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Abstract. The properties of low-redshift Type Ia supernovae are investigated using published multi-band optical broadband

data from the Calan/Tololo and CfA surveys. The average time evolution of B − V , V − R, R − I, B − I and V − I, the intrinsic

dispersion and time correlations are studied. This information is required to deduce the extinction of such explosions from the

measured colours. We find that extinction corrections on individual SNe based on their colours up to 40 days past the B-band

lightcurve maximum are generaly limited to σAV
>∼ 0.1, due to intrinsic variations, as far as it can be conservatively deduced

with the current sample of data. However, we find that the V − R colour, especially at late times, is consistent with a negligible

intrinsic spread, and may be the most accurate estimator for extinction.
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1. Introduction

In the last few years Type Ia supernovae (SNe Ia) have proved

to be excellent distance estimators and have been successfully

used to investigate the fate of the universe (Perlmutter et al.

1999; Riess et al. 1998). Despite the broad use of these objects

by cosmologists, the current knowledge of the nature of SNe Ia

is rather limited. Thus, there is a strong demand for further un-

derstanding to assess important issues about these explosions.

For cosmological implications, the main concerns are related

to the possible evolution of the SN properties with redshift.

Moreover, critical tests for extinction along the line of sight

based on supernova colours require good knowledge of the in-

trinsic properties of these objects.

In this paper, a statistical study on 48 well observed nearby

SNe Ia is carried out. In particular, the intrinsic dispersion in

SN colours is investigated using published BVRI data. We also

focus on the time correlation of intrinsic optical colours. This

information is needed to address the possible host galaxy or

intergalactic extinction by dust of supernovae used for cosmo-

logical tests (see e.g. Riess et al. 2000; Nobili et al. 2003), and

also to probe for other exotic sources of dimming at high-z with

differential extinction (Mörtsell et al. 2002).

2. The data set

Published BVRI lightcurves of well observed nearby SNe Ia

were analysed. The considered sample consists of 48 SNe Ia

from 2 different sets, the Calan/Tololo data published by

Hamuy et al. (1996), and the set in Riess et al. (1999), usually
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referred to as the CfA data. The list of SNe is given in Table 1,

along with the observed filter data available for each of them,

their redshift and the B-band lightcurve “stretch”, s, as defined

in Perlmutter et al. (1997) and Goldhaber et al. (2001).

The selected samples include a broad variety of SNe, well dis-

tributed in stretch factor, s. This parameter, related to ∆m15

(Phillips 1993), has been found to correlate with the supernova

luminosity. Thus, a sample well distributed in stretch should

imply a broad distribution in luminosity. Figure 1 shows the

distribution of the B-band light curve stretch factor and SN

redshifts (0.003 ≤ z ≤ 0.12), for both samples. The timescale

stretch parameter was determined from the lightcurve fits as in

Goldhaber et al. (2001) using their B-band lightcurve template

with a parabolic behavior for the earliest epoch after explosion.

K-corrections were applied to account for the small cosmo-

logical redshift as described in e.g. Goobar et al. (2002), using

the (s = 1) spectroscopic template of Nugent et al. (2002) as

a starting point. The results of this analysis were used to im-

prove the spectral template of SN Ia’s (Sect. 6) and we iterated

the analysis once re-calculating the K-corrections with the im-

proved template. Note that even though the K-corrections for

the used data set are small, typically of the order of a few hun-

dreds of a magnitude, for some of the more distant objects in

the sample considered, they reach up to ∼0.5 mag.

The SNe light curves were corrected for both Milky Way

and host galaxy extinction as in Phillips et al. (1999) using the

method first proposed by Lira (1995) for estimating host galaxy

extinction using late epoch light curves. There is empirical ev-

idence that the B − V colors of SNe Ia show extremely small

scatter for the period between 30 and 90 days post B-band max-

imum, despite any difference in the light curve shapes at earlier
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Fig. 1. Distribution of redshift, z, (binsize = 0.02), and stretch factor, s,

(binsize = 0.08), for the analysed sample.

epochs. As the set of SNe used in this article is a subset of the

one analysed in Phillips et al. (1999), the host galaxy extinc-

tions listed in Table 2 of their paper were used. These were

derived combining the late time B− V colour with information

on the B − V and V − I at maximum light.

The Cardelli et al. (1989) relation, modified by O’Donnell

(1994), was used to compute the extinction in other colours

given E(B − V). Spectral templates of Type Ia SNe were used

to compute the evolution of the extinction with the supernova

epoch.

The extinction corrected lightcurves were further screened

to exclude the most peculiar SNe, as the main emphasis of

this work is to establish the properties of “normal” supernovae.

Figure 2 shows the difference of the B-band lightcurve maxi-

mum, Bmax and the V-band light curve maximum Vmax plotted

against the decline rate parameter,∆m15, as reported in Phillips

et al. (1999). A 3σ clipping rejection criteria was applied, iter-

ating until no data points were further rejected. At least 5 SNe

in the 2 data sets deviate significantly from the expected linear

relation derived in Phillips et al. (1999) from an independent

set of 20 non-reddened SNe (solid line in Fig. 2):

Bmax − Vmax = −0.07(±0.012)+ 0.114(±0.037)(∆m 15 − 1.1).

