The allocation of study time. The study time allocated to the
easy and difficult items averaged 13.5 s (SD � 8.4) and 9.5 s
(SD � 8.0), respectively, for the constant condition and 12.9 s
(SD � 5.4) and 11.6 s (SD � 5.3), respectively, for the differential
condition. A Difficulty � Condition ANOVA yielded F(1, 46) �
8.09, MSE � 20.70, p � .01, �p

2 � .15, for difficulty and F � 1
for condition. The effects of difficulty were somewhat stronger for
the constant condition than for the differential condition, but the
interaction was not significant, F(1, 46) � 1.95, p � .17.

The effects of incentive on study time for the differential-
incentive group. An Incentive � Difficulty ANOVA on study
time for the differential condition yielded a nonsignificant inter-
action (F � 1). Overall, participants invested more time in the
5-point items (M � 15.2 s, SD � 7.5) than in the 1-point items
(M � 9.3 s, SD � 4.3), t(23) � 3.92, p � .001, �p

2 � .40,
replicating the results of Experiment 5. The effects of incentive
were significant for both the easy items, t(23) � 3.81, p � .001, �p

2

� .39, and the difficult items, t(23) � 3.70, p � .005, �p
2 � .37.

For the easy items, study time for the high-incentive and low-
incentive items averaged 15.4 s (SD � 7.7) and 9.9 s (SD � 4.5),
respectively. The respective values for the difficult items were
15.0 s (SD � 8.3) and 8.8 s (SD � 5.1).

The relationship between study time and JOLs. We analyzed
the results in the same way as in Experiment 5 (see Figure 11).
Mean JOLs for slow and fast responses are plotted in Figure 13 for
the constant-incentive condition (3 points) and for the high-
incentive (5 points) and low-incentive (1 point) items of the
differential-incentive condition.

Unlike what was found in Experiment 5, the relationship be-
tween study time and JOLs was positive even within each incen-
tive condition, consistent with the control function of study time.
For the constant-incentive condition, JOLs were higher for items

with above-median study times (M � 49.9%, SD � 14.6) than for
items with below-median study times (M � 26.6%, SD � 21.6),
t(23) � 5.34, p � .0001, �p

2 � .55. A positive relationship was also
obtained across the two incentive levels of the differential-
incentive condition: JOLs for items with below-median and above-
median study times averaged 30.3% (SD � 23.0) and 46.0%
(SD � 17.0), respectively. A Study Time � Incentive ANOVA
yielded significant effects for study time, F(1, 23) � 10.53, MSE
� 273.59, p � .005, �p

2 � .31, and for incentive, F(1, 23) � 59.00,
MSE � 122.77, p � .0001, �p

2 � .72, but not for the interaction,
F(1, 23) � 1.41, MSE � 70.32, p � .25. JOLs increased with
increasing study time for both the high-incentive items, t(23) �
2.36, p � .05, �p

2 � .20, and the low-incentive items, t(23) � 3.42,
p � .005, �p

2 � .34. The slope of the function relating JOLs to
study time was 2.69 for the constant-incentive condition, and 2.00
and 1.13, respectively, for the 1-point and 5-point items in the
differential-incentive condition.

To allow comparison of these results with those associated with
the effects of incentive, we have included in Figure 13 a plot of the
function relating mean JOLs for the 1-point and 5-point incentives
in the differential condition (30.2%, SD � 19.4, and 46.3%, SD �
17.3, respectively) to mean study time allocated to items at each of
these two levels of incentive (9.3 s, SD � 4.3, and 15.2 s, SD �
7.5, respectively) (see Footnote 7). The slope of the function
relating JOLs to study time was 2.72.

The relationship between study time and recall. In the previous
experiments, study time was inversely correlated with recall. In Ex-
periment 6, in contrast, participants were expected to invest more time
in the judged-easy items (see Metcalfe & Kornell, 2003). Therefore,
we expected recall to correlate positively with study time.

Indeed, for the constant-incentive condition, recall was better
for items with above-median study time (M � 31.1%, SD � 26.5)
than for items with below-median study time (M � 14.0%, SD �
17.8), t(23) � 3.27, p � .005, �p

2 � .32. The respective means for
the differential-incentive condition, calculated across both incen-
tives, were 26.4% (SD � 22.9) and 10.3% (SD � 9.9), respec-
tively, t(23) � 3.38, p � .005, �p

2 � .33. A Study Time (below
median vs. above median) � Incentive ANOVA yielded signifi-
cant effects for study time, F(1, 23) � 7.52, MSE � 259.77, p �
.05, �p

2 � .25, and for incentive, F(1, 23) � 15.35, MSE � 441.03,
p � .001, �p

2 � .40, but not for the interaction, F(1, 23) � 1.15,
p � .30. Thus, recall increased with incentive, but unlike in
Experiment 5, it also increased with increasing study time.

Clearly, the relationship between study time and recall cannot be
interpreted solely in a causal sense because participants invested
more study time in the easier items in the first place. But when
difficulty level was partialed out, the mean correlation between
study time and recall for the constant condition dropped from .33
to .22, which was still significant ( p � .005, with n � 22). Thus,
perhaps part of the study time–recall correlation is nevertheless
due to the control function of study time. Note that the respective
correlations between study time and JOLs were .42 and .34 ( p �
.001 and p � .0001, respectively, both with n � 24).

Data-driven and goal-driven effects. A comparison of the
results of Experiment 5 (see Figure 11) and Experiment 6 (see
Figure 13) suggests that the introduction of time pressure produced
a qualitative change in the allocation of study time from being data
driven to being goal driven. To bring to the fore this change, we
focused on the constant incentive condition and have plotted in
Figure 14 mean JOLs and recall for below-median (short) and

Figure 13. Mean judgment of learning (JOL) for below-median and
above-median study time for each incentive level. Plotted also (broken
line) is mean JOL as a function of mean study time for each incentive level
of the differential-incentive condition (labeled Mean 1 point and Mean 5
points; Experiment 6).
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above-median (long) study times in both Experiment 5 (Presenta-
tion 1) and Experiment 6. A Study Time (short vs. long) �
Experiment (5 vs. 6) ANOVA yielded a highly significant inter-
action for both JOLs, F(1, 38) � 47.48, MSE � 167.52, p � .0001,
�p

2 � .56, and recall, F(1, 38) � 19.08, MSE � 264.74, p � .0001,
�p

2 � .33.
This interactive pattern is also reflected in the within-person

correlations between study time, on the one hand, and JOLs and
recall, on the other hand, when the raw study times were used. The
pertinent results are presented in Table 1. It can be seen that all the
study time–JOL correlations were negative for Experiment 5 and
differed significantly from the respective correlations for Experi-
ment 6, which were all positive. The same pattern was observed
for the study time–recall correlations.