The outliers are SN 1993ae, SN 1995bd, SN 1996ai, and

SN 1996bk for the CfA data, and SN 1992K for the

Calan/Tololo set. Moreover SN 1995E and SN 1995ac have

been excluded since they are similar to the peculiar SN 1991T

(Branch et al. 1993)1.

3. The average optical colours

Figures 3–8 show the time evolution of the extinction and K-

corrected B − V, V − R, R − I, B − I and V − I, colours. The

plotted errors include the uncertainty on the host galaxy exinc-

tion correction. The time axis (t ′) has been corrected by the SN

redshift and the B-band stretch factor s, to account for the de-

pendence of colours on the stretch. This rescaling of the time

axis was found very effective in reducing the measured intrinsic

dispersion (Sect. 4)

t′ =
t − tBmax

s · (1 + z)
· (1)

For each colour lightcurve we have spline-interpolated the

weighted mean values computed in four days wide, non-

overlapping bins. The aim of this procedure was to find a

1 Including these 2 SNe in the analysis does not change the results

significantely.

Table 1. List of SNe used for the analysis.

SN Band z s Ref.

1993ac B, V, R, I 0.049 0.865 (1)

1993aea B, V, R, I 0.019 0.846 (1)

1994ae B, V, R, I 0.004 1.033 (1)

1994M B, V, R, I 0.023 0.865 (1)

1994Q B, V, R, I 0.029 1.116 (1)

1994S B, V, R, I 0.015 1.061 (1)

1994T B, V, R, I 0.035 0.890 (1)

1995aca B, V, R, I 0.050 1.123 (1)

1995ak B, V, R, I 0.023 0.857 (1)

1995al B, V, R, I 0.005 1.044 (1)

1995bda B, V, R, I 0.016 1.131 (1)

1995D B, V, R, I 0.007 1.081 (1)

1995Ea B, V, R, I 0.012 1.024 (1)

1996aia B, V, R, I 0.003 1.110 (1)

1996bka B, V, R, I 0.007 0.761 (1)

1996bl B, V, R, I 0.036 1.030 (1)

1996bo B, V, R, I 0.017 0.902 (1)

1996bv B, V, R, I 0.007 1.106 (1)

1996C B, V, R, I 0.030 1.102 (1)

1996X B, V, R, I 0.007 0.889 (1)

1990af B, V 0.051 0.792 (2)

1990O B, V, R, I 0.030 1.116 (2)

1990T B, V, R, I 0.040 0.998 (2)

1990Y B, V, R, I 0.039 1.007 (2)

1991ag B, V, R, I 0.014 1.084 (2)

1991S B, V, R, I 0.055 1.114 (2)

1991U B, V, R, I 0.032 1.068 (2)

1992ae B, V 0.075 0.970 (2)

1992ag B, V, I 0.025 0.951 (2)

1992al B, V, R, I 0.015 0.963 (2)

1992aq B, V, I 0.102 0.868 (2)

1992au B, V, I 0.061 0.787 (2)

1992bc B, V, R, I 0.020 1.039 (2)

1992bg B, V, I 0.035 0.983 (2)

1992bh B, V, I 0.045 1.048 (2)

1992bk B, V, I 0.058 0.825 (2)

1992bl B, V, I 0.044 0.812 (2)

1992bo B, V, R, I 0.019 0.767 (2)

1992bp B, V, I 0.079 0.907 (2)

1992br B, V 0.088 0.682 (2)

1992bs B, V 0.064 1.030 (2)

1992J B, V, I 0.045 0.798 (2)

1992Ka B, V, I 0.010 0.787 (2)

1992P B, V, I 0.037 0.952 (2)

1993ag B, V, I 0.049 0.917 (2)

1993B B, V, I 0.070 1.023 (2)

1993H B, V, R, I 0.024 0.774 (2)

1993O B, V, I 0.051 0.950 (2)

(1), Riess et al. (1998); (2), Hamuy et al. (1996).
a Excluded from the analysis presented here.

curve that describes the average time evolution of the colours.

This parameterization will be referred as a “model” in the
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Fig. 2. Bmax–Vmax vs. ∆m15 for the 2 sets of data, k-corrected, corrected

for Galactic extinction and Host Galaxy extinction, compared with the

result of Phillips et al. (1999).

following discussion. Other methods were used to fit the data,

as for example a least squares cubic spline fit. These result in

curves that differ from the model typically by 0.01 mag. The

models show some systematic discrepancies between the two

data sets, especially in R − I for which the C-T model is al-

ways redder than the CfA model. In Fig. 9 we investigate the

differences of each of the models from the one built on both

sets together. The differences are usually of the order of a few

hundreds of a magnitude. The largest deviation was found for

R − I in the Calan/Tololo set, resulting in a difference of about

0.2 mag at maximum with respect to the model built up us-

ing data from both sets. Note, however, that the statistics in the

Calan/Tololo set for R− I colour, all along the evolution and in

particular around the time of Bmax, is extremely poor, as shown

in Fig. 5. Due to the smaller quoted observational error bars,

the CfA set dominates the weighted average used to build the

model out of both data sets.