Discussion

The results of Experiment 6 are consistent with those of Exper-
iment 5 as far as the effects of incentive level are concerned. When
incentive level was held constant, however, the correlations be-

tween study time, JOLs, and recall were diametrically opposed to
those obtained in Experiment 5. First, participants invested more
study time in the easier items rather than in the more difficult items
(see Metcalfe, 2002; Son & Metcalfe, 2000), suggesting that
learners actually regulated study time in the opposite direction
from what data-driven forces may have led them to do. Second,
study time correlated positively rather than negatively with JOL
and recall performance. Presumably, the initial processing of an
item provides diagnostic information about the ease with which an
item can be committed to memory, and hence more time was
invested in the items that were judged as easier to learn. In
addition, increased investment of effort might have contributed to
the positive correlation between study time and recall. Altogether,
these results are consistent with the MC model, which is expected
to hold when study time allocation is goal driven.

Thiede and Dunlosky (1999) proposed a superordinate, strategy-
selection stage, in which learners decide whether it is worthwhile
to focus on the easier or on the more difficult items. However, the
results of Experiments 5 and 6, taken together, suggest that only
the allocation of more study time to the easier items reflects a
premeditated strategy. The allocation of greater effort to the more
difficult items, in contrast, is what occurs when study time allo-
cation is left to the mercy of the items. This contrast brings to the
fore an important but subtle difference between Experiments 5 and
6 in the presumed role of item difficulty: Whereas in Experiment
5, item difficulty may be said to dictate time allocation, in Exper-
iment 6 judged item difficulty may be said to inform strategic time
allocation.

As in Experiment 5, we might ask, how do learners in the
differential condition manage to control and monitor their perfor-
mance in accordance with the two different types of strategic
considerations—incentive level and item difficulty? A comparison
of the results for the constant and differential conditions suggests
that participants may find it difficult to meet both criteria simul-
taneously. Thus, as indicated earlier, the constant condition yielded
a somewhat stronger effect of item difficulty on study time (an
overall effect of 3.9 s) than the differential condition (1.4 s), a
stronger effect of study time on JOLs (amounting to 23.3%,
compared with 16.3% for the differential condition), and a direc-
tionally stronger effect of study time on recall (amounting to
17.1%, compared with 16.1% for the differential condition). This
pattern suggests that the allocation of more study time to the easier
items is applied more effectively when all items in a list receive the
same incentive than when they receive different incentives.

Figure 14. Mean judgment of learning (JOL) and recall for below-
median (short) and above-median (long) study times for the constant-
incentive condition in Experiments 5 and 6. Error bars represent �1
standard error of measurement.

Table 1
Mean Study Time–JOL and Study Time–Recall Gamma Correlations for Each Condition of Experiments 5 and 6, and t Tests
Comparing These Correlations

Condition

Study time–JOL correlation Study time–recall correlation

Experiment

t test

Experiment

t test5 6 5 6

Constant �.39 (n � 16) .38 (n � 24) t(38) � 7.00, p � .0001 �.23 (n � 16) .46 (n � 22) t(36) � 5.69, p � .0001
Differential

Low incentive �.40 (n � 16) .42 (n � 24) t(38) � 6.72, p � .0001 �.20 (n � 16) .32 (n � 14) t(28) � 3.28, p � .005
High incentive �.50 (n � 16) .11 (n � 24) t(38) � 5.24, p � .0001 �.36 (n � 16) .15 (n � 20) t(34) � 3.71, p � .001

Note. Participants with perfect recall were excluded; n designates number of effective participants for each correlation. JOL � judgment of learning.
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This conclusion differs from that suggested by the results of
Experiment 5, where the function relating JOLs to study time had
a similar (negative) slope for the differential and constant condi-
tions (�7.49 and �7.22, respectively), suggesting that the contri-
bution of data-driven variation in study time to JOLs was unaf-
fected by the additional variation in incentive. Further research is
needed to determine whether this difference reflects a qualitative
difference between a situation in which both types of variation
induce goal-driven regulation (Experiment 6) and a situation in
which one type of variation induces goal-driven regulation
whereas the other induces data-driven regulation (Experiment 5).

Experiment 7

The aim of Experiment 7 was to generalize the conceptual
framework proposed in this article to another type of metacogni-
tive judgment: subjective confidence. It has been proposed that
once an answer to a question has been retrieved or selected, the
confidence in that answer is based on the feedback from the
process leading up to the solution. Among the cues that have been
claimed to contribute to subjective confidence is the time and
effort it takes to reach the answer or the decision. As with the
memorizing effort heuristic, the assumption is that the greater the
effort and the longer the deliberation needed to reach an answer,
the lower the confidence in that answer will be. Indeed, several
studies have documented an inverse relation between confidence
and decision time (e.g., Barnes et al., 1999; Costermans et al.,
1992; Kelley & Lindsay, 1993; Nelson & Narens, 1990; Robinson
et al., 1997). Although this correlation does not allow specifying
which is the cause and which is the effect, Kelley and Lindsay
(1993) showed that when response latency is enhanced through
priming, confidence judgments also increase accordingly. These
results are important in supporting the view of confidence judg-
ments as reflecting control-based monitoring: Possibly, the time to
arrive at an answer or a solution is affected by a variety of factors
that are inherent in the question or the problem, and once an
answer has been reached, the amount of effort and time expended
can serve as a cue for the feeling of certainty, much like the way
in which study time is assumed to affect JOLs when study time is
data driven.

Like study time, however, decision time may also be goal
driven: A person is more likely to dwell longer on a question when
the motivation for reaching a correct answer is particularly strong.
For example, in a forced-choice quiz, a student would be expected
to spend more time on questions that score higher. In such cases,
variation in decision time should yield a positive relationship
between deliberation time and confidence in the answer.

The general design of Experiment 7 was similar to that of
Experiment 5: Participants attempted to solve several psychomet-
ric problems, some of which were associated with a higher incen-
tive (5 points) than others (1 point). After choosing a solution from
among distractors, they indicated their confidence in that solution.
The variation in incentive was expected to yield a positive corre-
lation between decision time and confidence, consistent with the
control function of decision time. Within each incentive level,
however, confidence was expected to decrease with increasing
decision time, consistent with the presumed monitoring function of
decision time.

Method

Participants. Forty-six undergraduate students from the University of
Haifa were paid for participating in the experiment.

Materials. A figural matrices task and a figural series task (borrowed
from Sheffer, 2003) were used, each including 34 items. These were
similar to the items in Raven’s Progressive Matrices (Raven, Court, &
Raven, 1979) and were modified from out-of-date psychometric entrance
tests to Israeli universities. In the figural matrices task, each item consisted
of a 3 � 3 array of symbols, ordered according to a certain principle, with
the bottom right-hand symbol missing. Participants had to choose, out of
four symbols, the one that logically completed the array. In the figural
series task, each item consisted of a series of four or five symbols ordered
from left to right according to a certain principle. Participants’ task was
again to choose the correct symbol that completed the series out of four
symbols that appeared beneath.

Four of the items from each task were used for practice. The remaining
30 items, which were used in the experiment proper, were divided into two
equal sets that were matched in terms of difficulty (based on available
norms). One set was awarded an incentive of 1 point, and the other was
awarded an incentive of 5 points for a correct solution, with the assignment
of incentive to each set counterbalanced across participants.

Apparatus and procedure. The experiment was conducted on a per-
sonal computer. The stimuli and all instructions appeared on the screen.
The order of the two tasks was counterbalanced across participants. Par-
ticipants were told that the experiment evaluated a special version of the
University Psychometric Entrance Test and that they should strive to attain
the highest score that they could.

Participants were promised a financial reward according to their perfor-
mance. They were told that normally, a 1-point bonus would be awarded
for each correct answer but that occasionally “gift items” would appear for
which the bonus would be 5 points for a correct answer. The number of gift
items would be determined randomly by the computer (and so the partic-
ipant should feel lucky to receive a gift item rather than a 1-point item). It
was indicated that the level of difficulty of the 1-point and 5-point items
was the same. Participants were told that the time allotted to each task was
limited and that therefore their success depended on their ability to divide
their restricted time wisely among the different items.

Each task began with the four practice items. On each trial, the bonus
associated with the question appeared in the upper part of the screen: either
“5 points!!!” (in red type) next to an icon of a gift or “1 point” (in green
type). After a 1-s interval, the question and the four alternatives were added
on the screen and remained until the participant, using the computer’s
mouse, marked one of the alternatives and confirmed his or her choice.
Decision time was measured from the presentation of the problem until the
confirmation press. Immediately thereafter, a confidence scale (25%–
100%) was added beneath the alternatives, and participants marked their
confidence by sliding a pointer on a scale using the mouse. The instructions
specified that participants should assess the likelihood that the answer
chosen was correct and that 25% indicated chance performance. At the end
of each task, participants were given feedback about the number of points
they had won.

Results

The effects of incentive on decision time, confidence, and accu-
racy. There was a large variability in decision time between
participants and between items. Mean decision time per participant
ranged from 12.2 s to 89.6 s for the figural matrices task and from
14.7 s to 104.2 s for the figural series task. Mean decision time per
item ranged from 18.2 s to 60.9 s for the figural matrices task and
from 16.3 s to 55.7 s for the figural series task.

Figure 15 (top panel) presents decision time as a function of
incentive level (1 vs. 5 points) for each of the two tasks. For both
tasks, decision time increased with incentive. An Incentive � Task
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ANOVA yielded a significant effect for incentive, F(1, 45) �
21.05, MSE � 32.25, p � .0001, �p

2 � .32. Neither the effect of
task nor the interaction was significant, F(1, 45) � 3.12, MSE �
198.79, p � .08, and F � 1, respectively. The increase in decision
time with incentive was significant for both the figural matrices
task, t(45) � 3.23, p � .005, �p

2 � .19, and the figural series task,
t(45) � 3.72, p � .001, �p

2 � .23.
Confidence also increased with incentive (Figure 15, bottom

panel). An Incentive � Task ANOVA yielded F(1, 45) � 14.14,
MSE � 25.76, p � .001, �p

2 � .24, for incentive. The effects of
task and the interaction were not significant, F � 1 and F(1, 45) �
1.45, MSE � 26.80, p � .24, respectively. The increase in confi-
dence with incentive was significant for the figural matrices task,
t(45) � 3.75, p � .001, �p

2 � .24, and near significant for the
figural series task, t(45) � 1.66, p � .11, �p

2 � .06. Thus, unlike
the negative correlation that is typically observed between decision
time and confidence, the effects of incentive produced a positive
correlation such that increasing incentive from 1 to 5 points
increased decision time from 34.8 s (SD � 13.5) to 38.7 s (SD �

14.1) on average and in parallel increased confidence judgments
from 67.0% (SD � 14.4) to 69.9% (SD � 13.1).

Somewhat surprisingly, increased incentive did not improve
actual performance significantly. We should note that performance
was much better for the figural matrices task (59.3% correct
solutions) than for the figural series task (24.5%, approximately at
chance level). Across both tasks, the percentage of correct re-
sponses increased slightly from 40.7% for 1-point items to 43.1%
for 5-point items. However, an Incentive � Task ANOVA on the
percentage of correct responses yielded a significant effect only for
task, F(1, 45) � 186.38, MSE � 298.59, p � .0001, �p

2 � .81.
Neither the effect of incentive nor the interaction was significant,
F(1, 45) � 1.37, MSE � 203.67, p � .25, and F � 1, respectively.

It should be noted that participants were markedly overconfident
and particularly so for the figural series task: 68.2% confidence
compared with 24.5% accuracy. The respective means for the
figural matrices task were 68.7% and 59.3%, respectively.

The monitoring function of decision time. As in Experiments 5
and 6, we examined the relationship between confidence and
decision time for each of the two incentive levels. First, for all
items associated with the same incentive, decision times were split
at the median for each participant, and average confidence judg-
ments for below-median items and above-median items were cal-
culated. This was done separately for each task. Then the mean
confidence judgments of below-median and above-median items
were averaged across both tasks and across all participants; the
averages are displayed in Figure 16 for each incentive level.

It can be seen that for each incentive level, confidence judg-
ments decreased as a function of increasing decision time, consis-
tent with the postulated monitoring function of decision time (e.g.,
Kelley & Lindsay, 1993). A three-way ANOVA, Incentive �
Decision Time (below median vs. above median) � Task indicated
that confidence increased significantly with incentive, F(1, 45) �
10.79, MSE � 58.36, p � .01, �p

2 � .19, but decreased signifi-
cantly with decision time, F(1, 45) � 96.76, MSE � 167.38, p �

Figure 16. Mean subjective confidence for below-median and above-
median study time for each incentive level. Plotted also (broken line) is
mean confidence as a function of mean study time for each incentive level
of the differential-incentive condition (labeled Mean 1 point and Mean 5
points; Experiment 7).

Figure 15. Mean decision time (top panel) and subjective confidence
(bottom panel) as a function of incentive level (1 point vs. 5 points) plotted
separately for the figural matrices and figural series tasks (Experiment 7).
Error bars represent �1 standard error of measurement.

59METACOGNITIVE MONITORING AND CONTROL



.0001, �p
2 � .68 (with confidence decreasing overall from 75.8%

[SD � 18.5] for the below-median items to 62.5% [SD � 14.5] for
the above-median items). Confidence was significantly higher for
below-median than for above-median decision times for both the
1-point items, t(45) � 7.53, p � .0001, �p

2 � .56, and the 5-point
items, t(45) � 10.22, p � .0001, �p

2 � .70.
The three-way ANOVA also yielded a significant Task �

Decision Time interaction, F(1, 45) � 33.25, MSE � 53.63, p �
.0001, �p

2 � .42, indicating a stronger effect of decision time on
confidence for the figural matrices task than for the figural series
task. The Incentive � Decision Time interaction, however, was not
significant (F � 1). For the 1-point items, confidence decreased on
average from 73.1% (SD � 18.5) to 61.4% (SD � 12.9) with
increasing decision time, t(45) � 6.14, p � .0001, �p

2 � .46. The
respective values for the 5-point items were 76.6% (SD � 15.9)
and 63.4% (SD � 12.3), t(45) � 8.66, p � .0001, �p

2 � .62.
The slope of the function relating confidence to decision time

was �0.51 and �0.48 for the 1-point and 5-point items, respec-
tively. To allow comparison of these results with those associated
with the control function of decision time, we have included in
Figure 16 a plot of the function relating mean confidence for
incentive levels 1 and 5 (67.0% and 69.9%, respectively) to the
respective means of decision time (34.8 s and 38.7 s, respectively)
(see Footnote 7). The relation reflecting the control function of
decision time was positive, with a slope of 0.73.