A source of uncertainty in this analysis is the ability of the

observers to convert the instrumental magnitudes from the used

filter+CCD system transmission into the standard BVRI sys-

tem. The apparent systematic effects for R − I in Fig. 9 may be

indicative of this.

Fig. 3. B − V for the two sets of data. The solid line represent alway

the curve found for the current set, while the dashed line is the curve

found for the same colour of the other set.

Fig. 4. V − R for the two sets of data. The solid line represent alway

the curve found for the current set, while the dashed line is the curve

found for the same colour of the other set.

In order to assess systematic effects in builing the colour

models, we checked whether the host galaxy extinction was

over-corrected. Thus, we compared the models with the data

of those SNe that, according to Phillips et al. (1999), suffered

no extinction from the host galaxy. The comparison, shown in

Fig. 7, exhibits no obvious deviations and we may conclude

that the extinction corrected colours are consistent with the un-

corrected sub-sample.

A possible remaining dependence of colours on the stretch

factor s was investigated. For data points in a 5 days broad

bin around time of B-maximum and around day 15, a linear
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Fig. 5. R − I for the two sets of data. The solid line represent alway

the curve found for the current set, while the dashed line is the curve

found for the same colour of the other set.

Fig. 6. B − I for the two sets of data. The solid line represent alway

the curve found for the current set, while the dashed line is the curve

found for the same colour of the other set. The filled circles represent

SN 1993H, while the filled diamonds are data of SN 1992bc. Refer to

Sect. 7 for a discussion about these 2 SNe.

weighted fit was done on the residuals from the models not

showing any further significant dependence on ∆m 15 or equiv-

alently on the stretch parameter s. Note that this is not in con-

tradiction with Fig. 2, as we are considering (B−V) tBmax
instead

of Bmax−Vmax. Moreover, our analysis includes data points in a

broad bin around day zero, and not a fitted lightcurve maximum

as in Fig. 2.

Fig. 7. Comparison of the models with data of unreddened SNe only.

Fig. 8. V − I for the two sets of data. The solid line represent alway

the curve found for the current set, while the dashed line is the curve

found for the same colour of the other set. The filled circles represent

SN 1993H, while the filled diamonds are data of SN 1992bc. Refer to

Sect. 7 for a discussion about these 2 SNe.

4. Intrinsic colour dispersion

The observed colour dispersion around the models is overall

inconsistent with a statistical random distribution of the data

with the reported measurement errors. The χ2 value per degree

of freedom computed for each model is typically between 3
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Fig. 9. Residuals of each of the models from the one built for all the

data set.

and 6, giving indication of a very poor fit of the data. Thus,

we conclude that the analysed data supports the existence of an

intrinsic colour dispersion of Type Ia supernovae2.

The intrinsic colour dispersion was computed on the resid-

uals of each of the data sets from the corresponding model, built

as explained above. Labeling XY i any of the measured colours,

B − V, V − R, R − I, B − I and V − I, the residual with respect

to the model expectation is referred as RXY i
, i.e.,

RXY i
= XY i − XYmodel

i . (2)

Next, the time axis was binned into 5 days wide bins to com-

pensate for the modest statistics. The bins are centered at days

d = 5·n, with n ranging from 0 to 8. For each bin k, we compute

the weighted average for the data XY, (see Appendix A)

XYk =

∑Nk

i=1
wiXYi

∑Nk

i=1
wi

(3)

where Nk is the number of points in bin k and w i is the inverse

of the uncertainty on the ith measurement squared, 1/σ 2
i
, where

σi include both measurement errors and uncertainty on the host

galaxy extinction corrections. The weighted sample standard

deviation was computed as the square root of the weighted sec-

ond moment:

sk
XY =

√
mw2
=

√√∑N
i=1 wiR

2
XY i∑N

i=1 wi

· (4)

2 This has been further investigated as described at the end of this

section.

Fig. 10. Comparison of the results for the intrinsic dispersion in each

colour given in Table 2 for both data sets (triangles) and the results

obtained keeping the 2 sets of data separated (squares and diamonds

for the C-T and CfA respectively).

The uncertainty on the expression in Eq. (4) is given by the

square root of the variance, V[sk
XY

], computed as:

V[sk
XY] =

V[mw2
]

4mw2

(5)

where V[mw2
] is the variance of the weighted second moment.

We can consider the result of Eq. (4) as an estimate of the in-

trinsic dispersion in each bin, for each XY colour: ∆XY = sk
XY

.

This has been applied at each one of the sets separately and at

the whole set of data. The results of the method for the whole

set of data are given in Table 2.