Note that although the figural series task yielded very low
performance, confidence judgments for this task were nevertheless
correlated (negatively) with decision time: The within-participant
gamma correlation between decision time and confidence aver-
aged �.20 for 1-point items, �.29 for 5-point items, and �.22
across all items, all significant at the .0001 level. The respective
correlations for the figural matrices task averaged �.36, �.45, and
�.38, all significant at the .0001 level. Thus, it would seem that
participants are influenced by decision latency in making retro-
spective confidence judgments.

Monitoring accuracy: The correlation between confidence and
performance. The results just presented accord with the first
assumption of Story 2, that metacognitive judgments are based on
the feedback from the outcome of control operations. We now
examine the second assumption—that the accuracy of these judg-
ments derives from their reliance on such feedback.

Only the figural matrices task yielded moderate and significant
within-person confidence–accuracy gamma correlations: .56 for
the 1-point items, .55 for the 5-point items, and .56 across all
items, all significant at the .0001 level. The respective correlations
for the figural series task were very low and not significant: .10,
.06, and .04, respectively. As noted earlier, performance on the
figural series task was at chance level.

The results also suggested that the accuracy of confidence
judgments derived in part from reliance on decision time. Indeed,
for the figural matrices task, gamma correlations between decision
time and accuracy averaged �.40 for the 1-point items, �.23 for
the 5-point items, and �.31 across all items, all significant at the
.0001 level. The respective correlations for the figural series task
were low and nonsignificant: .08, �.04, and .05, respectively.
When the confidence–accuracy correlation was calculated with
decision time partialed out, the mean correlation for the figural
matrices task dropped from .44 to .35, t(45) � 3.16, p � .0001, �p

2

� .46, for the difference. Similar results were found when the
analysis was conducted for each incentive level separately. Thus,

decision time explains part, but not all, of the confidence–accuracy
correlation.

Discussion

Although Experiment 7 involved retrospective confidence judg-
ments, the results were in agreement with those of Experiment 5,
which involved recall predictions. First, increased incentive af-
fected decision time and confidence in the same way: It increased
decision time and at the same time enhanced confidence level, thus
producing a positive correlation between decision time and confi-
dence. In contrast, for each incentive level, confidence judgments
decreased with decision time, as would be expected for control-
based monitoring (see Kelley & Lindsay, 1993).

The similarity between the results presented in Figure 16 and
Figure 11 is impressive given that the former concerns recall
predictions whereas the latter concerns retrospective confidence,
and given that study time was in the order of 2–7 s in Experiment
5, whereas decision time was in the order of 20–55 s in Experi-
ment 7. Thus, it is noteworthy that the same conceptual framework
can be applied to both types of metacognitive judgments. Note also
that like study time in the previous experiments, decision time also
proved to have some degree of validity: For the figural matrices
task, answers that were reached more quickly had a better chance
to be correct than answers that took longer to reach, so that reliance
on decision time as a cue was likely to enhance monitoring
accuracy (see Robinson et al., 1997). However, participants
seemed to rely on decision latency as a cue for confidence even in
the case of the figural series task, where decision latency had little
diagnostic validity.

General Discussion

In this article, we examined the relationship between monitoring
and control in metacognition with an eye to the general
philosophical–psychological issue of the role that subjective ex-
perience and consciousness might play in behavior. Needless to
say, the results presented here bear only indirectly on that issue.
However, they suggest one line of research that might be pursued
to scratch the surface of this intricate, long-standing issue.

In what follows, we first review our conceptual framework and
examine how the reported findings bear on it. We then focus on
previous work on metacognition and examine theories and find-
ings that support the view that monitoring informs and drives
strategic control, and those that assume that monitoring processes
are based themselves on the feedback from control processes. Our
review of the monitoring-based-control position is brief, but we
dwell somewhat longer on theories and findings that imply
control-based monitoring, discussing both the bases and accuracy
of metacognitive feelings. We then examine research that bears on
how monitoring-based control and control-based monitoring may
combine in the course of information processing and behavior.
Finally, we mention several open issues that deserve attention in
future research.

Review of Our Conceptual Framework and the
Pertinent Evidence

Our investigation of the relationship between monitoring and
control was based on an analogy from emotional behavior. The
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question that has been posed over the years is whether we run
away because we are frightened or we are frightened because we
run away. This analogy provided the logic for our investigation. If
we focus on the intensity of fear and the speed of running away,
then the correlation between them should be telling about the
cause-and-effect relation between fear and running away: If it is
the subjective feeling of fear that drives running away, then the
faster one runs away the less frightened (or more safe) one should
feel. In contrast, if fear is based on the feedback from running
away, then the faster one runs away the more frightened (or less
safe) one should feel.

Applying this logic to metacognition, we considered the rela-
tionship between the amount of effort invested in a task and the
ensuing metacognitive feeling. The dominant view in metacogni-
tion research emphasizes the goal-oriented function of control
operations. The discrepancy-reduction model, for example, which
incorporates the TOTE model proposed by Miller et al. (1960) to
describe goal-oriented behavior, predicts that JOLs following
study should increase with study time. In contrast, if monitoring is
based on the feedback from control operations, then JOLs follow-
ing study should decrease with increased study time.

The CM model. Our first aim in the present article was to
promote the idea that monitoring can be based on the feedback
from control operations and thus follows rather than precedes
control. We proposed that this occurs when control processes are
data driven, tuned to the qualities of the task. Under such condi-
tions, the feedback from control operations is likely to provide
clues regarding the task in question. This is what happens, for
example, when we attempt to judge the weight of an object by
lifting it, because the feedback from the effort invested is telling
about the intrinsic properties of that object. Such is also what
typically happens in self-paced learning, when the amount of time
and effort spent studying an item is left to the mercy of that item.
Similarly, the FOK associated with the attempt to retrieve an item
from memory is also likely to be based on the feedback from the
retrieval attempt, because that feedback generally reflects on the
specific task at hand. Also, the effort and time spent attempting to
reach a decision or an answer typically convey information about
the amount of doubt experienced (Adams & Adams, 1961). Thus,
to the extent that control processes are data driven, we should
expect metacognitive feelings to be based on the feedback from
control processes.

What is the evidence in support of the CM model? First, with
regard to JOLs, a negative correlation between study time and
JOLs, which is the signature of control-based monitoring, was
consistently observed. This was true in Experiments 1 and 2, in
both the immediate and delayed JOLs of Experiment 3, in each of
the four presentations of Experiment 4, and in each of the incentive
conditions of Experiment 5. A similar, negative correlation be-
tween decision time and confidence was observed in Experiment 7.
Thus, a negative correlation between control effort and metacog-
nitive feelings was observed in all self-paced conditions of this
study, consistent with the idea that metacognitive judgments are
retrospective in nature, based on the feedback from control
operations.

Second, with regard to monitoring accuracy, the prediction from
the CM model is that to the extent that metacognitive predictions
are based on mnemonic cues that reside in the feedback from
control operations, their accuracy should be a function of (a) cue

utilization and (b) cue validity. We have discussed cue utilization.
Let us consider next cue validity.

In Experiment 1, study time was negatively correlated with
recall 4 months later, supporting the validity of the memorizing
effort heuristic. The same inverse relationship was observed in
Experiments 2 and 3. It was also found for each of the four
presentations in Experiment 4 and for each incentive level in
Experiment 5. Experiment 7 also yielded a negative correlation
between decision time and accuracy for the figural matrices task.
These results testify for the viability of the implicit naive theory
underlying cue utilization: When control is data driven, control
effort is inversely predictive of correct performance.

Given the observations regarding cue utilization and cue valid-
ity, it might be expected that metacognitive predictions would be
accurate by and large. Indeed, in all of the experiments involving
learning (Experiments 1–6), JOLs correlated positively with re-
call. In addition, in Experiment 7, confidence judgments were
diagnostic of the correctness of the solution for the figural matrices
task.

The results of Experiment 4 are particularly instructive regard-
ing the intimate link between cue validity, cue utilization, and
achievement: Both cue validity and cue utilization increased sys-
tematically with repeated study–test cycles, suggesting that with
increased practice, both the reliance on study time as a cue for
JOLs and the validity of study time in predicting recall increased.
Both of these changes seem to contribute to the improved accuracy
of JOLs with repeated study–test cycles.

The MC model. Let us turn next to the MC model, which
seems to accord better with everyday intuitions. This model as-
sumes that subjective experience informs the initiation and self-
regulation of control operations that may in turn change subjective
experience. Thus, when we feel that we do not understand a letter
that we have just read, we read it again. When we feel that we have
not mastered the to-be-remembered material, we spend more time
studying it until we feel more confident.

The research reported in this article did not address in full the
predictions of the MC model. However, much of the previous
research that focused on the presumed causal antecedents of con-
trol operations has yielded results suggesting that metacognitive
feelings drive and inform control operations (see Son & Schwartz,
2002, for a review). In the present study, in contrast, we focused on
the consequences of control operations, because the consequences
that are predicted by the MC model can be readily contrasted with
those that follow from the CM model. The prediction from the MC
model is that metacognitive feelings should increase rather than
decrease with the invested effort. We proposed that this should
occur when the strategic regulation of control processes is goal
driven.

Indeed, in Experiment 5, both study time and JOLs were af-
fected in the same way by incentive so that increased study time
correlated with increased JOLs. This pattern was replicated in
Experiment 6, which involved severe time pressure. An analogous
pattern was observed in Experiment 7, in which decision time as
well as confidence increased with the incentive associated with
correct solution. Thus, when effort was strategically regulated in
accordance with the person’s goals, a positive correlation was
obtained between effort and the ensuing metacognitive feelings.

Further support for the MC model comes from the results of
Experiment 6, in which JOLs also increased with study time within
each incentive level. This result is indeed what would be expected
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when study time is used as a strategic tool toward the achievement
of particular goals. But whereas previous discussions have found
the evidence for the MC model in the greater allocation of study
time to the more difficult items (Dunlosky & Hertzog, 1998;
Mazzoni & Cornoldi, 1993; Nelson & Leonesio, 1988), here that
model seems to be best revealed under conditions that induced
learners to allot more study time to the easier items. Presumably,
under severe time pressure, learners had to mobilize effort to
counteract the data-driven demand to invest more time in the more
difficult items. The hypothesized process in this case is that a fast
preliminary monitoring drives greater investment in the easier
items, which in turn contributes to further enhancing the JOLs
associated with these items.

The combined operation of the CM and MC models. We return
now to the question about fear and running away. Assuming with
William James (1884) that we meet a bear and run, should we feel
more frightened or less frightened the faster we run away? The
answer suggested by the foregoing discussion is that to the extent
that running away is entirely data driven, dictated by the speed of
the bear, the faster we run away the more fear we should experi-
ence. However, to the extent that we make an effort that goes
beyond that required just to maintain a safe distance from the bear,
the extra effort invested in running away should contribute toward
reducing our feeling of fear. In general, variations in effort that are
not accounted for entirely by data-driven effects should be corre-
lated positively with variations in metacognitive feelings.

This is, in fact, the pattern that is suggested by the results of
Experiments 5 and 7. These results illustrate the situation in which
effort (study time or solution time) is both data driven and goal
driven. Whereas increased data-driven effort reduced metacogni-
tive feelings (JOLs or confidence), increased goal-driven effort
enhanced these feelings. Both types of relations were observed
within the same situation, suggesting that the MC and CM models
are not mutually exclusive, as might seem to be implied by
William James’s discussion.

We also sketched a second mode in which the two models can
be combined in everyday life—the cascaded mode (Koriat, 1998),
in which monitoring-based control may lead to control-based
monitoring. This mode is only implied by the results of Experi-
ment 6, which suggest that a preliminary monitoring may drive
increased investment in the study of the judged-easier items and
that investment may then contribute to the higher JOLs associated
with these items. More direct evidence for this mode has been
presented elsewhere (e.g., Koriat & Levy-Sadot, 2001; Son &
Metcalfe, 2005), as is discussed below.

In sum, the results presented in this article generally agree with
the conceptual framework proposed. These results, however, were
obtained within a restricted domain of metacognition. In what
follows, we shall examine previous findings and discussions in
metacognition in order to show that some of these share certain
ideas advanced in this article.

Reflections on Story 1 in Metacognition Research

The assumptions of the MC model have their roots in social
psychological approaches that stress the role of one’s beliefs,
perceptions, and attributions in mediating one’s feelings and be-
havior (see Bandura, 1986; Bless & Forgas, 2000; Jost, Kruglan-
ski, & Nelson, 1998; Schwarz, 2004). Within metacognition re-
search, discussions that subscribe to the MC model generally

assume that metacognitive processes operate in the service of
goal-oriented behavior.