Figure 10 shows a comparison of the intrinsic dispersion

computed for each of the sets separately and their combination.

In most of the cases the differences exceed the statistical uncer-

tainties, seemingly arising from systematic differences between

the two data sets. The computed intrinsic dispersion for the CfA

sample was found to be smaller than for the CT data set and the

whole (combined) sample in most cases, again pointing at sys-

tematic differences in the reported magnitudes.

Note that the adopted method leads to an overestimation

of the intrinsic colour dispersion due to the contribution from

the measurement errors. However, the weighting procedure en-

sures that the most accurate measurements dominate the re-

sult. To asses the impact of the measurement accuracy, we

run a Monte-Carlo simulation to generate a synthetic colour

data set with a dispersion given by the measurement uncertain-

ties alone, i.e. no intrinsic dispersion. Three hundred data sets,

with the same distributions in epochs and formal error bars as

the CfA and Calan/Tololo were simulated and the weighted

standard deviation (and its error) were computed, according

to Eqs. (4) and (5). Note that the simulation, for simplicity,
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Table 2. Results of the analysis of all SNe. First column: central value

in days for each time bin; Nk is the number of points for each bin;

XY k is the weighted mean value and its 1-sigma uncertainty; ∆XY is

the intrinsic dispersion computed according to Eqs. (4) and (5); ∆corr
XY

is the corrected intrinsic dispersion, computed as in Eq. (6), and in the

last column is the estimated lower limit at 99% C.L. (see text).

Day Nk BVk ∆BV ∆corr
BV

L.L.

0 57 −0.11 ± 0.01 0.09 ± 0.01 0.07 0.05

5 70 0.02 ± 0.01 0.10 ± 0.01 0.08 0.05

10 75 0.16 ± 0.01 0.11 ± 0.01 0.09 0.06

15 59 0.47 ± 0.02 0.11 ± 0.01 0.09 0.06

20 47 0.75 ± 0.03 0.13 ± 0.02 0.11 0.08

25 39 0.95 ± 0.02 0.10 ± 0.02 0.08 0.06

30 34 1.08 ± 0.02 0.11 ± 0.02 0.09 0.07

35a 27 1.07 ± 0.02 0.08 ± 0.03 <0.05

40 35 1.02 ± 0.02 0.10 ± 0.03 0.07 0.06

Day Nk VRk ∆VR ∆corr
VR

L.L.

0 31 0.04 ± 0.02 0.07 ± 0.01 0.06 0.05

5 36 –0.01 ± 0.02 0.08 ± 0.01 0.06 0.05

10 38 –0.08 ± 0.01 0.06 ± 0.01 0.04 0.04

15 34 –0.07 ± 0.02 0.07 ± 0.02 0.06 0.05

20 24 0.09 ± 0.02 0.06 ± 0.02 0.05 0.04

25a 22 0.22 ± 0.02 0.06 ± 0.01 <0.04

30a 18 0.31 ± 0.01 0.06 ± 0.01 <0.04

35a 16 0.30 ± 0.01 0.04 ± 0.01 <0.03

40a 19 0.25 ± 0.01 0.05 ± 0.01 <0.03

Day Nk RIk ∆RI ∆corr
RI

L.L.

0 30 –0.44 ± 0.02 0.10 ± 0.01 0.09 0.06

5 36 –0.50 ± 0.02 0.09 ± 0.01 0.07 0.05

10 32 –0.50 ± 0.02 0.07 ± 0.01 0.05 0.05

15 30 –0.25 ± 0.04 0.12 ± 0.03 0.11 0.08

20 20 –0.06 ± 0.04 0.13 ± 0.02 0.12 0.09

25 22 0.09 ± 0.02 0.08 ± 0.01 0.05 0.05

30 18 0.23 ± 0.03 0.08 ± 0.01 0.06 0.06

35a 16 0.27 ± 0.03 0.09 ± 0.01 <0.06

40 17 0.22 ± 0.04 0.14 ± 0.03 0.13 0.10

Day Nk BIk ∆BI ∆corr
BI

L.L.

0 39 –0.54 ± 0.02 0.13 ± 0.01 0.10 0.08

5 48 –0.52 ± 0.02 0.15 ± 0.02 0.13 0.09

10 48 –0.44 ± 0.03 0.17 ± 0.01 0.15 0.10

15 35 0.10 ± 0.05 0.18 ± 0.02 0.16 0.11

20 34 0.74 ± 0.06 0.24 ± 0.05 0.23 0.15

25 25 1.25 ± 0.05 0.22 ± 0.04 0.21 0.15

30 27 1.66 ± 0.03 0.16 ± 0.02 0.13 0.10

35a 23 1.65 ± 0.03 0.12 ± 0.02 <0.08

40 33 1.51 ± 0.04 0.20 ± 0.02 0.17 0.13

Day Nk VIk ∆VI ∆corr
VI

L.L.

0 37 –0.43 ± 0.02 0.08 ± 0.01 0.05 0.05

5 51 –0.54 ± 0.02 0.11 ± 0.01 0.09 0.06

10 48 –0.60 ± 0.01 0.09 ± 0.01 0.06 0.05

15 38 –0.34 ± 0.03 0.13 ± 0.02 0.11 0.08

20 36 0.01 ± 0.03 0.14 ± 0.02 0.13 0.09

25 28 0.33 ± 0.03 0.15 ± 0.02 0.14 0.10

30 28 0.57 ± 0.03 0.12 ± 0.02 0.10 0.08

35 25 0.58 ± 0.02 0.10 ± 0.01 0.08 0.07

40 33 0.48 ± 0.03 0.13 ± 0.01 0.11 0.08

a Compatible with null intrinsic dispersion at 99% C.L.; an upper limit

is given instead of the corrected intrinsic dispersion.

generates Gaussian distributed and completely uncorrelated

data. The averages, δ, were used to disentangle the contribution

of the intrinsic dispersion from the measurement errors. First,

an hypothesis test was run to verify whether the simulated data

and the measured data had the same dispersion; e.g. implying

null intrinsic dispersion:

H0 : ∆ = δ

H1 : ∆ � δ.

A level of significance α = 0.01 was set for rejecting the null

hypothesis (Cowan 1998). Only 10 cases were not rejected, in-

dicated by a (a) in Table 2. For all the other cases, for which the

H0 hypothesis was rejected, the intrinsic dispersion was com-

puted as:

∆corr =
√
∆2 − δ2 (6)

and a lower limit on its value was set at a 99% confidence limit.

The cases for which the null hypothesis was not rejected, were

considered as compatible with no intrisic dispersion, and an

upper limit on its value was set at a 99% confidence level. The

corrected intrinsic dispersions are listed in the 5th column of

Table 2, together with upper and lower limits. We notice that

the narrowest colour dispersion happens for V − R, especially

at late times. At 25 days after Bmax and later, this colour is

compatible with no intrinsic spread at all. Further, it should be

noted that at day 35, all the colours but V− I are consistent with

vanishing intrinsic dispersion.

5. Correlation

The correlation between optical colours at different epochs was

also estimated. The property that was tested is whether a super-

nova that is blue at a certain epoch for example, say at maxi-

mum, stays blue at all epochs. In Riess et al. (2000), the authors

argue that data measurements more than 3 days apart may be

considered as uncorrelated estimators of colour. Our analysis

does not support that assumption3. We find significant correla-

tions for data points up to a month apart, as shown below. The

method followed is essentially the one used to compute the in-

trinsic dispersion. One can summarize the following steps:

– Bin the data in time;

– Select only the SNe present in all the time bins;

– For each bin compute the weighted average of the measure-

ments belonging to the same SN;

– Compute the linear correlation coefficient between bins as

in Eq. (A.8);

– Test the correlation coefficient significance (Appendix A.2).

We refer to Appendix A.2 for what follows. The correlation

coefficient between different epochs h and k is:

rhk =

∑n
i=1

(
Rh

XYi
− R

h

XY

) (
Rk

XYi
− R

k

XY

)

√
∑n

i=1

(
Rh

XYi
− R

h

XY

)2∑n
j=1

(
Rk

XY j
− R

k

XY

)2 (7)

3 For high-z objects this is even more questionable when some of

the main sources of uncertainty is the subtraction of a common image

of the host galaxy and the K-corrections.
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Table 3. Correlation coefficients between the different bins. The indicated xbin is the central value of each bin. The bin size is 7 days for all the

bins. The errors indicate the 1 σ confidence level for the computed coefficients. See text for details.