Two features are common to several formulations embodying an
MC model. The first is that self-regulation is hierarchically orga-
nized: At a superordinate level, decisions are made regarding the
policy for the task as a whole, and that policy is then implemented
at the subordinate level on the basis of online item-by-item mon-
itoring. Thus, learners may plan to concentrate on the easier or on
the more difficult items depending on such factors as time pressure
(Metcalfe, 2002). This policy is then implemented in studying each
item taking into account online item-by-item JOLs (Dunlosky &
Thiede, 2004). Similarly, with regard to memory retrieval, it has
been proposed that the general policy of spending more or less
time searching for answers depends on the relative importance of
speed versus accuracy (Barnes et al., 1999), but the amount of time
spent searching for a particular answer before giving up is also
influenced by the FOK associated with the respective question
(Gruneberg et al., 1977; Nelson & Narens, 1990). Also, the ten-
dency of rememberers (e.g., persons on the witness stand) to adopt
a strict or lax criterion in deciding what to report and at which
grain size depends on the relative utility of providing as complete
and informative a report as possible versus as accurate a report as
possible. At the subordinate level, however, the decision of
whether to volunteer a particular piece of information and which
grain size to use depends on the subjective confidence associated
with it (Goldsmith, Koriat, & Pansky, 2005; Koriat & Goldsmith,
1996).

A second feature is that strategic regulation at the subordinate
level is assumed to be guided by online iterative monitoring. Such
has been assumed to be the case for JOLs, according to Dunlosky
and Hertzog’s (1998) discrepancy-reduction model. Barnes et al.
(1999) proposed that memory search for a solicited target contin-
ues as long as FOK exceeds a certain level. Chen and Chaiken
(1999) proposed that information processing and judgments are
guided by the motivation to minimize the discrepancy between the
actual and desired levels of confidence. Thus, the online regulation
of behavior is assumed to be dynamically guided by online meta-
cognitive feelings.

In sum, the dominant view in metacognition is consistent with
Story 1 by assigning a critical role to metacognitive feelings in
guiding and driving goal-oriented control operations (Brown,
1987). This view is most clearly seen in discussions that focus on
the function of subjective experience. Such discussions also stress
the critical contribution of accurate metacognitive judgments to
effective cognitive performance. In contrast, discussions that focus
on the basis of metacognitive judgments tend to lean toward Story
2, as we shall now show.

Reflections on Story 2 in Metacognition Research

We turn now to discussions that seem to endorse the assump-
tions underlying Story 2: first, that monitoring follows control, and
second, that the accuracy of metacognitive judgments is mediated
by their reliance on the feedback from control operations.

The basis of metacognitive feelings. A commonly held as-
sumption is that sheer noetic feelings, such as the feeling of
competence, the feeling of knowing associated with the tip-of-the-
tongue state, or the subjective confidence in an answer, derive
from the application of nonanalytic heuristics (see Jacoby &
Brooks, 1984; Kelley & Jacoby, 1996) that operate unconsciously
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to shape the subjective experience of knowing (see Koriat, 2000).
Such experience can then serve as the basis of metacognitive
judgments.

What are the cues for “intuitive” noetic feelings? Reviewing the
work in metacognition, Koriat and Levy-Sadot (1999) concluded
that these cues “lie in structural aspects of the information-
processing system. This system, so to speak, engages in a self-
reflective inspection of its own operation and uses the ensuing
information as a basis for metacognitive judgments” (p. 496). This
proposal incorporates the idea that noetic feelings monitor the
feedback from one’s own cognitive processes and performance,
and hence follow rather than precede control operations.

This idea resembles the notion of metamonitoring proposed by
Carver and Scheier (1990, 1998) to underlie affective subjective
experience. According to them, when a person engages in a goal-
directed action, in parallel to the monitoring loop that evaluates the
discrepancy between the actual state and the desired state (as
implied by the CM model), a second, metamonitoring loop takes
place that evaluates the rate at which this discrepancy is reduced.
This rate is assumed to underlie the experience of positive or
negative affect. Carver and Scheier’s notion of rate of discrepancy
reduction has much in common with the notion of “processing
fluency” that has been proposed to underlie noetic feelings (see
Benjamin & Bjork, 1996; Kelley & Rhodes, 2002; Koriat &
Ma’ayan, 2005). It is difficult to know whether Carver and
Scheier’s model can be extended to noetic feelings. However, in
line with this model, the position advanced by Koriat and Levy-
Sadot (1999) assumes that sheer noetic feelings monitor charac-
teristics of the process underlying various cognitive operations
rather than their outcome (see also Schwarz, 2004; Winkielman et
al., 2003).

What is the evidence for this generalization? Several researchers
have proposed that JOLs are based on the ease with which to-be-
remembered items are processed during encoding (Begg et al.,
1989; Koriat, 1997; Matvey et al., 2001). In this article we as-
sumed that study time reflects memorizing effort or memorizing
fluency, but other indexes of fluency have also been explored. For
example, Hertzog et al. (2003) found JOLs to increase with the
success and speed of forming an interactive image between the cue
and the target during paired-associate learning. Other researchers
have emphasized retrieval fluency, arguing that JOLs are influ-
enced by the ease and probability with which the to-be-
remembered items are retrieved during learning (Benjamin &
Bjork, 1996; Nelson et al., 1998). Benjamin et al. (1998), for
example, observed that the faster it took participants to retrieve an
answer, the higher was their estimate that they would be able to
recall that answer at a later time. In reality, however, the opposite
was the case. Matvey et al. (2001) found that JOLs increased with
the fluency with which targets were generated to cues at study.
Also, as indicated earlier, the superior accuracy of delayed JOLs
over immediate JOLs was explained by assuming that JOLs mon-
itor the ease and success of retrieval during study (Dunlosky &
Nelson, 1994). Indeed, the recent findings of Nelson et al. (2004)
and of Koriat and Ma’ayan (2005) support the claim that the basis
of delayed JOLs lies in the feedback from the covert attempt to
retrieve the to-be-remembered target from memory. Thus, these
discussions imply that it is by attempting to memorize an item or
by trying to retrieve it that learners monitor the likelihood of
recalling the item at some later time.

Similarly, with regard to FOK judgments, it has been proposed
that these judgments are based on the familiarity of the cue (e.g.,
question) that is used to probe memory. Indeed, advance priming
of the cue that probes memory has been found to enhance FOK
judgments (e.g., Reder, 1987, 1988; Schwartz & Metcalfe, 1992).
Assuming that priming increases the familiarity of the cue by
enhancing its fluent processing (Jacoby, 1991; Jacoby & Kelley,
1987; Jacoby, Woloshyn, & Kelley, 1989), this finding also im-
plies that FOK monitors the feedback from the processing of the
cue that prompts recall (Koriat & Levy-Sadot, 2001).

Another cue that was assumed to affect FOK judgments is the
accessibility of partial information. As noted in the introduction,
Koriat’s accessibility model of FOK (Koriat, 1993) actually as-
sumes control-based monitoring: FOK judgments are based on the
feedback from retrieval attempts, particularly the amount of partial
information retrieved and its ease of retrieval (see Hicks & Marsh,
2002; Koriat, 1993, 1995; Schwartz & Smith, 1997). Thus, FOK
judgments are assumed to follow rather than precede attempted
retrieval.

Finally, it has been proposed that subjective confidence is also
based in part on the feedback from controlled operations. Thus,
explanations of the overconfidence phenomenon (for reviews, see
McClelland & Bolger, 1994; Nickerson, 1998) in terms of a
confirmation bias incorporate the notion that monitoring is retro-
spective in nature: When asked to make a decision and indicate
their confidence, participants base their confidence judgments on a
retrospective review of the arguments that influenced their deci-
sion, with a biased tendency to justify the decision reached (Koriat,
Lichtenstein, & Fischhoff, 1980; McClelland & Bolger, 1994).
Also, as noted earlier (see Experiment 7), the oft reported corre-
lation between decision time and confidence (e.g., Costermans et
al., 1992; Kelley & Lindsay, 1993; Nelson & Narens, 1990;
Robinson et al., 1997) has been generally interpreted to imply
control-based monitoring: Once an answer has been retrieved or
selected, the amount of time or effort expended in retrieving or
choosing it serves as a cue for the subjective correctness of the
answer (Kelley & Lindsay, 1993).

In sum, several discussions and findings in metacognition imply
that noetic feelings are retrospective in nature, being based on the
feedback from behavior and performance. This view has been most
explicitly voiced by Jacoby and Kelley, on the one hand, and by
Whittlesea, on the other hand. As already noted, Kelley and Jacoby
(1998) explicitly stated that their general theoretical position
agrees with the James–Lange view that subjective experience
follows rather than precedes performance. Indeed, the extensive
research of Jacoby and his associates (see, e.g., Jacoby & Dallas,
1981; Jacoby & Whitehouse, 1989) suggests that subjective expe-
rience is shaped by one’s unconscious interpretation of one’s own
performance. Whittlesea’s (1997, 2003) selective construction and
preservation of experiences framework of memory also shares the
assumption that monitoring follows performance. According to
that framework, the interaction between memory and the environ-
ment consists of the construction of a mental model, and this
construction has a production function and an evaluation function
that monitors the integrity of the production. The evaluation func-
tion is assumed to result in several primitive perceptions (e.g.,
coherence, incongruity), and it is the interpretation of these per-
ceptions that gives rise to a specific subjective feeling. Thus,
subjective feelings follow production and are based on its quality.
In sum, then, the James–Lange view seems to enjoy renewed
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interest among students of metacognition who focus on the micro-
genesis of subjective experience.

The accuracy of experience-based metacognitive judgments.
We turn next to the second assumption of Story 2, that the
accuracy of metacognitive feelings derives from the diagnostic
value of the feedback from one’s own control operations. Thus,
metacognitive accuracy should vary with the extent to which such
feedback predicts actual memory performance (cue validity) and
the extent to which that feedback is relied on as a basis for
metacognitive judgments (cue utilization).

With regard to cue validity, an important question that suggests
itself by our results is, why is the likelihood of recalling an item
correlated negatively with the amount of time invested in studying
that item? Why was the memory for the English translations of
Spanish words inversely correlated with the number of trials
needed to master these translations 8 years earlier in Bahrick and
Phelps’s study (1987)? More generally, why does the feedback
from one’s own cognitive processes predict future memory per-
formance? We shall not discuss this question here except to note
the need for its systematic investigation. However, assuming that
the feedback from control processes is indeed diagnostic of mem-
ory performance, the accuracy of metacognitive judgments should
increase with increased reliance on such feedback. Indeed, in
Experiment 4 reliance on memorizing effort as a cue for JOLs
increased with practice in parallel to the increase in the validity of
memorizing effort in predicting recall. Koriat and Ma’ayan’s re-
sults (2005) also suggest that with increased delay in soliciting
JOLs, a shift in cue utilization occurs from reliance on encoding
fluency toward greater reliance on retrieval fluency, and this shift
parallels the change that occurs in the relative validity of these two
cues with delay. The finding that the confidence–accuracy corre-
lation is stronger for recall than for recognition (Koriat & Gold-
smith, 1996; Robinson et al., 1997) also suggests that in recall
testing people take advantage of an additional, generally valid cue
for the correctness of their answers: the ease with which the
answer comes to mind. Thus, metacognitive accuracy depends not
only on cue validity but also on the extent to which the cue
utilization mechanism is tuned to the relative validities of the
various cues available and to the changes in these validities that
occur with changes in different conditions.

In conclusion, the two assumptions underlying Story 2 are rarely
explicitly endorsed in metacognition research. However, they are
in fact implicit in many discussions.

The Bidirectional Links Between Monitoring and Control

We proposed that the MC and CM models are not mutually
exclusive, and indeed, some of the discussions in the metacogni-
tion literature would seem to endorse that proposal. More gener-
ally, recent discussions of the cause-and-effect links between con-
sciousness and behavior have emphasized the importance of
developing interactional models that posit mutual causality as an
alternative to traditional models that assume unidirectional causal-
ity (see Dent, 2003).

We proposed two general modes in which the monitoring and
control functions can combine: a sequential and a simultaneous
mode. The sequential mode has received some support in previous
investigations. In that mode, initial monitoring informs control
operations, and the feedback from these operations can serve then
as the basis for monitoring, which can then guide subsequent

control operations, and so on. This mode is illustrated by the
results of Koriat and Levy-Sadot (2001), which suggest that when
one is presented with a question, the familiarity of that question
may produce a preliminary positive FOK that can then induce
memory search for the answer. FOK is then updated according to
the accessibility of clues regarding the answer. Thus, cue famil-
iarity, perhaps resulting from processing fluency, can drive mem-
ory search (i.e., monitoring-based control), and the feedback from
that search can then affect later FOK judgments (i.e., control-based
monitoring). Similarly, Vernon and Usher (2003), who examined
the temporal course of metacognitive judgments during retrieval,
showed that after the initial influence of cue familiarity, FOK
judgments can actually increase or decrease over time depending
on the information activated during the search for the target. Thus,
preretrieval FOK can drive retrieval attempts, and the feedback
from attempted retrieval can then be used to update the initial
metacognitive judgments.

A similar two-stage model was advanced by Son and Metcalfe
(2005) for JOLs. They proposed that JOLs involve a quick prer-
etrieval stage based on cue familiarity, and the output of that stage
may motivate the initiation of a subsequent retrieval stage. Once
retrieval has been initiated, JOLs will then be based on the qual-
ities of attempted retrieval.

With regard to the simultaneous mode in which the MC and CM
models combine within the same situation, we could not find
examples of this mode in previous research on metacognition. This
mode is important because many real-life situations involve both
goal-driven and data-driven regulation. In such situations top-
down and bottom-up processes may affect metacognitive judg-
ments in opposite directions, as was found to be the case in
Experiments 5 and 7. Further investigations of the simultaneous
operation of the CM and MC models are needed.

Some Issues and Questions for the Future

Admittedly, the conceptual framework that underlies the present
work is far from being complete. Furthermore, in sketching that
framework, we have deliberately avoided several important issues.
In this final section we would like to comment briefly on several
of these issues, which we think need to be addressed in future
research.