B − V/xbin 0 7 15 22 30

0 1.00 0.80+0.09
−0.14

0.61+0.16
−0.24

0.47+0.21
−0.28

0.45+0.21
−0.28

7 1.00 0.75+0.11
−0.17

0.69+0.13
−0.20

0.63+0.15
−0.23

15 1.00 0.59+0.17
−0.24

0.45+0.22
−0.28

22 1.00 0.56+0.18
−0.25

30 1.00

V − R/xbin 0 7 15 22 30

0 1.00 0.81+0.13
−0.31

0.46+0.33
−0.54

0.29+0.41
−0.56

0.03+0.51
−0.53

7 1.00 0.24+0.44
−0.56

0.48+0.32
−0.53

0.24+0.44
−0.56

15 1.00 0.48+0.32
−0.53

−0.15+0.55
−0.47

22 1.00 −0.44+0.55
−0.34

30 1.00

R − I/xbin 0 7 15 22 30

0 1.00 0.73+0.20
−0.51

0.57+0.31
−0.63

0.56+0.31
−0.63

0.31+0.46
−0.68

7 1.00 0.66+0.25
−0.57

0.78+0.16
−0.45

0.58+0.30
−0.63

15 1.00 0.89+0.08
−0.28

0.53+0.33
−0.65

22 1.00 0.83+0.13
−0.38

30 1.00

V − I/xbin 0 7 15 22 30

0 1.00 0.84+0.08
−0.17

0.92+0.04
−0.09

0.93+0.04
−0.08

0.49+0.25
−0.36

7 1.00 0.72+0.15
−0.26

0.74+0.14
−0.25

0.50+0.24
−0.36

15 1.00 0.90+0.06
−0.12

0.49+0.25
−0.36

22 1.00 0.65+0.18
−0.30

30 1.00

B − I/xbin 0 7 15 22 30

0 1.00 0.62+0.20
−0.35

0.74+0.14
−0.27

0.44+0.29
−0.42

0.30+0.34
−0.44

7 1.00 0.76+0.13
−0.26

0.47+0.27
−0.41

0.51+0.25
−0.39

15 1.00 0.76+0.14
−0.26

0.40+0.30
−0.42

22 1.00 0.73+0.15
−0.28

30 1.00

where the summation is on the ith SN, which by construction

is present in all the bins. The uncertainty on rhk has been com-

puted converting it into the normally distributed variable z, as

described in Appendix A.2. The results, given in Table 3, show

that the correlation is important and non-zero all along the time

evolution. Figure 11 shows the weighted mean colours for the

selected SNe in the bins centered at day 0, 15 and 30. Note

that the supernovae selected are different in different colours,

but, by construction, are the same in all the bins for each of the

colour. It appears that supernovae that deviate from the average

colour at a certain epoch are likely to keep their colour excess

all along the 30 days evolution considered here.

6. Supernovae template

Nugent et al. (2002) analysed the relation between colours of

SNe Ia and K-corrections. In particular they showed how K-

corrections are mainly driven by the overall colour of the SN

rather than by peculiarities of single features. Using spectra and

colour light curves they give a recipe to build a SN Ia template,

to be used for computing K-corrections of s ∼ 1.0 SNe. As

the sample used in our work is larger than the one considered

in their paper, we have used our results to improve the spec-

tral template. Note that this affects only the BVRI magnitudes,

which are the only bands treated here. Referring to Nugent et al.

(2002), we proceed as follows:

– correct the BVRI of their list of UBVRIJHK magnitudes

using our B − V, V − R and R − I models;

– correct the corresponding spectral templates with this

colours4;

– iterate the whole analysis described in this paper, using the

newly created templates to compute the K-corrections for

both Calan/Tololo and CfA data set;

– correct again the templates using the most recent version of

the models.

4 The same code used by Nugent et al. (2002) was used for this.
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Fig. 11. From top to bottom and left to right. Residuals from the models for the SNe selected for each colour, in bin centered at day 0,15 and 30.

The band defined by the solid lines correspond to the intrinsic dispersion found in at the same epoch.
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Table 4. Results of the analysis done excluding SN 1992bc and SN 1993H (**) for B − I and V − I. xbin is the central value in days for each

bin; XYk** is the weighted mean value and its uncertainty; ∆BI** is computed according to Eqs. (4) and (5); ∆corr
XY ** is the corrected intrinsic

disperion and L.L. is the lower limit at 99% C.L.; in the last column is the difference between the results given in Table 2 and this analysis; the

errors are computed as sum in quadrature.