The need for experimental support. We begin by noting a
methodological weakness of our work: The major conclusions
regarding the cause-and-effect relations between monitoring and
control were based primarily on correlational results, which are
open to alternative interpretations. Although we did use several
experimental manipulations, the main purpose of these manipula-
tions was to show that they modulate the relationship between the
variables of interest. Thus, we manipulated incentives in Experi-
ments 5–7 in order to show that variations in incentive produce a
positive correlation between changes in study time (or in deliber-
ation time) and changes in metacognitive judgments. The manip-
ulation of practice in Experiment 4 was primarily intended to
demonstrate that the study time–JOL correlation changes with
repeated study–test cycles. The inclusion of delayed JOLs in
Experiment 3 was aimed to test the hypothesis that the dependence
of JOLs on study time decreases with JOL delay. The introduction
of severe time pressure in Experiment 6 was intended to show that
the correlation between study time and JOLs across items changes
when severe constraints are placed on the overall study time
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available. Clearly, it is not easy to find experimental manipulations
that can directly test the cause-and-effect relations postulated in
our theoretical framework. Therefore special effort must be made
in the future to use additional experimental manipulations that can
help produce converging evidence in support of the proposed
conceptual framework.

The dynamics of data-driven regulation. We now turn to some
of the substantive issues. One is the clarification of the dynamics
of data-driven regulation. As far as MC models are concerned,
these models are relatively clear about the dynamics of goal-driven
regulation: This regulation is assumed to be modulated by meta-
cognitive judgments, generally along the lines of the control-
theory perspective. In contrast, the dynamics of data-driven regu-
lation is far from being clear. If JOLs are based on study time
rather than vice versa, what determines study time itself? How do
learners decide when to stop studying an item?

We are currently exploring the possibility that the decision to
continue studying an item or end study is based not on the
perceived degree of mastery but on the monitoring of the mental
effort expended in studying that item. Assuming, with Kahneman
(1973), that the effort invested in a task is determined mainly by
the intrinsic demands of the task, perhaps in self-paced study
learners monitor the effort expended, stopping studying when no
further increase in effort is detected. A somewhat similar proposal
was advanced by Metcalfe and Kornell (2003): Learners continue
studying an item until information uptake has plateaued so that
there is diminished return. Unlike their proposal, however, we
assume that it is the change in invested effort that is monitored
rather than the change in degree of information uptake.

Feedback from outcome versus feedback from process. As
noted earlier, Carver and Scheier (1990, 1998) distinguished be-
tween a monitoring function that operates in the service of reduc-
ing the discrepancy between actual and desired states and a meta-
monitoring function that assesses the rate of discrepancy reduction.
This implies a distinction between two types of cues. In a similar
manner we have proposed that whereas MC models assign an
important role to feedback from the outcome of goal-oriented
operations, in the CM model, the feedback of concern is that
pertaining to the process itself, for example, the effort needed to
master a piece of information or to reach a decision.

A question arises, however, concerning the possible connection
between information about the outcome and information about the
process. Control-theory models, such as the discrepancy-reduction
model, imply an iterative process that is controlled by its (moni-
tored) outcome. The CM model, in contrast, was conceptualized to
entail a retrospective monitoring that follows task completion.
Clearly, however, as illustrated by the sequential mode, informa-
tion about the process is also monitored online and may influence
strategic decisions. For example, initial FOK, based on the feed-
back from processing a question, can drive a retrieval attempt, and
the feedback from attempted retrieval can then be used to update
the FOK (e.g., Vernon & Usher, 2003). Furthermore, even when
retrieval fails, the feedback from the process can still be used to
evaluate the likelihood that the solicited target will be retrieved
given further effort (see Carver & Scheier, 1990). Therefore, a
detailed model of the dynamics of monitoring and control requires
an analysis of the online feedback from the outcome as well as that
from the process, and a specification of their joint consequences.

Automatic and controlled processes. So far we have avoided
reference to the commonly held distinction between automatic and

controlled processes, which seems relevant to our conceptual
framework. Two questions suggest themselves. The first concerns
the relation between this distinction and our distinction between
data-driven and goal-driven effects. Researchers would possibly
agree that goal-driven regulation should be considered a controlled
process. However, would data-driven regulation—for example, the
regulation of study time according to the intrinsic properties of
items—be seen to represent an automatic process? Would the
regulation of study time in accordance with differential incentives
tax attentional resources to a greater extent than the regulation
according to item difficulty? Such would be expected if goal-
oriented regulation is assumed to be more “under the conscious
control of the subject” (Posner & Snyder, 1975, p. 73; see Shallice,
1994) than data-driven regulation.

The second question concerns our analysis of the cause-and-
effect relation between monitoring and control. In discussing
control-based monitoring, we grouped together mnemonic cues
that seem to stem from automatic processes (e.g., processing
fluency and cue familiarity) with those that derive from more
controlled processes (e.g., the amount of effort invested). A ques-
tion that arises is whether these two types of cues should be
distinguished, because it might be argued that only the latter
constitute feedback from control operations and hence support the
possibility that monitoring may follow control. We opted not to
draw such a distinction. Indeed, in discussing the affinity between
their view and the James–Lange position, Kelley and Jacoby
(1998) used the more encompassing term performance in arguing
that subjective experience may follow behavior. Also in sketching
his position, James (1884) included examples of behaviors that can
be said to differ along the continuum of automatic versus con-
trolled actions, for example, “we lose our fortune, are sorry and
weep” versus “we are insulted by a rival, are angry and strike” (p.
190).

The attribution process. The results of Experiments 5 and 7
support the simultaneous operation of top-down and bottom-up
processes, which affect metacognitive judgments in opposite di-
rections. As noted earlier, an attribution process must be postulated
to account for this observation, which implies that the cognitive
system can distinguish between the two sources of variation in
study time: whether that variation is due to goal-driven or to
data-driven effects. What is the process that permits such
discrimination?

We might gain some insight into the underlying process from
research on the control of action, which suggests a mechanism by
which the cognitive system can distinguish between self-generated
and externally generated movement (for a review, see Frith, Blake-
more, & Wolpert, 2000). That mechanism assumes that when a
movement is self-initiated, an efferent copy of the motor command
is issued that predicts the outcome and allows compensation for it.
Perhaps in a similar manner the cognitive system can distinguish
between intention-driven effort and data-driven effort by specify-
ing the proportion of variation that is due to each. The problem
with this proposal is that we found experimenter-controlled vari-
ations in study time to have effects on JOLs and recall similar to
those of self-regulated, goal-driven variation rather than those of
data-driven variation (Koriat, 1997; Koriat & Ma’ayan, 2005).
Thus, the hypothesized attribution process assumed to underlie the
simultaneous effects of intention-driven and data-driven effort
presents a challenge for future research.
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A final word. The issue of the cause-and-effect relation be-
tween subjective experience and behavior continues to be a subject
of intense debates among cognitive scientists in different disci-
plines. Clearly, this issue cannot be settled on the basis of empir-
ical results. What we have offered in this article is, perhaps, not
much more than a way to think about the issue. We believe that the
experimental work that we presented illustrates the usefulness of
the proposed conceptual framework and will hopefully generate
further experiments and findings.
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