day BIk** ∆BI** ∆corr
BI

** L.L. ∆BI − ∆BI**

0 –0.53 ± 0.02 0.13 ± 0.01 0.10 0.08 0.000 ± 0.017

5 –0.53 ± 0.02 0.13 ± 0.01 0.10 0.08 0.024 ± 0.025

10 –0.41 ± 0.02 0.15 ± 0.02 0.13 0.09 0.018 ± 0.022

15 0.10 ± 0.05 0.18 ± 0.02 0.16 0.11 0.003 ± 0.026

20 0.74 ± 0.05 0.15 ± 0.02 0.12 0.09 0.098 ± 0.052

25 1.31 ± 0.05 0.12 ± 0.02 0.09 0.08 0.101 ± 0.044

30 1.68 ± 0.03 0.12 ± 0.02 0.08 0.08 0.038 ± 0.028

35 1.65 ± 0.03 0.13 ± 0.02 <0.09 −0.006 ± 0.024

40 1.49 ± 0.04 0.20 ± 0.03 0.18 0.13 -0.004 ± 0.035

day VIk** ∆VI** ∆corr
VI

** L.L. ∆VI − ∆VI**

0 –0.43 ± 0.02 0.07 ± 0.01 0.05 0.05 0.002 ± 0.011

5 –0.55 ± 0.01 0.09 ± 0.01 0.06 0.05 0.019 ± 0.014

10 –0.58 ± 0.01 0.09 ± 0.01 0.06 0.05 0.002 ± 0.013

15 –0.34 ± 0.03 0.11 ± 0.01 0.09 0.07 0.016 ± 0.022

20 0.01 ± 0.03 0.11 ± 0.02 0.09 0.07 0.036 ± 0.027

25 0.35 ± 0.03 0.09 ± 0.01 0.07 0.06 0.060 ± 0.028

30 0.57 ± 0.03 0.11 ± 0.02 0.09 0.07 0.007 ± 0.029

35 0.58 ± 0.02 0.10 ± 0.01 0.08 0.07 0.000 ± 0.019

40 0.47 ± 0.03 0.13 ± 0.01 0.11 0.08 0.000 ± 0.018

Even though the template itself is modified considerably from

the original one, iterating once results in small corrections

(∼0.001–0.005 mag) in the intrinsic dispersion in all colours at

any epoch, and a few percent in the colour models. As the cor-

rection obtained are small and well within the given uncertain-

ties, we do not iterate further. The results of this analysis should

not be considered definitive and may change as SNe Ia and their

colour evolutions are studied in even more detail. However, it

can be considered a good estimate of the average SN Ia tem-

plate (in BVRI), as it is constructed from a quite broad sample

of SNe. The final corrected template is available upon request.

7. Discussion

Throughout our analysis all data points were treated as inde-

pendent measurements. This is particularly important for the

cases with significant host galaxy light underneath the super-

nova where a single reference image was used, introducing a

correlation between the data points not considered here.

A first estimate of the intrinsic dispersion was calculated

for each data set separately and the two data sets together. A

comparison of the results shows that the colours extracted from

the CfA sample have smaller scatter indicating that the contri-

bution from measurement errors is not negligible. Further, in

the analysis the measurements are assumed to be Gaussian dis-

tributed and the weighted standard deviation has been taken as

an estimate of the intrinsic dispersion. However, we noticed

that 2 SNe, SN 1993H and SN 1992bc, seem to be rather de-

viant in B − I and V − I for the C-T set, as shown in Figs. 6

and 8. The effect of the “outliers” is particularly important

around 20 days after B-maximum. For comparison, we re-

calculated the intrinsic spread in B − I and V − I excluding

these 2 SNe. The results are shown on Table 4. The agree-

ment between the intrinsic dispersion between the data sets

improves when these 2 SNe are excluded. We emphasize that

there are systematic differences between the Calan/Tololo and

CfA data sets, and they might have been introduced while con-

verting from the instrumental system used to the standard BVRI

system.

An attempt of disentangling the intrinsic dispersion from

the contribution of the uncertainties has been done resulting in

upper limit values for the intrinsic dispersion in some cases.

The most relevant is the case of V − R, that seems com-

patible with null intrinsic dispersion for most of the epochs

at 99% C.L. Moreover this analysis brings out an important

feature at day 35, when all the colours but V − I are consistent

with zero intrinsic dispersion. This indicates that further stud-

ies will be needed to investigate this intriguing finding. When

computing the correlation coefficients we considered data up to

30 days after B-band maximum, even though later epoch data

are available for several supernovae. However, the necessary

condition of each SN being observed in all the time bins re-

duces the statistics if later epochs are introduced. This limita-

tion is specific to the sample used and can be overcome with

the use of a more extensively observed sample, such as what

will be provide by SNfactory (Aldering et al. 2002).

The intrinsic dispersion sets constrains on the ability to de-

termine the host galaxy extinction, AV . This will depend on
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the colour, as the intrinsic dispersion is different for different

colours. As an example we used the Cardelli et al. (1989) rela-

tion at the effective wavelength for each bandpass to compute

the expected uncertainty in the extinction, neglecting any de-

pendence on the supernova phase.

σB−V
AV
= 3.1 · ∆corr

BV

σV−R
AV
= 6.2 · ∆corr

VR

σR−I
AV
= 4.1 · ∆corr

RI

σB−I
AV
= 1.4 · ∆corr

BI

σV−I
AV
= 2.5 · ∆corr

VI

(8)

where RV was assumed equal to 3.1. Table 5 shows the results

of the Eq. (8) for the epochs for which the intrinsic dispersion

was calculated. The ∆corr
XY

was used for this. The results indi-

cate that, with the present knowledge, extinction by dust with

RV = 3.1 may only be determined to σAV
>∼ 0.10 with Type

Ia restframe optical data within the first 40 days after B-band

lightcurve maximum, for the colours and epochs with non-zero

intrinsic dispersion. However observations in V − R are prefer-

able to other colours to set limit on the extinction of an ob-

served supernova. To account for possible different extinction

parameters RV in the different supernova host galaxies (as no-

ticed in e.g. Riess et al. 1996 and Krisciunas et al. 2000), we re-

peated the analysis considering a Gaussian uncertaintyσRV
= 1

on RV , propagating this scatter on the host galaxy extinction

corrections. This changes the values of the intrinsic dispersion,

but typically within the quoted errors in Table 2.

8. Conclusion

A statistical analysis of colours of SNe Ia using a sample

of 48 nearby SNe was performed. Of this sample 7 SNe have

been excluded based on their large extinction, or peculiar be-

havior of their colours at maximum. With the present knowl-

edge and data quality we computed the average colour evo-

lution for B − V, V − R, R − I, B − I and V − I with time

and the derived intrinsic scatter. We find that the correlation of

colours during the first 30 days after restframe B-band max-

imum is not negligible, i.e. arguing against the assumptions

made in the analysis of SN 1999Q (z = 0.46; Riess et al.

2000) where five measurements of restframe B − I along its

lightcurve were treated as independent estimates of extinction.

According to our findings, their limit on the presence of in-

tergalactic grey dust must be revised. A reanalysis of the data

from SN 1999Q is in preparation (Nobili et al. 2003). With the

data at hand, host galaxy extinction corrections from restframe

optical colours within the first 30 days after maximum light are

generaly limited to σAV
>∼ 0.1 due to the intrinsic variation of

Type Ia colours at those epochs, with the possible exception of

extinction corrections derived from the rest-frame V−R colour.

The results of this analysis have been used to correct spectro-

scopic templates which are available upon request.
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Appendix A

A.1. Algebraic moments

In what follows we refer to Cowan (1998) and Kendall & Stuart

(1958, see Vol. 1, Chap. 10), our aim here is to give uniformity

to the notations used. Given n independent observations of a

variable, x1, x2, ..., xn, the rth moment or algebraic moment is

given by:

mr =
1

n

n∑

i=1

xr
i . (A.1)

The expectation value, or mean value, and the variance of m r

are:

E[mr] = µr

V[mr] =
1

n

(
µ2r − µ2

r

)
(A.2)

where µ2r is the 2 · rth moment. Equations (A.2) are exact for-

mulae as long as one knows µ2r and µr . However this is not

always the case, and one has to use their estimators m2r and mr

from the sample itself. The variance of the standard deviation

can be computed using standard error propagation:

V[σ] = V
[√

m2

]
=

V[m2]

4m2

=
m4 − m2

2

4nm2

· (A.3)

In experimental situation each observation x i is often attached

to a certain weightwi. Supposing that the weight themselves are

known without errors, one can define the following formula for

the rth weighted moments:

mwr
=

∑n
i=1 wi x

r
i∑n

i=1 wi

· (A.4)

In order to evaluate the variance on the weighted standard de-

viation we simply extended Eq. (A.3) for the case of weighted

moments, obtaining:

V[σw] = V[
√

mw2
] =

V[mw2
]

4mw2

=
mw4
− m2

w2

4neffmw2

(A.5)

where the mw4
and mw2

are the 4th and 2nd weighted moments

respectively and neff = (
∑n

i=1 wi)
2/
∑n

i=1 w
2
i
.

A simple Monte Carlo simulation has been run to verify the

accuracy of the approximated formula (A.5).

A.2. Correlation coefficient

Given 2 random variables x and y the correlation coefficient is

defined as

ρxy =
Vxy

σxσy
· (A.6)

The unbiased estimator of the covariance V xy is:

V̂xy =
1

n − 1

n∑

i=1

(xi − x) (yi − y) (A.7)

so that the estimator of the correlation coefficient will be:

rxy =
V̂xy

sxsy
=

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2∑n
j=1

(
y j − y

)2 · (A.8)

For Eq. (A.8) to be a good estimator of the correlation coef-

ficient there are a few caveats to check. First condition is that

the samples are randomly defined from the population, that is

to make sure that the samples x and y are not selected in some

ways that would operate as to increase or decrease the value

of r. Even though one has random samples it is possible to

compute the errors due to sampling. Commonly this is com-

puted as (1 − r2)/
√

n. Unfortunately this is just an approxima-

tion. Moreover r’s for successive samples are not distributed

normally unless n is large and the true value ρ is near zero.

This yields to a distinction:

– if n > 30:

in order to know whether the value calculated for r is sig-

nificantly different from zero, one can compute its standard

error as:

σr = 1/
√

n − 1. (A.9)

If r/σ is greater than 2.58, one can conclude that the uni-

verse value of r is likely to be greater than zero.

– if n < 30:

the variable

t = r

√
n − 2
√

1 − r2
(A.10)

follows the t-distribution with d.o. f . = n − 2. This can be

used only for testing the hypothesis of zero correlation.

R. A. Fisher developed a technique to overcome these difficul-

ties. The variable r is transformed into another variable that is

normally distributed. This is especially useful for high value

of r, when none of the above test can be safely applied. The

transformation to the variable z:

z =
1

2
ln(1 + r) −

1

2
ln(1 − r) (A.11)

allows some important semplifications. The distribution of z’s

for successive samples does not depend on the universe value ρ

and the distribution of z for successive samples is so near to

normal that it can be treated as such without any loss of accu-

racy, see for example (Vol. 1, Chap. 16 and Vol. 2, Chap. 26)

of Kendall & Stuart (1958). Moreover the standard error for z

is independent on its σ:

σz = 1/
√

n − 3. (A.12)

The way to proceed is then very simple:

– Compute r according to (A.8);

– Transform r into z according to (A.11);

– Compute σz according to (A.12);

– In order to state a 1 sigma confidence limit for r, transform

the 2 values z ± σz back to r, using the inverse of (A.11).
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